JP2008070493A - Optical wavelength conversion device, and image forming device using the same - Google Patents

Optical wavelength conversion device, and image forming device using the same Download PDF

Info

Publication number
JP2008070493A
JP2008070493A JP2006247400A JP2006247400A JP2008070493A JP 2008070493 A JP2008070493 A JP 2008070493A JP 2006247400 A JP2006247400 A JP 2006247400A JP 2006247400 A JP2006247400 A JP 2006247400A JP 2008070493 A JP2008070493 A JP 2008070493A
Authority
JP
Japan
Prior art keywords
wavelength
dbr
wavelength conversion
optical
optical wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006247400A
Other languages
Japanese (ja)
Inventor
Takashi Yuasa
堂司 湯淺
Yukio Furukawa
幸生 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006247400A priority Critical patent/JP2008070493A/en
Publication of JP2008070493A publication Critical patent/JP2008070493A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical wavelength conversion device, or an optical wavelength conversion method, with which stable control of high gradation is attainable without depending on a modulation signal pattern. <P>SOLUTION: The optical wavelength conversion device includes a DBR laser 101, an optical wavelength conversion element 102, and a control means 103 to control a current injected into the DBR laser 101 according to a modulation signal per period to control its oscillation wavelength and optical output. The DBR laser 101 has at least two active regions 101b, 101c with mutually different gain peak wavelengths, and DBR regions 101d, 101e on which distributed Bragg reflectors (DBRs) are formed. The optical wavelength conversion element 102, on which fundamental harmonic light emitted from the DBR laser 101 is made incident, outputs the second harmonic light. The control means 103 is constructed in such a way that an oscillation state of the DBR laser 101 is controlled by injecting a driving current whose current value and injection time are adjusted so as to make the sum of the heat quantity produced within a period be kept constant per period to a plurality of active regions 101b, 101c respectively. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体レーザ光を第2高調波に変換する光波長変換装置及び方法などに関するものである。特に、レーザーディスプレイ、電子写真方式の画像形成、光記録、光計測用などの光源として利用される、高速変調駆動も可能なレーザ光を出射する光波長変換装置、及びそれを用いた画像表示装置に関する。 The present invention relates to an optical wavelength conversion device and method for converting semiconductor laser light into second harmonics, and the like. In particular, a light wavelength conversion device that emits laser light capable of high-speed modulation driving and used as a light source for laser display, electrophotographic image formation, optical recording, optical measurement, and the like, and an image display device using the same About.

半導体レーザは、小型、高出力且つ低コストでの製造が可能であるという特徴を生かし、光通信システム、CD・DVD、計測機器等、様々な分野で利用されている。しかし、近年になりようやく青紫色レーザが実用化されたが、緑色や紫外域以下の波長帯の半導体レーザは未だ製品化されていない。色の三原色の一つである緑色や、レーザ加工機、高密度光メモリーなどに応用される短波長高出力の小型レーザに対する期待は大きい。 A semiconductor laser is used in various fields such as an optical communication system, a CD / DVD, and a measuring instrument, taking advantage of its small size, high output, and low cost. However, blue-violet lasers have been put into practical use only in recent years, but semiconductor lasers in the wavelength band of green or lower than the ultraviolet region have not yet been commercialized. Expectations are high for green, which is one of the three primary colors, and for small lasers with short wavelengths and high powers that are applied to laser processing machines and high-density optical memories.

この様な背景のもと、短波長レーザ光源を得る方法として、これまでに第2高調波発生(SHG; Second Harmonic Generation)を用いた方式が種々提案されている。光波長変換素子(SHG素子)として一般的には、周期分極反転ニオブ酸リチウム(PPLN;
Periodically Poled Lithium Niobate)が用いられる。また、SHG素子の波長選択幅は通常1nm以下と狭いため、基本波光源としては、シングルモード性と波長安定性の良いDFB(Distributed
Feedback)レーザやDBR(Distributed Bragg Reflector)レーザが用いられる。
Against this background, various methods using second harmonic generation (SHG) have been proposed as methods for obtaining a short wavelength laser light source. Generally as a light wavelength conversion element (SHG element), periodically poled lithium niobate (PPLN;
Periodically Poled Lithium Niobate) is used. In addition, since the wavelength selection width of SHG elements is usually as narrow as 1 nm or less, DFB (Distributed) has good single-mode characteristics and wavelength stability as the fundamental light source.
Feedback) laser and DBR (Distributed Bragg Reflector) laser are used.

この様な半導体レーザに変調電流を注入した場合、その変調パターンに依存した熱履歴によって発振波長が変動し、その結果としてSHG光の出力も変動してしまうという問題が知られている。そのため、その問題を考慮したSHGレーザ光源が開示されている(特許文献1参照)。図10はその構成を示す図である。このSHGレーザ光源は、図10に示される様に、DBR領域813、位相調整領域812、活性領域811を有するDBR半導体レーザ810と、SHG素子820と、駆動回路830を備えている。駆動回路830は、活性領域811からDBR領域813に伝達する熱量と位相領域812からDBR領域813に伝達する熱量の和が一定になる様に、活性領域811への注入電流量と位相領域812への注入電流量を制御している。これにより、DBR半導体レーザ810からの基本波光の波長を安定化させて、SHG素子820からのSHG光(第2高調波光)の変調パターン依存を低減している。 When a modulation current is injected into such a semiconductor laser, there is a problem that the oscillation wavelength varies due to the thermal history depending on the modulation pattern, and as a result, the output of the SHG light also varies. For this reason, an SHG laser light source considering the problem has been disclosed (see Patent Document 1). FIG. 10 is a diagram showing the configuration. As shown in FIG. 10, the SHG laser light source includes a DBR semiconductor laser 810 having a DBR region 813, a phase adjustment region 812, and an active region 811; an SHG element 820; and a drive circuit 830. The drive circuit 830 supplies the amount of current injected into the active region 811 and the phase region 812 so that the sum of the amount of heat transferred from the active region 811 to the DBR region 813 and the amount of heat transferred from the phase region 812 to the DBR region 813 is constant. The amount of injected current is controlled. As a result, the wavelength of the fundamental light from the DBR semiconductor laser 810 is stabilized, and the dependency of the SHG light (second harmonic light) from the SHG element 820 on the modulation pattern is reduced.

