JP2008075184A - Infrared reflection fiber - Google Patents

Infrared reflection fiber Download PDF

Info

Publication number
JP2008075184A
JP2008075184A JP2006251994A JP2006251994A JP2008075184A JP 2008075184 A JP2008075184 A JP 2008075184A JP 2006251994 A JP2006251994 A JP 2006251994A JP 2006251994 A JP2006251994 A JP 2006251994A JP 2008075184 A JP2008075184 A JP 2008075184A
Authority
JP
Japan
Prior art keywords
fiber
titanium oxide
oxide particles
infrared
infrared reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006251994A
Other languages
Japanese (ja)
Inventor
Shigeki Iida
繁樹 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006251994A priority Critical patent/JP2008075184A/en
Publication of JP2008075184A publication Critical patent/JP2008075184A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an infrared reflection fiber in which a substance having an infrared reflection function has a proper size and which holds a fiber mechanical strength and can prevent the rise of temperature under a wear. <P>SOLUTION: This infrared reflection fiber is characterized by kneading titanium oxide particles having particle diameters of 0.2 to 0.7 μm. The titanium oxide particles are preferably covered with the films of a metal oxide. The films are preferably a thickness for producing IR ray plasma reflection having a wavelength of ≥1,000. The metal oxide is preferably one of InO<SB>2</SB>, SnO<SB>2</SB>or ZnO. The thickness is preferably 60 to 500 nm. The titanium oxide particles may be surface-treated with a silane coupling agent. The infrared reflection fiber may be blended with natural fibers. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、赤外線反射繊維に関するものである。   The present invention relates to an infrared reflecting fiber.

炎天下で着衣下の温度上昇を防止するため、太陽からの赤外線の着衣下への侵入を防ぐ方法が以前から研究されている。そして、そのような方法の一つとして、衣料品の素材である繊維に赤外線を反射させる機能(以下「赤外線反射機能」という)を持たせる方法が提案されている。(以下、赤外線反射機能を備えた繊維を「赤外線反射繊維」という)   In order to prevent the temperature rise under clothing in hot weather, methods for preventing the invasion of infrared rays from the sun into the clothing have been studied. As one of such methods, a method of giving a function of reflecting infrared rays (hereinafter referred to as “infrared reflection function”) to a fiber, which is a material of clothing, has been proposed. (Hereinafter, fibers with infrared reflection function are called "infrared reflection fibers")

繊維に赤外線反射機能を持たせるには、二つの方法が考えられる。一つは、赤外線反射機能を備えた物質を繊維表面に付着させる方法であり、もう一つは、そのような物質を繊維に練り込む方法である。前者の方法は、例えば、特開2004−346450号や特開平9−170176号公報に開示されている。一方、後者の方法は、例えば、特開平7−189018号公報や特開平3−213536号公報に開示されている。
特開2004―346450号公報 特開平9−170176号公報 特開平7−189018号公報 特開平3−213536号公報
Two methods are conceivable for giving the fiber an infrared reflecting function. One is a method of attaching a substance having an infrared reflection function to the fiber surface, and the other is a method of kneading such a substance into the fiber. The former method is disclosed in, for example, Japanese Unexamined Patent Application Publication Nos. 2004-346450 and 9-170176. On the other hand, the latter method is disclosed in, for example, JP-A-7-189018 and JP-A-3-213536.
JP 2004-346450 A JP-A-9-170176 JP-A-7-189018 JP-A-3-213536

しかしながら、前者の方法(繊維表面に付着させる方法)は、洗濯による剥離など、物理的に損傷するおそれがあり、耐久性に問題があった。これに対し後者の方法(繊維に練り込む方法)であれば、適応できる繊維は合成繊維に限定されるものの、耐久性の問題は解消することができる。ただし、練り込まれる物質の大きさの選定が難しいという問題があった。すなわち、練り込まれる物質の大きさは、反射機能と繊維の機械強度に大きく影響を与え、その物質の粒径が大きさくなると繊維の機械的強度の低下を招く反面、粒径が小さくなると十分な赤外線反射機能が得られなかったが、従来は繊維の機械的強度を考慮し、赤外線反射率を犠牲にして、練り込む物質はできるかぎり小さくするという傾向があった。   However, the former method (method of attaching to the fiber surface) has a problem in durability because there is a risk of physical damage such as peeling by washing. On the other hand, if the latter method (method of kneading into fibers), applicable fibers are limited to synthetic fibers, but the problem of durability can be solved. However, there was a problem that it was difficult to select the size of the material to be kneaded. In other words, the size of the material to be kneaded greatly affects the reflection function and the mechanical strength of the fiber. When the particle size of the material increases, the mechanical strength of the fiber decreases. However, in the past, there was a tendency to reduce the material to be kneaded as much as possible at the expense of the infrared reflectance in consideration of the mechanical strength of the fiber.

そこで、本発明は、赤外線反射機能を持つ物質の大きさを適性なものとし、繊維の機械的強度を保ちながら、着衣下の温度上昇を防ぐことのできる赤外線反射繊維を提供することを目的とする。   Accordingly, an object of the present invention is to provide an infrared reflecting fiber capable of preventing an increase in temperature under clothing while making the size of a substance having an infrared reflecting function appropriate and maintaining the mechanical strength of the fiber. To do.

本発明にかかる赤外線反射繊維は、粒径0.2〜0.7μmの酸化チタン粒子が練り込まれたものである。   The infrared reflecting fiber according to the present invention is made by kneading titanium oxide particles having a particle size of 0.2 to 0.7 μm.

該酸化チタン粒子は金属酸化物の膜で覆われ、該膜は、波長が1000nm以上の赤外線のプラズマ反射が生じる厚みが好ましい。なお、該金属酸化物は繊維の着色に影響が少ないInO、SnO又はZnOの何れかであることが好ましく、該厚みは60〜500nmであることが好ましい。 The titanium oxide particles are covered with a metal oxide film, and the film preferably has a thickness that causes infrared plasma reflection with a wavelength of 1000 nm or more. The metal oxide is preferably any of InO 2 , SnO 2, and ZnO that has little effect on the coloration of the fiber, and the thickness is preferably 60 to 500 nm.

該酸化チタン粒子がシランカップリング剤で表面処理されていてもよい。   The titanium oxide particles may be surface-treated with a silane coupling agent.

本発明にかかる赤外線反射繊維は天然繊維と混紡されたものであってもよい。   The infrared reflecting fiber according to the present invention may be blended with natural fiber.

本発明にかかる赤外線反射繊維によれば、酸化チタン粒子が、繊維フィラメントの直径(概ね15〜20μm)よりも十分小さいため、繊維の機械的強度を保つことができる。また、800〜1500nmの波長領域の赤外線を効率良く反射することができるので、着衣下の温度上昇を防ぐことができる。なお、本発明の特徴は、800〜1500nmの波長域の赤外線が体感で最も暑く感じるものであることに着目し、その波長域の赤外線を効率良く反射させることができる酸化チタン粒子の粒径が通常の繊維フィラメントよりも小さくなることを利用した点にある。なお、物質が粒径0.7μm以上の大きさになると繊維の機械的強度の低下を招き、粒径が0.2μmより小さくなると十分な赤外線反射機能が得られなくなる。   According to the infrared reflecting fiber according to the present invention, the titanium oxide particles are sufficiently smaller than the diameter of the fiber filament (generally 15 to 20 μm), so that the mechanical strength of the fiber can be maintained. Moreover, since the infrared rays in the wavelength region of 800 to 1500 nm can be efficiently reflected, it is possible to prevent a temperature increase under clothes. Note that the feature of the present invention is that infrared rays in the wavelength range of 800 to 1500 nm are the hottest ones, and the particle size of the titanium oxide particles that can efficiently reflect infrared rays in the wavelength range is small. The advantage is that it is smaller than a normal fiber filament. If the material has a particle size of 0.7 μm or more, the mechanical strength of the fiber is lowered, and if the particle size is smaller than 0.2 μm, a sufficient infrared reflection function cannot be obtained.

酸化チタン粒子が導電性金属酸化物の膜で覆われたものであれば、赤外線反射機能を更に高めることができる。なお、膜は、波長が1000nm以上の赤外線のプラズマ反射が生じる厚みとなっていれば、人体から放射される赤外線が着衣の外に出ることを防止し、着衣下の表皮温度の低下を防止すること、すなわち、保温効果を得ることもできる。これは、人体から放射させる赤外線の波長領域は、上記暑く感じる日射に含まれる赤外線の波長領域と異なり、その波長がより長いものであることによる。着衣下の温度上昇を防ぐ機能を備えた赤外線反射繊維に保温機能を備えることは、空調設備が整い夏季であっても体が急激に冷やされる環境に有効である。   If the titanium oxide particles are covered with a conductive metal oxide film, the infrared reflection function can be further enhanced. In addition, if the film has a thickness that causes the reflection of infrared plasma having a wavelength of 1000 nm or more, the infrared rays emitted from the human body are prevented from coming out of the clothing, and the skin temperature under the clothing is prevented from lowering. That is, a heat retaining effect can also be obtained. This is because the wavelength range of infrared rays emitted from the human body is different from the wavelength range of infrared rays included in the solar radiation that feels hot, and the wavelength is longer. It is effective for an environment where the body is rapidly cooled even in summer when the air-conditioning equipment is in place and the heat-retaining function is provided in the infrared reflecting fiber having the function of preventing the temperature rise under clothes.

酸化チタン粒子を覆う導電性金属酸化物に制限はないが、適用の容易さを考慮すると、広く市場に流通しているInO、SnO又はZnOの何れかであることが好ましく、また、これらの金属酸化物を採用する場合、波長が1000nm以上の赤外線のプラズマ反射が生じる厚みは60nm〜500nmとなる。なお、これらの金属酸化物で被覆した酸化チタン粒子が練り込まれた繊維は導電性を備えるため、静電気の帯電を防止し、静電気帯電による不快な現象を防ぐことができるという効果を得ることもできる。 There is no limitation on the conductive metal oxide covering the titanium oxide particles, but considering the ease of application, it is preferably any of InO 2 , SnO 2, or ZnO widely distributed in the market. When the metal oxide is used, the thickness at which infrared plasma reflection with a wavelength of 1000 nm or more occurs is 60 nm to 500 nm. In addition, since the fibers in which the titanium oxide particles coated with these metal oxides are kneaded have conductivity, it is also possible to prevent the undesired phenomenon caused by the electrostatic charge by preventing the electrostatic charge. it can.

酸化チタン粒子がシランカップリング剤で表面処理されたものであれば、赤外線反射機能を更に高めることができる。   If the titanium oxide particles are surface-treated with a silane coupling agent, the infrared reflection function can be further enhanced.

なお、酸化チタン粒子を天然繊維に練り込むことはできないが、酸化チタン粒子を練り込んだ合成繊維を天然繊維と混紡することにより、風合いや感触など、天然繊維の特性を取り入れることができる。   In addition, although titanium oxide particles cannot be kneaded into natural fibers, characteristics of natural fibers such as texture and feel can be taken in by blending synthetic fibers kneaded with titanium oxide particles with natural fibers.

以下、本発明を具体的な例によって説明するが、本発明は何らこれらに限定されるものではない。   Hereinafter, the present invention will be described with reference to specific examples, but the present invention is not limited thereto.

「実施例1」
280℃で溶融したポリエチレンテレフタレート樹脂PT8307(三井デュポンポリケミカル株式会社製)90重量部と、粒径が異なるよう分級した3種類の酸化チタン10重量部を、スターラーで均一になるよう分散調合し、以下の溶融樹脂を得た。
溶融樹脂A:溶融樹脂のみ
溶融樹脂B:酸化チタン粒度分布0.06〜0.2μm
溶融樹脂C:酸化チタン粒度分布0.2〜0.7μm
溶融樹脂D:酸化チタン粒度分布0.5〜1.5μm
溶融樹脂E:酸化チタン粒度分布0.2〜0.7μm(酸化チタン粒子として、表面にCVD法によってInが0.2μmコーティングされ、さらにシランカップリング剤で表面処理されたものを使用)
上記溶融樹脂を公知の溶融紡糸方法によって繊維化した。得られた繊維の繊度は2drであった。得られた繊維フィラメントA、B、C、D、Eを使用してフィラメント糸条(90テックス・30フィラメント)A−1、B−1、C−1、D−1、E−1を作成し引張・圧縮試験機RTG−1210(株式会社エー・アンド・ディー社製)で引張破壊強度を比較測定した。測定結果を表1に示す。

Figure 2008075184
A−1を必要基準とするとB−1、C−1、E−1は繊維製品の必要強度を満足し、D−1は強度が弱く繊維製品の用途は限定されることが判明した。 "Example 1"
90 parts by weight of polyethylene terephthalate resin PT8307 (made by Mitsui DuPont Polychemical Co., Ltd.) melted at 280 ° C. and 10 parts by weight of three types of titanium oxide classified so as to have different particle sizes are dispersed and blended so as to be uniform with a stirrer. The following molten resin was obtained.
Molten resin A: Molten resin only Molten resin B: Titanium oxide particle size distribution 0.06 to 0.2 μm
Molten resin C: Titanium oxide particle size distribution 0.2-0.7 μm
Molten resin D: titanium oxide particle size distribution 0.5 to 1.5 μm
Molten resin E: Titanium oxide particle size distribution of 0.2 to 0.7 μm (using titanium oxide particles whose surface is coated with 0.2 μm of In 2 O 3 by CVD and surface-treated with a silane coupling agent) )
The molten resin was fiberized by a known melt spinning method. The fineness of the obtained fiber was 2dr. Using the obtained fiber filaments A, B, C, D, E, filament yarns (90 tex / 30 filaments) A-1, B-1, C-1, D-1, E-1 were prepared. The tensile fracture strength was comparatively measured with a tensile / compression tester RTG-1210 (manufactured by A & D Co., Ltd.). The measurement results are shown in Table 1.
Figure 2008075184
Assuming that A-1 is a necessary standard, B-1, C-1, and E-1 satisfy the required strength of the fiber product, and D-1 has a low strength and the use of the fiber product is limited.

「実施例2」
実施例1で試作したフィラメント糸条(90テックス・30フィラメント)を使用して、縦密度50本/cm、横密度50本/cmで製織し得られた平織物A−2、B−2、C−2、D−2、E−2の日射反射率を、JISA5759法によって分光反射率として測定した。測定結果を図1に示す。
この結果、A−2、B−2は日射反射率が低くC−2、D−2は反射率が高く、E−2の反射率が最も高くなることが判明した。
"Example 2"
Plain fabrics A-2 and B-2 obtained by weaving at a longitudinal density of 50 yarns / cm and a lateral density of 50 yarns / cm using the filament yarn (90 tex / 30 filaments) prototyped in Example 1. The solar reflectances of C-2, D-2, and E-2 were measured as spectral reflectances by the JIS A5759 method. The measurement results are shown in FIG.
As a result, it was found that A-2 and B-2 have low solar reflectance, C-2 and D-2 have high reflectance, and E-2 has the highest reflectance.

「実施例3」
実施例2で作成した平織物A−2、B−2、C−2、D−2、E−2の電気抵抗値を絶縁抵抗計ST−3(SIMCO株式会社製)で測定した。測定結果を表2に示す。なお、測定環境は、温度20℃、相対湿度40%であった。

Figure 2008075184
"Example 3"
The electrical resistance values of the plain fabrics A-2, B-2, C-2, D-2, and E-2 created in Example 2 were measured with an insulation resistance meter ST-3 (manufactured by SIMCO Corporation). The measurement results are shown in Table 2. The measurement environment was a temperature of 20 ° C. and a relative humidity of 40%.
Figure 2008075184

実施例1と実施例2の結果を考察すると、酸化チタン粒子の粒径を0.2〜0.7μmとすることで、繊維の実用強度を維持しながら、日射反射率の高い繊維を得られることが判明した。更に、酸化チタン粒子の表面に導電性金属酸化物をコーティングすることによりさらに反射率の高い繊維を得られることが判明した。また、実施例3の結果を考察すると、表面に導電性金属酸化物をコーティングした酸化チタン粒子を調合した繊維の織物は導電性があり、空気が乾燥した環境でも静電気帯電防止機能を有することが判明した。   Considering the results of Example 1 and Example 2, by setting the particle size of the titanium oxide particles to 0.2 to 0.7 μm, it is possible to obtain a fiber having high solar reflectance while maintaining the practical strength of the fiber. It has been found. Furthermore, it has been found that a fiber having higher reflectivity can be obtained by coating the surface of titanium oxide particles with a conductive metal oxide. Further, considering the results of Example 3, the textile fabric prepared by mixing titanium oxide particles coated with a conductive metal oxide on the surface is conductive, and may have an antistatic function even in an air-dried environment. found.

本発明にかかる赤外線反射繊維は衣料品の素材に好適であるが、その用途は衣料品に限定されるものではなく、強度的に問題が無ければ他の用途に使用することもでき、例えば、自動車シートにも有効である。自動車シートに使用した場合、駐車時に直射日光を受けたシートの昇温を抑制し、結果として車内温度の上昇を抑制する効果を期待できる。   The infrared reflecting fiber according to the present invention is suitable for a clothing material, but its use is not limited to clothing, and can be used for other purposes as long as there is no problem in strength. It is also effective for automobile seats. When used for an automobile seat, it is possible to suppress the temperature rise of the seat that has received direct sunlight during parking, and as a result, an effect of suppressing an increase in the interior temperature can be expected.

分光反射率の測定結果を示すグラフである。It is a graph which shows the measurement result of spectral reflectance.

Claims (5)

粒径0.2〜0.7μmの酸化チタン粒子が練り込まれたことを特徴とする赤外線反射繊維。   An infrared reflecting fiber, wherein titanium oxide particles having a particle size of 0.2 to 0.7 μm are kneaded. 該酸化チタン粒子は導電性金属酸化物の膜で覆われ、該膜は、波長が1000nm以上の赤外線のプラズマ反射が生じる厚みとなっている請求項1に記載の赤外線反射繊維。   2. The infrared reflecting fiber according to claim 1, wherein the titanium oxide particles are covered with a conductive metal oxide film, and the film has a thickness at which infrared plasma reflection having a wavelength of 1000 nm or more occurs. 該金属酸化物は導電性のInO、SnO又はZnOの何れかで、該厚みは60nm〜500nmである請求項2に記載の赤外線反射繊維。 3. The infrared reflecting fiber according to claim 2, wherein the metal oxide is one of conductive InO 2 , SnO 2, and ZnO, and the thickness is 60 nm to 500 nm. 該酸化チタン粒子がシランカップリング剤で表面処理された請求項1、2又は3に記載の赤外線反射繊維。   The infrared reflective fiber according to claim 1, 2 or 3, wherein the titanium oxide particles are surface-treated with a silane coupling agent. 天然繊維と混紡された請求項1、2、3又は4に記載の赤外線反射繊維。   The infrared reflecting fiber according to claim 1, 2, 3, or 4 blended with natural fiber.
JP2006251994A 2006-09-19 2006-09-19 Infrared reflection fiber Pending JP2008075184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006251994A JP2008075184A (en) 2006-09-19 2006-09-19 Infrared reflection fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006251994A JP2008075184A (en) 2006-09-19 2006-09-19 Infrared reflection fiber

Publications (1)

Publication Number Publication Date
JP2008075184A true JP2008075184A (en) 2008-04-03

Family

ID=39347532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006251994A Pending JP2008075184A (en) 2006-09-19 2006-09-19 Infrared reflection fiber

Country Status (1)

Country Link
JP (1) JP2008075184A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010120531A2 (en) * 2009-04-01 2010-10-21 Cornell University Conformal particle coatings on fiber materials for use in spectroscopic methods for detecting targets of interest and methods based thereon
KR20220027362A (en) 2020-08-26 2022-03-08 코오롱글로텍주식회사 Composite yarn with thermal reflective function, its manufacturing method and fabric using it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010120531A2 (en) * 2009-04-01 2010-10-21 Cornell University Conformal particle coatings on fiber materials for use in spectroscopic methods for detecting targets of interest and methods based thereon
WO2010120531A3 (en) * 2009-04-01 2011-01-13 Cornell University Conformal particle coatings on fiber materials for use in spectroscopic methods for detecting targets of interest and methods based thereon
KR20220027362A (en) 2020-08-26 2022-03-08 코오롱글로텍주식회사 Composite yarn with thermal reflective function, its manufacturing method and fabric using it

Similar Documents

Publication Publication Date Title
JP5977787B2 (en) Near-infrared absorptive masterbatch, near-infrared absorptive product comprising the masterbatch, and method for producing a near-infrared absorptive fiber comprising the masterbatch
TWI551742B (en) Sheath-core compound fiber, false twist textured yarn composed thereof, method for manufacturing the same, and woven knit fabric including the fiber
JP6106487B2 (en) Functional fiber
CN107641297B (en) Master batch with heat storage and heat preservation functions, product and preparation method thereof
KR102108340B1 (en) Superior See-Through and low heat gain Sunscreen Fabrics with Coated Yarn Containing Organic/Inorganic Hybrid Coating Layer and The Preparation Method Thereof
KR101651757B1 (en) Fleece with heat-accumulating and keeping-warm property and preparation method thereof
WO2021200748A1 (en) Infrared-absorbent resin composition and infrared-absorbent fiber
CN106319685A (en) Heat insulation core-shell composite fiber for reflecting near infrared rays, and production method of fiber
KR101635001B1 (en) Superior See-Through and Energy Saving Sunscreen Fabrics with Coated Yarn Containing Organic/Inorganic Hybrid Coating Layer and The Preparation Method Thereof
JP2008075184A (en) Infrared reflection fiber
JP2017150122A (en) Light-absorbing heat-generating composition and method for manufacturing woven fabric including the composition
JP4228856B2 (en) Thermoplastic fibers, fabrics and textile products
JP6232628B2 (en) Noncombustible film material
JP5297331B2 (en) Core-sheath type composite fiber
JP2015101815A (en) Functional fiber, and heat retaining woven fabric to be constituted of the fiber
JP5777391B2 (en) Interior interior materials
TWM632523U (en) Heat-insulating curtain cloth
EP2789732B1 (en) Resin-coated flame-retardant glass fiber bundle and resin-coated flame-retardant fiber woven fabric
JP2011241529A (en) Sheath-core conjugate fiber
KR101849216B1 (en) Complex Warm Polyester Faber
KR20210047988A (en) Manufacturing method for heat-generating fabric having excellent insulation effect
JP2015014076A (en) Functional fiber yarn and woven knitted fabric
KR950001650B1 (en) Polyester fiber having high solar interception and cool effect
JP6211885B2 (en) Thermal insulation fabric
JP6259318B2 (en) Method for producing false twisted yarn for black formal clothing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090914

A072 Dismissal of procedure

Effective date: 20110125

Free format text: JAPANESE INTERMEDIATE CODE: A073