JP2008064124A - 除振装置 - Google Patents

除振装置 Download PDF

Info

Publication number
JP2008064124A
JP2008064124A JP2006239183A JP2006239183A JP2008064124A JP 2008064124 A JP2008064124 A JP 2008064124A JP 2006239183 A JP2006239183 A JP 2006239183A JP 2006239183 A JP2006239183 A JP 2006239183A JP 2008064124 A JP2008064124 A JP 2008064124A
Authority
JP
Japan
Prior art keywords
vibration isolation
center
gravity
control
motion mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006239183A
Other languages
English (en)
Other versions
JP4877954B2 (ja
Inventor
Kenichi Makino
健一 牧野
Manabu Ando
学 安藤
Hiroshi Morita
洋 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2006239183A priority Critical patent/JP4877954B2/ja
Publication of JP2008064124A publication Critical patent/JP2008064124A/ja
Application granted granted Critical
Publication of JP4877954B2 publication Critical patent/JP4877954B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】本発明は、除振台上を高速で移動する移動体を備えた除振装置に関し、移動体の位置に依存することなく、除振台の姿勢が水平状態となるように精度良く制御できる除振装置を提供することを課題とする。
【解決手段】移動体であるX−Yステージ17の座標位置に基づき、X−Yステージ17と除振台13とから構成される構造体20の重心位置G2を求める重心位置演算手段42を設けると共に、演算手段45に補正手段45Aを設け、補正手段45Aにより構造体20の重心位置G2に応じて運動モード変位を補正する。
【選択図】図5