また、DBR半導体レーザと光波長変換素子を備えたSHG光源において、所望の高調波出力を得、且つ出力安定化を図るために、DBR領域、活性領域、位相領域の夫々の電流値を制御する方法についての提案もある(特許文献2参照)。
特開2002-43698号公報 特許第3329446号
In addition, in a SHG light source equipped with a DBR semiconductor laser and an optical wavelength conversion element, the current values in the DBR region, active region, and phase region are controlled in order to obtain a desired harmonic output and stabilize the output. There is also a proposal for a method (see Patent Document 2).
JP 2002-43698 A Patent No. 3329446

前記特許文献1に開示される方法によれば、変調電流パターンによるDBR領域813の温度変化は或る程度小さくなる。しかしながら、活性領域811に変調電流を入力して基本波光を変調しているので、SHG素子820に入力される光エネルギーが変動する。そのため、SHG素子820の温度が変動し、その位相整合波長が安定化しないことになる。その結果、SHG素子820からのSHG光の出力が不安定となってしまう。 According to the method disclosed in Patent Document 1, the temperature change of the DBR region 813 due to the modulation current pattern is reduced to some extent. However, since the fundamental light is modulated by inputting a modulation current to the active region 811, the light energy input to the SHG element 820 varies. For this reason, the temperature of the SHG element 820 varies, and the phase matching wavelength is not stabilized. As a result, the output of SHG light from the SHG element 820 becomes unstable.

また、前記特許文献2に開示される方法は、連続発振状態の光出力安定化についてのものであり、変調時の光出力安定化については考慮されていない。 The method disclosed in Patent Document 2 is for stabilizing the optical output in the continuous oscillation state, and does not consider the stabilization of the optical output during modulation.

上記課題に鑑み、本発明の光波長変換装置は、DBRレーザと、光波長変換素子と、変調信号に応じてDBRレーザへの注入電流を周期ごとに制御してその発振波長と光出力を制御する制御手段を含む。DBRレーザは、異なるゲインピーク波長を持つ少なくとも2つの活性領域と、分布ブラック反射器(DBR)が形成されたDBR領域とを有する。光波長変換素子は、DBRレーザから発せられる基本波光を入射して、その第2高調波光を出力する。制御手段は、一周期内に発生する熱量の和が周期ごとに一定となる様に電流値及び注入時間の調整された駆動電流を複数の活性領域に夫々注入することでDBRレーザの発振状態を制御できる様に構成されている。 In view of the above problems, the optical wavelength converter of the present invention controls the oscillation wavelength and optical output by controlling the DBR laser, the optical wavelength conversion element, and the injection current into the DBR laser in accordance with the modulation signal for each period. Control means. The DBR laser has at least two active regions having different gain peak wavelengths and a DBR region in which a distributed black reflector (DBR) is formed. The optical wavelength conversion element receives the fundamental light emitted from the DBR laser and outputs the second harmonic light. The control means injects a driving current adjusted in current value and injection time into each of the plurality of active regions so that the sum of heat generated in one period is constant for each period, thereby controlling the oscillation state of the DBR laser. It is configured so that it can be controlled.

また、上記課題に鑑み、上記光波長変換装置を用いる本発明の光波長変換方法では、制御手段は次の様な制御を行なう。比較的大きい電流を最も長波長側のゲインピーク波長を持つ活性領域に注入し且つ比較的小さい電流を他の活性領域に注入してブラッグ波長近傍の波長を持つ基本波光を光波長変換素子に入射させることで、SHG出力が比較的大きい状態をもたらす。また、比較的小さい電流を最も長波長側のゲインピーク波長を持つ活性領域に注入し且つ比較的大きい電流を他の活性領域に注入してブラッグ波長から離れた波長を持つ基本波光を光波長変換素子に入射させることで、SHG出力が比較的小さい状態をもたらす。そして、変調信号に応じて、複数の活性領域への駆動電流を周期ごとに制御して前記SHG出力が比較的大きい状態と前記SHG出力が比較的小さい状態を切り替える。 Further, in view of the above problems, in the optical wavelength conversion method of the present invention using the optical wavelength converter, the control means performs the following control. A relatively large current is injected into the active region having the gain peak wavelength on the longest wavelength side, and a relatively small current is injected into another active region so that fundamental light having a wavelength near the Bragg wavelength is incident on the optical wavelength conversion element. As a result, the SHG output becomes relatively large. In addition, a relatively small current is injected into the active region having the gain peak wavelength on the longest wavelength side, and a relatively large current is injected into another active region to convert fundamental light having a wavelength away from the Bragg wavelength into an optical wavelength converter. By making the light incident on the element, the SHG output becomes relatively small. Then, in accordance with the modulation signal, the drive currents to the plurality of active regions are controlled for each period to switch the state where the SHG output is relatively large and the state where the SHG output is relatively small.

また、上記課題に鑑み、本発明のレーザーディスプレイ、レーザービームプリンタなどの画像形成装置は、上記光波長変換装置及び少なくとも1つの光走査素子を有する。そして、光波長変換装置によって発せられた光を光走査素子で走査し、且つ変調信号に応じて第2高調波光の光量を調整することで、画像が形成される。 In view of the above problems, an image forming apparatus such as a laser display or a laser beam printer according to the present invention includes the light wavelength conversion device and at least one light scanning element. Then, an image is formed by scanning the light emitted by the optical wavelength converter with an optical scanning element and adjusting the amount of the second harmonic light according to the modulation signal.

更に、上記課題に鑑み、上記光波長変換装置などに使用できるDBRレーザは、異なるゲインピーク波長を持つ少なくとも2つの活性領域と、分布ブラック反射器(DBR)が形成されたDBR領域とを有する。そして、複数の活性領域のゲインピーク波長において最も長波長側のゲインピーク波長の近傍に、DBR領域のブラッグ波長が調整されている。 Further, in view of the above problems, a DBR laser that can be used in the optical wavelength conversion device has at least two active regions having different gain peak wavelengths and a DBR region in which a distributed black reflector (DBR) is formed. The Bragg wavelength in the DBR region is adjusted in the vicinity of the gain peak wavelength on the longest wavelength side among the gain peak wavelengths in the plurality of active regions.

