JP2001326418A - Semiconductor laser beam source and modulation method therefor - Google Patents

Semiconductor laser beam source and modulation method therefor

Info

Publication number
JP2001326418A
JP2001326418A JP2000143263A JP2000143263A JP2001326418A JP 2001326418 A JP2001326418 A JP 2001326418A JP 2000143263 A JP2000143263 A JP 2000143263A JP 2000143263 A JP2000143263 A JP 2000143263A JP 2001326418 A JP2001326418 A JP 2001326418A
Authority
JP
Japan
Prior art keywords
semiconductor laser
dbr
active region
region
modulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000143263A
Other languages
Japanese (ja)
Inventor
Yasuo Kitaoka
康夫 北岡
Kazuhisa Yamamoto
和久 山本
Takaaki Hirata
隆昭 平田
Shinji Iio
晋司 飯尾
Takeshi Inoue
武史 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Panasonic Holdings Corp
Original Assignee
Yokogawa Electric Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp, Matsushita Electric Industrial Co Ltd filed Critical Yokogawa Electric Corp
Priority to JP2000143263A priority Critical patent/JP2001326418A/en
Publication of JP2001326418A publication Critical patent/JP2001326418A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a semiconductor laser light source which maintains the wavelength of a laser beam and which can perform a light intensity modulation and to realize a modulation method for the semiconductor laser light source. SOLUTION: A semiconductor laser which is provided with an active region and a distributed Bragg reflector(DBR) region in which a DBR is formed is installed. A heater which gives a heat quantity to the semiconductor laser is installed. A drive circuit which modulates an injection current to the active region and which controls the amount of the injection current to the heater in such a way that the sum of the heat quantity transmitted to the DBR region from the active region and the heat quantity transmitted to the DBR region from the heater becomes nearly definite is installed. The laser beam which is output by the semiconductor laser is modulated in light intensity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザ光の波長を
維持しつつ、光強度変調を行うことができる半導体レー
ザ光源及び半導体レーザ光源の変調方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser light source capable of performing light intensity modulation while maintaining the wavelength of laser light, and a method of modulating the semiconductor laser light source.

【0002】[0002]

【従来の技術】分布反射型(DBR;distributed brag
g reflection)半導体レーザは、活性領域と分布ブラッ
グ反射器(DBR)を有するDBR領域とから構成さ
れ、レーザ光を出力している。このような装置を図5に
示し説明する。
2. Description of the Related Art Distributed Bragg Reflector (DBR)
g reflection) The semiconductor laser includes an active region and a DBR region having a distributed Bragg reflector (DBR), and outputs laser light. Such an apparatus is shown and described in FIG.

【0003】図5において、分布反射型(DBR)半導
体レーザ1は、活性領域、DBR領域を有し、レーザ光
を発生する。駆動回路2は、DBR半導体レーザ1を駆
動する。
In FIG. 5, a distributed reflection (DBR) semiconductor laser 1 has an active region and a DBR region, and generates a laser beam. The drive circuit 2 drives the DBR semiconductor laser 1.

【0004】このような装置の動作を以下に説明する。
駆動回路2は、DBR半導体レーザ1を駆動し、DBR
半導体レーザ1がレーザ光を出力する。
[0004] The operation of such a device will be described below.
The drive circuit 2 drives the DBR semiconductor laser 1 and
The semiconductor laser 1 outputs a laser beam.

【0005】[0005]

【発明が解決しようとする課題】このような装置は、活
性領域に電流を与えると、例えば、図6に示すような特
性になる。図6において、横軸は電流(mA)、縦軸は
出力パワー(mW)、波長(nm)である。なお、DB
R領域の電流は一定である。図6に示されるように、電
流を増加させると、光出力が増大するだけでなく、発振
波長も長波長側に周期的に変化してしまう。この結果、
半導体レーザ1が例えば波長多重通信装置に用いられ、
波長精度が要求される場合は、光強度変調を行うことが
できなかった。
When a current is applied to the active region, such a device has characteristics as shown in FIG. 6, for example. In FIG. 6, the horizontal axis represents current (mA), and the vertical axis represents output power (mW) and wavelength (nm). In addition, DB
The current in the R region is constant. As shown in FIG. 6, when the current is increased, not only does the optical output increase, but also the oscillation wavelength periodically changes to the longer wavelength side. As a result,
The semiconductor laser 1 is used, for example, in a wavelength division multiplex communication device,
When wavelength accuracy was required, light intensity modulation could not be performed.

【0006】そこで、本発明の目的は、レーザ光の波長
を維持しつつ、光強度変調を行うことができる半導体レ
ーザ光源及び半導体レーザ光源の変調方法を実現するこ
とにある。
An object of the present invention is to realize a semiconductor laser light source and a method of modulating a semiconductor laser light source that can perform light intensity modulation while maintaining the wavelength of laser light.

