JP2008037329A - Intake air temperature adjustment structure for fuel cell automobile - Google Patents

Intake air temperature adjustment structure for fuel cell automobile Download PDF

Info

Publication number
JP2008037329A
JP2008037329A JP2006216661A JP2006216661A JP2008037329A JP 2008037329 A JP2008037329 A JP 2008037329A JP 2006216661 A JP2006216661 A JP 2006216661A JP 2006216661 A JP2006216661 A JP 2006216661A JP 2008037329 A JP2008037329 A JP 2008037329A
Authority
JP
Japan
Prior art keywords
air
temperature
fuel cell
intake
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006216661A
Other languages
Japanese (ja)
Inventor
Yoshitaka Miho
佳孝 美保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006216661A priority Critical patent/JP2008037329A/en
Publication of JP2008037329A publication Critical patent/JP2008037329A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an intake air temperature adjustment structure for a fuel cell automobile preventing over-heating of a compressor. <P>SOLUTION: In the fuel cell automobile provided with a motor room 1, the intake air temperature adjustment structure is provided with an intake air introduction duct 9 for introducing air to the compressor 7; a space part X opened with an intake air introduction port of the intake air introduction duct; passages A-C circulated with air of the motor room between the space part and the motor room; and opening/closing means 13-15 for opening/closing the passages according to a temperature. The opening/closing means introduces external air to the intake air introduction duct by varying the shape so as to close the passages when the temperature is not less than a first threshold value. When the temperature is less than the first threshold value, it introduces the air in the motor room to the intake air introduction duct with the external air by varying the shape so as to release the passages. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、燃料電池自動車の吸気温度調節構造、特に外気の温度に応じて形状変化する部材を用いてモータルーム内の空気の流れを制御して吸気の温度を調節する構造に関するものである。   The present invention relates to an intake air temperature adjustment structure for a fuel cell vehicle, and more particularly to a structure for adjusting the temperature of intake air by controlling the flow of air in a motor room using a member whose shape changes in accordance with the temperature of outside air.

従来のモータルーム内(またはエンジンルーム内)吸気温度調節構造として特許文献1に記載の技術がある。この技術は、エンジン後方に吸気系を、前方に排気系を配置する横置きエンジンであって、エンジンとエンジンフード間に外気を吸気系に導入する外気ダクトが車両前方から吸気系近傍まで配置される。そして、排気系から高温の空気がエンジン上部と吸気ダクト間を通じて吸気系に流れ込むことを防止するため、エンジン上部と吸気ダクト間の通路を塞ぐ開閉手段が配置されることを特徴とする。   As a conventional intake air temperature adjustment structure in a motor room (or in an engine room), there is a technique described in Patent Document 1. This technology is a horizontally mounted engine in which an intake system is arranged at the rear of the engine and an exhaust system is arranged at the front, and an outside air duct for introducing outside air into the intake system between the engine and the engine hood is arranged from the front of the vehicle to the vicinity of the intake system. The In order to prevent high-temperature air from flowing from the exhaust system into the intake system through the upper part of the engine and the intake duct, an opening / closing means for closing the passage between the upper part of the engine and the intake duct is arranged.

また特許文献2に記載の温度調節構造は、コンデンサよりも大きな上下サイズを有するラジエータの上部にカバーを設けるラジエータの上部カバー構造であって、このカバーがラジエータのコンデンサよりも上方へ突出している部分の通気を確保し、且つラジエータの上部付近を覆い隠せるようになっていることを特徴とする。
特開平8−164756号公報 特開平9−193673号公報
Further, the temperature control structure described in Patent Document 2 is a radiator upper cover structure in which a cover is provided on the upper part of a radiator having a larger vertical size than the capacitor, and the cover protrudes upward from the condenser of the radiator. It is characterized in that the ventilation of the radiator is ensured and the vicinity of the upper part of the radiator can be covered.
JP-A-8-164756 JP-A-9-193673

ここで、これら従来技術を燃料電池自動車のモータルームに適用した場合を考える。燃料電池自動車の場合には、高温の吸気が導入されるとコンプレッサが耐熱温度に達して、コンプレッサの負荷を制限することになる。一方、低温の吸気が導入される場合には、吸気中の水分が燃料電池スタック内に溜り、ガスの流れが滞り、燃料電池の発電効率を低下させる。このような場合には、外気に比して温度の高いモータルーム内の空気を吸気として用いることで、燃料電池の発電効率の低下を抑制できる。   Here, consider the case where these conventional techniques are applied to the motor room of a fuel cell vehicle. In the case of a fuel cell vehicle, when high-temperature intake air is introduced, the compressor reaches the heat-resistant temperature and limits the load on the compressor. On the other hand, when low-temperature intake air is introduced, moisture in the intake air accumulates in the fuel cell stack, the gas flow stagnates, and the power generation efficiency of the fuel cell is reduced. In such a case, a decrease in power generation efficiency of the fuel cell can be suppressed by using air in the motor room, which is higher in temperature than outside air, as intake air.

したがって、外気の温度に応じてモータルーム内の空気を吸気として吸入するかどうかを制御することが、特に走行風を期待できない停車時には重要であるが、従来技術に開示の技術は、固定式の構造を有しており、常時、空気の流れを封止するものであり、コンプレッサの許容温度範囲に吸気の温度を制御するには適当ではないという問題がある。   Therefore, it is important to control whether or not the air in the motor room is taken in as an intake air in accordance with the temperature of the outside air, particularly when the vehicle cannot be expected to travel, but the technology disclosed in the prior art is a fixed type. Since it has a structure and always seals the air flow, there is a problem that it is not suitable for controlling the temperature of the intake air within the allowable temperature range of the compressor.