本発明によれば、比較的簡便な上記DBRレーザの制御方法によって、光波長変換素子からSHG光を安定性且つ制御性良く出力できる様に、比較的大きなSHG光を出力する状態において、DBRレーザを安定的に動作させることができる。また、上記DBRレーザを光波長変換装置ないし方法に用いるとき、少なくとも上記SHG出力が比較的大きい状態を安定性且つ制御性良く実現できて、変調信号パターンに依存せずに安定した高階調の制御も可能な光波長変換装置ないし方法を実現できる。また、本発明による光波長変換装置ないし方法を用いて、高精細の階調表現を有する画像も形成可能な画像形成装置を実現できる。 According to the present invention, the DBR laser can be output in a state in which relatively large SHG light is output so that the SHG light can be output from the optical wavelength conversion element with high stability and controllability by the relatively simple DBR laser control method. Can be operated stably. In addition, when the DBR laser is used in an optical wavelength conversion device or method, at least a relatively large SHG output can be realized with high stability and controllability, and stable high gradation control can be achieved without depending on the modulation signal pattern. An optical wavelength conversion device or method that can also be realized. Further, an image forming apparatus capable of forming an image having a high-definition gradation expression can be realized by using the optical wavelength conversion apparatus or method according to the present invention.

以下、本発明の実施形態を説明する。一実施形態に係る光波長変換装置は、DBRレーザと、このDBRレーザから発せられた基本波光を入射してその第2高調波光を出力するSHG素子と、何らかの変調信号に応じてDBRレーザを制御する制御手段を含む。DBRレーザは、ゲインピーク波長λ1の第1の活性領域とゲインピーク波長λ2(<λ1)の第2の活性領域、位相領域、及び分布ブラッグ反射器(DBR)が形成されたDBR領域を有する。ここではDBR領域のブラッグ波長は2つの活性領域のゲインピーク波長のうち長波長側、すなわちλ1近傍に設定されている。また、SHG素子の位相整合波長はこのブラッグ波長近傍になる様に作製されている。 Embodiments of the present invention will be described below. An optical wavelength conversion device according to an embodiment controls a DBR laser, a SHG element that receives the fundamental light emitted from the DBR laser and outputs the second harmonic light, and controls the DBR laser according to some modulation signal Control means. The DBR laser has a first active region having a gain peak wavelength λ 1, a second active region having a gain peak wavelength λ 2 (<λ 1 ), a phase region, and a DBR region in which a distributed Bragg reflector (DBR) is formed. Have Here, the Bragg wavelength of the DBR region is set to the long wavelength side of the gain peak wavelengths of the two active regions, that is, near λ 1 . The SHG element is fabricated so that the phase matching wavelength is close to the Bragg wavelength.

2つのゲインピーク波長が充分離れていれば、第1の活性領域及び第2の活性領域に注入する電流を変えることで基本波光の発振状態を変え、SHG素子からの第2高調波光を変調することができる。この離れている程度は、最低でも一方のゲインスペクトルの裾の長さ程度(20nm程度)、好適には、両ゲインスペクトルの裾を合わせた長さ程度(50nm程度)である。つまり、第1の活性領域に大きい電流を注入すると、ブラッグ波長近傍でシングルモード発振(実施例1参照)またはマルチモード発振(実施例2参照)し、第2の活性領域に大きい電流を注入すると、SHG変換されない波長でマルチモード発振する様にできる。ここで、ゲインピーク波長λ1とブラッグ波長はゲインピーク波長λ2より長波長側にあるので、ブラッグ波長近傍の発振光に対して第2の活性領域は吸収領域として作用しない。従って、SHG素子からのSHG光の変調態様を良好にするために安定性が要求されるブラッグ波長近傍の発振光は良好なものとなる。こうした目的の為に、ゲインピーク波長λ1とゲインピーク波長λ2の大小関係は上記の如く設定されているのである。一方、SHG変換されない波長のマルチモード発振光に対して第1の活性領域は吸収領域として作用するが、これはSHG素子でSHG変換されない光であるので、SHG素子からのSHG光の変調態様には悪影響は無い。 If the two gain peak wavelengths are sufficiently far apart, changing the current injected into the first active region and the second active region will change the oscillation state of the fundamental light and modulate the second harmonic light from the SHG element. be able to. This distance is at least about the length of one gain spectrum (about 20 nm), preferably about the total length of both gain spectra (about 50 nm). In other words, when a large current is injected into the first active region, single mode oscillation (see Example 1) or multimode oscillation (see Example 2) occurs near the Bragg wavelength, and a large current is injected into the second active region. Multimode oscillation at wavelengths that are not SHG converted. Here, since the gain peak wavelength λ 1 and the Bragg wavelength are on the longer wavelength side than the gain peak wavelength λ 2 , the second active region does not act as an absorption region for the oscillation light in the vicinity of the Bragg wavelength. Therefore, the oscillation light in the vicinity of the Bragg wavelength, which requires stability in order to improve the modulation mode of the SHG light from the SHG element, is good. For this purpose, the magnitude relationship between the gain peak wavelength λ 1 and the gain peak wavelength λ 2 is set as described above. On the other hand, the first active region acts as an absorption region for multimode oscillation light having a wavelength that is not SHG-converted, but this is light that is not SHG-converted by the SHG device. There is no adverse effect.

上記構成において、第1、第2の活性領域の駆動電流を夫々I1、I2、駆動電圧をV1、V2とし、基本波光の光出力をP0とする。このとき、例えば、変調信号のパターンの周期ごとに次の式を満たす様に駆動電流等を調整すると、変調信号パターンによらず周期ごとに活性領域で発生する熱量が一定となり、安定した変調が可能となる。
I1×V1+I2×V2−P0=一定 … (1)
In the above configuration, the drive currents of the first and second active regions are I 1 and I 2 , the drive voltages are V 1 and V 2, and the optical output of the fundamental light is P 0 . At this time, for example, if the drive current or the like is adjusted so as to satisfy the following formula for each period of the modulation signal pattern, the amount of heat generated in the active region is constant for each period regardless of the modulation signal pattern, and stable modulation is performed. It becomes possible.
I 1 × V 1 + I 2 × V 2 −P 0 = constant… (1)

この際、DBRレーザからSHG素子への光入力エネルギーは一定に保たれるので、SHG素子の熱的安定性も保たれて、その位相整合波長が安定的に維持される(これは、図4に示す様なSHG素子のSHG光出力の波長依存性を変化させないための条件である)。勿論、位相領域とDBR領域への電流も、各周期で発生する熱量を一定にする条件で注入されると、DBRレーザの熱的安定性が更に良好に確保される。なお、上記説明における「一定」は、厳密に一定である場合は勿論であるが、或る程度の効果を奏する限り概略一定である場合も含む意味で用いている。 At this time, since the optical input energy from the DBR laser to the SHG element is kept constant, the thermal stability of the SHG element is also maintained, and the phase matching wavelength is stably maintained (this is shown in FIG. 4). This is a condition for keeping the wavelength dependency of the SHG light output of the SHG element as shown in FIG. Of course, when the current to the phase region and the DBR region is also injected under the condition that the amount of heat generated in each period is constant, the thermal stability of the DBR laser is further ensured. Note that “constant” in the above description is used in a sense including not only when it is strictly constant, but also when it is approximately constant as long as a certain effect is obtained.

上記DBRレーザの波長は、DBRレーザとして発振可能でありSHG素子の非線形効果がある波長帯であれば任意に選択可能である。また、SHG素子としては、LiNbO3(LN)、KNbO3(KN)、KTiOPO4(KTP)、LiTaO3(LT)などの非線形光学結晶を用いることができる。 The wavelength of the DBR laser can be arbitrarily selected as long as it can oscillate as a DBR laser and has a non-linear effect of the SHG element. As the SHG element, a nonlinear optical crystal such as LiNbO 3 (LN), KNbO 3 (KN), KTiOPO 4 (KTP), LiTaO 3 (LT) can be used.

上記実施形態では、異なるゲインピーク波長を持つ少なくとも2つの活性領域と、DBR領域とを有し、複数の活性領域のゲインピーク波長において最も長波長側のゲインピーク波長の近傍に、DBR領域のブラッグ波長が調整されているDBRレーザを用いている。このDBRレーザでは、複数の活性領域への駆動電流を比較的簡便に制御することで、少なくともブラッグ波長近傍の発振光を安定的に出力できる。従って、比較的大きなSHG光を出力する状態においては、DBRレーザを安定的に動作させることができて、変調信号に基づいて光波長変換素子からSHG光を安定性且つ制御性良く出力できる。 In the above embodiment, the DBR region has at least two active regions having different gain peak wavelengths, and the DBR region has a Bragg in the vicinity of the gain peak wavelength on the longest wavelength side in the gain peak wavelengths of the plurality of active regions. A DBR laser with a tuned wavelength is used. In this DBR laser, it is possible to stably output oscillation light at least in the vicinity of the Bragg wavelength by relatively simply controlling the drive currents to a plurality of active regions. Therefore, in a state where relatively large SHG light is output, the DBR laser can be stably operated, and SHG light can be output from the optical wavelength conversion element with high stability and controllability based on the modulation signal.

以下に、図面に沿って本発明の実施例を説明する。
(実施例1)
図1は、本発明による実施例1の構成図を示す。図1に示す様に、本実施例の光波長変換装置は、半導体DBRレーザ101と、第2高調波光を出力するSHG素子102と、変調信号に応じてDBRレーザ101を制御する制御手段103を含む。半導体DBRレーザ101は、ゲインピーク波長λ1の第1の活性領域101b及びゲインピーク波長λ2(<λ1)の第2の活性領域101cと、位相領域101aと、ブラッグ波長がλ1近傍の2つのDBR領域101d、101eとを有するDBRレーザ101を有する。SHG素子102は、DBRレーザ101から発せられた基本波光を入射してその第2高調波光を出力する。
Embodiments of the present invention will be described below with reference to the drawings.
(Example 1)
FIG. 1 shows a configuration diagram of Embodiment 1 according to the present invention. As shown in FIG. 1, the optical wavelength conversion device of this embodiment includes a semiconductor DBR laser 101, an SHG element 102 that outputs second harmonic light, and a control means 103 that controls the DBR laser 101 according to a modulation signal. Including. Semiconductor DBR laser 101, a first active region 101b and the gain peak wavelength lambda 2 of the gain peak wavelength lambda 1 and the second active region 101c of the (<lambda 1), and the phase region 101a, the Bragg wavelength lambda 1 near the A DBR laser 101 having two DBR regions 101d and 101e is included. The SHG element 102 receives the fundamental light emitted from the DBR laser 101 and outputs the second harmonic light.

DBRレーザ101において、位相領域101a及び2つのDBR領域101d、101eは、pn接合に垂直に電流を流すことにより活性層の屈折率を変化させることで発振波長を変化させることができる。2つの活性領域101b、101cのゲインピーク波長は、図2に示す様に50nmの差を持ち、DBR領域のブラッグ波長は、長波長側のλ1のピーク波長から約5nm長波長側にずらした位置になる様に、DBRレーザ101は作製されている。DBR領域101d、101eは、DBRレーザ101の光伝播方向両端に1つずつ配置され、且つ同一の構造を持っている。こうした対称的なDBR領域の配置は、注入電流の調整によるデバイス中の熱分布の均一化を達成し易くして、性能向上に繋がる。 In the DBR laser 101, the phase region 101a and the two DBR regions 101d and 101e can change the oscillation wavelength by changing the refractive index of the active layer by passing a current perpendicular to the pn junction. The gain peak wavelength of the two active regions 101b and 101c has a difference of 50 nm as shown in FIG. 2, and the Bragg wavelength of the DBR region is shifted from the peak wavelength of λ 1 on the long wavelength side to the long wavelength side by about 5 nm. The DBR laser 101 is manufactured so as to be positioned. One DBR region 101d, 101e is disposed at each end of the DBR laser 101 in the light propagation direction, and has the same structure. Such a symmetrical DBR region arrangement facilitates achieving a uniform heat distribution in the device by adjusting the injection current, leading to improved performance.