Description

本発明は、除振装置に係り、特に除振台上を高速で移動する移動体を備えた除振装置に関する。
移動精度の高い移動体(例えば、X−Yステージ)を備えた電子顕微鏡や半導体露光装置等の装置では、外部からの振動を除振すると共に、移動体が移動可能に配設される除振台が水平状態となるように制御するための除振装置が設けられている。
除振装置は、除振装置本体と、除振装置本体の制御全般を行なう制御装置とから構成される。除振装置本体は、除振台と、床に対して除振台を支持すると共に、床からの振動を除振する除振支持機構と、除振台が水平状態となるように除振台の傾きを制御するアクチュエータと、除振台の変動を検出するセンサとを有する。
除振台の変動を検出するセンサは、除振台の鉛直(Z軸)方向の変動を検出する第1のセンサと、除振台の水平2軸(X軸及びY軸)方向の変動を検出する第2のセンサとから構成される。アクチュエータは、除振台を鉛直方向に駆動させる第1のアクチュエータと、除振台を水平方向に駆動させる第2のアクチュエータとから構成される。
制御装置は、センサの検出信号に基づき各運動モードを求めると共に、この運動モードから第1及び第2のアクチュエータの制御量を求めると共に、この制御量に応じて第1及び第2のアクチュエータを駆動させて除振台の姿勢が水平状態となるように制御する。具体的には、制御装置は、第1のセンサの検出信号から求められるZ軸方向の運動モード、θx方向(X軸の回転方向)の運動モード、及びθy方向(Y軸の回転方向)の運動モードに基づいて、第1のアクチュエータの制御量を求めて第1のアクチュエータを制御すると共に、第2の検出信号から求められる水平2軸方向の運動モード、及びθz方向(Z軸の回転方向)の運動モードに基づいて、第2のアクチュエータの制御量を求めて第2のアクチュエータを制御する(例えば、特許文献1参照。)。
特開平10−259851号公報
図1〜図4は、除振台と移動体とより構成される構造体の重心位置と除振台の傾きとの関係について説明するための図である。図1〜図4において、X方向及びY方向は水平2軸方向、Z方向は鉛直方向、G4は移動体102が除振台101の中心に位置する場合の構造体100の重心位置(以下、「重心位置G4」とする)、G5は移動体102が除振台101の中心からX方向に移動した際の構造体100の重心位置(以下、「重心位置G5」とする)をそれぞれ示す。
また、図1〜図4において、F1,F2(F1=F2)は除振台101を支持する保持力(以下、「保持力F1,F2」とする)、F3,F4(F3=F4)は除振台101のY方向に印加される第2のアクチュエータからの力(以下、「力F3,F4」とする)、L1,L2(L1=L2)は重心位置G4から保持力F1,F2が印加される力点までの距離(以下、「距離L1,L2」とする)、L3,L4(L3<L4)は重心位置G5から力F3,F4が印加される力点までの距離(以下、「距離L3,L4」)をそれぞれ示す。
ここで、図1〜図4を参照して、除振装置本体101と移動体102とから構成される構造体100の重心位置と除振台101の傾きとの関係について説明する。
図1に示すように、移動体102が除振台101の中心に位置する場合には、F1・L1とF2・L2とが等しくなり、構造体100の重心位置G4を通過するY軸の回転方向のモーメントが釣り合うため、除振台101が水平状態に対してθy方向に傾くことはない。しかし、図2に示すように、移動体102が移動して構造体100の重心位置G4が重心位置G5に変位した場合には、F1・L3<F2・L4となるため、重心位置G4を通過するY軸の回転方向のモーメントが釣り合わず、除振台101はθy方向に傾いてしまう。同様な理由により、構造体100の重心位置G4が重心位置G5に変位した場合、水平状態に対してθx方向にも除振台101が傾いてしまう。
また、図3に示すように、移動体102が除振台101の中心に位置した状態で力F3,F4が除振台101に印加された場合には、F3・L1とF4・L2とが等しくなって、構造体100の重心位置G4を通過するZ軸の回転方向のモーメントが釣り合うため、除振台101が水平状態に対してθz方向に傾くことはない。しかし、図4に示すように、移動体102が移動して構造体100の重心位置G4が重心位置G5に変位した場合には、F3・L3<F4・L4となるため、重心位置G4を通過するZ軸の回転方向のモーメントの釣り合いが取れなくなり、除振台101は重心位置G5を軸とする旋回方向の回転力によってθz方向に傾いてしまう。
このように、従来の除振装置では、移動体102の移動により変位する構造体100の重心位置が考慮されていなかったため、移動体102の移動による構造体100の重心位置が変位して除振台101に傾きが生じた場合、除振台101の姿勢が水平状態となるように制御することが困難であった。特に、高速でステップアンドリピートする除振装置や、移動体の重量と除振台の重量との差が小さい場合には、除振台が傾き易くなるため、上記問題が顕著となる。
そこで本発明は、上記事情に鑑みなされたもので、除振台上を高速で移動する移動体の位置に依存することなく、除振台の姿勢が水平状態となるように精度良く制御することのできる除振装置を提供することを目的とする。
本発明の一観点によれば、移動体を移動可能に支持する除振台と、外部からの振動を除振すると共に、前記除振台の鉛直方向及び水平2軸方向の変動を検出する検出手段と、前記除振台を前記鉛直方向及び水平2軸方向に変位させるアクチュエータとを有する除振ユニットと、を備える除振装置本体と、前記移動体の移動を制御すると共に、前記移動体の座標位置を認識する移動体制御手段と、前記検出手段の検出信号に基づき、前記除振台の鉛直方向、水平2軸方向、及びこれらの回転方向に関する運動モード変位を求める第1の演算手段と、前記運動モード変位に基づき、前記アクチュエータの制御量を求める制御量演算手段と、前記制御量に基づいて、前記アクチュエータを制御するアクチュエータ制御手段とを有する制御装置と、を備える除振装置であって、前記制御装置は、前記移動体の座標位置に基づき、前記移動体と前記除振台とから構成される構造体の重心位置を求める重心位置演算手段を備え、前記第1の演算手段は、前記構造体の重心位置に応じて運動モード変位を補正する第1の補正手段を有することを特徴とする除振装置が提供される。
本発明によれば、移動体の座標位置に基づき、移動体と除振台とから構成される構造体の重心位置を求める重心位置演算手段を設けると共に、第1の演算手段に構造体の重心位置に応じて運動モード変位を補正する第1の補正手段を設けることにより、移動体が高速で移動した場合や、移動体の移動により構造体の重心位置が大きく変位した場合でも、除振台の姿勢が水平状態となるように精度良く除振台を制御することができる。
また、前記制御量演算手段は、前記構造体の重心位置に応じて前記制御量を補正する制御量補正手段を備えてもよい。
このように、制御量演算手段が構造体の重心位置に応じて制御量を補正する制御量補正手段を備えることにより、移動体の移動により変位する構造体の重心位置を考慮した制御量を求めることが可能となるため、除振台の姿勢が水平状態となるように精度良く制御することができる。
また、前記検出手段として変位センサを用いてもよい。このように、検出手段として変位センサを用いることにより、除振台の鉛直方向及び水平2軸方向の変動を検出することができる。
また、前記検出手段は、第1の検出手段と第2の検出手段とを有し、前記第1の検出手段として変位センサを用い、前記第2の検出手段として加速度センサを用いてもよい。
このように、検出手段として変位センサ及び加速度センサを用いることにより、除振台の鉛直方向及び水平2軸方向の変動を精度良く検出することができる。
また、前記加速度センサの検出信号に基づき、前記除振台の鉛直方向、水平2軸方向、及びこれらの回転方向に関する運動モード加速度を求める第2の演算手段を設けると共に、前記第2の演算手段に前記構造体の重心位置に応じて、前記運動モード加速度を補正する第2の補正手段をさらに設け、前記制御量演算手段は、前記第1の補正手段により補正された前記運動モード変位と、前記第2の補正手段により補正された前記運動モード加速度とに基づき、前記アクチュエータの前記制御量を求めてもよい。
このように、第1の補正手段により補正された運動モード変位と、第2の補正手段により補正された運動モード加速度とに基づき、アクチュエータの制御量を求めることにより、移動体が高速で移動した場合や、移動体の移動により構造体の重心位置が大きく変位した場合でも、除振台の姿勢が水平状態となるように制御することができる。
また、前記制御装置は、前記移動体の座標位置に対応する前記構造体の重心位置が格納された記憶手段をさらに備え、前記重心位置演算手段は、前記記憶手段の中から前記移動体の座標位置に対応する前記構造体の重心位置に関するデータを読み込んでもよい。
このように、移動体の座標位置に対応する構造体の重心位置が格納された記憶手段を設けて、記憶手段の中から移動体の座標位置に対応する構造体の重心位置に関するデータを読み込むことにより、容易に短時間で構造体の重心位置に関するデータを取得することができる。
また、前記移動体として、前記除振台上を水平2軸方向に移動するX−Yステージを用いてもよい。このように、移動体としては、例えば、X−Yステージを用いることができる。また、移動体としてX−Yステージを用いた場合でも、除振台の姿勢が水平状態となるように制御することができる。
さらに、前記アクチュエータとして空気バネ或いはボイスコイルモータを用いてもよい。このように、アクチュエータとしては、空気バネ或いはボイスコイルモータを用いることができる。また、アクチュエータとして空気バネを用いることにより、アクチュエータのサイズを小型化することができる。
本発明によれば、除振台の姿勢が水平状態となるように精度良く除振台を制御することができる。
次に、図面に基づいて本発明の実施の形態を説明する。
(第1の実施の形態)
