JP2008047641A - 半導体レーザ素子とその製造方法、光ディスク装置、および光伝送モジュール - Google Patents

半導体レーザ素子とその製造方法、光ディスク装置、および光伝送モジュール Download PDF

Info

Publication number
JP2008047641A
JP2008047641A JP2006220224A JP2006220224A JP2008047641A JP 2008047641 A JP2008047641 A JP 2008047641A JP 2006220224 A JP2006220224 A JP 2006220224A JP 2006220224 A JP2006220224 A JP 2006220224A JP 2008047641 A JP2008047641 A JP 2008047641A
Authority
JP
Japan
Prior art keywords
layer
cladding layer
semiconductor laser
upper cladding
ridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006220224A
Other languages
English (en)
Inventor
Takeshi Obayashi
健 大林
Katsuhiko Kishimoto
克彦 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006220224A priority Critical patent/JP2008047641A/ja
Publication of JP2008047641A publication Critical patent/JP2008047641A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Optical Head (AREA)

Abstract

【課題】高発振効率で低消費電力動作が可能な半導体レーザ素子を提供する。
【解決手段】第1導電型半導体基板上に順次積層された第1導電型下クラッド層、活性層、第2導電型のAl含有第1上クラッド層、ストライプ状リッジ形状の第2導電型の第2上クラッド層、および第2導電型コンタクト層を含むリッジ導波型半導体レーザ素子であって、第1上クラッド層の電子親和力がχ1で禁制帯幅がEg1であり、コンタクト層の電子親和力がχ2で禁制帯幅がEg2であるきに、第1導電型がn型で第2導電型がp型の場合には(χ1+Eg1)>(χ2+Eg2)の関係を満たし、第1導電型がp型で第2導電型がn型の場合にはχ1<χ2の関係を満たし、リッジ直下を除く領域には第1上クラッド層の表面酸化で形成された酸化物層が設けられており、リッジ頂部のコンタクト層、リッジ側面、および酸化物層の上に連なって直接被覆している金属電極層を備える。
【選択図】図1