したがって、本発明の目的は、コンプレッサの許容温度を維持するように吸気温度を調節する燃料電池自動車の吸気温度調節構造を提供することである。   Accordingly, an object of the present invention is to provide an intake air temperature adjustment structure for a fuel cell vehicle that adjusts the intake air temperature so as to maintain the allowable temperature of the compressor.

本発明は、燃料電池スタックと、この燃料電池スタックにより発電された電力により稼動し、駆動輪を駆動する駆動用モータと、前記燃料電池スタックに圧縮空気を供給するコンプレッサと、を配置するモータルームを備えた燃料電池自動車において、前記コンプレッサに空気を導入する吸気導入ダクトと、前記吸気導入ダクトの吸気導入口が開口し、外気及び前記モータルームの空気が導入される空間部と、この空間部と前記モータルームとの間で空気が流通する通路と、この通路を温度に応じて開閉する開閉手段と、を備え、前記開閉手段は、前記開閉手段の温度が第1閾値以上の場合には前記通路を閉止するように形状が変化して外気を前記吸気導入ダクトに導入し、前記開閉手段の温度が第1閾値未満の場合には前記通路を開放するように形状が変化して外気とともにモータルーム内の空気を前記吸気導入ダクトに導入することを特徴とする燃料電池自動車の吸気温度調節構造である。   The present invention relates to a motor room in which a fuel cell stack, a drive motor that is driven by electric power generated by the fuel cell stack and drives drive wheels, and a compressor that supplies compressed air to the fuel cell stack are arranged. In the fuel cell vehicle equipped with the above, an intake air introduction duct for introducing air into the compressor, an air intake introduction port of the air intake introduction duct is opened, and a space portion into which outside air and air in the motor room are introduced, and the space portion And a passage through which air flows between the motor room and an opening / closing means for opening / closing the passage in accordance with the temperature, and the opening / closing means is provided when the temperature of the opening / closing means is equal to or higher than a first threshold value. The shape changes so as to close the passage, and outside air is introduced into the intake air introduction duct, and the passage is opened when the temperature of the opening / closing means is lower than a first threshold value. A intake air temperature adjusting structure for a fuel cell vehicle, which comprises introducing air in the motor room to the intake air introduction duct with ambient air urchin shape changes.

本発明では、外気等の温度に応じて形状が変化する開閉手段を用いてコンプレッサに導入される空気の流れを制御するため、簡単な構成で、確実に適当な温度の空気をコンプレッサに導入し、コンプレッサの許容温度を維持することができる。   In the present invention, since the flow of air introduced into the compressor is controlled using an opening / closing means whose shape changes according to the temperature of outside air or the like, air of an appropriate temperature is reliably introduced into the compressor with a simple configuration. The allowable temperature of the compressor can be maintained.

図1(a)は、本発明の燃料電池自動車の吸気温度調節構造を適用するモータルーム1の側面図であり、図1(b)は、同様に平面図である。   FIG. 1A is a side view of a motor room 1 to which an intake air temperature adjusting structure for a fuel cell vehicle according to the present invention is applied, and FIG. 1B is a plan view of the same.

図において、1は車両駆動源のモータを搭載するモータルームであり、モータルーム1は左右一対のフードリッジパネル2aと、フードリッジパネル2後端側に接合され、客室を区画するダッシュパネル2b、およびラジエータ4を支持するラジエータコアサポート3とで区画される。モータルーム1内には、駆動輪を駆動する駆動用モータ5と、駆動用モータ5に供給する電力を発電する燃料電池スタック6と、燃料電池スタック6に空気を供給するコンプレッサ7と、これらの運転状態を制御するコントローラ8が配置される。   In the figure, reference numeral 1 denotes a motor room in which a motor of a vehicle drive source is mounted. The motor room 1 is joined to a pair of left and right hood ridge panels 2a and a rear end side of the hood ridge panel 2, and a dash panel 2b that divides the cabin. And a radiator core support 3 that supports the radiator 4. In the motor room 1, there are a drive motor 5 for driving the drive wheels, a fuel cell stack 6 for generating electric power to be supplied to the drive motor 5, a compressor 7 for supplying air to the fuel cell stack 6, and these A controller 8 for controlling the operating state is arranged.

コンプレッサ7には、車両前方に開口し、空気をコンプレッサ7に効率良く導入するガイドとしての吸気導入ダクト9が接続され、ラジエータコアサポート3前方に位置するグリル10やバンパーに設けられた開口部から外気が吸気導入ダクト9に導入される。また、モータルーム1の上部にはモータルーム1の上部を覆い、モータルーム1の見栄えを向上するモータルームカバー11が設置される。   An air intake duct 9 is connected to the compressor 7 as a guide that opens to the front of the vehicle and efficiently introduces air into the compressor 7. From the opening provided in the grill 10 or the bumper located in front of the radiator core support 3. Outside air is introduced into the intake duct 9. A motor room cover 11 that covers the upper part of the motor room 1 and improves the appearance of the motor room 1 is installed on the upper part of the motor room 1.