図5は、本発明の第1の実施の形態に係る除振装置の概略構成図である。図5において、X−Y方向(X軸方向及びY軸方向)は水平2軸方向、Z軸方向は鉛直方向、G2はX−Yステージ17が移動することにより変位する構造体20の重心位置(以下、「重心位置G2」とする)、G3は除振台13の重心位置(以下、「重心位置G3」とする)をそれぞれ示している。なお、構造体20は、後述するX−Yステージ17及び除振台13から構成されている。
図5を参照するに、第1の実施の形態の除振装置10は、除振装置本体11と、移動体であるX−Yステージ17と、除振装置本体11の制御全般を行なう制御装置12とを有する。除振装置10は、外部からの振動を除振すると共に、X−Yステージ17が移動可能に配設される除振台13が水平状態となるように制御するためのものである。除振装置10は、例えば、移動精度の高いステージを備える電子顕微鏡や半導体露光装置等に適用される。
図6は、除振ユニットの配設位置を説明するための図である。図6において、図5に示す除振装置10と同一構成部分には同一符号を付す。
図5及び図6を参照するに、除振装置本体11は、除振台13と、除振ユニット15,16とを有する。除振台13は、直方体の形状をなしており、除振ユニット15,16を介して、床14に支持されている。除振台13上には、水平2軸方向に移動可能なX−Yステージ17が配置されている。除振台13の剛性運動は、XYZ座標系を基準に考えるとX軸方向、Y軸方向、Z軸方向、X軸の回転方向θx、Y軸の回転方向θy、及びZ軸の回転方向θzの6つの運動モード(「振動モード」ともいう)に分解される。
除振ユニット15は、平面視四角形の板状とされた除振台13の4つの角部のうちの3つの角部にそれぞれ設けられている。除振ユニット16は、除振台13の4つの角部のうち、除振ユニット15が設けられていない1つの角部に配設されている。除振ユニット15,16は、床14に対して除振台13を支持すると共に、床14からの振動を除振し、除振台13の鉛直方向及び水平方向の傾きを調整するためのものである。
図7は、除振ユニットの断面図である。
図7を参照するに、除振ユニット15は、ベース部材18と、浮上部材22と、除振支持機構26,27と、第1のアクチュエータ33と、第2のアクチュエータ34と、第1の検出手段である第1及び第2の変位センサ36,37と、第2の検出手段である第1及び第2の加速度センサ38,39とを有する。
ベース部材18は、板体19と、板体19上に一体的に形成された突出部21とから構成される。ベース部材18は、床14上に配置される。浮上部材22は、枠体23と、枠体23上に一体的に形成された突出部24とから構成される。浮上部材22は、除振支持機構26,27を介して、ベース部材18に支持される。枠体23は、突出部21を囲むような形状とされており、枠体23と突出部21との間には隙間が形成されている。突出部24は、例えば、ネジ締結により除振台13に固定される。
除振支持機構26は、突出部21の側面21Bと、突出部21の側面21Bと対向する枠体23との間を接続するように設けられている。除振支持機構26は、水平方向から浮上部材22を支持すると共に、外部からの水平2軸方向の振動を除振する。
除振支持機構27は、突出部21の上面21Aと、突出部21の上面21Aと対向する枠体23との間を接続するように設けられている。除振支持機構27は、鉛直方向から浮上部材22を支持すると共に、外部からの鉛直方向の振動を除振するためのものである。除振支持機構26,27は、例えば、バネとダッシュポット等から構成することができる。
図8は、第1及び第2のアクチュエータの配設位置の一例を示す図である。
図8を参照するに、除振装置本体11は、第1のアクチュエータ33Z1〜33Z4(図5に示す第1のアクチュエータ33に相当する)と、第2のアクチュエータ34X1,34X2,34y1,34y2(図5に示す第2のアクチュエータ34に相当する)とを有する。
第1のアクチュエータ33Z1〜33Z4は、突出部21の上面21Aと、突出部21の上面21Aと対向する枠体23とを接続するように設けられている(図5参照)。第1のアクチュエータ33Z1〜33Z4は、除振台13をZ軸方向に変位させるためのものである。第1のアクチュエータ33Z1〜33Z4は、例えば、図8に示すような位置(除振台13の角部近傍)に配設することができる。
第2のアクチュエータ34X1,34X2,34y1,34y2は、突出部21の側面21Bと、突出部21の側面21Bと対向する枠体23とを接続するように設けられている(図5参照)。第2のアクチュエータ34X1,34X2は、除振台13をX軸方向に変位させるためのものである。第2のアクチュエータ34y1,34y2は、除振台13をY軸方向に変位させるためのものである。第2のアクチュエータ34X1,34X2,34y1,34y2は、例えば、図8に示すような位置(除振台13の角部近傍)に配設することができる。
第1及び第2のアクチュエータ33Z1〜33Z4,34X1,34X2,34y1,34y2には、例えば、空気バネやボイスコイルモータ等を用いることができる。第1及び第2のアクチュエータ33Z1〜33Z4,34X1,34X2,34y1,34y2として空気バネを用いることにより、ボイスコイルモータを用いた場合と比較して、第1及び第2のアクチュエータ33Z1〜33Z4,34X1,34X2,34y1,34y2を小型化することができる。
図9は、変位センサ及び加速度センサの配設位置の一例を示す図である。
第1の変位センサ36Z1,36Z2,36Z3(図5に示す第1の変位センサ36に相当するセンサ)は、板体19の上面19Aに設けられている。第1の変位センサ36Z1,36Z2,36Z3は、例えば、図9に示すような位置に配設することができる。第1の変位センサ36Z1,36Z2,36Z3は、除振台13のZ軸方向の変位を検出する。第1の変位センサ36Z1は検出信号DZ1、第1の変位センサ36Z2は検出信号DZ2、第1の変位センサ36Z3は検出信号DZ3をそれぞれ出力する。検出信号DZ1,DZ2,DZ3は、後述する演算手段45に送信される。
第2の変位センサ37X1,37X2,37y1(図5に示す第2の変位センサ37に相当するセンサ)は、突出部21の側面21Cに設けられている。第2の変位センサ37X1,37X2,37y1は、例えば、図9に示すような位置に配設することができる。第2の変位センサ37X1,37X2は、除振台13のX軸方向の変位を検出するためのものである。第2の変位センサ37y1は、Y軸方向の除振台13の変位を検出するためのものである。第2の変位センサ37X1は検出信号DX1、第2の変位センサ37X2は検出信号DX2、第2の変位センサ37y1は検出信号Dy1をそれぞれ出力する。検出信号DX1,DX2,Dy1は、後述する演算手段46に送信される。
なお、上記説明した第1及び第2の変位センサ36Z1,36Z2,36Z3,37X1,37X2,37y1は、図9に示すように、除振台13の重心位置G3から離れた位置に設けるとよい。除振台13の重心位置G2から離れた位置では、除振台13が傾いた際、重心位置G2に近い位置よりも除振台13の変動が大きい。そのため、第1及び2第の変位センサ36Z1,36Z2,36Z3,37X1,37X2,37y1を除振台13の重心位置G3から離れた位置に設けることで、除振台13の変位を検出しやすくすることができる。
第1の加速度センサ38Z1,38Z2,38Z3(図5に示す第1の加速度センサ38に相当するセンサ)は、枠体23の上面23Aに設けられている。第1の加速度センサ38Z1,38Z2,38Z3は、例えば、図9に示すような位置に配設することができる。第1の加速度センサ38Z1,38Z2,38Z3は、除振台13のZ軸方向の振動を検出するためのものである。第1の加速度センサ38Z1は検出信号AZ1、第1の加速度センサ38Z2は検出信号AZ2、第1の加速度センサ38Z3は検出信号AZ3をそれぞれ出力する。検出信号AZ1,AZ2,AZ3は、後述する演算手段47に送信される。
第2の加速度センサ39X1,39X2,39y1(図5に示す第2の加速度センサ39に相当するセンサ)は、枠体23の側面23Bに設けられている。第2の加速度センサ39X1,39X2,39y1は、例えば、図9に示すような位置に配設することができる。第2の加速度センサ39X1,39X2は、除振台13のX軸方向の振動を検出するためのものである。第2の加速度センサ39y1は、除振台13のY軸方向の振動を検出するためのものである。第2の加速度センサ39X1は検出信号AX1、第2の加速度センサ39X2は検出信号AX2、第2の加速度センサ39y1は検出信号Ay1をそれぞれ出力する。検出信号AX1,AX2,Ay1は、後述する演算手段48に送信される。
なお、上記説明した第1及び第2の加速度センサ38Z1,38Z2,38Z3,39X1,39X2,39y1は、図9に示すように、除振台13の重心位置G2から離れた位置に設けるとよい。除振台13の重心位置G3から離れた位置では、除振台13が傾いた際、重心位置G2に近い位置よりも除振台13の変動が大きい。そのため、第1及び第2の加速度センサ38Z1,38Z2,38Z3,39X1,39X2,39y1を除振台13の重心位置G3から離れた位置に設けることで、除振台13の変位を検出しやすくすることができる。
図10は、除振ユニットの断面図である。図10において、先に説明した除振ユニット15(図7参照)と同一構成部分には同一符号を付す。
図10を参照するに、除振ユニット16は、ベース部材18と、浮上部材22と、除振支持機構26,27と、第1のアクチュエータ33Z3と、第2のアクチュエータ34y2とを有した構成とされている。
図6を参照するに、X−Yステージ17は、除振台13上に載置されている。X−Yステージ17は、X軸方向に移動するXステージ(図示せず)と、Y軸方向に移動するYステージ(図示せず)と、Xステージ及びYステージの座標位置を認識するXリニアスケール及びYリニアスケール(共に図示せず)とを有する。Xリニアスケールは、X−Yステージ17のX軸の座標位置を認識するためのものであり、Yリニアスケールは、X−Yステージ17のY軸の座標位置を認識するためのものである。