Description

この発明は半導体レーザ素子とその製造方法に関し、特に、光ディスク装置や光伝送システムの光伝送モジュール部分などに好適に用いられ得る半導体レーザ素子とその製造方法に関する。また、この発明は、そのような半導体レーザ素子を備えた光ディスク装置および光伝送モジュールにも関する。
半導体レーザ素子は、光ディスク装置や光伝送システムなどに幅広く使用されている。特に、リッジ埋め込み型と呼ばれる半導体レーザ素子は高い信頼性を有し、しかも低消費電力動作が可能なレーザ素子として知られている。しかし、リッジ埋め込み型半導体レーザ素子は、その製造工程において活性層やクラッド層を含む半導体積層を形成するために行われる1回目の結晶成長工程に加えて、電流狭窄層を形成するための2回目の結晶成長工程と、コンタクト層を形成するための3回目の結晶成長工程を必要とし、さらに複雑なプロセスを経て製造しなければならない。したがって、リッジ埋め込み型半導体レーザ素子においては、その歩留まりが悪くて製造コストが高いという問題がある。
そこで、より簡便かつ低コストで製造し得る半導体レーザ素子として、活性層上にリッジ部を有しかつ一回の結晶成長工程で製造し得るリッジ導波型半導体レーザ素子が先行技術において教示されている(例えば特許文献1の特開平4−111375号公報参照)。
図16は、特許文献1によるリッジ導波型半導体レーザ素子の積層構造を示す模式的断面図である。このリッジ導波型半導体レーザ素子600は以下のようにして製造される。
まず、MOCVD(有機金属化学気相成長)法によって、n−GaAs基板601上にn−InGaP下クラッド層602、InGaAs/GaAs歪量子井戸活性層603、p−InGaP上クラッド層604、およびp−InGaAsコンタクト層605を順次積層する。そして、フォトリソグラフィなどの手法によって、p−InGaAsコンタクト層605の上面からp−InGaP上クラッド層604の途中の深さまでエッチングを行って、リッジ部となるメサを形成する。その後、p型用金属電極層606としてTi/Pt/Auを順次蒸着し、n型用金属電極層607としてAu−Ge−Ni/Auを順次蒸着する。
このようにして製造されたリッジ導波型レーザ素子において、上クラッド層604とp型用金属電極層606との間にショットキー接合部608が形成される。したがって、p型用電極層606とコンタクト層605との間のみにおいて電流が流れることができ、これによって電流狭窄が行われ得る。
従来の慣用的なリッジ埋め込み型半導体レーザ素子では前述のように合計3回の結晶成長工程と複雑な製造プロセスを必要とするが、この特許文献1によるリッジ導波型半導体レーザ素子では必要とされる結晶成長工程が1回だけである。また、特許文献1のリッジ導波型半導体レーザ素子は、電流狭窄のために無機絶縁膜を使用することなくショットキー接合を利用するので、その素子構造が簡単であって非常に低コストで製造することができる。
特開平4−111375号公報(第1図)
しかしながら、特許文献1のリッジ導波型半導体レーザ素子では、低閾値電流と高出力動作を実現することができない。この最大の理由は、ショットキー接合部の信頼性に乏しくかつ電流狭窄性が不十分であって、特にリッジを微細ストライプにした場合に漏れ電流を十分に低減できないことによる。すなわち、単に半導体層と金属層とを接合させただけでは、その接合部に形成されるショットキー障壁は半導体レーザ素子の駆動に必要な電圧に対して十分に余裕のある耐圧を有するとは限らないからである。特許文献1による半導体レーザ素子ではその耐圧に余裕がないので、作製されるレーザ素子ごとに電流狭窄性が不安定となって生産歩留まりが低くなる。また、そのレーザ素子を長期間動作させれば、容易に電流リークが発生して素子特性が低下する。
上述のような先行技術における課題に鑑み、本発明は、十分な電流狭窄能力を有することによって高い発振効率が得られかつ低消費電力動作が可能な半導体レーザ素子を低コストの製造方法で提供することを目的としている。さらに、本発明は、そのような半導体レーザ素子を用いた光ディスク装置および光伝送モジュールを提供することをも目的としている。
本発明の一つの態様によれば、第1導電型の半導体基板上に第1導電型の下クラッド層、活性層、Alを含む第2導電型の第1上クラッド層、ストライプ状リッジを形成する第2導電型の第2上クラッド層、および第2導電型のコンタクト層が順次設けられたリッジ導波型半導体レーザ素子であって、第1上クラッド層の電子親和力をχ1として禁制帯幅をEg1とし、コンタクト層の電子親和力をχ2として禁制帯幅をEg2としたときに、第1導電型がn型で第2導電型がp型の場合には(χ1+Eg1)>(χ2+Eg2)の関係を満たし、第1導電型がp型で第2導電型がn型の場合にはχ1<χ2の関係を満たし、リッジの直下を除く領域には第1上クラッド層の上面を酸化することによって形成された酸化物層が設けられており、リッジの頂部のコンタクト層、そのリッジの少なくも一方の側面、および酸化物層の上に連なって直接被覆している金属電極層を備えることを特徴としている。
なお、コンタクト層における第2導電型のドーピング濃度が1×1018cm-3以上であって、第1上クラッド層のうちで酸化物層の直下に接する領域は第2導電型のドーピング濃度が1×1017cm-3以下の低濃度ドープ領域であることが好ましい。また、第1上クラッド層において、その低濃度ドープ領域と活性層との間には、1×1017cm-3より大きいドーピング濃度を有する第2導電型のドープ領域が形成されていることが好ましい。
コンタクト層の上面層は、Alを含んでいないことが好ましい。第1上クラッド層の上面におけるIII族元素中のAl組成比は、0.45より大きいことが好ましい。酸化物層の厚さは、2nm以上20nm以下であることが好ましい。
第2上クラッド層は、第1上クラッド層に対して選択エッチング可能である材料で構成されていることが好ましい。
第1上クラッド層中において、第1上クラッド層に比べてAl組成比の低いかまたはAlを含まない半導体からなる酸化停止層が挿入されていて、酸化物層は第1上クラッド層における酸化停止層より上側部分を酸化させることによって形成されていることが好ましい。第1上クラッド層の上面におけるIII族元素中のAl組成比は、0.9以上であることが好ましい。
本発明のもう一つの態様によれば、半導体レーザ素子の製造方法は、第1導電型の半導
体基板上に、第1導電型の下クラッド層、活性層、Alを含む第2導電型の第1上クラッド層、第2導電型の第2上クラッド層、およびAlを含まない第2導電型のコンタクト層を順次形成する工程と、第2上クラッド層とコンタクト層の一部を除去してストライプ状のリッジを形成し、そのリッジを除く領域において第1上クラッド層の上面を部分的に露出させる工程と、リッジの直下を除く領域において第1上クラッド層の露出された上面から酸化させて酸化物層を形成する工程と、リッジの頂部のコンタクト層、そのリッジの少なくも一方側のリッジ側面、および酸化物層の上に連なって金属層を直接被覆させる電極層の形成工程とを含み、第1上クラッド層の電子親和力をχ1として禁制帯幅をEg1とし、コンタクト層の電子親和力をχ2として禁制帯幅をEg2としたときに、第1導電型がn型で第2導電型がp型の場合には(χ1+Eg1)>(χ2+Eg2)の条件を満たし、第1導電型がp型で第2導電型がn型の場合にはχ1<χ2の条件を満たすことを特徴としている。
なお、第1クラッド層を形成する工程では、第1上クラッド層中に、その第1上クラッド層よりもAl組成比の低いかまたはAlを含まないIII−V族半導体からなる酸化停止層を設け、酸化物層を形成する工程では、第1上クラッド層中において酸化停止層より上側の層を酸化させることによってその酸化物層を形成することが好ましい。
リッジを形成して第1上クラッド層の上面を部分的に露出させる工程では、第1上クラッド層の上面が露出された時点において、その露出面に対して酸化性を有する液体または気体に接触させることによって酸化物層を形成することが好ましい。そのためには、第1上クラッド層の最上部におけるIII族元素中のAl組成比は、0.9以上であることが好ましい。
リッジを形成して第1上クラッド層の上面を部分的に露出させる工程では、コンタクト層の上にストライプ状のエッチングマスクを形成し、そのマスク以外の領域を上層から順次エッチングで除去していき、最後のエッチングでは過酸化水素水を含む液体のエッチング液を用いて第1上クラッド層の上面を露出させ、続いて、その露出面をそのままエッチング液に接触させることによって酸化物層を形成することが好ましい。
以上のような本発明による半導体レーザ素子を光源として利用することによって、長期動作においても故障が少ない光ディスク装置および光伝送モジュールを安価に提供することができる。
本発明のリッジ導波型半導体レーザ素子では、従来に比べて新規かつ簡易な構造的改変によって、リッジ以外の領域における電流阻止能力が向上し、安定してリッジ内に電流を狭窄することができる。したがって、本発明のリッジ導波型半導体レーザ素子は、低閾値電流で発振できかつ高い発振効率を有するので低消費電力で高出力動作が可能であり、少ない工程数で低コストの製造方法によって高い歩留で提供され得る。また、本発明の半導体レーザ素子を用いた光ディスク装置は、従来の光ディスク装置に比べて、より安価に構成されかつ長期動作において故障が少なくなる。さらに、本発明の半導体レーザ素子を用いた光伝送モジュールも、従来の光伝送モジュールに比べて、より安価に構成されかつ長期動作において故障が少なくなる。
(実施形態1)
図1は、本発明の実施形態1によるリッジ導波型半導体レーザ素子の積層構造を模式的な断面図で示している。なお、本願の各図において同一の参照符号は同一部分または相当部分を表している。また、図面における厚さ、長さ、幅などの寸法関係は図面の明瞭化と
簡略化のために適宜に変更されており、実際の寸法関係を表してはいない。
図1の半導体レーザ素子100においては、n−GaAs基板101上に、n−GaAsバッファ層102、n−Al0.45Ga0.55As下クラッド層103、n−Al0.4Ga0.6As下ガイド層104、多重歪量子井戸活性層105、p−Al0.4Ga0.6As上ガイド層106、p−Al0.5Ga0.5As第1上クラッド層107、および低ドープp−Al0.5Ga0.5As上クラッド層108が順次積層されている。
この低ドープ上クラッド層108上には、順メサストライプ形状のリッジ120を形成するように、p−In0.1568Ga0.8432As0.40.6エッチングストップ層111、p−Al0.5Ga0.5As第2上クラッド層112、p−GaAsコンタクト層113、およびp+−GaAsコンタクト層114が設けられている。
ここで、低ドープ上クラッド層108の上面層は、リッジ形成領域121a以外の領域121bにおいて酸化物層108bに変換されている。また、第2上クラッド層112のリッジ側面部も酸化物層112bに変換されている。そして、リッジ120の頂部と側面部および酸化物層108b上にTi/Pt/Auの多層金属薄膜からなるp型用電極層115が設けられている。
図2から図4の模式的な断面図において、図1のリッジ導波型半導体レーザ素子の製造方法が図解されている。
まず、図2に示すように、n−GaAs基板101の(100)面上に、n−GaAsバッファ層102(厚さ0.5μm、Siドーピング濃度7.2×1017cm-3)、n−Al0.45Ga0.55As下クラッド層103(厚さ1.88μm、Siドーピング濃度5.4×1017cm-3)、n−Al0.4Ga0.6As下ガイド層104(厚さ0.09μm、Siドーピング濃度5.4×1017cm-3)、多重歪量子井戸活性層105、p−Al0.4Ga0.6As上ガイド層106(厚さ0.09μm、Znドーピング濃度1.35×1018cm-3)、p−Al0.5Ga0.5As第1上クラッド層107(厚さ0.2μm、Znドーピング濃度1.35×1018cm-3)、低ドープp−Al0.5Ga0.5As上クラッド層108(厚さ0.2μm、Znドーピング濃度1×1017cm-3)、p−In0.1568Ga0.8432As0.40.6エッチングストップ層111(厚さ4nm、Znドーピング濃度2.4×1018cm-3)、p−Al0.5Ga0.5As第2上クラッド層112(厚さ1.28μm、Znドーピング濃度2.4×1018cm-3)、p−GaAs第1コンタクト層113(厚さ0.2μm、Znドーピング濃度3×1018cm-3)、およびp+−GaAs第2コンタクト層114(厚さ0.3μm、Znドーピング濃度1×1019cm-3)を順次にMOCVD法(有機金属化学気相成長法)で結晶成長させて半導体積層ウエハを形成する。
多重歪量子井戸活性層105においては、Al0.25Ga0.75As下部中間層(厚さ3.0nm)上に、Al0.15Ga0.85As障壁層(基板101側から厚さ21.5nm、7.9nm、および21.5nmの3層)とIn0.072Ga0.928As圧縮歪量子井戸層(歪0.51%、厚さ4.6nm、2層)とが交互に積層され、その上にAl0.25Ga0.75As上部中間層(厚さ3.0nm)がさらに積層される。
次に、リッジ120を形成すべき領域121a(図1参照)上に、図2に示すようにレジストマスク130(マスク幅4.5μm)をフォトリソグラフィによって形成する。このレジストマスク130は、形成すべきリッジ120が延びる方向に対応して、基板結晶の<0−11>方向に沿ってストライプ状に延びるように形成される。
そして、図3に示すように、レジストマスク130を用いたエッチングによって、第2上クラッド層112、第1コンタクト層113、および第2コンタクト層114のうちでレジストマスク130の両側のリッジ形成外領域121b部分をエッチングにより除去して、レジストマスク130直下に順メサストライプ状のリッジ120を形成する。
このエッチングにおいては、まず、AlGaAs系材料である第2上クラッド層112、第1コンタクト層113、および第2コンタクト層114をエッチングするがInGaAsP系であるエッチングストップ層111をエッチングしないエッチング液として、硫酸と過酸化水素水の混合水溶液を用いる。このとき、第2上クラッド層112のエッチング速度が第1コンタクト層113および第2コンタクト層114に比べて若干速いので、リッジ120の側面において第1コンタクト層113および第2コンタクト層114のオーバーハングができる。したがって、アンモニアと過酸化水素水の混合水溶液によって、第1コンタクト層113および第2コンタクト層114のオーバーハング部分を除去する。すなわち、アンモニアと過酸化水素水の混合水溶液は、GaAsである第1コンタクト層113および第2コンタクト層114をエッチングするが、Al0.5Ga0.5Asである第2上クラッド層112やInGaAsP系であるエッチングストップ層111をエッチングしないエッチング液である。
その後、リッジ形成外領域121bにおいてエッチングストップ層111をエッチングにより除去して、低ドープ上クラッド層108を露出させる。このエッチングでは、InGaAsP系であるエッチングストップ層108をエッチングするがAlGaAs系である第2上クラッド層112、第1コンタクト層113、および第2コンタクト層114をエッチングをしないエッチング液として塩酸が用いられる。最終的に形成されるリッジ120の最下部の幅は約3μmである。エッチングが終了すれば、レジストマスク130を除去し、半導体積層ウエハを水洗して窒素ブローなどで乾燥させる。
次に、このウエハが水蒸気を流した加熱炉の中に投入されて、500℃で2時間の熱処理が行われる。これによって、図4に示すように、Alを含んだ層である低ドープ上クラッド層108の表面から深さ3nm程度までを酸化させて酸化物層108bを形成する。このとき同時に、Alを含んだ層である第2上クラッド層112のリッジ側面部にも同程度の厚さの酸化物層112bが形成される。
そして、電子ビーム蒸着法を用いて、Ti層(厚さ50nm)、Pt層(厚さ50nm)、およびAu層(厚さ300nm)の順に金属薄膜を積層して、p型用電極層115を形成する(図1参照)。
続いて、基板101に対して、その下面側から所望の厚み(例えば約100μm)になるまでラッピング法によって研削する。そして、抵抗加熱蒸着法を用いて、AuGe合金層(88%Au−12%Ge、厚さ100nm)、Ni層(厚さ15nm)、およびAu層(厚さ300nm)の順に積層して、基板下面側のn型用電極層116を形成する(図1参照)。さらに、N2雰囲気中の390℃における1分間の加熱処理によって、n型用金属電極層116のアロイ処理を行う。
その後、基板101を含む半導体積層ウエハは、劈開によって、所望の共振器長(例えば500μm)を有する複数のバーに分割される。そして、各バーの劈開面において共振器の端面コーティングを行い、そのバーはさらにチップ(500μm×250μm)に分割される。分割後のチップは、In糊剤を用いてステム(図示せず)上に固着される。そして、p型用金属電極層115上に、外部回路との電気的接続を行うためのAuワイヤ(図示せず)がボンディングされ、これによってリッジ導波型半導体レーザ素子が完成する。
こうして作製されたリッジ導波型半導体レーザ素子のp型用電極115とn型用電極116との間に電流を流せば、リッジ120の両側領域121bにおける低ドープ上クラッド層108および酸化物層108bとp型用金属電極層115との間の接合がショットキー接合となって電流が遮断され、リッジ120の最上部に設けられた高濃度のドーピング層であるp+−GaAsコンタクト層114とp型用金属電極層115との間のオーミック接合のみを通して電流が流れる。これによって電流狭窄が行われて、リッジ120直下にてレーザ光が発振して劈開面から出射される。
図1に示された本実施形態1の半導体レーザ素子100では、p型用電極層115と低ドープ上クラッド層108との間に酸化物層108bが形成されているので、リッジ120以外の領域121bで十分な電流阻止性を生じ、長期の熱的・電気的ストレスにも安定な電流狭窄構造を得ることができる。他方、図16に示された特許文献1のレーザ素子構造では、ショットキー接合部608において製造上回避困難な界面欠陥準位などによってショットキー特性に不安定性が存在し、その接合部ではリーク電流が流れやすい。したがって、特許文献1のレーザ素子では、長期の熱的・電気的ストレスの影響によって、より低い電圧でブレークダウンしやすい。しかし、本実施形態1におけるようにp型用金属電極層115と低ドープ上クラッド層108との間に酸化物層108bを設けることによって、ショットキー接合部の電流リークを確実に防止することができ、安定した電流狭窄能力を得ることができる。このようなショットキー接合部における作用について、以下においてさらに詳細に説明する。
まず、図5(a)において、一般的な金属とp型半導体とのショットキー接合部における模式的なバンド構造図を示す。この図において、横軸は金属とp型半導体との界面に直交する方向における位置を表し、縦軸は電子エネルギを表す。また、φmは金属の仕事関数、χsは半導体の電子親和力、Egは半導体の禁制帯幅、Ecは半導体の伝導帯の底、Evは半導体の価電子帯の頂上、そしてEFはフェルミ準位を表している。そして、φBがショットキー障壁の高さを表し、φB=χs+Eg−φmの関係にある。このようなバンド構造おいて、金属側が正でp型半導体側が負になるように電圧をかける場合、φBが大きいほど高い電圧まで電流が流れない。
特許文献1におけるショットキー接合による電流狭窄構造では、p型の上クラッド層604とコンタクト層605上にp型用金属電極層606を形成している(図16参照)。したがって、リッジ頂部のコンタクト層605領域内に電流狭窄するためには、少なくとも上クラッド層604におけるショットキー障壁φBがコンタクト層605におけるショットキー障壁φBに比べて大きくなければならない。すなわち、コンタクト層605における(χs+Eg)に比べて、上クラッド層604における(χs+Eg)を大きくする必要がある。
しかし、p型用金属電極層606と上クラッド層604との間にショットキー障壁を形成する場合に、リッジを形成してからp型用電極層606を蒸着するまでの間に、上クラッド層604の表面は大気などにさらされ、そこに不安定な酸化膜の形成や不純物の吸着が発生する。したがって、上クラッド層604の表面上にp型用金属電極層606を蒸着しても、ショットキー接合部608には製造上回避困難な界面欠陥準位が発生してしまう。そして、このショットキー部分608ではリーク電流が流れやすく、長期の熱的・電気的ストレスに起因して、レーザ素子がより低い電圧でブレークダウンしやすくなる。
他方、図1に示された本実施形態1の半導体レーザ素子100においてもショットキー接合による電流狭窄構造を形成するので、低ドープ上クラッド層108における(χs+Eg)が第2コンタクト層114における(χs+Eg)よりも大きく設定される。これ
に加えて、半導体レーザ素子100では、p型用電極層115と低ドープ上クラッド層108との間に酸化物層108bが設けられる。
この場合の金属とp型半導体とのショットキー接合部における模式的なバンド構造図が図5(b)に示されている。ここで、酸化物層108bは、前述のように低ドープ上クラッド層108を意図的に酸化させることによって形成されたものである。したがって、リッジ120の形成時に低ドープ上クラッド層108が大気にさらされることによって発生する界面準位の位置に比べて、低ドープ上クラッド層108の内部側まで酸化物層108bを形成することができる。すなわち、この酸化物層108bは、十分な酸化工程によって形成された安定な絶縁性膜であり、界面準位に起因するリーク電流はショットキー障壁のみが存在する場合に比べて流れにくくなる。また、低ドープ上クラッド層108の表面から酸化して形成される酸化物層108bとその低ドープ上クラッド層108との間は当然ながら大気にさらされることがなく、これら両者の界面における界面準位は非常に少ない。したがって、酸化物層108bと低ドープ上クラッド層108との間にあるショットキー障壁においてもリーク電流が低減される。
すなわち、界面準位の低減されたショットキー障壁と、界面準位に対してリーク電流の発生しにくい絶縁性の酸化物層による障壁との2つの組み合わせによって電流阻止能力が高められると考えられる。そして、これによってショットキー接合部における電流リークを確実に防止することができ、安定した電流狭窄能力を得ることができる。
また、本実施形態1の半導体レーザ素子100においては、リッジ形成外領域121bにある低ドープ上クラッド層108について、ドーピング量が1×1017cm-3に低く設定されている。ショットキー接合においては、半導体側のドーピング量を少なくすることによって空乏層(図5参照)が厚くなり、これによってショットキー障壁部においてリーク電流をより発生しにくくすることができる。特に、ドーピング量を1×1017cm-3またはそれ以下に設定することによって、電流阻止能力が一段と向上し、長期の熱的・電気的ストレスにも安定な接合を得ることができる。また、リッジ頂部の第2コンタクト層114は、1×1019cm-3の高いドーピング濃度にされている。第2コンタクト層114においては、1×1018cm-3以上にドーピング濃度設定することにより、p型用金属電極層115との間でより低いコンタクト抵抗を有する良好なオーミック接合を実現することができる。
さらに、本実施形態1の半導体レーザ素子100においては、活性層105と低ドープ上クラッド層108との間にある上ガイド層106と第1上クラッド層107について、ドーピング量が低ドープ上クラッド層108に比べて高い1.35×1018cm-3に設定されている。こここで、低ドープ上クラッド層108はリッジ直下においては電流通路に位置しているので、そのドーピング量を低く設定した方が素子抵抗を低く抑制することができる。したがって、低ドープ上クラッド層108は電流阻止特性のために必要十分な厚さに抑え、それより活性層側の層についてはドーピング量を1×1017cm-3以上にすることによって、素子抵抗の上昇を抑制して素子特性の悪化を防ぐことができる。
他方、本実施形態1の半導体レーザ素子100の製造方法では、特許文献1の半導体レーザ素子600の製造方法に比較して、酸化物層形成の工程を途中に付加するだけで、リーク電流が低減された半導体レーザを得ることができる。この酸化物層形成工程は、加熱水蒸気内に一定時間放置しておくだけの簡易な工程であり、これによって電流狭窄能力の安定化が図れるという大きな利点が得られる。
また、本実施形態1の半導体レーザ素子においては、リッジの頂部の第2コンタクト層114にはAlを含まないGaAsが用いられている。この第2コンタクト層114は電
流注入経路であり、p型用金属電極層115との間でにおける電気抵抗が低いことが望ましい。ところが、本実施形態1の酸化工程においては、第2コンタクト層114の表面も水蒸気にさらされる。したがって、第2コンタクト層114の表面においてできるだけ酸化物の発生を抑制するため、その第2コンタクト層にはAlを含まないIII−V族半導体材料(本実施例1ではGaAs)を用いることが望ましい。これによって、第2コンタクト層114とp型用電極層115との間における電気抵抗を低く抑えることができる。
さらに、本実施形態1の半導体レーザ素子においては、酸化物層108bの形成の元材料になるAl含有の低ドープ上クラッド層108は、そのIII族元素中のAl組成比が0.5に設定されている。仮に、この層108のAl組成比が0.45以下である場合には、その半導体層108の酸化が進行しにくく、均質な酸化物層108bの形成が困難となる。酸化物層108bの酸化状況が不均質であれば、均一な電流阻止能力を得ることができなくてリーク電流が発生してしまう。したがって、良好な電流阻止能力を得るためには、低ドープ上クラッド層108において0.45以上のAl組成比に設定することが有効である。なお、そのAl組成比の上限についての限定は特になく、Al組成比1まで適用可能である。
酸化物層108bについては、わずかな層厚であっても酸化工程によって均質に形成されれば、特許文献1におけるようにショットキー障壁608のみで電流狭窄を行う構造に比較して、リーク電流を低減させることが可能である。しかし、当然ながら、酸化物層108bが厚いほど、それによる障壁の効果が顕著となる。酸化物層108bの厚さが少なくとも2nm以上あれば、その酸化物層による障壁の効果がより安定し、確実に電流リークが低減され得る。
他方、酸化物層108bは、高Al組成の半導体層108を酸化して形成したものである。半導体層は基板に対して格子整合して成長することが可能であるが、それを酸化させれば格子定数が大きく変わるので、その近傍の半導体層との間で歪が発生する。本実施形態1のレーザ素子100では、半導体層108の一部を酸化物108bに変化させるので、半導体層108と酸化物層108bとの密着性が高くて歪の影響を受けやすい。この酸化物層108bから活性層105までの距離は比較的小さいので、その歪がレーザ素子の信頼性や特性に与える影響は大きい。したがって、その歪の影響をできるだけ小さくするために、酸化物層108bは電流狭窄に必要以上の厚を有しないようにすること望ましい。より具体的には、酸化物層108bの厚さを20nm以下に設定することにより、活性層105に対する歪の影響を顕著に低減でき、長期にわたって劣化の少ない半導体レーザ素子が得られる。
また、本実施形態1の半導体レーザ素子100においては、低ドープ上クラッド層108と第2上クラッド層112との間に、エッチングストップ層111を設けている。低ドープ上クラッド層108と第2上クラッド層112とは同じ組成のAlGaAsであってエッチング特性も同じであるのに対して、エッチングストップ層111はInGaAsPであってエッチング特性が異なっている。したがって、低ドープ上クラッド層108より上の層をリッジ形状に形成して、容易に低ドープ上クラッド層108の上面を露出させることが可能となる。
以上においてはp型半導体層と金属電極層との間に酸化物層を有する例が説明されたが、p型とn型が反転されたレーザ素子において、n型半導体層と金属電極層との間に酸化物層を有する場合であっても同様の効果が得られることはもちろんである。これに関して、図5に類似した図6では、n型半導体層と金属電極層との接合におけるバンド構造が模式的に示されている。
図6(a)はn型半導体層と金属電極層のみで形成されるバンド構造を表し、図6(b)はn型半導体層と金属電極層の間に酸化物層が介在する場合のバンド構造を表している。図6中の各符号の意味は、図5の場合と同じである。n型半導体層の場合でも、その表面を酸化させることによって多くの界面準位に対して有効な位置に酸化物層を形成することができるので、p型半導体層の場合と同様の効果が得られる。ただし、n型半導体層の場合には、ショットキー障壁の高さφBは、φB=φm−χsの関係にある。したがって、p型半導体層の場合と同様にn型のコンタクト層に比べてn型の第1上クラッド層に関するショットキー障壁φBを大きくするためには、n型の低ドープ上クラッド層108におけるχsをn型の第2コンタクト層114におけるχsよりも小さくする必要がある。
なお、本発明は本実施形態1において上述された構造に限られるものではなく、各層の厚さや材料の変更などを適宜に行うことができることは当然である。
(実施形態2)
図7は、本発明の実施形態2による半導体レーザ素子の積層構造を模式的な断面図で示している。この図7のレーザ素子200は、図1のレーザ素子100に比べて、低ドープ上クラッド層108と酸化物層108bが低ドープ上クラッド層下部208、酸化停止層209、および低ドープ上クラッド層上部210に置き換えられていることのみにおいて異なっている。なお、酸化停止層209としては、Alを含まないかまたはその含有量の少ないIII−V族化合物半導体を利用することができる。
すなわち、本実施形態2においては、第1上クラッド層107上にAl0.5Ga0.5As低ドープ上クラッド層下部208(厚さ0.2μm、Znドーピング濃度1×1017cm-3)、p−In0.1568Ga0.8432As0.40.6酸化停止層209(厚さ3nm、Znドーピング濃度1×1017cm-3)、およびAl0.5Ga0.5As低ドープ上クラッド層上部210(厚さ3nm、Znドーピング濃度1×1017cm-3)を結晶成長させる。
その後、リッジ120の形成時に、低ドープ上クラッド層上部210がリッジ形成領域121a以外の領域121bにおいて露出させられる。そして、リッジ形成外領域121bにおいて、低ドープ上クラッド層上部210を酸化させて酸化物層210b(厚さ3nm)に変換する。このとき、リッジ領域121a内では、低ドープ上クラッド層上面部210aが酸化されずに残される。
こうして、屈折率の低い酸化物層210bを確実に所定の厚さに制御することができ、レーザ素子の改善された発光特性をより再現性よく得ることができる。また、歪の発生源である酸化物層210bに関して、下方へ向かう酸化の進行を確実に酸化停止層209の位置で止めることができ、その歪の影響を制御することができる。これは、酸化物層210bの形成工程時だけでなく、半導体レーザ素子200を長期間動作させる場合においても、酸化物層210bから下方の活性層106へ向かう酸化の進行を防止することができ、レーザ素子の信頼性を向上させる効果を生じる。
なお、本実施形態2では、実施形態1に比較して、電流阻止を行う領域において酸化物層210bに接する層が、低ドープ下クラッド層108から酸化停止層209に変わっている。この酸化停止層209にはGaAs基板101に格子整合し、かつχs+Egが大きい材料としてInGaAsPを用いている。また、この酸化停止層209においては、低ドープ下クラッド層208と同様に、そのドーピング量も1×1017cm-3に低くしている。このことも、電流阻止能力を向上させるように作用し得る。こうして、本実施形態2では、電流阻止領域において十分な障壁が得られる。
(実施形態3)
図8は、本発明の実施形態3による半導体レーザ素子の積層構造を模式的な断面図で示している。図8のレーザ素子300は、図7のレーザ素子200に比べて、低ドープ上クラッド層上部210がAl組成比のより高いAlGaAs層310に置き換えられ、エッチングストップ層111を省略し、そしてリッジ形成外領域121bにおいて高Al組成層310を酸化させることによって酸化物層310bを形成していることのみにおいて異なっている。
図9から図11の模式的断面図を参照しつつ、本実施形態3による半導体レーザ素子300の製造方法が以下において説明される。
まず、図2に類似した図9に示すように、本実施形態3においても、実施形態2の場合と同様にn−GaAs基板101上に複数の半導体層を順次にMOCVD法で結晶成長させる。ただし、この際に、本実施形態3においては、実施形態2における低ドープ上クラッド層上部210がp−AlAs層310(厚さ5nm、Znドーピング濃度:1×1017-3)に置き換えられる。そして、図9においても、図2の場合と同様に、レジストマスク130が形成される。
次に、図3に類似した図10に示すように、このレジストマスク130を利用したエッチングによって、第2上クラッド層112、第1コンタクト層113、第2コンタクト層114がマスク130の両側のリッジ形成外領域121bにおいて除去されて、マスク130の直下に順メサストライプ状のリッジ120が形成される。
このエッチングでは、まず、III族元素中のAl組成比が0.6未満のAlGaAs系材料である第2上クラッド層112、第1コンタクト層113、および第2コンタクト層114をエッチングするがIII族元素中のAl組成比が0.6以上のAlGaAs系材料である高Al組成層310をエッチングしないエッチング液として、酒石酸と過酸化水素水の混合水溶液を用いる。形成されるリッジ120の最下部の幅は約3μmである。エッチング終了後に、レジストマスク130は除去される。そして、基板110を含むウエハに対して水洗を行い、窒素ブローなどで乾燥させる。
以上のようなエッチング工程において、リッジ120が形成されて高Al組成層310がリッジ外領域121bで露出されてから水洗までの間に、高Al組成層310の露出部分が酸化されて図11に示すように酸化物層310bとなる。これは、高Al組成層310がAlを非常に多く含む材料であるので、過酸化水素水を含むエッチング液や水分などと接することで容易に表面から酸化されることによる。高Al組成層310は約5nmの薄さであるので、酸化は高Al組成層310の表面からその下の酸化停止層209との界面まで進行して停止する。
その後、本実施形態3においても、実施形態1の場合と同様に、p型用金属電極115の形成、基板101の研削、n型用金属電極116の形成とアロイ処理、ウエハからバーへの劈開、チップ分割、ステムへの固着、およびワイヤボンディングを行って半導体レーザ300を完成させる。
作製された本実施形態3の半導体レーザ素子(図8参照)のp型用電極115とn型用電極116との間に電流を流せば、リッジ外領域121bにおける酸化停止層209および酸化物層310bとp型用電極層115との間での接合では電流が遮断され、リッジ120の最上部の高濃度半導体層である第2コンタクト層114とp型用金属電極層115との間のオーミック接合のみを通して電流が流れる。こうして電流狭窄が行われ、リッジ120直下にてレーザ光が発振して劈開面から射出される。
以上のように、本実施形態3の半導体レーザ素子も、金属電極層と半導体層との間に酸化物層を含んでいる。このような構成を有することによって、本実施形態3においても、実施形態1および2と同様の効果によって、リッジ外領域で十分な電流阻止性を有し、長期の熱的・電気的ストレスにも安定な電流狭窄構造を得ることができる。すなわち、金属電極層と半導体層との間に薄い酸化物層を設けることによって、電流のリークを確実に防止することができ、安定した電流狭窄能力を得ることができる。
なお、本実施形態3の半導体レーザ素子においては、実施形態2に比べて、酸化させる半導体層310がAlAsであってAl組成比が非常に大きい。したがって、本実施形態3では、極めて容易かつ均一に半導体層310の酸化が行われ、電流阻止能力がより安定に発揮され得るようになる。また、高Al組成層310の下には酸化停止層209が設けられているので、両者の界面で酸化が確実に停止する。
さらに、本実施形態3では、リッジ120の形成の際に、高Al組成層310をエッチングストップ層としても利用する。酒石酸系のエッチャントはAl組成比の低い層をエッチングするがAl組成比の高い層をエッチングしない特性があるので、第2上クラッド層112のAl組成比を高Al組成層310にくらべて低く設定することによって、リッジ120の形成時のエッチングを高Al組成層310で確実に停止させることができる。すなわち、高Al組成層310がリッジ形成時にエッチングを停止させる機能をも兼ねるので、リッジ120の形成の完了と同時に、高Al組成層310のうちで酸化されるべき領域が露出され、レーザ素子の作製工程が簡略化され得る。また、このような選択エッチングを行うことによって、リッジ導波型半導体レーザ素子の光分布に大きな影響を与える活性層とリッジ領域外の表面との距離を再現性よく制御することができ、レーザ素子の遠視野像特性を安定化させることができる。
上述のように、本実施形態3における高Al組成層310の酸化は、リッジ120の形成工程において過酸化水素水を含むエッチング液や水分との接触を利用して行われる。すなわち、AlAsである高Al組成層310が非常に酸化しやすい層であってその厚さも5nmで薄いので、本実施形態3におけるように過酸化水素水や水を用いるエッチング工程と酸化工程を実質的に同時進行させて酸化物層310bを形成することが可能である。これによって、特許文献1の場合に比べて実質的にほぼ同一の工程数で、高い電流狭窄能力を有する半導体レーザ素子を得ることができる。
当然ながら、本実施形態3の場合に限らず、酸化させるべき半導体層をリッジ形成工程で露出させた時点以後においては、その露出された半導体層はエッチング液、エッチングガス、水、空気などの液体や気体と接触する。したがって、これらの液体または気体のいずれかによって酸化されやすい材料を選定してその露出半導体層を形成しておくことによって、リッジ形成工程と酸化工程を実質的に同時に進行させることができ、実質的に特許文献1の場合とほぼ同じ工程数で半導体レーザ素子を作製することができる。特に、高Al組成層310としてIII族元素中のAl組成比を0.9以上にすることによって、酸化性を有する液体または気体の接触による酸化をより均質に行うことができ、形成された酸化物層によって顕著に安定で高い電流阻止能力を得ることができる。また、過酸化水素水はAlを含む半導体層を酸化させる能力が高いので、過酸化水素水を含むエッチング液をリッジ形成時の最後のエッチングに用いることによって、酸化させるべき半導体層をエッチングで露出させた時点でそのエッチング液でそのまま酸化を行うことができる。すなわち、リッジ形成工程と酸化工程を容易にほぼ同時進行させることができる。
もちろん、露出半導体層をより確実かつ均一に酸化させるために、リッジ形成終了後に酸化のための専用の工程を設けることも可能である。例えば、水蒸気を流した300℃の加熱炉中にウエハを5分投入して熱処理してもよい。本実施形態3では露出半導体層がA
lAsであり、実施形態1の露出半導体層であるAl0.5Ga0.5Asに比べてAl組成比が非常に高くて容易に酸化し得る。したがって、本実施形態3における露出半導体層の酸化のためには、実施形態1の露出半導体層に比べて、はるかに低温で短時間の熱処理で十分である。そして、AlAs半導体層310は、直下の酸化停止層209との界面まで、より均一に酸化させられ得る。
ところで、上述のような方法で高Al組成層310の酸化を行った場合、酸化は活性層105に近づく厚さ方向だけでなく、リッジ領域121a内ヘ向かう水平方向へも進行する。しかし、非常に薄いAlAs半導体層310が水平方向に酸化されていくので、本実施形態3の場合のようにエッチング液や水分を用いる酸化はそれほど深く進行せず、その深さはリッジ120の端から約10〜20nm程度までである。また、上述のように水蒸気を流した300℃の加熱炉の中にウエハを5分投入して熱処理した場合でも、リッジ領域121a内ヘの酸化の深さは約50nm程度である。これはリッジの幅3μmに比べて1/50以下であって非常に小さく、リッジ領域121a内を通って活性層105へ流れ込む電流の分布に対して実質的影響を与えない範囲である。
仮に上述の熱処理をさらに高温で長時間行えば、水平方向へも酸化が長く進行し、リッジ領域121a内でより狭い電流狭窄領域を作ることになる。この水平方向への酸化では、酸化を高温で長時間行った場合には同じ条件で行っても酸化の長さを一定にすることが難しく、リッジ領域121a内の電流狭窄領域の幅が素子ごとに変動し、安定したレーザ素子特性が得られない。したがって、本実施形態3においてより確実な酸化のために熱処理を利用する場合には、リッジ外領域121bでの電流阻止に必要十分な厚さの酸化物層310bが形成される時点で熱処理による酸化を終了させ、リッジ領域121a内へ伸び込む水平方向への酸化を実質的に防止する。
(実施形態4)
図12は、本発明の実施形態4による光ディスク装置の一例を模式的なブロック図で示している。この光ディスク装置400は、光ディスク401にデータを書き込みかつ書き込まれたデータを再生することができ、半導体レーザ素子402を備えている。この半導体レーザ素子402は実施形態3の半導体レーザ素子に類似しており、その活性層とガイド層にAlGaAs系半導体が用いられていて波長780nm帯で発振することのみにおいて異なっている。
この光ディスク装置400における書き込みの際には、半導体レーザ素子402から射出された信号光がコリメートレンズ403によって平行光にされる。その平行光は、ビームスプリッタ404を透過してλ/4偏光板405で偏光状態が調節された後に、対物レンズ406で集光されて光ディスク401に照射される。読み出し時には、データ信号がのっていないレーザ光が書き込み時と同じ経路をたどって光ディスク401に照射され、データ記録された光ディスク401の表面で反射される。その反射光は、レーザ光照射用対物レンズ406とλ/4偏光板405を経た後にビームスプリッタ404で反射されて角度が90°変えられ、その後に受光素子用対物レンズ407で集光されて信号検出用受光素子408に入射する。信号検出用受光素子408内において入射レーザ光の強弱に対応して読み出しデータ信号が電気信号に変換され、信号光再生回路409において元の信号に再生される。
この実施形態4の光ディスク装置では、低コストで製造できかつ電流狭窄能力の安定した半導体レーザ素子402を用いているので、従来の光ディスク装置に比べて、長期動作においても故障が少ない光ディスク装置を安価に提供することができる。
なお、ここでは活性層とガイド層以外は実施形態3と同様の構成を有する半導体レーザ
素子402を記録再生型の光ディスク装置に適用した例について説明したが、同じ波長780nm帯を用いる光ディスク記録装置および光ディスク再生装置や他の波長帯(例えば650nm帯)を利用する光ディスク装置にも適用可能であることはいうまでもない。
(実施形態5)
図13は、本発明の実施形態5による光伝送システムに使用される光伝送モジュール500を模式的断面図で示している。また、図14はこの光伝送モジュール500の光源付近を示す拡大図であり、図15はその光伝送モジュール500を用いた光伝送システムを模式的斜視図で示している。
本実施形態5では、実施形態3による発振波長890nmのInGaAs系半導体レーザ素子(レーザチップ)300を光源として用い、またシリコン(Si)のpinフォトダイオード素子を受光素子521として用いている。そして、通信を行う双方の側(例えば、端末とサーバ)にそれぞれ同じ光伝送モジュール500を備えることによって、双方の光伝送モジュール500間で光信号を送受信する光伝送システムが構成され得る。
図13に示されているように、光伝送モジュール500は、データ送信のための発光部510とデータ受信のための受光部520を含んでいる。発光部510は、半導体レーザ素子300とその上方において送信光を整形する送信用レンズ512とを含んでいる。また、受光部520は、フォトダイオード素子521と外部からの受信光を集光する受信用レンズ522とを含んでいる。半導体レーザ素子300とフォトダイオード素子521は回路基板501上に実装され、それぞれワイヤ517と526によって回路基板501上の配線パターン(図示せず)に接続されている。また、発光部510と受光部520との間の位置には、光伝送モジュール500を動作させるための集積回路素子530が組み込まれている。
回路基板501の上面は、半導体レーザ素子300、フォトダイオード素子521、および集積回路素子530が覆われるように、波長850〜900nmの光に対して透明なエポキシ樹脂モールド502によって被覆されている。ここで、エポキシ樹脂モールド502自体が、その形状に基づいて、送信用レンズ512と受信用レンズ522を含んでいる。すなわち、エポキシ樹脂モールド502は、半導体レーザ素子300の上方には送信用レンズ511が配置されてフォトダイオード521の上方には受信用レンズ522が配されるように一体的に成形される。
発光部510を拡大して示す図14を参照して、回路基板501上には深さ約300μmの凹部513が形成され、その表面には金属膜である実装面514が形成されている。凹部513の横には、回路基板501上の配線パターンの1部として、ワイヤボンドパッド515が形成されている。凹部513の底では、半導体レーザ素子300がその下面のn型用電極を実装面514に接するようにマウントされている。そして、半導体レーザ素子300の上面のp型用電極は、ワイヤ517によってワイヤボンドパッド515へ電気的に接続されている。
凹部513内では、液状シリコーン樹脂516が充填されて、光拡散部として硬化させられている。このシリコーン樹脂516中には、光を拡散させるフィラー(例えば、ポリスチレン製粒子、平均粒径1μm(図示せず))が混入されている。すなわち、液状シリコーン樹脂516が凹部513内に適量滴下され、その表面張力に起因して凹部513内に留まって半導体レーザ素子300を覆う。その滴下後の液状シリコーン樹脂516は、80℃で約5分間加熱されて、ゼリー状になるまで硬化させられる。そして、その硬化されたシリコーン樹脂516上にエポキシ樹脂モールド502を被覆することによって、送信用レンズ512を形成している。
この発光部510において半導体レーザ素子300を駆動させれば、図15中の矢印で示されているようにレーザ素子300の端面から水平方向に発光し、出射された光はシリコーン樹脂516内に入射して、その樹脂内のフィラーによって拡散されながら進む。そして、凹部513の側面部にある金属膜の実装面514で反射され上方に向かう。その後、光はシリコーン樹脂516の上面から透明なエポキシ樹脂モールド502内に入り、さらに送信用レンズ512で整形されて外部へ放出される。
ここで、半導体レーザ素子300の発光点は数μm径と非常に小さくかつ発光強度が高いので、レーザ光をそのまま外部へ放射させれば眼に対する安全上の問題があるが、本発明ではフィラーによってレーザ光が拡散され、外部から見た発光点はシリコーン樹脂516の上面部に広がって見えるので、安全上の問題が生じることはない。このような発光部510の構成を採用することによって、従来の発光ダイオード素子に替えて半導体レーザ素子300を用いることが可能となる。
すなわち、本実施形態5の光伝送モジュールは、本発明の半導体レーザ素子を用いることによって安価に製造可能となりかつ長期動作においても故障が少ないものとなる。また、通信を行う双方の側に一対の同じ光伝送モジュール500を備えることによって、双方の光伝送モジュール500間で光信号を送受信する光伝送システムを構成することができる。
図15は、一対の光伝送モジュール500a、500bを利用した光伝送システムの一例を模式的斜視図で示している。この光伝送システムは、部屋の天井に設置された基地局541に光伝送モジュール500aを備えるとともに、パーソナルコンピュータ542に同種の光伝送モジュール500bを備えている。パーソナルコンピュータ542側の光伝送モジュール500bの光源から情報を伴って発せられた光信号は、基地局541側の光伝送モジュール500aの受光素子によって受信される。また、基地局541側の光伝送モジュール500aの光源から発せられた光信号は、パーソナルコンピュータ542側の光伝送モジュール500bの受光素子によって受信される。このようにして、光(赤外線)によるデータ通信を実現することができる。
以上のように、本発明によれば、十分な電流狭窄能力を有することによって高い発振効率を生じかつ低消費電力動作が可能な半導体レーザ素子を低コストの製造方法で提供することができる。また、本発明によれば、そのような半導体レーザ素子を利用した光ディスク装置および光伝送モジュールを提供することをもできる。
本発明の実施形態1による半導体レーザ素子の積層構造を示す模式的断面図である。 図1の半導体レーザ素子の製造工程を説明するための模式的断面図である。 図2に続く製造工程を説明するための模式的断面図である。 図3に続く製造工程を説明するための模式的断面図である。 金属とp型半導体とのショットキー接合部における模式的なエネルギバンド構造図である。 金属とn型半導体とのショットキー接合部における模式的なエネルギバンド構造図である。 本発明の実施形態2による半導体レーザ素子の積層構造を示す模式的断面図である。 本発明の実施形態3による半導体レーザ素子の積層構造を示す模式的断面図である。 図8の半導体レーザ素子の製造工程を説明するための模式的断面図である。 図9に続く製造工程を説明するための模式的断面図である。 図10に続く製造工程を説明するための模式的断面図である。 本発明の実施形態4による光ディスク装置を示す模式的ブロック図である。 本発明の実施形態5による光伝送システムに使用される光伝送モジュールを示す模式的断面図である。 図13の光伝送モジュール中における半導体レーザ素子の近傍を拡大表示する模式的断面図である。 本発明の実施形態5による光伝送システムの一例を示す模式的斜視図である。 特許文献1による半導体レーザ素子の積層構造とその製造方法を説明するための模式的断面図である。
符号の説明
101 n−GaAs基板、102 n−GaAsバッファ層、103 n−AlGaAs下クラッド層、104 n−AlGaAs下ガイド層、105 多重歪量子井戸活性層、106 p−AlGaAs上ガイド層、107 p−AlGaAs第1上クラッド層、108 p−AlGaAs低ドープ上クラッド層、108b 酸化物層、111 p−InGaAsPエッチングストップ層、112 p−AlGaAs第2上クラッド層、112b 酸化物層、113 p−GaAsコンタクト層、114 p+−GaAsコンタクト層、115 p型用金属電極層、116 n型用金属電極層、120 リッジ、121a リッジ形成領域、121b リッジ形成外領域、130 レジストマスク、208
p−AlGaAs低ドープ上クラッド層下部、209 酸化停止層、210、210a
p−AlGaAs低ドープ上クラッド層表面部、210b 酸化物層、310、310a AlAs高Al組成層、310b 酸化物層、400 光ディスク装置、401 光ディスク、402 半導体レーザ素子、403 コリメートレンズ、404 ビームスプリッタ、405 λ/4偏光板、406 対物レンズ、407 受光素子用対物レンズ、408 信号検出用受光素子、409 信号光再生回路、500、500a、500b 光伝送モジュール、501 回路基板、510 発光部、512 送信用レンズ、513
凹部、516 シリコーン樹脂、517 ワイヤ、520 受光部、521 フォトダイオード、522 受信用レンズ、526 ワイヤ、530 集積回路素子、514 実装面、515 ワイヤボンドパッド、541 基地局、542 パーソナルコンピュータ、601 n−GaAs基板、602 n−InGaP下クラッド層、603 InGaAs/GaAs歪量子井戸活性層、604 p−InGaP上クラッド層、605 p−InGaAsコンタクト層、606 p型用金属電極層、607 n型用金属電極層、608 ショットキー接合部。

Claims (16)

  1. 第1導電型の半導体基板上に、第1導電型の下クラッド層、活性層、Alを含む第2導電型の第1上クラッド層、ストライプ状リッジを形成する第2導電型の第2上クラッド層、および第2導電型のコンタクト層が順次設けられたリッジ導波型半導体レーザ素子であって、
    前記第1上クラッド層の電子親和力をχ1として禁制帯幅をEg1とし、前記コンタクト層の電子親和力をχ2として禁制帯幅をEg2としたときに、前記第1導電型がn型で前記第2導電型がp型の場合には(χ1+Eg1)>(χ2+Eg2)の関係を満たし、前記第1導電型がp型で前記第2導電型がn型の場合にはχ1<χ2の関係を満たし、
    前記リッジの直下を除く領域には前記第1上クラッド層の上面を酸化することによって形成された酸化物層が設けられており、
    前記リッジの頂部の前記コンタクト層、そのリッジの少なくも一方の側面、および前記酸化物層の上に連なって直接被覆している金属電極層を備えていることを特徴とする半導体レーザ素子。
  2. 前記コンタクト層における第2導電型のドーピング濃度が1×1018cm-3以上であり、前記第1上クラッド層のうちで前記酸化物層の直下に接する領域は第2導電型のドーピング濃度が1×1017cm-3以下の低濃度ドープ領域であることを特徴とする請求項1に記載の半導体レーザ素子。
  3. 前記第1上クラッド層において、前記低濃度ドープ領域と前記活性層との間には、1×1017cm-3より大きいドーピング濃度を有する第2導電型のドープ領域が形成されていることを特徴とする請求項2に記載の半導体レーザ素子。
  4. 前記コンタクト層の最上表面層はAlを含んでいないことを特徴とする請求項1から3のいずれかに記載の半導体レーザ素子。
  5. 前記第1上クラッド層の上面におけるIII族元素中のAl組成比は0.45より大きいことを特徴とする請求項1から4のいずれかに記載の半導体レーザ素子。
  6. 前記酸化物層の厚さは2nm以上20nm以下であることを特徴とする請求項1から5のいずれかに記載の半導体レーザ素子。
  7. 前記第2上クラッド層は前記第1クラッド層に対して選択エッチング可能である材料で構成されていることを特徴とする請求項1から6のいずれかに記載の半導体レーザ素子。
  8. 前記第1上クラッド層中において、前記第1上クラッド層に比べてAl組成比の低いかまたはAlを含まない半導体からなる酸化停止層が挿入されており、前記酸化物層は前記第1上クラッド層における前記酸化停止層より上側部分を酸化させることによって形成されていることを特徴とする請求項1から7のいずれかに記載の半導体レーザ素子。
  9. 前記第1上クラッド層の上面におけるIII族元素中のAl組成比は0.9以上であることを特徴とする請求項8に記載の半導体レーザ素子。
  10. 第1導電型の半導体基板上に、第1導電型の下クラッド層、活性層、Alを含む第2導電型の第1上クラッド層、第2導電型の第2上クラッド層、およびAlを含まない第2導電型のコンタクト層を順次形成する工程と、
    前記第2上クラッド層と前記コンタクト層の一部を除去してストライプ状のリッジを形成し、そのリッジを除く領域において前記第1上クラッド層の上面を部分的に露出させる
    工程と、
    前記リッジの直下を除く領域において前記第1上クラッド層の前記露出された上面から酸化させて酸化物層を形成する工程と、
    前記リッジの頂部の前記コンタクト層、そのリッジの少なくも一方の側面、および前記酸化物層の上に連なって金属層を直接被覆させる電極層の形成工程とを含み、
    前記第1上クラッド層の電子親和力をχ1として禁制帯幅をEg1とし、前記コンタクト層の電子親和力をχ2として禁制帯幅をEg2としたときに、第1導電型がn型で第2導電型がp型の場合には(χ1+Eg1)>(χ2+Eg2)の条件を満たし、第1導電型がp型で第2導電型がn型の場合にはχ1<χ2の条件を満たすことを特徴とする半導体レーザ素子の製造方法。
  11. 前記第1クラッド層を形成する工程では、前記第1上クラッド層中に、その第1上クラッド層よりもAl組成比の低いかまたはAlを含まないIII−V族半導体からなる酸化停止層を設け、
    前記酸化物層を形成する工程では、前記第1上クラッド層中において前記酸化停止層より上側の層を酸化させることによってその酸化物層を形成することを特徴とする請求項10に記載の半導体レーザ素子の製造方法。
  12. 前記リッジを形成して前記第1上クラッド層の上面を部分的に露出させる工程では、前記第1上クラッド層の上面が露出された時点において、その露出面に対して酸化性を有する液体または気体に接触させることによって前記酸化物層を形成することを特徴とする請求項10または11に記載の半導体レーザ素子の製造方法。
  13. 前記第1上クラッド層の最上部におけるIII族元素中のAl組成比は0.9以上であることを特徴とする請求項12に記載の半導体レーザ素子の製造方法。
  14. 前記リッジを形成して前記第1上クラッド層の上面を部分的に露出させる工程では、前記コンタクト層の上にストライプ状のエッチングマスクを形成し、そのマスク以外の領域を上層から順次エッチングで除去していき、最後のエッチングでは過酸化水素水を含む液体のエッチング液を用いて前記第1上クラッド層の上面を露出させ、続いて、その露出面をそのまま前記エッチング液に接触させることによって前記酸化物層を形成することを特徴とする請求項12または13に記載の半導体レーザ素子の製造方法。
  15. 請求項1から9のいずれかの半導体レーザ素子を用いたことを特徴とする光ディスク装置。
  16. 請求項1から9のいずれかの半導体レーザ素子を用いたことを特徴とする光伝送モジュール。
JP2006220224A 2006-08-11 2006-08-11 半導体レーザ素子とその製造方法、光ディスク装置、および光伝送モジュール Pending JP2008047641A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006220224A JP2008047641A (ja) 2006-08-11 2006-08-11 半導体レーザ素子とその製造方法、光ディスク装置、および光伝送モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006220224A JP2008047641A (ja) 2006-08-11 2006-08-11 半導体レーザ素子とその製造方法、光ディスク装置、および光伝送モジュール

Publications (1)

Publication Number Publication Date
JP2008047641A true JP2008047641A (ja) 2008-02-28

Family

ID=39181105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006220224A Pending JP2008047641A (ja) 2006-08-11 2006-08-11 半導体レーザ素子とその製造方法、光ディスク装置、および光伝送モジュール

Country Status (1)

Country Link
JP (1) JP2008047641A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024104500A1 (zh) * 2022-11-14 2024-05-23 中国科学院半导体研究所 高铝组分的氧化限制半导体激光器及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60229389A (ja) * 1984-04-26 1985-11-14 Sharp Corp 半導体レ−ザ素子
JPH03156988A (ja) * 1989-11-15 1991-07-04 Fujitsu Ltd 半導体レーザ
JPH10200210A (ja) * 1997-01-10 1998-07-31 Nec Corp 面発光レーザの製造方法
JPH10303502A (ja) * 1997-04-24 1998-11-13 Sharp Corp 窒化ガリウム系化合物半導体発光素子及びその製造方法
JPH1168231A (ja) * 1997-08-25 1999-03-09 Mitsubishi Electric Corp 半導体レーザ,及びその製造方法
JP2000174391A (ja) * 1998-12-08 2000-06-23 Nec Corp 化合物半導体素子の製造方法
JP2005268753A (ja) * 2004-02-16 2005-09-29 Sharp Corp 半導体レーザ素子、半導体レーザ素子の製造方法、光ディスク装置および光伝送システム
JP2006059975A (ja) * 2004-08-19 2006-03-02 Sharp Corp 半導体レーザ素子およびその製造方法、光ディスク装置、光伝送システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60229389A (ja) * 1984-04-26 1985-11-14 Sharp Corp 半導体レ−ザ素子
JPH03156988A (ja) * 1989-11-15 1991-07-04 Fujitsu Ltd 半導体レーザ
JPH10200210A (ja) * 1997-01-10 1998-07-31 Nec Corp 面発光レーザの製造方法
JPH10303502A (ja) * 1997-04-24 1998-11-13 Sharp Corp 窒化ガリウム系化合物半導体発光素子及びその製造方法
JPH1168231A (ja) * 1997-08-25 1999-03-09 Mitsubishi Electric Corp 半導体レーザ,及びその製造方法
JP2000174391A (ja) * 1998-12-08 2000-06-23 Nec Corp 化合物半導体素子の製造方法
JP2005268753A (ja) * 2004-02-16 2005-09-29 Sharp Corp 半導体レーザ素子、半導体レーザ素子の製造方法、光ディスク装置および光伝送システム
JP2006059975A (ja) * 2004-08-19 2006-03-02 Sharp Corp 半導体レーザ素子およびその製造方法、光ディスク装置、光伝送システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024104500A1 (zh) * 2022-11-14 2024-05-23 中国科学院半导体研究所 高铝组分的氧化限制半导体激光器及其制备方法

Similar Documents

Publication Publication Date Title
JP4460473B2 (ja) 半導体レーザ装置の製造方法
US8300671B2 (en) Surface emitting laser
JP4224041B2 (ja) 半導体レーザ素子、半導体レーザ素子の製造方法、光ディスク装置および光伝送システム
US6670643B2 (en) Semiconductor laser device and its manufacturing method, and optical disc reproducing and recording apparatus
JP4641251B2 (ja) 半導体装置の製造方法、半導体レーザ装置、光伝送モジュールおよび光ディスク装置
US7339967B2 (en) Semiconductor device, semiconductor laser device, manufacturing method for semiconductor device, manufacturing method for semiconductor laser device, optical disk device and optical transmission system
US7492801B2 (en) Semiconductor laser element, manufacturing method thereof, optical disk apparatus and optical transmission system
US6813299B2 (en) Semiconductor laser device and optical disk reproducing and recording apparatus
JP4121494B2 (ja) 半導体レーザ素子、半導体レーザ素子の製造方法、光ディスク装置および光伝送システム
JP4377779B2 (ja) 半導体レーザ素子およびその製造方法および光ディスク装置および光伝送システム
JP2008047641A (ja) 半導体レーザ素子とその製造方法、光ディスク装置、および光伝送モジュール
JP4884698B2 (ja) 半導体装置の製造方法、半導体レーザ装置、光伝送モジュールおよび光ディスク装置
JP4869582B2 (ja) 半導体レーザ素子、光ディスク装置および光伝送システム
JP2008047640A (ja) 半導体レーザ素子とその製造方法、光ディスク装置、および光伝送モジュール
JP4786873B2 (ja) 半導体レーザ素子の製造方法
JP4076333B2 (ja) 半導体レーザ装置及び光ディスク再生記録装置
JP4843251B2 (ja) 半導体レーザ素子、光ディスク装置および光伝送システム
JP4870349B2 (ja) 半導体レーザ装置の製造方法
JP4619647B2 (ja) 化合物半導体装置の製造方法
JP2005268754A (ja) 半導体レーザ素子、半導体レーザ素子の製造方法、光ディスク装置および光伝送システム
JP2005302984A (ja) 化合物半導体装置、化合物半導体装置の製造方法、光伝送モジュール、および、光ディスク装置
JP2007317731A (ja) 半導体レーザ素子、光ディスク装置および光伝送システム
JP2005340576A (ja) 半導体レーザ素子およびその製造方法、光ディスク装置並びに光伝送システム
JP2005353678A (ja) 半導体レーザ素子およびその製造方法、光ディスク装置、光伝送システム
JP2006059975A (ja) 半導体レーザ素子およびその製造方法、光ディスク装置、光伝送システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120228