このように構成されたモータルーム1において、駆動用モータ5、燃料電池スタック6及びコンプレッサ7で生じた熱により昇温したモータルーム1内の空気は、停車時には主として、
1.モータルームカバー11とフード12との間に形成した通路A
2.ラジエータコアサポート3とラジエータ4との間に形成した通路B
3.ラジエータコアサポート3とグリル10との間に形成した通路C
を通じて吸気導入ダクト9に導かれる。
In the motor room 1 configured as described above, the air in the motor room 1 heated by the heat generated in the driving motor 5, the fuel cell stack 6 and the compressor 7 is mainly at the time of stopping.
1. A passage A formed between the motor room cover 11 and the hood 12
2. A passage B formed between the radiator core support 3 and the radiator 4
3. A passage C formed between the radiator core support 3 and the grill 10
Through the air intake duct 9.

詳しく説明すると、モータルーム1内の空気は上昇し、フード12とモータルームカバー11との通路Aに入り込み、停車状態で負圧となった吸気導入ダクト9へと引き込まれる。また、一部の空気はフードリッジパネル2aに沿って前方へと移動し、側面から見たラジエータコアサポート3とラジエータ4との間の通路Bに入り込み、ラジエータ4面に沿って上昇し、吸気導入ダクト9へ導入される。また、フードリッジパネル2aに沿って前方へと移動した空気はラジエータコアサポート3とグリル10との間に形成された通路Cから上昇して吸気導入ダクト9へ導入される。なお、車両走行中、モータルーム1内の空気は、車両後方に流れるので、吸気導入ダクト9へモータルーム1内の上昇した空気は、引き込まれない。   More specifically, the air in the motor room 1 rises, enters the passage A between the hood 12 and the motor room cover 11, and is drawn into the intake air intake duct 9 that has become negative pressure when the vehicle is stopped. A part of the air moves forward along the hood ridge panel 2a, enters the passage B between the radiator core support 3 and the radiator 4 as seen from the side, rises along the surface of the radiator 4, It is introduced into the introduction duct 9. Further, the air that has moved forward along the hood ridge panel 2 a rises from a passage C formed between the radiator core support 3 and the grill 10 and is introduced into the intake air introduction duct 9. Since the air in the motor room 1 flows to the rear of the vehicle while the vehicle is running, the air that has risen in the motor room 1 is not drawn into the intake air introduction duct 9.

そして、これら通路A〜Cを空気の温度に応じて開閉する開閉手段13〜15を各通路A〜Cに設置する。ここで、開閉手段13〜15は温度に応じて形状を変化することにより、各通路A〜Cを開閉する構成を備える。本実施例では、開閉手段13〜15は、外気が当たる位置に配置され、主に外気の温度に応じて変化するようにした。開閉手段13〜15の温度に影響する因子として外気の他に、モータルーム内の駆動用モータ5等の熱により昇温する空気が考えられるが、後述するように、モータルーム内の温度が外気の温度より高い場合には、開閉手段13〜15は閉状態となり、外気の温度以下の場合には、開閉手段13〜15は開状態となり、モータルーム内の空気温度は、開閉手段13〜15の開閉制御に影響することはない。   And the opening-and-closing means 13-15 which opens and closes these channel | paths AC according to the temperature of air are installed in each channel | path AC. Here, the opening / closing means 13 to 15 are configured to open and close the passages A to C by changing the shape according to the temperature. In the present embodiment, the opening / closing means 13 to 15 are arranged at positions where the outside air hits, and change mainly according to the temperature of the outside air. As a factor that affects the temperature of the opening / closing means 13 to 15, in addition to the outside air, air that rises in temperature due to the heat of the driving motor 5 in the motor room can be considered, but as described later, the temperature in the motor room is outside air. When the temperature is higher than the open air temperature, the open / close means 13 to 15 are closed, and when the temperature is lower than the outside air temperature, the open / close means 13 to 15 are open, and the air temperature in the motor room is equal to the open / close means 13 to 15. It does not affect the open / close control of

図2を用いて開閉手段の詳細を説明する。なお、開閉手段13〜15は、基本的な構成は同一であり、便宜上フード12とモータルームカバー11間の通路Aに設置される開閉手段13を用いて説明する。   Details of the opening / closing means will be described with reference to FIG. The opening / closing means 13 to 15 have the same basic configuration and will be described using the opening / closing means 13 installed in the passage A between the hood 12 and the motor room cover 11 for convenience.

図2に示すように、開閉手段13は、温度に応じて形状変化(伸縮)する本体部13aと、本体部13aに固定され相手部材に接触するシール部13bとから構成される。本体部13aは、熱により膨張しやすい材料、例えばPET材(ポリエチレンテレフタレート)からなる中空形状を有し、中空部13cには、膨張率の大きい流体、例えば空気やシリコンオイルが封入される。したがって、温度が第1閾値以上の高温時には、空気が膨張し、この膨張に伴い、本体部13aの体積が増大し、前述の各通路A〜Cを閉止するように変化する。また、第1閾値未満の常温時には、高温時に比して本体部13aが縮小して、フード12との間の通路が開き、空気が流通可能となる。また、低温時には、本体部13aがさらに縮小して、フード12との間の通路面積が広がり、多くのモータルーム1内の空気が流通することができる。   As shown in FIG. 2, the opening / closing means 13 includes a main body portion 13a that changes shape (expands / contracts) according to temperature, and a seal portion 13b that is fixed to the main body portion 13a and contacts a mating member. The main body 13a has a hollow shape made of a material that easily expands by heat, for example, a PET material (polyethylene terephthalate), and a fluid having a high expansion coefficient, such as air or silicon oil, is enclosed in the hollow portion 13c. Therefore, when the temperature is higher than the first threshold, the air expands, and along with this expansion, the volume of the main body portion 13a increases and changes so as to close the above-described passages A to C. Further, when the room temperature is less than the first threshold, the main body portion 13a is contracted compared to when the temperature is high, and the passage between the hood 12 and the air is allowed to flow. In addition, when the temperature is low, the main body 13a is further reduced, the passage area between the main body 13a and the hood 12 is expanded, and a large amount of air in the motor room 1 can be circulated.