図11は、第1の実施の形態に係る制御装置のブロック図である。図11において、a1〜a12は除振台13を所定の状態にするための入力値(以下、「入力値a1〜a12」とする)を示している。また、a7〜a12の具体的な数値は0である。
図5及び図11を参照するに、制御装置12は、移動体制御手段であるステージ制御手段41と、重心位置演算手段42と、記憶手段43と、第1の演算手段である演算手段45,46と、第2の演算手段である演算手段47,48と、制御演算手段51〜54と、制御量演算手段56,57と、アクチュエータ制御手段58とを有する。
ステージ制御手段41は、X−Yステージ17及び重心位置演算手段42と接続されている。ステージ制御手段41は、X−Yステージ17の制御全般を行なうものである。ステージ制御手段41は、Xリニアスケール及びYリニアスケール(共に図示せず)から除振台13上におけるX−Yステージ17の座標位置を認識し、X−Yステージ17の座標位置を重心位置演算手段42に送信する。なお、以下の説明において、除振台13上をX−Yステージ17が水平2軸方向に移動することで変位するX−Yステージ17の座標位置を(x,y)=(17x,17y)とする。
重心位置演算手段42は、ステージ制御手段41、演算手段45〜48、制御量演算手段56,57、及び記憶手段43と接続されている。重心位置演算手段42は、ステージ制御手段41から送信されるX−Yステージ17の座標位置(17x,17y)に基づいて、X−Yステージ17の座標位置(17x,17y)に対応する構造体20の重心位置G2(以下、構造体20の重心位置G2の座標位置を(x,y,z)=(G2x,G2y,G2z)とする)を求めると共に、構造体20の重心位置G2のX座標及びY座標のデータG2x,G2yを演算手段45〜44及び制御量演算手段56,57に送信する。なお、後述するように、X−Yステージ17の座標位置(17x,17y)に対応する構造体20の重心位置G2に関するデータG2x,G2y,G2zを予め記憶手段43に格納しておき、記憶手段43からX−Yステージ17の座標位置(17x,17y)に対応する構造体20の重心位置G2に関するデータG2x,G2yを読み込んでもよい。
記憶手段43は、重心位置演算手段42と接続されている。記憶手段43は、予め取得したX−Yステージ17の様々な座標位置(17x,17y)に対応する構造体20の重心位置G2に関するデータG2x,G2yを格納するためのものである。データG2x,G2yは、X−Yステージ17の座標位置(17x,17y)に対応するようにマッピング化されている。
このように、X−Yステージ17の様々な座標位置(17x,17y)に対応する構造体20の重心位置G2に関するデータG2x,G2yを予め取得し、記憶手段43にデータG2x,G2yを格納することにより、重心位置演算手段42は記憶手段43からX−Yステージ17の座標位置(17x,17y)に対応する重心位置G2のX座標及びY座標に関するデータG2x,G2yを読み込むことが可能となる。これにより、重心位置演算手段42がX−Yステージ17の座標位置(17x,17y)に基づいて、演算により構造体20の重心位置G2(具体的には、データG2x,G2y)を求める必要がなくなるため、制御装置12の処理スピードを向上させることができる。
演算手段45は、第1の変位センサ36Z1,36Z2,36Z3、重心位置演算手段45、及び制御演算手段51と接続されている。演算手段45は、第1の補正手段である補正手段45Aを有する。補正手段45Aを有した演算手段45は、第1の変位センサ36Z1,36Z2,36Z3からの検出信号DZ1,DZ2,DZ3に基づき、Z軸方向の運動モード変位MZDと、X軸の回転方向θxの運動モード変位MθXDと、Y軸の回転方向θyの運動モード変位MθyDとを求めると共に、構造体20の重心位置G2に関するデータG2x,G2yに基づいて運動モード変位MZD,MθXD,MθyDの補正を行なう。
補正手段45Aによる補正は、X−Yステージ17の移動により変化する構造体20の重心位置G2から第1の変位センサ36Z1,36Z2,36Z3の配設位置までの距離を考慮して、構造体20の重心位置G2を中心とする運動モード変位を求めるように行なう。このように、構造体20の重心位置G2を考慮して補正された運動モード変位MZD,MθXD,MθyDは、制御演算手段51に送信される。
補正手段45Aを有する演算手段45は、下記(1)式により演算及び補正処理を行う。なお、下記(1)式において、第1の変位センサ36Z1の座標を(x,y,z)=(36Z1X,36Z1y,36Z1Z)、第1の変位センサ36Z2の座標を(x,y,z)=(36Z2X,36Z2y,36Z2Z)、第1の変位センサ36Z3の座標を(x,y,z)=(36Z3X,36Z3y,36Z3Z)、構造体20の重心位置G2を(x,y,z)=(G2X,G2y,G2Z)とする。
Figure 2008064124
このように、演算手段45に補正手段45Aを設けて、X−Yステージ17の移動により変位する構造体20の重心位置G2に応じて、運動モード変位MZD,MθXD,MθyDを補正することにより、構造体20の重心位置G2を中心とする運動モード変位MZD,MθXD,MθyDを求めることが可能となる。これにより、X−Yステージ17が高速で移動した場合や、X−Yステージ17の移動により構造体20の重心位置G2が大きく変位した場合でも、除振台13の姿勢が水平状態となるように除振台13を制御することができる。
演算手段46は、第2の変位センサ37X1,37X2,37y1、重心位置演算手段42、及び制御演算手段52と接続されている。演算手段46は、第1の補正手段である補正手段46Aを有する。補正手段46Aを有した演算手段46は、第2の変位センサ37X1,37X2,37y1からの検出信号DX1,DX2,Dy1に基づき、X軸方向の運動モード変位MXDと、Y軸の運動モード変位MyDと、Z軸の回転方向の運動モード変位MθZDとを求めると共に、構造体20の重心位置G2に関するデータG2x,G2yに応じて運動モード変位MXD,MyD,MθZDの補正を行なう。
補正手段46Aによる補正は、X−Yステージ17の移動により変位する構造体20の重心位置G2を中心とする運動モード変位を求めるように行なう。このように、構造体20の重心位置G2を考慮して補正された運動モード変位MXD,MyD,MθZDは、制御演算手段52に送信される。
補正手段46Aを有する演算手段46は、下記(2)式により演算及び補正処理を行う。なお、下記(2)式において、第2の変位センサ37X1の座標を(x,y,z)=(37X1X,37X1y,37X1Z)、第2の変位センサ37X2の座標を(x,y,z)=(37X2X,37X2y,37X2Z)、第2の変位センサ37y1の座標を(x,y,z)=(37y1X,37y1y,37y1Z)とする。
Figure 2008064124
このように、演算手段46に補正手段46Aを設けて、X−Yステージ17の移動により変化する構造体20の重心位置G2に応じて、運動モード変位MxD,MyD,MθzDを補正することにより、構造体20の重心位置G2を中心とする運動モード変位MxD,MyD,MθzDを求めることが可能となる。これにより、X−Yステージ17が高速で移動した場合や、X−Yステージ17の移動により構造体20の重心位置G2が大きく変位した場合でも、除振台13の姿勢が水平状態となるように除振台13を制御することができる。
演算手段47は、第1の加速度センサ38Z1,38Z2,38Z3、重心位置演算手段42、及び制御演算手段53と接続されている。演算手段47は、第2の補正手段である補正手段47Aを有する。補正手段47Aを有した第2の演算手段47は、第1の加速度センサ38Z1,38Z2,38Z3からの検出信号AZ1,AZ2,AZ3に基づき、Z軸方向の運動モード加速度MZAと、X軸の回転方向θxの運動モード加速度MθXAと、Y軸の回転方向θyの運動モード加速度MθyAとを求めると共に、構造体20の重心位置G2に関するデータG2x,G2yに応じて運動モード加速度MZA,MθXA,MθyAの補正を行なう。
補正手段47Aによる補正は、X−Yステージ17の移動により変化する構造体20の重心位置G2から第1の加速度センサ38Z1,38Z2,38Z3の配設位置までの距離を考慮して、構造体20の重心位置G2を中心とする運動モード加速度を求めるように行なう。このように、構造体20の重心位置G2を考慮して補正された運動モード加速度MZA,MθXA,MθyAは、制御演算手段53に送信される。
補正手段47Aを有する演算手段47は、下記(3)式により上記演算及び補正処理を行う。なお、下記(3)式において、第1の加速度センサ38Z1の座標を(x,y,z)=(38Z1X,38Z1y,38Z1Z)、第1の加速度センサ38Z2の座標を(x,y,z)=(38Z2X,38Z2y,38Z2Z)、第1の加速度センサ38Z3の座標を(x,y,z)=(38Z3X,38Z3y,38Z3Z)とする。
Figure 2008064124
このように、演算手段47に補正手段47Aを設けて、X−Yステージ17の移動により変位する構造体20の重心位置G2に応じて、運動モード加速度MZA,MθXA,MθyAを補正することにより構造体20の重心位置G2を中心とする運動モード加速度MZA,MθXA,MθyAを求めることが可能となる。これにより、X−Yステージ17が高速で移動した場合や、X−Yステージ17の移動により除振装置本体11の重心位置が大きく変位した場合でも、除振台13の姿勢が水平状態となるように制御することができる。
演算手段48は、第2の加速度センサ39X1,39X2,39y1、重心位置演算手段42、及び制御演算手段54と接続されている。演算手段48は、第2の補正手段である補正手段48Aを有する。補正手段48Aを有した演算手段48は、第2の加速度センサ39X1,39X2,39y1からの検出信号AX1,AX2,Ay1に基づいて、X軸方向の運動モード加速度MXAと、Y軸の運動モード加速度MyAと、Z軸の回転方向θzの運動モード加速度MθZAとを求めると共に、構造体20の重心位置G2に関するデータG2x,G2yに応じて運動モード加速度MXA,MyA,MθZAの補正を行なう。