【0007】[0007]

【課題を解決するための手段】第1の本発明は、活性領
域と、分布ブラッグ反射器(DBR)が形成されたDB
R領域とを有する半導体レーザと、前記半導体レーザに
熱量を与えるヒーター部と、前記活性領域への注入電流
を変調すると共に、前記半導体レーザの波長変化(位相
変化)量を、前記ヒーター部への注入電流量により補償
する駆動回路とを設け、前記半導体レーザが出力するレ
ーザ光を光強度変調することを特徴とするものである。
SUMMARY OF THE INVENTION A first aspect of the present invention is directed to a DB having an active region and a distributed Bragg reflector (DBR) formed therein.
A semiconductor laser having an R region, a heater for applying heat to the semiconductor laser, and modulating an injection current to the active region, and changing a wavelength change (phase change) of the semiconductor laser to the heater. And a drive circuit for compensating for the injection current amount, and modulates the light intensity of the laser light output from the semiconductor laser.

【0008】第2の本発明は、活性領域と、分布ブラッ
グ反射器(DBR)が形成されたDBR領域とを有する
半導体レーザと、前記半導体レーザに熱量を与えるヒー
ター部と、前記活性領域への注入電流を変調すると共
に、前記活性領域から前記DBR領域へ伝達する熱量
と、前記ヒーター部から前記DBR領域へ伝達する熱量
の和がほぼ一定になるように、前記ヒーター部への注入
電流量を制御する駆動回路とを設け、前記半導体レーザ
が出力するレーザ光を光強度変調することを特徴とする
ものである。
According to a second aspect of the present invention, there is provided a semiconductor laser having an active region and a DBR region in which a distributed Bragg reflector (DBR) is formed, a heater for applying heat to the semiconductor laser, Along with modulating the injection current, the injection current amount to the heater unit is adjusted so that the sum of the heat amount transmitted from the active region to the DBR region and the heat amount transmitted from the heater unit to the DBR region becomes substantially constant. A driving circuit for controlling the laser beam, and modulating the light intensity of the laser beam output from the semiconductor laser.

【0009】第3の本発明は、活性領域と、分布ブラッ
グ反射器(DBR)が形成されたDBR領域とを有する
半導体レーザを備える半導体レーザ光源の変調方法にお
いて、前記活性領域への注入電流を変調すると共に、前
記半導体レーザの光の波長変化(位相変化)量を、前記
半導体レーザに熱量を与えるヒーター部への注入電流量
により補償し、前記半導体レーザが出力するレーザ光を
光強度変調することを特徴とするものである。
According to a third aspect of the present invention, there is provided a method for modulating a semiconductor laser light source including a semiconductor laser having an active region and a DBR region having a distributed Bragg reflector (DBR), wherein the injection current into the active region is In addition to the modulation, the wavelength change (phase change) of the light of the semiconductor laser is compensated for by the amount of current injected into a heater for applying heat to the semiconductor laser, and the laser light output from the semiconductor laser is modulated in light intensity. It is characterized by the following.

【0010】第4の本発明は、活性領域と、分布ブラッ
グ反射器(DBR)が形成されたDBR領域とを有する
半導体レーザを備える半導体レーザ光源の変調方法にお
いて、前記活性領域への注入電流を変調すると共に、前
記活性領域から前記DBR領域へ伝達する熱量と、ヒー
ター部から前記DBR領域へ伝達する熱量の和がほぼ一
定になるように、前記ヒーター部への注入電流量を制御
し、前記半導体レーザが出力するレーザ光を光強度変調
することを特徴とするものである。
According to a fourth aspect of the present invention, there is provided a method of modulating a semiconductor laser light source including a semiconductor laser having an active region and a DBR region in which a distributed Bragg reflector (DBR) is formed. While modulating, the amount of heat transferred from the active region to the DBR region and the amount of heat transferred from the heater to the DBR region are controlled so that the sum of the amounts of heat transferred from the heater to the DBR region is substantially constant. It is characterized by modulating the light intensity of the laser light output from the semiconductor laser.

【0011】[0011]

【発明の実施の形態】以下図面を用いて本発明の実施の
形態を説明する。図1は本発明の一実施例を示した構成
図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram showing one embodiment of the present invention.

【0012】図において、DBR半導体レーザ10は、
活性領域11、回折格子(DBR)が形成されたDBR
領域12が設けられ、この各領域に電極が取り付けら
れ、この電極に注入される電流により、レーザ光を出力
する。
In FIG. 1, a DBR semiconductor laser 10 is
Active region 11, DBR with diffraction grating (DBR) formed
A region 12 is provided, an electrode is attached to each region, and a laser beam is output by a current injected into the electrode.