なお、温度が常温とは、25℃前後を意味し、それ以下であれば、各通路A〜Cを空気が流通し、それを越える温度であれば、各通路A〜Cを閉止する。   The normal temperature means around 25 ° C., and if the temperature is lower than that, the air flows through the passages A to C, and if the temperature exceeds the temperature, the passages A to C are closed.

また、流体を封入する本体部13aに代えてバイメタルや形状記憶合金を用いることも可能である。この場合、温度が高い場合(25℃を越える場合)に形状記憶合金等が伸長して通路を閉じ、低い場合には縮短して通路を開くように形状記憶合金等を設定する。また、シール部13bは耐熱性のゴム材、例えば、EPDM材から構成され、本体部13aの形状変化により、フード12に押しつけられて変形し、相手部材形状に倣うことによりフード12との通路を閉止する。   Further, it is possible to use a bimetal or a shape memory alloy in place of the main body portion 13a for enclosing the fluid. In this case, the shape memory alloy or the like is set such that when the temperature is high (over 25 ° C.), the shape memory alloy or the like expands to close the passage, and when the temperature is low, the shape memory alloy or the like shortens and opens the passage. Further, the seal portion 13b is made of a heat-resistant rubber material, for example, EPDM material, and is deformed by being pressed against the hood 12 due to the shape change of the main body portion 13a, and by following the shape of the mating member, the passage with the hood 12 is formed. Close.

このような開閉手段13〜15を各通路A〜Cに設置することにより、外気が高温時には図3に示すように、開閉手段13〜15の本体部が膨張して、シール部が相手部材に接触し、各通路A〜Cを閉止する。したがって、各通路A〜Cを閉止することで吸気導入ダクト9の吸気導入口が開口する空間部Xが画成され、モータルーム1内で加熱された空気は、吸気導入ダクト9に導入されず、外気のみが吸気としてコンプレッサ7に導入される。このように、各通路A〜Cが閉止されるため、コンプレッサ7には外気が導入され、コンプレッサ7の過熱を防止し、コンプレッサ7の温度が許容温度範囲内に維持される。   By installing such opening / closing means 13 to 15 in the passages A to C, as shown in FIG. 3, when the outside air is at a high temperature, the main body of the opening / closing means 13 to 15 expands, and the seal portion becomes the counterpart member. It contacts and closes each channel | path AC. Therefore, by closing each of the passages A to C, a space portion X in which the intake inlet of the intake inlet duct 9 is opened is defined, and the air heated in the motor room 1 is not introduced into the intake inlet duct 9. Only the outside air is introduced into the compressor 7 as intake air. Since the passages A to C are closed in this way, outside air is introduced into the compressor 7 to prevent overheating of the compressor 7 and the temperature of the compressor 7 is maintained within the allowable temperature range.

車両走行後の停止状態で、駆動用モータ5、燃料電池スタック6、コンプレッサ7の発熱の影響によりモータルーム1内の温度が高くなった場合(例えば40℃前後)、車両前方へ周り込んできたモータルーム1内の空気により開閉手段13〜15の本体部が高温になり前述の各通路A〜Cを閉止するので吸気導入ダクト9へモータルーム1内の上昇した空気は、引き込まれない。   When the temperature in the motor room 1 is high (for example, around 40 ° C.) due to the heat generated by the drive motor 5, the fuel cell stack 6, and the compressor 7 in a stopped state after the vehicle travels, the vehicle has entered the front of the vehicle. The main body of the opening / closing means 13 to 15 becomes hot due to the air in the motor room 1 and closes the aforementioned passages A to C, so that the air that has risen in the motor room 1 is not drawn into the intake air introduction duct 9.

図4は、外気が常温時の開閉手段13〜15の状態を示し、常温時には、開閉手段13〜15は各通路A〜Cを閉止することはなく、吸気ダクト9には外気とともにモータルーム1内の空気が流入することになる。   FIG. 4 shows the state of the opening / closing means 13 to 15 when the outside air is at room temperature. At room temperature, the opening / closing means 13 to 15 do not close the passages A to C, and the intake duct 9 and the motor room 1 together with the outside air. Inside air will flow in.

外気の温度が常温時に車両走行後、駆動用モータ5、燃料電池スタック6、コンプレッサ7の発熱の影響によりモータルーム1内の温度が外気より高く、車両前方へ周り込んできたモータルーム1内の空気により開閉手段13〜15の本体部が高温になってしまった場合(40℃前後)でも、前述の各通路A〜Cを閉止するので吸気導入ダクト9へモータルーム1内の上昇した空気が引き込まれることはない。   After the vehicle travels when the temperature of the outside air is normal, the temperature in the motor room 1 is higher than the outside air due to the heat generated by the drive motor 5, the fuel cell stack 6, and the compressor 7. Even when the main body of the opening / closing means 13 to 15 is heated by the air (around 40 ° C.), the above-described passages A to C are closed, so that the air that has risen in the motor room 1 flows into the intake air introduction duct 9. It is not drawn in.

図5は、外気が低温(例えば−10℃を下回る)時の開閉手段13〜15の状態を示し、低温時には、本体部内の流体が収縮して、これにともない本体部も収縮して、結果として、各通路A〜Cの流体が流通する流路面積が拡大される。これにより、常温時に比して、吸気ダクト9に流入する空気のうち、モータルーム1内からの空気の比率が高まり、モータルーム内の温度が高温であればモータルーム内の空気は高温であり、コンプレッサ7に供給される吸気温度を高めることができる。このため、燃料電池スタック6内に空気中の水分が貯留することがなく、燃料電池スタック6の発電効率を低下することがない。   FIG. 5 shows the state of the opening / closing means 13 to 15 when the outside air is at a low temperature (for example, lower than −10 ° C.). When the temperature is low, the fluid in the main body contracts, and the main body contracts accordingly. As described above, the flow path area through which the fluid in each of the passages A to C flows is enlarged. Thereby, compared with the normal temperature, the ratio of the air from the motor room 1 out of the air flowing into the intake duct 9 is increased. If the temperature in the motor room is high, the air in the motor room is hot. The intake air temperature supplied to the compressor 7 can be increased. For this reason, moisture in the air is not stored in the fuel cell stack 6, and the power generation efficiency of the fuel cell stack 6 is not reduced.

車両起動開始直後では、モータルーム1内が外気の温度と同等も考えられ、その場合、モータルーム1内の低い空気が吸気導入ダクト9へ引き込まれるが、すぐ駆動用モータ5、燃料電池スタック6、コンプレッサ7が発熱し、外気より高温の空気が吸気導入ダクト9へ引き込まれることになる。   Immediately after the start of the vehicle, the inside of the motor room 1 may be equivalent to the temperature of the outside air. In this case, low air in the motor room 1 is drawn into the intake air introduction duct 9, but immediately the driving motor 5 and the fuel cell stack 6 The compressor 7 generates heat, and air having a temperature higher than the outside air is drawn into the intake air introduction duct 9.

このように本発明の開閉手段13〜15は、外気が常温以下の時には、各通路A〜Cを閉止することがなく、言いかえるとシール部が相手部材に接触しない。従来のように常にシール部がグリル10、ラジエータ4やフード12等の相手部材に接触する場合には、取り付け時にシールを撓ませつつ取り付けることになり作業が困難となるが、本発明では常温時にはシール部が相手部材に接触しないため取り付けが容易で、組み付け作業性を悪化させることがない。また、常温時にシール部がフード12に接触することがないため、フードが閉め難いことがなく、商品性の悪化を防止することができる。   As described above, the open / close means 13 to 15 of the present invention do not close the passages A to C when the outside air is at room temperature or lower. In other words, the seal portion does not contact the mating member. When the seal portion is always in contact with a mating member such as the grill 10, the radiator 4, or the hood 12 as in the prior art, the seal is bent while being attached and the work becomes difficult. Since the seal portion does not come into contact with the mating member, attachment is easy and assembly workability is not deteriorated. In addition, since the seal portion does not come into contact with the hood 12 at normal temperature, the hood is not difficult to close, and deterioration of merchantability can be prevented.

これまで説明してきた実施形態では、開閉手段13〜15による通路A〜Cの閉止は、温度に応じて形状(体積)変化する本体部により制御される。温度に応じて形状変化する本体部に代えて伸縮制御されるアクチュエータを設けるようにしても良い。この場合には、吸気導入ダクト9の入口に導入される空気の温度に基づいて伸縮制御するようにしてもよい。この場合には、吸気導入ダクト9の入口に導入される空気の温度を検出する温度センサを設け、この温度センサの出力をコントローラ8に読み込み、図6に示すように、検出温度が第2閾値以上であれば、上記の通路A〜Cを閉止するようにアクチュエータを作動させ、第2閾値未満であれば通路A〜Cを開放してモータルーム1内の空気を吸気導入ダクト9に導くようにする。また、吸気導入ダクト9の入口の空気の温度に代えて、開閉手段13〜15の温度に基づいてアクチュエータを伸縮制御してもよい。   In the embodiment described so far, the closing of the passages A to C by the opening and closing means 13 to 15 is controlled by the main body portion whose shape (volume) changes according to the temperature. An actuator that is subjected to expansion / contraction control may be provided instead of the main body that changes its shape in accordance with the temperature. In this case, the expansion and contraction may be controlled based on the temperature of the air introduced into the inlet of the intake air introduction duct 9. In this case, a temperature sensor for detecting the temperature of the air introduced into the inlet of the intake air introduction duct 9 is provided, and the output of this temperature sensor is read into the controller 8, and the detected temperature is the second threshold value as shown in FIG. If it is above, the actuator is operated so as to close the passages A to C, and if it is less than the second threshold value, the passages A to C are opened to guide the air in the motor room 1 to the intake air introduction duct 9. To. Further, the actuator may be subjected to expansion / contraction control based on the temperature of the opening / closing means 13 to 15 instead of the temperature of the air at the inlet of the intake air introduction duct 9.