補正手段48Aによる補正は、X−Yステージ17の移動により変位する構造体20の重心位置G2から第2の加速度センサ39X1,39X2,39y1の配設位置までの距離を考慮して、構造体20の重心位置G2を中心とする運動モード加速度を求めるように行なう。このように、構造体20の重心位置G2を考慮して補正された運動モード加速度MXA,MyA,MθZAは、制御演算手段54に送信される。
補正手段48Aを有する演算手段48は、下記(4)式により上記演算及び補正処理を行う。なお、下記(4)式において、第2の加速度センサ39X1の座標を(x,y,z)=(39X1X,39X1y,39X1Z)、第2の加速度センサ39X2の座標を(x,y,z)=(39X2X,39X2y,39X2Z)、第2の加速度センサ39y1の座標を(x,y,z)=(39y1X,39y1y,39y1Z)とする。
Figure 2008064124
このように、演算手段48に補正手段48Aを設けて、X−Yステージ17の移動により変位する構造体20の重心位置G2に応じて、運動モード加速度MXA,MyA,MθZAを補正することにより構造体20の重心位置G2を中心とする運動モード加速度MXA,MyA,MθZAを求めることが可能となる。これにより、X−Yステージ17が高速で移動した場合や、X−Yステージ17の移動により除振装置本体11の重心位置が大きく変位した場合でも、除振台13の姿勢が水平状態となるように制御することができる。
制御演算手段51は、演算手段45と接続されている。制御演算手段51は、制御演算部51A〜51Cを有する。制御演算部51A〜51Cは、PID制御をするためのものである。制御演算部51Aは、運動モード変位MZDに入力値a1が加えられた運動モード変位MZD1が入力された際、運動モード変位ループ制御量FZD2を出力する。制御演算部51Bは、運動モード変位MθXDに入力値a2が加えられた運動モード変位MθXD1が入力された際、運動モード変位ループ制御量FθXD2を出力する。制御演算部51Cは、運動モード変位MθyDに入力値a3が加えられた運動モード変位MθyD1が入力された際、運動モード変位ループ制御量FθyD2を出力する。制御演算部51A〜51Cには、例えば、PIDフィルタ、ローパスフィルタ、ハイパスフィルタ等を用いることができる。
制御演算手段52は、演算手段46と接続されている。制御演算手段52は、制御演算部52A〜52Cを有する。制御演算部52A〜52Cは、入力されたデータをPID制御するためのものである。制御演算部52Aは、運動モード変位MXDに入力値a4が加えられた運動モード変位MXD1が入力された際、運動モード変位ループ制御量FXD2を出力する。制御演算部52Bは、運動モード変位MyDに入力値a5が加えられた運動モード変位MyD1が入力された際、運動モード変位ループ制御量FyD2を出力する。制御演算部52Cは、運動モード変位MθZDに入力値a6が加えられた運動モード変位MθZD1が入力された際、運動モード変位ループ制御量FθZD2を出力する。制御演算部52A〜52Cには、例えば、PIDフィルタ、ローパスフィルタ、ハイパスフィルタ等を用いることができる。
制御演算手段53は、演算手段47と接続されている。制御演算手段53は、制御演算部53A〜53Cを有する。制御演算部53A〜53Cは、PID制御をするためのものである。制御演算部53Aでは、運動モード加速度MZAに入力値a7が加えられた運動モード加速度MZA1が入力された際、PID制御された運動モード加速度ループ制御量FZA2を出力する。制御演算部53Bでは、運動モード加速度MθXAに入力値a8が加えられた運動モード加速度MθXA1が入力された際、PID制御された運動モード加速度ループ制御量FθXA2を出力する。制御演算部53Cでは、運動モード加速度MθyAに入力値a9が加えられた運動モード加速度MθyA1が入力された際、PID制御された運動モード加速度ループ制御量FθyA2を出力する。制御演算部53A〜53Cには、例えば、PIDフィルタ、ローパスフィルタ、ハイパスフィルタ等を用いることができる。
制御演算手段54は、演算手段48と接続されている。制御演算手段54は、制御演算部54A〜54Cを有する。制御演算部54A〜54Cは、入力されたデータをPID制御するためのものである。制御演算部54Aでは、運動モード加速度MXAに入力値a10が加えられた運動モード加速度MXA1が入力された際、運動モード加速度ループ制御量FXA2を出力する。制御演算部54Bでは、運動モード加速度MyAに入力値a11が加えられた運動モード加速度MyA1が入力された際、運動モード加速度ループ制御量FyA2を出力する。制御演算部54Cでは、運動モード加速度MθZAに入力値a12が加えられた運動モード加速度MθZA1が入力された際、運動モード加速度ループ制御量FθZA2を出力する。制御演算部54A〜54Cには、例えば、PIDフィルタ、ローパスフィルタ、ハイパスフィルタ等を用いることができる。
制御量演算手段56は、重心位置演算手段42、演算手段45,47、及びアクチュエータ制御手段58と接続されている。制御量演算手段56は、制御量補正手段56Aを有する。制御量演算手段56は、運動モード変位ループ制御量FZD2に運動モード加速度ループ制御量FZA2が加えられた運動モード制御量Fz、運動モード変位ループ制御量FθXD2に運動モード加速度ループ制御量FθXA2が加えられた運動モード制御量Fθx、及び運動モード変位ループ制御量FθyD2に運動モード加速度ループ制御量FθyA2が加えられた運動モード制御量Fθyに基づいて、第1のアクチュエータ33Z1〜33Z4を制御するために必要な制御量FZ1〜FZ4を求めると共に、制御量補正手段56Aにより構造体20の重心位置G2のX座標及びY座標に関するデータG2x,G2yに応じて制御量FZ1〜FZ4の補正を行なう。
すなわち、制御量補正手段56Aは、構造体20の重心位置G2から第1のアクチュエータ33Z1〜33Z4の配設位置までの距離を考慮して、構造体20の重心位置G2を中心とする水平2軸の回転方向θx,θyのモーメントがそれぞれ釣り合うように制御量FZ1〜FZ4の補正を行なう。補正された第1のアクチュエータ33Z1〜33Z4の制御量FZ1〜FZ4は、アクチュエータ制御手段58に送信される。
第1のアクチュエータ33Z1の座標を(x,y,z)=(33Z1X,33Z1y,33Z1Z)、第1のアクチュエータ33Z2の座標を(x,y,z)=(33Z2X,33Z2y,33Z2Z)、第1のアクチュエータ33Z3の座標を(x,y,z)=(33Z3X,33Z3y,33Z3Z)、第1のアクチュエータ33Z4の座標を(x,y,z)=(33Z4X,33Z4y,33Z4Z)とし、かつ33Z1X=33Z2X、33Z3X=33Z4X、33Z1y=33Z4y、及び33Z2y=33Z3yとなるように除振台13の四隅に第1のアクチュエータ33Z1〜33Z4を配設(図8参照)した場合、制御量補正手段56Aを備えた駆動量演算手段56は、下記(5)式により、構造体20の重心位置G2から第1のアクチュエータ33Z1〜33Z4の配設位置までの距離を考慮して、構造体20の重心位置G2を中心とする水平2軸の回転方向θx,θyのモーメントがそれぞれ釣り合うように、第1のアクチュエータ33Z1〜33Z4の制御量FZ1〜FZ4を求める。
Figure 2008064124
このように、制御量演算手段56に制御量補正手段56Aを設け、X−Yステージ17の移動により変位する構造体20の重心位置G2に応じて、第1のアクチュエータ33Z1〜33Z4の制御量FZ1〜FZ4を補正することにより、構造体20の重心位置G2を中心とする水平2軸の回転方向θx,θyのモーメントがそれぞれ釣り合うような制御量FZ1〜FZ4を求めることが可能となる。これにより、X−Yステージ17が高速で移動した場合や、X−Yステージ17の移動により除振装置本体11の重心位置が大きく変位した場合でも、除振台13の姿勢が水平状態となるように制御することができる。
制御量演算手段57は、重心位置演算手段42、演算手段46,48、及びアクチュエータ制御手段58と接続されている。制御量演算手段57は、制御量補正手段57Aを有する。制御量演算手段57は、運動モード変位ループ制御量FXD2に運動モード加速度ループ制御量FXA2が加えられた運動モード制御量FXと、運動モード変位ループ制御量FyD2に運動モード加速度ループ制御量FyA2が加えられた運動モード制御量Fyと、運動モード変位ループ制御量FθZD2に運動モード加速度ループ制御量FθZA2が加えられた運動モード制御量Fθzとに基づいて、第2のアクチュエータ34X1,34X2,34y1,34y2を制御するために必要な制御量FX1,FX2,Fy1,Fy2を求めると共に、制御量補正手段57Aにより構造体20の重心位置G2のX座標及びY座標に関するデータG2x,G2yに応じて制御量FX1,FX2,Fy1,Fy2の補正を行なう。
すなわち、制御量補正手段57Aは、構造体20の重心位置G2から第2のアクチュエータ34X1,34X2,34y1,34y2の配設位置までの距離を考慮して、構造体20の重心位置G2を中心とするZ軸の回転方向θzのモーメントがそれぞれ釣り合うように制御量FX1,FX2,Fy1,Fy2の補正を行なう。補正された第2のアクチュエータ34X1,34X2,34y1,34y2の制御量FX1,FX2,Fy1,Fy2は、アクチュエータ制御手段58に送信される。