【0013】活性領域11は、電流が注入されることに
より、レーザ光を発生する。DBR領域12は、活性領
域11からレーザ光が入力され、pn接合に垂直に電流
を流したり、あるいは、薄膜ヒータに電流を流すことに
より、領域の温度が制御され、この温度変化により、導
波路の屈折率を変化させ、回折格子の反射特性を調整
し、発振波長を変化させる。
The active region 11 generates a laser beam when a current is injected. In the DBR region 12, a laser beam is input from the active region 11, and a current is supplied perpendicularly to the pn junction or a current is supplied to the thin film heater to control the temperature of the region. , The reflection characteristics of the diffraction grating are adjusted, and the oscillation wavelength is changed.

【0014】DBR半導体レーザ10の具体的構成を図
2に示し説明する。AlGaAs系の波長850nmのDBR
半導体レーザについて説明する。
The specific configuration of the DBR semiconductor laser 10 will be described with reference to FIG. AlGaAs DBR with wavelength of 850nm
The semiconductor laser will be described.

【0015】n-GaAs基板上にMOCVD装置を用いたエ
ピタキシャル成長により、n-AlGaAsを成長させた後、Al
GaAsの活性層を形成する。クラッド層としてp-AlGaAsを
積層する。次に、フォトリソグラフィー技術により、リ
ブ構造の光導波路13を形成する。
After growing n-AlGaAs on the n-GaAs substrate by epitaxial growth using a MOCVD apparatus,
An active layer of GaAs is formed. P-AlGaAs is laminated as a cladding layer. Next, an optical waveguide 13 having a rib structure is formed by photolithography.

【0016】次に、光導波路13上にEB描画により1
次の回折格子(周期約100nm)を形成する。回折格
子が形成されたDBR領域12のみに、シリコンが注入
し、パッシブな光導波路13を形成する。
Next, 1 is written on the optical waveguide 13 by EB drawing.
The next diffraction grating (having a period of about 100 nm) is formed. Silicon is injected only into the DBR region 12 in which the diffraction grating is formed, and a passive optical waveguide 13 is formed.

【0017】第2の結晶成長が行われ、クラッド層とし
てp-AlGaAsを積層する。最後に、n側およびp側には、電
流注入するための電極が形成され、p側の電極14,1
5は、活性領域11およびDBR領域12が電気的に絶
縁されるように電極を形成する。
A second crystal growth is performed, and p-AlGaAs is stacked as a cladding layer. Finally, electrodes for current injection are formed on the n-side and the p-side, and the p-side electrodes 14, 1 are formed.
5 forms an electrode so that the active region 11 and the DBR region 12 are electrically insulated.

【0018】このような2電極タイプのAlGaAs系波長可
変DBR半導体レーザ10は、駆動電圧2.1V、活性
領域11への駆動電流150mAで、出力50mWが得
られる。また、DBR領域12へ電流を注入することに
より、100mAで1.5nm波長可変することができ
る。波長可変特性は、ファブリペローモードの間隔(約
0.1nm)でモードホップを繰り返しながら波長可変
する。
Such a two-electrode type AlGaAs-based wavelength tunable DBR semiconductor laser 10 can obtain an output of 50 mW at a drive voltage of 2.1 V and a drive current of 150 mA for the active region 11. Further, by injecting a current into the DBR region 12, the wavelength can be changed by 1.5 nm at 100 mA. The wavelength tunable characteristic varies the wavelength while repeating the mode hop at the interval of the Fabry-Perot mode (about 0.1 nm).

【0019】ヒーター部20は、白金で形成され、DB
R半導体レーザ10(活性領域11、DBR領域12)
に熱量を与える。
The heater section 20 is made of platinum and has a DB
R semiconductor laser 10 (active region 11, DBR region 12)
To give heat.

【0020】次に、DBR半導体レーザ10、ヒーター
部20の具体的な接続構成を図3に示し説明する。
Next, a specific connection configuration of the DBR semiconductor laser 10 and the heater section 20 will be described with reference to FIG.

【0021】Siサブマウント100上には白金ヒーター
部20が形成され、さらにその上には絶縁層21が形成
されている。絶縁層21上には、DBR半導体レーザ1
0へ電流注入するための電極と半田22が形成されてい
る。そして、DBR半導体レーザ10が、半田22が形
成された上に、ジャンクションアップで実装される。
A platinum heater section 20 is formed on the Si submount 100, and an insulating layer 21 is further formed thereon. On the insulating layer 21, the DBR semiconductor laser 1
An electrode for injecting a current to zero and a solder 22 are formed. Then, the DBR semiconductor laser 10 is mounted by junction-up after the solder 22 is formed.