さらに、吸気導入ダクト9の入口での空気温度に代えて、車両の速度を検出し、車速に応じて開閉手段13〜15を作動させるようにしてもよい。この場合には、燃料電池自動車に既存の車速センサの検出信号を用い、図7に示すように、検出車速が第3閾値以上であれば、燃料電池自動車が走行中であり、走行風によるモータルーム1内の熱が放出されるため、上記の通路A〜Cを開放するようにアクチュエータを作動させてモータルーム1内の空気を吸気導入ダクト9に導くように制御し、第3閾値未満であれば走行風による熱の放出が期待できないため、通路A〜Cを閉止して外気を吸気導入ダクト9に導くように制御する。   Furthermore, instead of the air temperature at the inlet of the intake air intake duct 9, the speed of the vehicle may be detected, and the opening / closing means 13 to 15 may be operated according to the vehicle speed. In this case, the detection signal of the existing vehicle speed sensor is used for the fuel cell vehicle, and as shown in FIG. 7, if the detected vehicle speed is equal to or higher than the third threshold, the fuel cell vehicle is running and the motor is driven by the running wind. Since the heat in the room 1 is released, the actuator is operated so as to open the passages A to C, and the air in the motor room 1 is controlled to be guided to the intake air introduction duct 9. If there is, it is not expected to release heat by the traveling wind, so the passages A to C are closed, and control is performed so as to guide the outside air to the intake air introduction duct 9.

このように温度や車速に応じて各通路A〜Cの開閉状態を、アクチュエータを備えた開閉手段13〜15を用いて制御することにより、各通路A〜Cの開閉状態をより精度良く制御することができる。   Thus, by controlling the open / closed states of the passages A to C using the opening / closing means 13 to 15 provided with actuators according to the temperature and the vehicle speed, the open / closed states of the passages A to C are controlled with higher accuracy. be able to.

また、吸気導入ダクト9を分割して、少なくとも1つのダクトを外気専用導入ダクトとして形成し、他のダクトにモータルーム1内の空気を導入するように形成する。そして、各ダクトに開閉手段13を設置することでコンプレッサ7に導入する空気を制御するようにしてもよい。   In addition, the intake air introduction duct 9 is divided so that at least one duct is formed as an outside air exclusive introduction duct, and the air in the motor room 1 is introduced into another duct. And you may make it control the air introduce | transduced into the compressor 7 by installing the opening-and-closing means 13 in each duct.

以上説明した実施形態に限定されることなく、その技術的思想の範囲内において種々の変形や変更が可能であり、それらも本発明と均等であることは明白である。   The present invention is not limited to the embodiment described above, and various modifications and changes can be made within the scope of the technical idea, and it is obvious that these are equivalent to the present invention.

第1の実施形態の燃料電池自動車の吸気温度調節構造を適用するモータルーム1の構成図である。1 is a configuration diagram of a motor room 1 to which an intake air temperature adjustment structure for a fuel cell vehicle according to a first embodiment is applied. 開閉手段の構成を説明する図である。It is a figure explaining the structure of an opening / closing means. 外気温度が高温状態での開閉手段の形状を説明する構成図である。It is a block diagram explaining the shape of the opening-and-closing means in case outside temperature is high temperature. 外気温度が常温状態での開閉手段の形状を説明する構成図である。It is a block diagram explaining the shape of the opening-and-closing means in the outside temperature at normal temperature. 外気温度が低温状態での開閉手段の形状を説明する構成図である。It is a block diagram explaining the shape of the opening-and-closing means in case outside temperature is a low temperature state. 通路の開閉状態と空気の温度との関係を説明する図である。It is a figure explaining the relationship between the opening-and-closing state of a passage, and the temperature of air. 通路の開閉状態と車速との関係を説明する図である。It is a figure explaining the relationship between the opening / closing state of a channel | path, and a vehicle speed.

符号の説明Explanation of symbols

1:モータルーム
4:ラジエータ
5:駆動用モータ
6:燃料電池スタック
7:コンプレッサ
8:コントローラ
9:吸気導入ダクト
10:グリル
11:モータルームカバー
12:フード
13〜15:開閉手段
13a:本体部
13b:シール部
A〜C:通路
1: Motor room 4: Radiator 5: Motor 6 for driving: Fuel cell stack 7: Compressor 8: Controller 9: Intake air intake duct 10: Grill 11: Motor room cover 12: Hoods 13-15: Opening / closing means 13a: Main body 13b : Seal part A to C: Passage

Claims (8)

燃料電池スタックと、この燃料電池スタックにより発電された電力により稼動し、駆動輪を駆動する駆動用モータと、前記燃料電池スタックに圧縮空気を供給するコンプレッサと、
を配置するモータルームを備えた燃料電池自動車において、
前記コンプレッサに空気を導入する吸気導入ダクトと、
前記吸気導入ダクトの吸気導入口が開口し、外気及び前記モータルームの空気が導入される空間部と、
この空間部と前記モータルームとの間で空気が流通する通路と、
この通路を温度に応じて開閉する開閉手段と、
を備え、
前記開閉手段は、温度が第1閾値以上の場合には前記通路を閉止するように形状が変化して外気を前記吸気導入ダクトに導入し、温度が前記第1閾値未満の場合には前記通路を開放するように形状が変化して外気とともにモータルーム内の空気を前記吸気導入ダクトに導入することを特徴とする燃料電池自動車の吸気温度調節構造。
A fuel cell stack, a drive motor that operates with the electric power generated by the fuel cell stack and drives drive wheels, a compressor that supplies compressed air to the fuel cell stack,
In a fuel cell vehicle equipped with a motor room,
An intake introduction duct for introducing air into the compressor;
An air inlet port of the air intake duct is opened, and a space part into which outside air and air of the motor room are introduced;
A passage through which air flows between the space and the motor room;
Opening and closing means for opening and closing the passage according to temperature;
With
The opening / closing means changes its shape so as to close the passage when the temperature is equal to or higher than a first threshold and introduces outside air into the intake air introduction duct, and when the temperature is lower than the first threshold, the passage The structure of the intake air temperature of the fuel cell vehicle is characterized in that the shape of the air is changed so as to open the air and the air in the motor room is introduced into the intake air introduction duct together with the outside air.
前記開閉手段は、本体部と、本体部に取り付けられるシール部とから構成され、本体部が周囲の空気により加熱されて、前記本体部の温度が前記第1閾値以上の場合には前記通路を閉止するように前記本体部の形状が変化することを特徴とする請求項1に記載の燃料電池自動車の吸気温度調節構造。   The opening / closing means includes a main body portion and a seal portion attached to the main body portion. When the main body portion is heated by ambient air and the temperature of the main body portion is equal to or higher than the first threshold value, 2. The structure for adjusting the intake air temperature of a fuel cell vehicle according to claim 1, wherein the shape of the main body portion is changed so as to be closed. 前記本体部は、膨張率の大きい材料で中空状に形成され、内部には前記本体部と略同等の膨張率の大きい流体が封入されることを特徴とする請求項2に記載の燃料電池自動車の吸気温度調節構造。   3. The fuel cell vehicle according to claim 2, wherein the main body is formed in a hollow shape with a material having a high expansion coefficient, and a fluid having a large expansion coefficient substantially equal to that of the main body is enclosed therein. Intake air temperature control structure. 前記膨張率の大きい材料はPET材であり、前記膨張率の大きい流体は、空気またはシリコンオイルであることを特徴とする請求項3に記載の燃料電池自動車の吸気温度調節構造。   4. The intake air temperature adjustment structure for a fuel cell vehicle according to claim 3, wherein the material having a large expansion coefficient is a PET material, and the fluid having a large expansion coefficient is air or silicon oil. 前記本体部は、バイメタルまたは形状記憶合金を用いて形成されることを特徴とする請求項2に記載の燃料電池自動車の吸気温度調節構造。   3. The intake temperature adjustment structure for a fuel cell vehicle according to claim 2, wherein the main body is formed using a bimetal or a shape memory alloy. 前記吸気導入ダクトに導入される空気の温度または前記開閉手段の温度を検出する温度検出手段と、
検出された温度に基づいて前記本体部の形状を変化させるコントローラとを備え、
前記開閉手段は、前記検出された温度に基づいて形状が変化する本体部と、この本体部に取り付けられるシール部とから構成され、
前記コントローラは、検出された温度が第2閾値以上の場合に、前記通路を閉止するように前記本体部の形状を変化させて外気を前記吸気導入ダクトに導入することを特徴とする請求項2に記載の燃料電池自動車の吸気温度調節構造。
Temperature detecting means for detecting a temperature of air introduced into the intake air introducing duct or a temperature of the opening / closing means;
A controller that changes the shape of the main body based on the detected temperature,
The opening / closing means includes a main body part whose shape changes based on the detected temperature, and a seal part attached to the main body part,
The controller, when the detected temperature is equal to or higher than a second threshold, changes the shape of the main body so as to close the passage and introduces outside air into the intake air introduction duct. An intake air temperature adjustment structure for a fuel cell vehicle as described in 1.
前記開閉手段の開閉状態を規定する温度は、外気の温度であることを特徴とする請求項1に記載の燃料電池自動車の吸気温度調節構造。   2. The intake air temperature adjustment structure for a fuel cell vehicle according to claim 1, wherein the temperature defining the open / close state of the open / close means is the temperature of the outside air. 燃料電池スタックと、この燃料電池スタックにより発電された電力により稼動し、駆動輪を駆動する駆動用モータと、前記燃料電池スタックに圧縮空気を供給するコンプレッサと、
を配置するモータルームを備えた燃料電池自動車において、
前記コンプレッサに空気を導入する吸気導入ダクトと、
前記吸気導入ダクトの吸気導入口が開口し、外気及び前記モータルームの空気が導入される空間部と、
この空間部と前記モータルームとの間で前記モータルームの空気が流通する通路と、
この通路を開閉する開閉手段と、
前記燃料電池自動車の速度を検出する車速検出手段と、
検出された車速に基づいて前記開閉手段の形状を変化するコントローラと、
を備え、
前記コントローラは、検出された車速が第3閾値未満の場合には前記通路を閉止するように前記開閉手段の形状を変化させて外気を前記吸気導入ダクトに導入し、前記車速が第3閾値以上の場合には前記通路を開放するように前記開閉手段の形状を変化させて外気とともにモータルーム内の空気を前記吸気導入ダクトに導入することを特徴とする燃料電池自動車の吸気温度調節構造。
A fuel cell stack, a drive motor that operates with the electric power generated by the fuel cell stack and drives drive wheels, a compressor that supplies compressed air to the fuel cell stack,
In a fuel cell vehicle equipped with a motor room,
An intake introduction duct for introducing air into the compressor;
An air inlet port of the air intake duct is opened, and a space part into which outside air and air of the motor room are introduced;
A passage through which the air in the motor room flows between the space and the motor room;
Opening and closing means for opening and closing the passage;
Vehicle speed detecting means for detecting the speed of the fuel cell vehicle;
A controller that changes the shape of the opening and closing means based on the detected vehicle speed;
With
When the detected vehicle speed is less than a third threshold, the controller changes the shape of the opening / closing means to close the passage and introduces outside air into the intake air introduction duct, and the vehicle speed is greater than or equal to a third threshold. In this case, the shape of the opening / closing means is changed so as to open the passage, and the air inside the motor room is introduced into the intake air introduction duct together with the outside air.
JP2006216661A 2006-08-09 2006-08-09 Intake air temperature adjustment structure for fuel cell automobile Pending JP2008037329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006216661A JP2008037329A (en) 2006-08-09 2006-08-09 Intake air temperature adjustment structure for fuel cell automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006216661A JP2008037329A (en) 2006-08-09 2006-08-09 Intake air temperature adjustment structure for fuel cell automobile

Publications (1)

Publication Number Publication Date
JP2008037329A true JP2008037329A (en) 2008-02-21

Family

ID=39172841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006216661A Pending JP2008037329A (en) 2006-08-09 2006-08-09 Intake air temperature adjustment structure for fuel cell automobile

Country Status (1)

Country Link
JP (1) JP2008037329A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010004638A (en) * 2008-06-19 2010-01-07 Honda Motor Co Ltd Fuel cell vehicle
WO2013161804A1 (en) * 2012-04-27 2013-10-31 スズキ株式会社 Fuel cell device for vehicle
KR101864289B1 (en) * 2016-11-29 2018-06-05 동명대학교산학협력단 Outlet temperature control device for pre-coller
JP2020142626A (en) * 2019-03-06 2020-09-10 トヨタ自動車株式会社 Vehicle front part structure
JP2021051918A (en) * 2019-09-25 2021-04-01 株式会社Subaru Fuel cell system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010004638A (en) * 2008-06-19 2010-01-07 Honda Motor Co Ltd Fuel cell vehicle
WO2013161804A1 (en) * 2012-04-27 2013-10-31 スズキ株式会社 Fuel cell device for vehicle
GB2514728A (en) * 2012-04-27 2014-12-03 Suzuki Motor Corp Fuel cell device for vehicle
CN104247121A (en) * 2012-04-27 2014-12-24 铃木株式会社 Fuel cell device for vehicle
US20150147671A1 (en) * 2012-04-27 2015-05-28 Suzuki Motor Corporation Fuel cell apparatus for vehicles
JPWO2013161804A1 (en) * 2012-04-27 2015-12-24 スズキ株式会社 Vehicle fuel cell device
US9705140B2 (en) 2012-04-27 2017-07-11 Suzuki Motor Corporation Vehicle fuel cell apparatus with improved air intake
GB2514728B (en) * 2012-04-27 2019-07-03 Suzuki Motor Corp Fuel cell apparatus for vehicles
KR101864289B1 (en) * 2016-11-29 2018-06-05 동명대학교산학협력단 Outlet temperature control device for pre-coller
JP2020142626A (en) * 2019-03-06 2020-09-10 トヨタ自動車株式会社 Vehicle front part structure
JP7120082B2 (en) 2019-03-06 2022-08-17 トヨタ自動車株式会社 vehicle front structure
JP2021051918A (en) * 2019-09-25 2021-04-01 株式会社Subaru Fuel cell system

Similar Documents

Publication Publication Date Title
JP5409160B2 (en) Temperature control method for vehicle and power storage device
US10875384B2 (en) Air flow circulation structure for vehicle
JP6380212B2 (en) Cooling device and cooling module
JP2008037329A (en) Intake air temperature adjustment structure for fuel cell automobile
JP5314462B2 (en) Outside air introduction device for vehicles
JP2007055274A (en) Front structure of vehicle body
KR102531082B1 (en) Virtual engine sound system for vehicle
JP2008126847A (en) Cooling structure of fuel cell electric vehicle
KR20210056794A (en) Vehicle front end structure
JP2012054032A (en) Battery temperature control apparatus
JPH03233128A (en) Cooling device of water cooling type internal combustion engine for vehicle
KR20150017127A (en) Encapsulation system for engine and air flow control method thereby
JP2006151270A (en) Battery cooling device
JP4120667B2 (en) Battery temperature regulator for electric vehicles
KR20070065496A (en) Battery cooling system for hybrid engine vehicle by cooling air
JP2019196112A (en) Vehicle front part structure
JP2009272112A (en) Temperature adjustment device of energy storage device
JP6344556B2 (en) Battery heating device for hybrid vehicle
JP2006298190A (en) Air intake device
JP6011227B2 (en) Water circulation device
JP2010070011A (en) Air-conditioner of battery case for electric car
JP5206266B2 (en) Air conditioner for battery case for electric vehicle and manufacturing method thereof
JP2009029149A (en) Powertrain arranging structure of vehicle
JP2009018710A (en) Powertrain arrangement structure of vehicle
KR20130057109A (en) Active air flap apparatus for vehicle