33Z1X=33Z2X、33Z3X=33Z4X、33Z1y=33Z4y、及び33Z2y=33Z3yとなるように除振台13の四隅に第1のアクチュエータ33Z1〜33Z4を配設(図8参照)した場合、制御量補正手段57Aを備えた駆動量演算手段57は、下記(6)式により、構造体20の重心位置G2から第2のアクチュエータ34X1,34X2,34y1,34y2の配設位置までの距離を考慮して、構造体20の重心位置G2を中心とするZ軸の回転方向θzのモーメントがそれぞれ釣り合うように、第2のアクチュエータ34X1,34X2,34y1,34y2の制御量FX1,FX2,Fy1,Fy2を求める。
なお、下記(6)式において、第2のアクチュエータ34X1の座標を(x,y,z)=(34X1X,34X1y,34X1Z)、第2のアクチュエータ34X2の座標を(x,y,z)=(34X2X,34X2y,34X2Z)、第2のアクチュエータ34y1の座標を(x,y,z)=(34y1X,34y1y,34y1Z)、第2のアクチュエータ34y2の座標を(x,y,z)=(34y2X,34y2y,34y2Z)と表記する。
Figure 2008064124
このように、制御量演算手段57に制御量補正手段57Aを設け、X−Yステージ17の移動により変位する構造体20の重心位置G2に応じて、第2のアクチュエータ34X1,34X2,34y1,34y2の制御量FX1,FX2,Fy1,Fy2を補正することにより、構造体20の重心位置G2を中心とするZ軸の回転方向θzのモーメントが釣り合うような制御量FX1,FX2,Fy1,Fy2を求めることが可能となる。これにより、X−Yステージ17が高速で移動した場合や、X−Yステージ17の移動により除振装置本体11の重心位置が大きく変位した場合でも、除振台13の姿勢が水平状態となるように制御することができる。
アクチュエータ制御手段58は、制御量演算手段56,57と、第1及び第2のアクチュエータ33Z1〜33Z4,34X1,34X2,34y1,34y2とに接続されている。アクチュエータ制御手段58は、補正された制御量FZ1〜FZ4,FX1,FX2,Fy1,Fy2のそれぞれに応じた駆動量を出力し、この駆動量により第1及び第2のアクチュエータ33Z1〜33Z4,34X1,34X2,34y1,34y2の駆動を制御する。
本実施の形態の除振装置によれば、構造体20の重心位置G2を通過する水平2軸の回転方向θx,θyのモーメントがそれぞれ釣り合うように第1のアクチュエータ33Z1〜33Z4の制御量FZ1〜FZ4を求めると共に、構造体20の重心位置G2を通過するZ軸の回転方向θzのモーメントが釣り合うように第2のアクチュエータ34X1,34X2,34y1,34y2の制御量FX1,FX2,Fy1,Fy2を求め、アクチュエータ制御手段58により制御量FZ1〜FZ4,FX1,FX2,Fy1,Fy2に応じた駆動量を出力させて第1及び第2のアクチュエータ33Z1〜33Z4,34X1,34X2,34y1,34y2を制御することにより、X−Yステージ17が高速で移動した場合や、X−Yステージ17の移動により除振装置本体11の重心位置G2が大きく変位した場合でも、除振台13の姿勢が水平状態となるように精度良く制御することができる。
(第2の実施の形態)
図12は、本発明の第2の実施の形態に係る除振装置の概略構成図であり、図13は、第2の実施の形態に係る制御装置のブロック図である。図12において、第1の実施の形態の除振装置10と同一構成部分には同一符号を付す。また、図13において、第1の実施の形態の制御装置12と同一構成部分には同一符号を付す。
図12及び図13を参照するに、第2の実施の形態の除振装置70は、第1の実施の形態の除振装置10に設けられた制御装置12の代わりに制御装置71を設けた以外は除振装置10と同様に構成される。
制御装置71は、第1の実施の形態で説明した制御装置12の構成要素から重心位置演算手段42及び記憶手段43を取り除いた以外は、制御装置12と同様に構成されている。
ステージ制御手段41は、X−Yステージ17、演算手段45〜48、及び制御量演算手段56,57と接続されている。ステージ制御手段41は、X−Yステージ17の制御全般を行なうものである。ステージ制御手段41は、Xリニアスケール及びYリニアスケール(共に図示せず)から除振台13上におけるX−Yステージ17の座標位置を認識し、X−Yステージ17の水平2軸方向の座標位置(x,y)=(17x,17y)に関するデータを演算手段45〜48及び制御量演算手段56,57に送信する。
ところで、多くの場合、構造体20の重心位置G2のX座標は下記(7)式で示すことが可能であり、構造体20の重心位置G2のY座標は下記(8)式で示すことが可能である。なお、下記(7)式において、G2X0はX−Yステージ17のX軸方向の移動量が0の時の構造体20の重心位置G2のX座標値、αはX−Yステージ17のX軸方向の移動量に対する構造体20の重心位置G2のX座標値の変化率をそれぞれ示している。また、下記(8)式において、G2y0はX−Yステージ17のY軸方向への移動量が0の時の構造体20の重心位置G2のY座標値、βはX−Yステージ17のY軸方向の移動量に対する構造体20の重心位置G2のY座標値の変化率、17xはX−Yステージ17のX座標位置、17yはX−Yステージ17のY座標位置をそれぞれ示している。
Figure 2008064124
Figure 2008064124
したがって、本実施の形態の制御装置71のように、重心位置演算手段42及び記憶手段43を設けることなく、制御量補正手段56Aを備えた制御量演算手段56は、下記(9)式を用いて、構造体20の重心位置G2を中心とする水平2軸の回転方向θx,θyのモーメントがそれぞれ釣り合うように第1のアクチュエータ33Z1〜33Z4の制御量FZ1〜FZ4を求めることができる。また、制御量補正手段57Aを備えた制御量演算手段57は、下記(10)式を用いて、構造体20の重心位置G2を中心とするZ軸の回転方向θzのモーメントが釣り合うように第2のアクチュエータ34X1,34X2,34y1,34y2の制御量FX1,FX2,Fy1,Fy2を求めることができる。
Figure 2008064124
Figure 2008064124
さらに、X−Yステージ17のX軸方向及びY軸方向の移動速度と比較して、第1及び第2のアクチュエータ33Z1〜33Z4,34X1,34X2,34y1,34y2の応答速度が遅い場合、上記(9)式の代わりに下記(11)式を用いて、第1のアクチュエータ33Z1〜33Z4の制御量FZ1〜FZ4を求めるとよい。また、上記(10)式の代わりに下記(12)式を用いて、第2のアクチュエータ34X1,34X2,34y1,34y2の制御量FX1,FX2,Fy1,Fy2を求めるとよい。なお、下記(11)式及び(12)式において、Kは応答性補償ゲインを示している。また、sは、ラプラス演算子を示している。
Figure 2008064124
Figure 2008064124
このように、上記(11)式及び(12)式を用いて、第1のアクチュエータ33Z1〜33Z4の制御量FZ1〜FZ4、及び第2のアクチュエータ34X1,34X2,34y1,34y2の制御量FX1,FX2,Fy1,Fy2を求めることにより、除振台13の制御性能を補償することができる。
本実施の形態の除振装置によれば、制御装置71の構成を簡略化すると共に、X−Yステージ17が高速で移動した場合や、X−Yステージ17の移動により除振装置本体11の重心位置G2が大きく変位した場合でも、除振台13の姿勢が水平状態となるように精度良く制御することができる。
以上、本発明の好ましい実施の形態について詳述したが、本発明は係る特定の実施の形態に限定されるものではなく、特許請求に範囲に記載された本発明の範囲において、様々の変形・変更が可能である。
本発明は、除振台上を高速で移動する移動体を備えた除振装置に適用できる。
除振台と移動体とより構成される構造体の重心位置と除振台の傾きとの関係について説明するための図(その1)である。 除振台と移動体とより構成される構造体の重心位置と除振台の傾きとの関係について説明するための図(その2)である。 除振台と移動体とより構成される構造体の重心位置と除振台の傾きとの関係について説明するための図(その3)である。 除振台と移動体とより構成される構造体の重心位置と除振台の傾きとの関係について説明するための図(その4)である。 本発明の第1の実施の形態に係る除振装置の概略構成図である。 除振ユニットの配設位置を説明するための図である。 除振ユニットの断面図(その1)である。 第1及び第2のアクチュエータの配設位置の一例を示す図である。 変位センサ及び加速度センサの配設位置の一例を示した図である。 除振ユニットの断面図(その2)である。 第1の実施の形態に係る制御装置のブロック図である。 本発明の第2の実施の形態に係る除振装置の概略構成図である。 第2の実施の形態に係る制御装置のブロック図である。
符号の説明
10,70 除振装置
11 除振装置本体
12,71 制御装置
13 除振台
14 床
15,16 除振ユニット
17 X−Yステージ
18 ベース部材
19 板体
20 構造体
21,24 突出部
19A,21A,23A 上面
21B,21C,23B 側面
22 浮上部材
23 枠体
26,27 除振支持機構
33,33Z1,33Z2,33Z3,33Z4 第1のアクチュエータ
34,34X1,34X2,34y1,34y2 第2のアクチュエータ
36,36Z1,36Z2,36Z3 第1の変位センサ
37,37X1,37X2,37y1 第2の変位センサ
38,38Z1,38Z2,38Z3 第1の加速度センサ
39,39X1,39X2,39y1 第2の加速度センサ
41 ステージ制御手段
42 重心位置演算手段
43 記憶手段
45〜48 演算手段
45A,46A 第1の補正手段
47A,48A 第2の補正手段
51〜54 制御演算手段
56,57 制御量演算手段
56A,57A 制御量補正手段
58 アクチュエータ制御手段
51A〜51C,52A〜52C,53A〜53C,54A〜54C 制御演算部
a1〜a12 入力値
Z1,DZ2,DZ3,DX1,DX2,Dy1,AZ1,AZ2,AZ3,AX1,AX2,Ay1 検出信号
Z1〜FZ4,FX1,FX2,Fy1,Fy2 制御量
G2,G3 重心位置