この様に異なるゲインピーク波長を持つ活性領域を集積化して作製する方法として、本実施例では選択成長法を採用した。具体的には、第1の活性領域の光導波路に相当する部分の両側の基板表面にSiO2をパターンニングする。MOVPE(Metal-organic
vapor phase epitaxy)による結晶成長ではSiO2上には原子が堆積しないため、その周囲に多く堆積して選択的に膜厚を厚くすることができる。この方法により、第1の活性領域101bの光導波路部分は、他の活性領域に比べ、ゲインピーク波長が長波長側にシフトする。
In this embodiment, the selective growth method is employed as a method for integrating active regions having different gain peak wavelengths. Specifically, SiO 2 is patterned on the substrate surface on both sides of the portion corresponding to the optical waveguide of the first active region. MOVPE (Metal-organic
In the crystal growth by vapor phase epitaxy), atoms are not deposited on SiO 2 , and therefore, a large amount can be deposited around the SiO 2 to selectively increase the film thickness. By this method, the gain peak wavelength of the optical waveguide portion of the first active region 101b is shifted to the long wavelength side as compared with other active regions.

上記構成において、DBRレーザ101の各領域間には水素イオン注入を行って1kΩ以上の分離抵抗を持たせ、独立に高周波駆動電流で制御できる様になっている。第1の活性領域101bに比較的大きい電流を注入した場合、そのゲインピーク波長がDBR領域101d、101eのブラッグ波長に近いため、ブラッグ波長でシングルモード発振する。しかし、第2の活性領域101cに比較的大きい電流を注入した場合は、そのゲインピーク波長がブラッグ波長より約55nm離れているので、ファブリ-ペローモードで発振する。このときの発振波長の基本波光がSHG素子102によって第2高調波に変換されない様にするためには、第1の活性領域101bと第2の活性領域101cのゲインピーク波長差は少なくとも20nm以上必要である。 In the above configuration, hydrogen ions are implanted between regions of the DBR laser 101 so as to have a separation resistance of 1 kΩ or more, and can be controlled independently by a high-frequency driving current. When a relatively large current is injected into the first active region 101b, the gain peak wavelength is close to the Bragg wavelength of the DBR regions 101d and 101e, so that single mode oscillation occurs at the Bragg wavelength. However, when a relatively large current is injected into the second active region 101c, the gain peak wavelength is about 55 nm away from the Bragg wavelength, so that oscillation occurs in the Fabry-Perot mode. At this time, the gain peak wavelength difference between the first active region 101b and the second active region 101c must be at least 20 nm in order to prevent the fundamental light having the oscillation wavelength from being converted into the second harmonic by the SHG element 102. It is.

ここで、第1の活性領域101bと第2の活性領域101cに図3(a)、(b)電流を入力する場合を見る。変調周期は1Mbpsで、変調電流は下側が発振閾値より低い40mAとし、上側は121mA、200mAの2値とし、合計3値の矩形波とした。第1及び第2の活性領域101b、101cは、長さ、ドーピング量などゲインピーク波長以外のパラメータがほぼ同一になる様に設計しているため、I-V特性は図5に示す様に同一の特性を示す。従って、第1の活性領域101b及び第2の活性領域101cの電流値を、(第1、第2)=(40mA、200mA)、(121mA、121mA)、(200mA、40mA)という組合せで設定すると、IV積が約404mW、このときの基本波光出力が120mWと一定になる。そのため、1周期にDBRレーザ101に発生する熱量の和(IV積−基本波光出力)が周期ごとにほぼ一定となる。こうして、SHG素子の熱的安定性とDBRレーザの熱的安定性が良好に確保される。このとき、発振状態は、SHG素子102の位相整合波長に一致したシングルモード発振と、位相整合波長から充分離れたマルチモード発振を繰り返し、SHG素子102からの第2高調波光が変調信号に基づいて所望の態様で変調される。 Here, the case where the currents in FIGS. 3A and 3B are input to the first active region 101b and the second active region 101c will be considered. The modulation cycle was 1 Mbps, the modulation current was 40 mA lower than the oscillation threshold on the lower side, and the binary value of 121 mA and 200 mA on the upper side, giving a total of three rectangular waves. Since the first and second active regions 101b and 101c are designed so that parameters other than the gain peak wavelength, such as length and doping amount, are substantially the same, the IV characteristics are the same as shown in FIG. Indicates. Therefore, when the current values of the first active region 101b and the second active region 101c are set in a combination of (first, second) = (40mA, 200mA), (121mA, 121mA), (200mA, 40mA) The IV product is about 404 mW, and the fundamental light output at this time is constant at 120 mW. Therefore, the sum of the amounts of heat generated in the DBR laser 101 in one period (IV product−fundamental wave output) becomes almost constant for each period. In this way, the thermal stability of the SHG element and the thermal stability of the DBR laser are ensured satisfactorily. At this time, the oscillation state repeats single mode oscillation that matches the phase matching wavelength of the SHG element 102 and multimode oscillation sufficiently far from the phase matching wavelength, and the second harmonic light from the SHG element 102 is based on the modulation signal. Modulated in the desired manner.

また、このとき、位相領域101aと2つのDBR領域101d、101eには、変調時のシングルモード波長がほぼ安定化する様な条件を満たすために、夫々42mA、57mAの一定電流を注入した。このような条件下で、第2高調波出力の波形は、図3(c)に示す様に、0.15mW、2.1mW、8.3mWの3階調を示し、安定に変調することができた。 At this time, constant currents of 42 mA and 57 mA were injected into the phase region 101a and the two DBR regions 101d and 101e, respectively, in order to satisfy the condition that the single mode wavelength during modulation was substantially stabilized. Under such conditions, the waveform of the second harmonic output showed three gradations of 0.15 mW, 2.1 mW, and 8.3 mW, as shown in FIG. 3 (c), and could be modulated stably.

本実施例では3値の変調の例を示したが、第1、第2の活性領域101b、101cへの電流の組合せを、本実施例の様に「IV積−基本波光出力」を一定にする条件を満たす様に設定すれば、任意の階調出力が可能である。 In this embodiment, an example of ternary modulation is shown. However, the combination of currents to the first and second active regions 101b and 101c is set to a constant "IV product-fundamental wave output" as in this embodiment. Arbitrary gradation output is possible if it is set so as to satisfy the above conditions.

(実施例2)
実施例1では、位相領域101aとDBR領域101d、101eには一定電流を注入し、発振波長を制御していた。しかし、この方法では、変調時の波長スペクトルがシングルモードで安定する条件を見つけ出すことが容易とは言い難い。実際に、実施例1で位相領域の電流を10mAずらすと、変調時のスペクトルがマルチモード化し、光波形が理想的な台形からかけ離れた形になっていく。
(Example 2)
In the first embodiment, a constant current is injected into the phase region 101a and the DBR regions 101d and 101e to control the oscillation wavelength. However, with this method, it is difficult to find a condition that the wavelength spectrum during modulation is stable in a single mode. Actually, when the current in the phase region is shifted by 10 mA in the first embodiment, the spectrum at the time of modulation becomes multimode, and the optical waveform becomes far away from the ideal trapezoid.

そこで、実施例2では、DBR領域101d、101eに注入する電流に高周波成分を重畳し、意図的にマルチモード化する方法を取った。こうすることで、比較的大きい第2高調波光出力を得るべき状態の発振波長をSHG変換効率のピーク波長(位相整合波長)に精度良く合わせなくても、或る程度の大きさの第2高調波光出力を得ることができる。安定的にマルチモード化するためには、活性領域101b、101cの変調電流周波数に比べて少なくとも10倍以上の周波数に、DBR領域101d、101eへの変調電流の周波数を設定する必要がある。 Therefore, in the second embodiment, a method is employed in which a high-frequency component is superimposed on the current injected into the DBR regions 101d and 101e to intentionally make a multimode. By doing this, even if the oscillation wavelength in a state in which a relatively large second harmonic light output is to be obtained is not accurately matched to the peak wavelength (phase matching wavelength) of the SHG conversion efficiency, the second harmonic of a certain size is obtained. Wave light output can be obtained. In order to achieve a stable multimode, it is necessary to set the frequency of the modulation current to the DBR regions 101d and 101e to a frequency at least 10 times higher than the modulation current frequency of the active regions 101b and 101c.

比較として、実施例1と同様の設定で変調している状態の波長スペクトルの模式図を図6に示す。位相領域101aとDBR領域101d、101eの電流を調整しているので、SHG出力が比較的大きい状態では、SHG変換効率のピーク位置でほぼシングルモード発振状態である。このとき、位相領域への電流を10mA増やして52mAにしたとき、発振波長は図7に示す様に長波長側にシフトし、第2高調波出力はピーク値で2mW以下に変化した。 For comparison, FIG. 6 shows a schematic diagram of a wavelength spectrum in a state where modulation is performed with the same setting as in the first embodiment. Since the currents in the phase region 101a and the DBR regions 101d and 101e are adjusted, when the SHG output is relatively large, the single-mode oscillation state is obtained at the peak position of the SHG conversion efficiency. At this time, when the current to the phase region was increased by 10 mA to 52 mA, the oscillation wavelength shifted to the long wavelength side as shown in FIG. 7, and the second harmonic output changed to a peak value of 2 mW or less.

これに対して、位相領域への電流を元の42mAに戻し、2つのDBR領域101d、101eに中心バイアス電流57mA、振幅30mApp、周波数10MHzの正弦波電流を夫々注入したところ、SHG出力が比較的大きい状態での波長スペクトルは図8の様にマルチモード化した。活性領域101b、101cへの変調電流周波数の10倍程度の周波数の正弦波電流を夫々注入したので、10本程度のマルチモード化した線が図8に現れている。ここで、第2高調波出力ピーク値は約7mWに落ちたが、位相領域101aへの電流を±5mA変化させても、光出力はほぼ変化しなかった。従って、本実施例の如く、DBR領域101d、101eへの電流を高周波重畳することにより、より安定な第2高調波出力変調を得ることができた。 On the other hand, when the current to the phase region was returned to the original 42 mA and a sine wave current with a center bias current of 57 mA, an amplitude of 30 mApp, and a frequency of 10 MHz was injected into the two DBR regions 101d and 101e, the SHG output was relatively high. The wavelength spectrum in a large state was converted to multimode as shown in FIG. Since a sinusoidal current having a frequency of about 10 times the modulation current frequency is injected into each of the active regions 101b and 101c, about 10 multimode lines appear in FIG. Here, the second harmonic output peak value dropped to about 7 mW, but the light output hardly changed even when the current to the phase region 101a was changed by ± 5 mA. Therefore, more stable second harmonic output modulation can be obtained by superimposing the current to the DBR regions 101d and 101e at a high frequency as in this embodiment.

(実施例3)
実施例3は本発明による光波長変換装置を用いた画像表示装置に係る。図9に本実施例の画像表示装置の模式的構成図を示す。本画像表示装置において、例えば上記実施例で説明した緑色の変調光を発する光波長変換装置301、赤色レーザを発する変調光源302、青色レーザを発する変調光源303より夫々出力されたレーザ光はダイクロイックミラー304によって合波される。合波されたレーザ光は水平走査素子305、垂直走査素子306によって走査され、スクリーン307上に走査線を形成する。フルカラーの画像情報から生成された赤、緑、青各色の階調情報により、各光源301、302、303の出力を変調することにより、スクリーン307上に2次元のフルカラー画像が表示される。ここでは、スクリーン307上の画像の画素に対応した変調信号に応じて画素の周期ごとに変調電流を制御すればよい。
(Example 3)
Example 3 relates to an image display device using an optical wavelength conversion device according to the present invention. FIG. 9 shows a schematic configuration diagram of the image display apparatus of the present embodiment. In the present image display device, for example, the laser light output from the light wavelength conversion device 301 that emits green modulated light, the modulated light source 302 that emits red laser, and the modulated light source 303 that emits blue laser described in the above embodiments is a dichroic mirror. Combined by 304. The combined laser beam is scanned by the horizontal scanning element 305 and the vertical scanning element 306 to form a scanning line on the screen 307. A two-dimensional full-color image is displayed on the screen 307 by modulating the output of each of the light sources 301, 302, and 303 based on the gradation information of each color of red, green, and blue generated from the full-color image information. Here, the modulation current may be controlled for each period of the pixel in accordance with the modulation signal corresponding to the pixel of the image on the screen 307.

本発明による光波長変換装置は、赤色の半導体レーザなどと同等の変調性能を持つので、上記画像表示装置は、高精細の階調表現を有する画像を表示できる。本発明の光波長変換装置ないし方法は、上記レーザーディスプレイの他に、レーザービームプリンタ、複写機などの画像形成装置にも使用できる。 Since the optical wavelength conversion device according to the present invention has a modulation performance equivalent to that of a red semiconductor laser or the like, the image display device can display an image having high-definition gradation expression. The optical wavelength conversion apparatus or method of the present invention can be used for an image forming apparatus such as a laser beam printer and a copying machine in addition to the laser display.

本発明の実施形態及び実施例の光波長変換装置の模式的な構成を示す図。The figure which shows the typical structure of the optical wavelength converter of the embodiment and Example of this invention. 本発明の実施形態及び実施例のDBRレーザの複数の活性領域のゲインピーク波長とブラッグ波長の関係を示す図。The figure which shows the relationship between the gain peak wavelength of several active area | regions of the DBR laser of embodiment and Example of this invention, and a Bragg wavelength. 本発明の実施例1の駆動電流波形及び第2高調波出力を説明する図。The figure explaining the drive current waveform and 2nd harmonic output of Example 1 of this invention. 本発明の実施例に用いられるSHG素子の波長と第2高調波出力の関係を示す図。The figure which shows the relationship between the wavelength of a SHG element used for the Example of this invention, and a 2nd harmonic output. 本発明の実施例に用いられるDBRレーザの活性領域のI-V特性を示す図。The figure which shows the IV characteristic of the active region of the DBR laser used for the Example of this invention. 本発明の実施例1の変調時波長スペクトルを表す模式図。FIG. 2 is a schematic diagram illustrating a modulation wavelength spectrum in Example 1 of the present invention. 本発明の実施例1の位相領域電流変化後の変調時波長スペクトルを表す模式図。FIG. 3 is a schematic diagram showing a wavelength spectrum during modulation after a phase region current change in Example 1 of the present invention. 本発明の実施例2の高周波重畳時の変調時波長スペクトルを表す模式図。FIG. 6 is a schematic diagram illustrating a wavelength spectrum during modulation when high frequency is superimposed in Example 2 of the present invention. 本発明の実施例3の画像表示装置を示す模式図。FIG. 6 is a schematic diagram showing an image display device according to Example 3 of the present invention. 従来例の構成を示す模式図。The schematic diagram which shows the structure of a prior art example.

符号の説明Explanation of symbols

101 … DBRレーザ
101a … DBRレーザの位相領域
101b … DBRレーザの第1の活性領域
101c … DBRレーザの第2の活性領域
101d、101e … DBRレーザのDBR領域
102 … 光り波長変換素子(SHG素子)
103 … DBRレーザの制御手段
301 … 本発明の光波長変換装置(緑色変調光源)
302 … 赤色変調光源
303 … 青色変調光源
305 … 光走査素子(水平走査素子)
306 … 光走査素子(垂直走査素子)
307 … スクリーン
101… DBR laser
101a… DBR laser phase region
101b… DBR laser first active region
101c… DBR laser second active region
101d, 101e… DBR region of DBR laser
102 ... Light wavelength conversion element (SHG element)
103… Control method of DBR laser
301 ... Optical wavelength converter of the present invention (green modulated light source)
302… Red modulated light source
303… Blue modulated light source
305 ... Optical scanning element (horizontal scanning element)
306 ... Optical scanning element (vertical scanning element)
307… Screen

Claims (7)

異なるゲインピーク波長を持つ少なくとも2つの活性領域と、分布ブラック反射器(DBR)が形成されたDBR領域とを有するDBRレーザと、DBRレーザから発せられる基本波光を入射して、その第2高調波光を出力する光波長変換素子と、変調信号に応じてDBRレーザへの注入電流を周期ごとに制御してその発振波長と光出力を制御する制御手段を含む光波長変換装置であって、
制御手段は、一周期内に発生する熱量の和が周期ごとに一定となる様に電流値及び注入時間の調整された駆動電流を前記複数の活性領域に夫々注入することでDBRレーザの発振状態を制御できる様に構成されていることを特徴とする光波長変換装置。
A DBR laser having at least two active regions having different gain peak wavelengths and a DBR region in which a distributed black reflector (DBR) is formed, and a fundamental wave light emitted from the DBR laser is incident on the second harmonic light. An optical wavelength conversion device that outputs an optical wavelength conversion device, and a control means for controlling the oscillation wavelength and the optical output by controlling the injection current to the DBR laser according to the modulation signal for each period,
The control means injects drive currents adjusted in current value and injection time into the plurality of active regions so that the sum of heat generated in one period is constant for each period, thereby oscillating the DBR laser. An optical wavelength conversion device configured to be able to control the light.
前記複数の活性領域のゲインピーク波長において最も長波長側のピーク波長の近傍に、DBR領域のブラッグ波長が調整され、前記ブラッグ波長の近傍に光波長変換素子の位相整合波長が調整されていることを特徴とする請求項1に記載の光波長変換装置。 The Bragg wavelength of the DBR region is adjusted in the vicinity of the peak wavelength on the longest wavelength side in the gain peak wavelengths of the plurality of active regions, and the phase matching wavelength of the optical wavelength conversion element is adjusted in the vicinity of the Bragg wavelength. 2. The optical wavelength conversion device according to claim 1, wherein: 前記複数の活性領域のゲインピーク波長は夫々20nm以上の間隔で設定されていることを特徴とする請求項1または2に記載の光波長変換装置。 3. The optical wavelength conversion device according to claim 1, wherein gain peak wavelengths of the plurality of active regions are set at intervals of 20 nm or more, respectively. 請求項1乃至3のいずれかに記載の光波長変換装置を用いる光波長変換方法であって、
前記制御手段は、
比較的大きい電流を最も長波長側のゲインピーク波長を持つ活性領域に注入し且つ比較的小さい電流を他の活性領域に注入して前記ブラッグ波長の近傍の波長を有する基本波光を光波長変換素子に入射させることで前記第2高調波光の出力が比較的大きい状態をもたらし、
比較的小さい電流を最も長波長側のゲインピーク波長を持つ活性領域に注入し且つ比較的大きい電流を他の活性領域に注入して前記ブラッグ波長から離れた波長を有する基本波光を光波長変換素子に入射させることで前記第2高調波光の出力が比較的小さい状態をもたらし、
前記変調信号に応じて、前記複数の活性領域への駆動電流を周期ごとに制御して前記出力が比較的大きい状態と前記出力が比較的小さい状態を切り替える、
ことを特徴とする光波長変換方法。
An optical wavelength conversion method using the optical wavelength conversion device according to any one of claims 1 to 3,
The control means includes
A light wavelength conversion element for converting a fundamental wave light having a wavelength near the Bragg wavelength by injecting a relatively large current into an active region having a gain peak wavelength on the longest wavelength side and injecting a relatively small current into another active region Resulting in a relatively large output of the second harmonic light,
A fundamental wavelength light having a wavelength away from the Bragg wavelength by injecting a relatively small current into an active region having a gain peak wavelength on the longest wavelength side and injecting a relatively large current into another active region Resulting in a state where the output of the second harmonic light is relatively small,
In accordance with the modulation signal, the drive current to the plurality of active regions is controlled for each period to switch the state where the output is relatively large and the state where the output is relatively small.
The optical wavelength conversion method characterized by the above-mentioned.
前記制御手段は、前記DBR領域に、一定の駆動電流、または前記活性領域への駆動電流より10倍以上速い周波数の駆動電流を加えることを特徴とする請求項4に記載の光波長変換方法。 5. The optical wavelength conversion method according to claim 4, wherein the control unit applies a constant drive current or a drive current having a frequency 10 times faster than a drive current to the active region to the DBR region. 請求項1乃至3のいずれかに記載の光波長変換装置及び少なくとも1つの光走査素子を有し、前記光波長変換装置によって発せられた光を前記光走査素子で走査し、且つ変調信号に応じて第2高調波光の光量を調整することで画像が形成されることを特徴とする画像形成装置。 4. The optical wavelength conversion device according to claim 1 and at least one optical scanning element, wherein the light emitted by the optical wavelength conversion device is scanned by the optical scanning element, and according to a modulation signal An image is formed by adjusting the amount of the second harmonic light. 異なるゲインピーク波長を持つ少なくとも2つの活性領域と、分布ブラック反射器(DBR)が形成されたDBR領域とを有するDBRレーザであって、
前記複数の活性領域のゲインピーク波長において最も長波長側のゲインピーク波長の近傍に、前記DBR領域のブラッグ波長が調整されている、
ことを特徴とするDBRレーザ。
A DBR laser having at least two active regions having different gain peak wavelengths and a DBR region in which a distributed black reflector (DBR) is formed;
In the vicinity of the gain peak wavelength on the longest wavelength side in the gain peak wavelengths of the plurality of active regions, the Bragg wavelength of the DBR region is adjusted,
A DBR laser characterized by this.
JP2006247400A 2006-09-12 2006-09-12 Optical wavelength conversion device, and image forming device using the same Pending JP2008070493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006247400A JP2008070493A (en) 2006-09-12 2006-09-12 Optical wavelength conversion device, and image forming device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006247400A JP2008070493A (en) 2006-09-12 2006-09-12 Optical wavelength conversion device, and image forming device using the same

Publications (1)

Publication Number Publication Date
JP2008070493A true JP2008070493A (en) 2008-03-27

Family

ID=39292151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006247400A Pending JP2008070493A (en) 2006-09-12 2006-09-12 Optical wavelength conversion device, and image forming device using the same

Country Status (1)

Country Link
JP (1) JP2008070493A (en)

Similar Documents

Publication Publication Date Title
JP4950519B2 (en) Optical wavelength conversion device, optical wavelength conversion method, and image forming apparatus using the same
US7411992B2 (en) Light wavelength converting apparatus, control method of the same, and image projecting apparatus using the same
JP4914083B2 (en) Optical wavelength conversion device, optical wavelength conversion method, and image forming apparatus using the same
US7505492B2 (en) Alignment of lasing wavelength with wavelength conversion peak using modulated wavelength control signal
US8320418B2 (en) Multiple wavelength optical systems
US8573785B2 (en) Wavelength-switched optical systems
JPWO2005083854A1 (en) COHERENT LIGHT SOURCE, ITS CONTROL METHOD, DISPLAY DEVICE USING THEM, AND LASER DISPLAY
WO2005091450A1 (en) Modulation light source, image display apparatus including the same, and method of driving modulation light source
KR20090081399A (en) Wavelength control in semiconductor lasers for laser projection systems
JP2003295243A (en) Higher harmonic light source unit, method for driving the same, image display device using the same, image forming device, and optical recording device
JP2010517293A (en) Forced wavelength chirping in semiconductor lasers.
US7400659B2 (en) Method and device for performing DBR laser wavelength modulation free of thermal effect
US8204091B2 (en) Wavelength normalization in phase section of semiconductor lasers
JP4914082B2 (en) Optical wavelength conversion device, optical wavelength conversion method, and image forming apparatus using the same
TW201112551A (en) Minimizing power variations in laser sources
JP2008070493A (en) Optical wavelength conversion device, and image forming device using the same
US20070230533A1 (en) Laser module
JP2008071841A (en) Optical wavelength conversion device and image display device using it
JP2001326418A (en) Semiconductor laser beam source and modulation method therefor
JP2007114527A (en) Optical wavelength converting device and its control method, and image forming apparatus using the same
JPH11174506A (en) Wavelength conversion element
JP2004343089A (en) Method and circuit for driving light source device
JP2003015176A (en) Wavelength conversion light source device
JPH1140876A (en) Second harmonic generating device and method