【0022】駆動回路30は、DBR半導体レーザ10
を駆動し、レーザ光を出力させ、DBR半導体レーザ1
0の活性領域11、ヒーター部20に与える電流を同時
に変調し、DBR半導体レーザ10が出力するレーザ光
を変調する。
The drive circuit 30 includes the DBR semiconductor laser 10
Is driven to output a laser beam, and the DBR semiconductor laser 1 is driven.
The current applied to the 0 active region 11 and the heater section 20 are simultaneously modulated, and the laser light output from the DBR semiconductor laser 10 is modulated.

【0023】このような装置の動作を以下で説明する。
始めに、DBR半導体レーザ10の動作について説明を
加える。活性領域11に電流注入を行うと、光に変換さ
れない分が熱に変換され、半導体レーザ10のチップの
温度が上昇し、活性領域11とDBR領域12もそれぞ
れ温度上昇する。活性領域11の温度上昇は、光の位相
状態に変化を与え、特にDBR領域12の温度が変化す
ると、DBR領域12中の回折格子の屈折率が大きくな
り、発振波長が長波長側にシフトする。
The operation of such a device will be described below.
First, the operation of the DBR semiconductor laser 10 will be described. When a current is injected into the active region 11, the portion that is not converted into light is converted into heat, the temperature of the chip of the semiconductor laser 10 increases, and the temperatures of the active region 11 and the DBR region 12 also increase. The rise in the temperature of the active region 11 changes the phase state of light. In particular, when the temperature of the DBR region 12 changes, the refractive index of the diffraction grating in the DBR region 12 increases, and the oscillation wavelength shifts to the longer wavelength side. .

【0024】つまり、DBR半導体レーザ10のチップ
温度が一定ならば、レーザ光の発振波長は変化しないこ
とになる。
That is, if the chip temperature of the DBR semiconductor laser 10 is constant, the oscillation wavelength of the laser light does not change.

【0025】そこで、熱的関係について説明する。活性
領域11で発生する熱量は、以下の式で示される。 I1×V1−P (式1) ここで、I1は活性領域11への注入電流量(mA)、
V1は活性領域11の動作電圧(V)、Pはレーザ出力
(mW)である。この熱量を、Siサブマウント100上
の白金ヒーター部20で補償することによりDBR半導
体レーザ10のチップ温度を一定に保持できる。
Therefore, the thermal relationship will be described. The amount of heat generated in the active region 11 is represented by the following equation. I1 × V1-P (Equation 1) where I1 is the amount of current injected into the active region 11 (mA),
V1 is the operating voltage (V) of the active region 11, and P is the laser output (mW). By compensating this heat amount by the platinum heater section 20 on the Si submount 100, the chip temperature of the DBR semiconductor laser 10 can be kept constant.

【0026】活性領域11の電流値が低いときに、白金
ヒーター部20の電流値を高くする。反対に、活性領域
11の電流値が高いときに、白金ヒーター部20の電流
値を低くする。白金ヒーター部20で発生する熱量(m
W)をQとすると、式2に示すような関係で変調するこ
とにより、発振波長を一定に保持することができる。 I1×V1+Q−P=一定 (式2)
When the current value of the active region 11 is low, the current value of the platinum heater section 20 is increased. Conversely, when the current value of the active region 11 is high, the current value of the platinum heater section 20 is reduced. The amount of heat (m
Assuming that W) is Q, the oscillation wavelength can be kept constant by modulating the relationship as shown in Expression 2. I1 × V1 + Q−P = constant (Equation 2)

【0027】図4は動作を説明する図で、a)は活性領
域11への注入電流、b)はDBR半導体レーザ10の
レーザ光の出力、c)は白金ヒーター部20への注入電
流、d)はDBR半導体レーザ10の発振波長を示す。
本実施例においては2値変調について説明する。
FIGS. 4A and 4B are diagrams for explaining the operation. FIG. 4A shows an injection current into the active region 11, FIG. 4B shows a laser beam output of the DBR semiconductor laser 10, c) an injection current into the platinum heater section 20, and FIG. ) Indicates the oscillation wavelength of the DBR semiconductor laser 10.
In this embodiment, binary modulation will be described.

【0028】波長可変DBR半導体レーザ10の発振し
きい値は、40mAである。図4a)に示すように、活
性領域11は、駆動回路30により、はじめ150mA
(50mW)で連続的に注入を行い、その後変調動作に
移行する。変調時には、ハイレベルを150mA(50
mW)、ロウレベルを40mA(0mW)に設定する。
レーザ光である波長可変DBR半導体レーザ10の出力
は、図4b)のようになり、各段階で発生する熱量は以
下のようになる。
The oscillation threshold of the tunable DBR semiconductor laser 10 is 40 mA. As shown in FIG. 4 a), the active region 11 is initially driven by 150 mA by the driving circuit 30.
(50 mW) to continuously perform injection, and then shift to a modulation operation. During modulation, the high level is set to 150 mA (50
mW) and the low level is set to 40 mA (0 mW).
The output of the tunable DBR semiconductor laser 10, which is a laser beam, is as shown in FIG. 4B), and the amount of heat generated in each stage is as follows.

【0029】連続、ハイ I1×V1−P=150(m
A)×2.1(V)−50mW=265mW ロウ I1×V1−P=40(mA)×2.1(V)−
0mW=84mW
Continuous, high I1 × V1-P = 150 (m
A) × 2.1 (V) −50 mW = 265 mW Row I1 × V1−P = 40 (mA) × 2.1 (V) −
0mW = 84mW

【0030】従って、発生する熱量の差は、181mW
となる。この熱量差を補償するように、図4c)に示す
ように、駆動回路30は、白金ヒーター部20への注入
電流量を制御する。白金ヒーター部20の抵抗値を30
Ωとし、80mAの電流注入を行うと、192mWの熱
量を発することができる。はじめ駆動回路30は、電流
を注入せず、その後変調動作に移行する。変調時には、
活性領域11への変調電流がハイレベルの時には0m
A、ロウレベルの時には80mAに設定する。変調時に
おいても、活性領域11および白金ヒーター部20で発
生する熱量の合計は、変調時においてもほぼ同じとな
る。
Therefore, the difference in the amount of generated heat is 181 mW
Becomes As shown in FIG. 4C), the drive circuit 30 controls the amount of current injected into the platinum heater section 20 so as to compensate for this difference in heat quantity. When the resistance value of the platinum heater section 20 is 30
When a current is injected at 80 mA, a heat amount of 192 mW can be generated. First, the drive circuit 30 does not inject a current, and then shifts to a modulation operation. During modulation,
0 m when the modulation current to the active region 11 is at a high level
At the time of A, low level, it is set to 80 mA. During modulation, the total amount of heat generated in the active region 11 and the platinum heater section 20 is substantially the same during modulation.

【0031】結果として、図4d)に示すように、DB
R領域12への注入電流を一定にしているにも関わら
ず、レーザ光の発振波長は連続時および変調時におい
て、一定に保持することが可能となる。
As a result, as shown in FIG.
Although the injection current into the R region 12 is kept constant, the oscillation wavelength of the laser light can be kept constant during continuous and modulation.

【0032】以上のように、I1×V1+Q−Pがほぼ
一定の関係を保持するように、活性領域11と白金ヒー
ター部20への注入電流を制御することにより、DBR
半導体レーザ10において、レーザ光の発振波長を一定
に保持しつつ、光強度変調を行うことができる。
As described above, by controlling the injection current to the active region 11 and the platinum heater section 20 so that I1 × V1 + Q−P keeps a substantially constant relationship, the DBR
In the semiconductor laser 10, light intensity modulation can be performed while keeping the oscillation wavelength of the laser light constant.

【0033】なお、ヒーター部20は、活性領域11、
DBR領域12の両方に熱量を与える構成を示したが、
どちらか一方、つまり、活性領域11のみ、DBR領域
12のみに熱量を与える構成にしても同様の効果が得ら
れる。この場合も、波長シフトに影響を与えるDBR領
域12の温度が一定になるように、駆動回路30は、活
性領域11の電流を変調させると共に、ヒーター部20
への注入電流を変化させることはいうまでもない。
The heater section 20 includes an active area 11,
Although the configuration in which heat is applied to both the DBR regions 12 has been described,
A similar effect can be obtained even if a heat amount is applied to only one of the active regions 11 and only the DBR region 12. Also in this case, the drive circuit 30 modulates the current in the active region 11 and controls the heater section 20 so that the temperature of the DBR region 12 that affects the wavelength shift becomes constant.
Needless to say, the injection current to the gate is changed.

【0034】[0034]

【発明の効果】本発明によれば、以下の効果がある。請
求項1,2によれば、駆動回路が、活性領域の電流を変
調すると共に、ヒーター部への注入電流を変化させ、レ
ーザ光の波長変化を抑えるので、発振波長を一定に保持
しつつ、光強度変調を行うことができる。
According to the present invention, the following effects can be obtained. According to the first and second aspects, the drive circuit modulates the current in the active region and changes the injection current to the heater to suppress the wavelength change of the laser beam. Light intensity modulation can be performed.

【0035】請求項3,4によれば、活性領域の電流を
変調すると共に、ヒーター部への注入電流を変化させ、
波長変化を抑えるので、レーザ光の発振波長を一定に保
持しつつ、光強度変調を行うことができる。
According to the third and fourth aspects, the current in the active region is modulated and the current injected into the heater section is changed.
Since the wavelength change is suppressed, light intensity modulation can be performed while keeping the oscillation wavelength of the laser light constant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示した構成図である。FIG. 1 is a configuration diagram showing one embodiment of the present invention.

【図2】DBR半導体レーザ10の具体的構成を示した
図である。
FIG. 2 is a diagram showing a specific configuration of a DBR semiconductor laser 10.

【図3】DBR半導体レーザ10とヒーター部20の具
体的な接続構成を示した図である。
FIG. 3 is a diagram showing a specific connection configuration between a DBR semiconductor laser 10 and a heater unit 20.

【図4】実施例の動作を説明する図である。FIG. 4 is a diagram illustrating the operation of the embodiment.

【図5】従来のDBR半導体レーザを示した構成図であ
る。
FIG. 5 is a configuration diagram showing a conventional DBR semiconductor laser.

【図6】DBR半導体レーザの特性を示した図である。FIG. 6 is a diagram showing characteristics of a DBR semiconductor laser.

【符号の説明】[Explanation of symbols]

10 DBR半導体レーザ 11 活性領域 12 DBR領域 20 ヒーター部 30 駆動回路 DESCRIPTION OF SYMBOLS 10 DBR semiconductor laser 11 Active area 12 DBR area 20 Heater part 30 Drive circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平田 隆昭 東京都武蔵野市中町2丁目9番32号 横河 電機株式会社内 (72)発明者 飯尾 晋司 東京都武蔵野市中町2丁目9番32号 横河 電機株式会社内 (72)発明者 井上 武史 東京都武蔵野市中町2丁目9番32号 横河 電機株式会社内 Fターム(参考) 5F073 AA13 AA65 CA05 CB02 EA12 FA24 GA02 GA21 GA24  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takaaki Hirata 2-9-132 Nakamachi, Musashino-shi, Tokyo Inside Yokogawa Electric Corporation (72) Inventor Shinji Iio 2-9-132 Nakamachi, Musashino-shi, Tokyo Kawa Electric Co., Ltd. (72) Inventor Takeshi Inoue 2-93-2 Nakamachi, Musashino City, Tokyo F-Term within Yokogawa Electric Co., Ltd. 5F073 AA13 AA65 CA05 CB02 EA12 FA24 GA02 GA21 GA24

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 活性領域と、分布ブラッグ反射器(DB
R)が形成されたDBR領域とを有する半導体レーザ
と、 前記半導体レーザに熱量を与えるヒーター部と、 前記活性領域への注入電流を変調すると共に、前記半導
体レーザの波長変化(位相変化)量を、前記ヒーター部
への注入電流量により補償する駆動回路とを設け、前記
半導体レーザが出力するレーザ光を光強度変調すること
を特徴とする半導体レーザ光源。
An active region and a distributed Bragg reflector (DB)
A semiconductor laser having a DBR region in which R) is formed; a heater unit for applying heat to the semiconductor laser; and modulating an injection current into the active region and controlling a wavelength change (phase change) of the semiconductor laser. A driving circuit for compensating for the amount of current injected into the heater, and modulating light intensity of laser light output from the semiconductor laser.
【請求項2】 活性領域と、分布ブラッグ反射器(DB
R)が形成されたDBR領域とを有する半導体レーザ
と、 前記半導体レーザに熱量を与えるヒーター部と、 前記活性領域への注入電流を変調すると共に、前記活性
領域から前記DBR領域へ伝達する熱量と、前記ヒータ
ー部から前記DBR領域へ伝達する熱量の和がほぼ一定
になるように、前記ヒーター部への注入電流量を制御す
る駆動回路とを設け、前記半導体レーザが出力するレー
ザ光を光強度変調することを特徴とする半導体レーザ光
源。
2. An active region and a distributed Bragg reflector (DB)
A semiconductor laser having a DBR region in which R) is formed; a heater section for applying heat to the semiconductor laser; and a heat amount for modulating an injection current into the active region and transmitting from the active region to the DBR region. And a driving circuit for controlling the amount of current injected into the heater so that the sum of the amounts of heat transmitted from the heater to the DBR region is substantially constant. A semiconductor laser light source characterized by modulation.
【請求項3】 活性領域と、分布ブラッグ反射器(DB
R)が形成されたDBR領域とを有する半導体レーザを
備える半導体レーザ光源の変調方法において、 前記活性領域への注入電流を変調すると共に、前記半導
体レーザの光の波長変化(位相変化)量を、前記半導体
レーザに熱量を与えるヒーター部への注入電流量により
補償し、前記半導体レーザが出力するレーザ光を光強度
変調することを特徴とする半導体レーザ光源の変調方
法。
3. An active region and a distributed Bragg reflector (DB)
A method of modulating a semiconductor laser light source including a semiconductor laser having a DBR region in which R) is formed, wherein an amount of a wavelength change (phase change) of light of the semiconductor laser is adjusted while modulating an injection current into the active region. A method of modulating a semiconductor laser light source, comprising: compensating for the amount of current injected into a heater unit that applies heat to the semiconductor laser, and modulating the light intensity of the laser light output from the semiconductor laser.
【請求項4】 活性領域と、分布ブラッグ反射器(DB
R)が形成されたDBR領域とを有する半導体レーザを
備える半導体レーザ光源の変調方法において、 前記活性領域への注入電流を変調すると共に、前記活性
領域から前記DBR領域へ伝達する熱量と、ヒーター部
から前記DBR領域へ伝達する熱量の和がほぼ一定にな
るように、前記ヒーター部への注入電流量を制御し、前
記半導体レーザが出力するレーザ光を光強度変調するこ
とを特徴とする半導体レーザ光源の変調方法。
4. An active region and a distributed Bragg reflector (DB)
A method for modulating a semiconductor laser light source comprising a semiconductor laser having a DBR region in which R) is formed, comprising: modulating an injection current into the active region, transmitting heat from the active region to the DBR region; Controlling the amount of current injected into the heater section so that the sum of the amounts of heat transmitted from the semiconductor laser to the DBR region becomes substantially constant, and modulating the light intensity of the laser light output from the semiconductor laser. Light source modulation method.
JP2000143263A 2000-05-16 2000-05-16 Semiconductor laser beam source and modulation method therefor Pending JP2001326418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000143263A JP2001326418A (en) 2000-05-16 2000-05-16 Semiconductor laser beam source and modulation method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000143263A JP2001326418A (en) 2000-05-16 2000-05-16 Semiconductor laser beam source and modulation method therefor

Publications (1)

Publication Number Publication Date
JP2001326418A true JP2001326418A (en) 2001-11-22

Family

ID=18650106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000143263A Pending JP2001326418A (en) 2000-05-16 2000-05-16 Semiconductor laser beam source and modulation method therefor

Country Status (1)

Country Link
JP (1) JP2001326418A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101039A (en) * 2003-09-22 2005-04-14 Furukawa Electric Co Ltd:The Variable wavelength laser, variable wavelength laser array element, and control method thereof
JP2005244242A (en) * 2004-02-25 2005-09-08 Osram Opto Semiconductors Gmbh Apparatus provided with at least one beam radiation semiconductor device, and method of stabilizing operating temperature of the beam radiation semiconductor device
US7085297B2 (en) 2003-04-22 2006-08-01 Matsushita Electric Industrial Co., Ltd. Driving method and driving circuit of light source apparatus
EP2120301A1 (en) * 2007-03-08 2009-11-18 Nippon Telegraph and Telephone Corporation Wavelength variable semiconductor laser element, and apparatus and method for controlling the same
JP2011192878A (en) * 2010-03-16 2011-09-29 National Institute Of Advanced Industrial Science & Technology Semiconductor laser device

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61265886A (en) * 1985-05-20 1986-11-25 Nec Corp Semiconductor laser and drive thereof
JPS62293792A (en) * 1986-06-13 1987-12-21 Fuji Photo Film Co Ltd Semiconductor laser and semiconductor laser light source device
JPS6484772A (en) * 1987-09-28 1989-03-30 Fuji Photo Film Co Ltd Semiconductor laser and semiconductor laser light source device
JPH0348477A (en) * 1989-07-17 1991-03-01 Hitachi Ltd Semiconductor laser device
JPH04229681A (en) * 1990-06-14 1992-08-19 Ricoh Co Ltd Semiconductor laser equipped with semiconductor laser for compensation use; its driving method
JPH05190981A (en) * 1991-06-27 1993-07-30 Xerox Corp Thermally stable diode laser structure
JPH065980A (en) * 1992-06-17 1994-01-14 Anritsu Corp Distributed reflection type semiconductor laser
JPH0818140A (en) * 1994-06-30 1996-01-19 At & T Corp Data coding light pulse genarator
JPH0992934A (en) * 1995-09-23 1997-04-04 Nec Corp Wavelength changeable semiconductor laser element
JPH09270568A (en) * 1996-03-29 1997-10-14 Anritsu Corp Multiple wavelength oscillation laser
JPH10256676A (en) * 1997-01-09 1998-09-25 Yokogawa Electric Corp Semiconductor laser device
JPH11150324A (en) * 1997-11-18 1999-06-02 Nec Corp Semiconductor laser
JPH11220213A (en) * 1998-02-02 1999-08-10 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light source device and its control method
JP2000049411A (en) * 1998-07-29 2000-02-18 Oki Electric Ind Co Ltd Semiconductor laser element
JP2002043698A (en) * 1999-12-22 2002-02-08 Yokogawa Electric Corp Shg laser light source and method for modulating shg laser light source

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61265886A (en) * 1985-05-20 1986-11-25 Nec Corp Semiconductor laser and drive thereof
JPS62293792A (en) * 1986-06-13 1987-12-21 Fuji Photo Film Co Ltd Semiconductor laser and semiconductor laser light source device
JPS6484772A (en) * 1987-09-28 1989-03-30 Fuji Photo Film Co Ltd Semiconductor laser and semiconductor laser light source device
JPH0348477A (en) * 1989-07-17 1991-03-01 Hitachi Ltd Semiconductor laser device
JPH04229681A (en) * 1990-06-14 1992-08-19 Ricoh Co Ltd Semiconductor laser equipped with semiconductor laser for compensation use; its driving method
JPH05190981A (en) * 1991-06-27 1993-07-30 Xerox Corp Thermally stable diode laser structure
JPH065980A (en) * 1992-06-17 1994-01-14 Anritsu Corp Distributed reflection type semiconductor laser
JPH0818140A (en) * 1994-06-30 1996-01-19 At & T Corp Data coding light pulse genarator
JPH0992934A (en) * 1995-09-23 1997-04-04 Nec Corp Wavelength changeable semiconductor laser element
JPH09270568A (en) * 1996-03-29 1997-10-14 Anritsu Corp Multiple wavelength oscillation laser
JPH10256676A (en) * 1997-01-09 1998-09-25 Yokogawa Electric Corp Semiconductor laser device
JPH11150324A (en) * 1997-11-18 1999-06-02 Nec Corp Semiconductor laser
JPH11220213A (en) * 1998-02-02 1999-08-10 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light source device and its control method
JP2000049411A (en) * 1998-07-29 2000-02-18 Oki Electric Ind Co Ltd Semiconductor laser element
JP2002043698A (en) * 1999-12-22 2002-02-08 Yokogawa Electric Corp Shg laser light source and method for modulating shg laser light source

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7085297B2 (en) 2003-04-22 2006-08-01 Matsushita Electric Industrial Co., Ltd. Driving method and driving circuit of light source apparatus
JP2005101039A (en) * 2003-09-22 2005-04-14 Furukawa Electric Co Ltd:The Variable wavelength laser, variable wavelength laser array element, and control method thereof
JP2005244242A (en) * 2004-02-25 2005-09-08 Osram Opto Semiconductors Gmbh Apparatus provided with at least one beam radiation semiconductor device, and method of stabilizing operating temperature of the beam radiation semiconductor device
EP2120301A1 (en) * 2007-03-08 2009-11-18 Nippon Telegraph and Telephone Corporation Wavelength variable semiconductor laser element, and apparatus and method for controlling the same
EP2120301A4 (en) * 2007-03-08 2010-05-05 Nippon Telegraph & Telephone Wavelength variable semiconductor laser element, and apparatus and method for controlling the same
EP2242153A1 (en) * 2007-03-08 2010-10-20 Nippon Telegraph And Telephone Corporation Wavelenght variable semiconductor laser element, apparatus and method for controlling the same
US7961769B2 (en) 2007-03-08 2011-06-14 Nippon Telegraph And Telephone Corporation Wavelength tunable semiconductor laser device, controller for the same, and control method for the same
JP2011192878A (en) * 2010-03-16 2011-09-29 National Institute Of Advanced Industrial Science & Technology Semiconductor laser device

Similar Documents

Publication Publication Date Title
US20050254531A1 (en) Light wavelength converting apparatus, control method of the same, and image projecting apparatus using the same
JP5381993B2 (en) Optical amplification control device, semiconductor optical amplifier control method, and optical transmission device
US20080063016A1 (en) Thermal compensation in semiconductor lasers
JP5853599B2 (en) Light emitting device and control method thereof
US20070258494A1 (en) Wavelength Control of Laser Light
JP2010505266A (en) Temperature compensation in semiconductor lasers.
EP2156527A1 (en) Alignment of lasing wavelength with wavelength conversion peak using modulated wavelength control signal
JP2001320124A (en) Modulator integrated light source and module for optical communication
US6826212B2 (en) Module for optical communications
US20040086012A1 (en) Coherent light source and method for driving the same
JP2003318483A (en) Wavelength tunable semiconductor laser
JP2009521120A (en) Laser tuning
JP2001326418A (en) Semiconductor laser beam source and modulation method therefor
JP4864858B2 (en) Tunable laser beam generator
US7085297B2 (en) Driving method and driving circuit of light source apparatus
JPH04116878A (en) Semiconductor laser element with heater
JPH10256676A (en) Semiconductor laser device
JP7071646B2 (en) Tunable laser
JPH04229681A (en) Semiconductor laser equipped with semiconductor laser for compensation use; its driving method
WO2011013535A1 (en) Laser system
JP3247431B2 (en) Distributed reflection semiconductor laser
JPH0697604A (en) Distributed reflection type semiconductor laser
JP3257185B2 (en) Semiconductor light source device and driving method thereof
JPH01173686A (en) Variable wavelength type semiconductor laser
JPH04115585A (en) Array type semiconductor laser device and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301