Claims (8)

  1. 移動体を移動可能に支持する除振台と、
    外部からの振動を除振すると共に、前記除振台の鉛直方向及び水平2軸方向の変動を検出する検出手段と、前記除振台を前記鉛直方向及び水平2軸方向に変位させるアクチュエータとを有する除振ユニットと、を備える除振装置本体と、
    前記移動体の移動を制御すると共に、前記移動体の座標位置を認識する移動体制御手段と、前記検出手段の検出信号に基づき、前記除振台の鉛直方向、水平2軸方向、及びこれらの回転方向に関する運動モード変位を求める第1の演算手段と、前記運動モード変位に基づき、前記アクチュエータの制御量を求める制御量演算手段と、前記制御量に基づいて、前記アクチュエータを制御するアクチュエータ制御手段とを有する制御装置と、を備える除振装置であって、
    前記制御装置は、前記移動体の座標位置に基づき、前記移動体と前記除振台とから構成される構造体の重心位置を求める重心位置演算手段を備え、
    前記第1の演算手段は、前記構造体の重心位置に応じて運動モード変位を補正する第1の補正手段を有することを特徴とする除振装置。
  2. 前記制御量演算手段は、前記構造体の重心位置に応じて前記制御量を補正する制御量補正手段を備えることを特徴とする請求項1記載の除振装置。
  3. 前記検出手段は、変位センサからなることを特徴とする請求項1または2記載の除振装置。
  4. 前記検出手段は、第1の検出手段と第2の検出手段とを有し、
    前記第1の検出手段は、変位センサからなり、前記第2の検出手段は、加速度センサからなることを特徴とする請求項1または2記載の除振装置。
  5. 前記加速度センサの検出信号に基づき、前記除振台の鉛直方向、水平2軸方向、及びこれらの回転方向に関する運動モード加速度を求める第2の演算手段を設けると共に、前記第2の演算手段に前記構造体の重心位置に応じて、前記運動モード加速度を補正する第2の補正手段をさらに設け、
    前記制御量演算手段は、前記第1の補正手段により補正された前記運動モード変位と、
    前記第2の補正手段により補正された前記運動モード加速度とに基づき、前記アクチュエータの前記制御量を求めることを特徴とする請求項4記載の除振装置。
  6. 前記制御装置は、前記移動体の座標位置に対応する前記構造体の重心位置が格納された記憶手段をさらに備え、
    前記重心位置演算手段は、前記記憶手段の中から前記移動体の座標位置に対応する前記構造体の重心位置に関するデータを読み込むことを特徴とする請求項1ないし5のうち、いずれか一項記載の除振装置。
  7. 前記移動体は、前記除振台上を水平2軸方向に移動するX−Yステージであることを特徴とする請求項1ないし6のうち、いずれか一項記載の除振装置。
  8. 前記アクチュエータは、空気バネ或いはボイスコイルモータであることを特徴とする請求項1ないし7のうち、いずれか一項記載の除振装置。
JP2006239183A 2006-09-04 2006-09-04 除振装置 Expired - Fee Related JP4877954B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006239183A JP4877954B2 (ja) 2006-09-04 2006-09-04 除振装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006239183A JP4877954B2 (ja) 2006-09-04 2006-09-04 除振装置

Publications (2)

Publication Number Publication Date
JP2008064124A true JP2008064124A (ja) 2008-03-21
JP4877954B2 JP4877954B2 (ja) 2012-02-15

Family

ID=39287019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006239183A Expired - Fee Related JP4877954B2 (ja) 2006-09-04 2006-09-04 除振装置

Country Status (1)

Country Link
JP (1) JP4877954B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03219141A (ja) * 1989-07-24 1991-09-26 Tokkyo Kiki Kk 能動制振台
JP2000081079A (ja) * 1998-09-03 2000-03-21 Nikon Corp 除振装置および露光装置
JP2000208402A (ja) * 1999-01-14 2000-07-28 Canon Inc 除振装置
JP2005273904A (ja) * 2004-02-24 2005-10-06 Ebara Corp 除振装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03219141A (ja) * 1989-07-24 1991-09-26 Tokkyo Kiki Kk 能動制振台
JP2000081079A (ja) * 1998-09-03 2000-03-21 Nikon Corp 除振装置および露光装置
JP2000208402A (ja) * 1999-01-14 2000-07-28 Canon Inc 除振装置
JP2005273904A (ja) * 2004-02-24 2005-10-06 Ebara Corp 除振装置

Also Published As

Publication number Publication date
JP4877954B2 (ja) 2012-02-15

Similar Documents

Publication Publication Date Title
JP2006307932A (ja) 除振装置
JP6524100B2 (ja) プラットフォーム安定化システム
US7642741B2 (en) Handheld platform stabilization system employing distributed rotation sensors
US8179078B2 (en) Handheld or vehicle-mounted platform stabilization system
JP2529860B2 (ja) 磁気的隔絶指示ジンバル装置
EP0559397B1 (en) Precision positioning apparatus
TWI554694B (zh) 主動式隔振阻尼系統
JP5641878B2 (ja) 振動制御装置、リソグラフィー装置、および、物品の製造方法
EP2773896A1 (en) Actively stabilized payload support apparatus and methods
JP2007333643A (ja) 慣性センサ
Antonello et al. Exploring the potential of MEMS gyroscopes: Successfully using sensors in typical industrial motion control applications
JP2012161896A5 (ja)
JP2018072657A (ja) 光学ユニット
JP4877954B2 (ja) 除振装置
JP4646640B2 (ja) 移動台車及び移動台車の制御方法
US11586231B2 (en) Reaction compensation device and fast steering mirror system
JP4786472B2 (ja) 除振台の制御装置
JP3286186B2 (ja) 微動位置決め制御装置
JP2006307933A (ja) 除振装置
JP2009245030A (ja) ペイロード制御装置
WO2017105293A1 (ru) Устройство для стабилизации положения объемного тела в пространстве с силовой компенсацией отклоняющих воздействий
RU160949U1 (ru) Устройство для стабилизации положения объемного тела в пространстве с силовой компенсацией отклоняющих воздействий
JP2006526223A (ja) 加速度のフィードフォワードを使用した正確な動作制御
US11317025B1 (en) Movie camera stabilization and control system
JP4175639B2 (ja) 磁力支持式振動計測方法及び装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111124

R150 Certificate of patent or registration of utility model

Ref document number: 4877954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees