JP2008034687A - Photoelectric conversion element - Google Patents

Photoelectric conversion element Download PDF

Info

Publication number
JP2008034687A
JP2008034687A JP2006207770A JP2006207770A JP2008034687A JP 2008034687 A JP2008034687 A JP 2008034687A JP 2006207770 A JP2006207770 A JP 2006207770A JP 2006207770 A JP2006207770 A JP 2006207770A JP 2008034687 A JP2008034687 A JP 2008034687A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion element
transparent electrode
moth
convex portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006207770A
Other languages
Japanese (ja)
Inventor
Jo Shibata
城 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2006207770A priority Critical patent/JP2008034687A/en
Publication of JP2008034687A publication Critical patent/JP2008034687A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectiric conversion element using a flexible film which is so excellent in dispersion of light (a light confining effect within the photoelectiric conversion element) to be efficient in photoelectiric conversion as a base material, by making an uneven surface (texture structure) minute, dense and homogeneous. <P>SOLUTION: The photoelectiric conversion element has at least a flexible transparent base material, a transparent electrode, and a semiconductor layer laminated in this order from a light incident side. A moth eye structure is formed on the side of the transparent electrode of the flexible transparent base material. A silicone resin is used as a material of the flexible transparent base material. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は光電変換素子の基材フィルムに関し、更に詳しくは、太陽光を有効利用し光電変換効率を向上させる構造を有する基材フィルムに関する。 The present invention relates to a base film of a photoelectric conversion element, and more particularly to a base film having a structure that effectively uses sunlight to improve photoelectric conversion efficiency.

現在、多くの光電変換素子はガラス上に作製されている。
しかしながらガラス上に作製すると重く設置場所が限られてしまう。
フィルム上で作製できれば軽量化が可能で、さらに曲面上にも設置が可能になり光電変換素子の設置可能範囲が拡大し光電変換素子の普及に貢献できる。
また、フィルムはロールトゥロールの生産工程が可能で量産できコストを抑えられるという利点がある。
Currently, many photoelectric conversion elements are produced on glass.
However, if it is made on glass, the installation place is heavy and limited.
If it can be manufactured on a film, it can be reduced in weight, and can also be installed on a curved surface, so that the installation range of the photoelectric conversion element can be expanded and the photoelectric conversion element can be widely used.
In addition, the film has an advantage that the production process of roll-to-roll is possible, mass production can be performed, and cost can be reduced.

光電変換素子の性能向上のためには光反射による光損失、電荷の再結合による光損失、エネルギーの不完全利用による光損失、抵抗による電気損失などの損失を少なくする必要がある。 In order to improve the performance of the photoelectric conversion element, it is necessary to reduce losses such as light loss due to light reflection, light loss due to charge recombination, light loss due to incomplete use of energy, and electrical loss due to resistance.

光電変換素子の光電変換層表面は屈折率が大きいので光反射による光損失が大きくなることが懸念されるため、光電変換層表面に光反射防止構造としてテクスチャーを形成することが行われている。 Since the surface of the photoelectric conversion layer of the photoelectric conversion element has a high refractive index, there is a concern that light loss due to light reflection increases, and therefore, a texture is formed on the surface of the photoelectric conversion layer as a light reflection preventing structure.

反射防止構造を形成する方法として、シリコンウエハーから太陽電池セルを作製するタイプでは、シリコンウエハーを水酸化カリウムなどのアルカリ溶液に浸漬し結晶方位によるエッチング速度異方性を利用しテクスチャーを形成する方法が開示されている。(特許文献1) As a method of forming an antireflection structure, in a type in which a solar cell is manufactured from a silicon wafer, a method of forming a texture by immersing the silicon wafer in an alkaline solution such as potassium hydroxide and utilizing etching rate anisotropy due to crystal orientation Is disclosed. (Patent Document 1)

反射防止構造を形成する方法として、基板上に透明導電膜を形成して行くタイプでは、透明導電膜に酢酸や塩酸などの酸性または水酸化ナトリウムなどのアルカリ性溶液でエッチングすることによりテクスチャーを形成する方法が開示されている。(特許文献2) As a method of forming an antireflection structure, in a type in which a transparent conductive film is formed on a substrate, a texture is formed by etching the transparent conductive film with an acidic solution such as acetic acid or hydrochloric acid or an alkaline solution such as sodium hydroxide. A method is disclosed. (Patent Document 2)

反射防止構造を形成する方法として、基板上に透明導電膜を形成して行くタイプでは、スパッタやCVDでの透明導電膜作製時にホウ素を導入することでテクスチャーを形成する方法が開示されている。(特許文献3) As a method for forming an antireflection structure, a method in which a transparent conductive film is formed on a substrate is disclosed in which a texture is formed by introducing boron at the time of forming a transparent conductive film by sputtering or CVD. (Patent Document 3)

特開2004−281758号公報JP 2004-281758 A 特開2005−72332号公報JP 2005-72332 A 特開2000−252504号公報JP 2000-252504 A

しかしながら、従来の透明電極及び裏面電極表面上の凹凸形状(テクスチャー構造)は、規則性がなく、形状がランダムに形成されていた。
そのため、電極表面上のテクスチャー構造の密度にばらつきを生じており、光の散乱(光電変換素子内における光の閉じ込め効果)が十分ではなく、光電変換効率が不十分だった。
However, the concavo-convex shape (texture structure) on the surface of the conventional transparent electrode and the back electrode has no regularity, and the shape is randomly formed.
For this reason, the density of the texture structure on the electrode surface varies, light scattering (light confinement effect in the photoelectric conversion element) is not sufficient, and photoelectric conversion efficiency is insufficient.

本発明の課題は、凹凸形状(テクスチャー構造)を高密度かつ緻密かつ均質にすることにより、光の散乱(光電変換素子内における光の閉じ込め効果)に優れた光電変換効率が高い、
可撓性を有するフィルムを基材として用いた光電変換素子を提供することを目的とする。
The problem of the present invention is that the uneven shape (texture structure) is made dense, dense and homogeneous, so that the photoelectric conversion efficiency excellent in light scattering (light confinement effect in the photoelectric conversion element) is high.
It aims at providing the photoelectric conversion element which used the film which has flexibility as a base material.

請求項1に記載の発明は、少なくとも、フレキシブル透明基材、透明電極、半導体層が光入射側からこの順に積層されてなる光電変換素子において、
前記フレキシブル透明基材の透明電極側にモスアイ構造が形成されていることを特徴とする光電変換素子である。
The invention according to claim 1 is a photoelectric conversion element in which at least a flexible transparent substrate, a transparent electrode, and a semiconductor layer are laminated in this order from the light incident side.
A moth-eye structure is formed on the transparent electrode side of the flexible transparent substrate.

このような構成にすることで、透明電極表面に高密度かつ緻密かつ均質な凹凸形状(テクスチャー構造)を形成することができ、入射光を多方向へ散乱させることが可能となり、光電変換効率を向上することができる。 By adopting such a configuration, it is possible to form a high-density, dense and homogeneous uneven shape (texture structure) on the transparent electrode surface, and to scatter incident light in multiple directions, and to improve the photoelectric conversion efficiency. Can be improved.

請求項2に記載の発明は、前記フレキシブル透明基材がシリコン樹脂であることを特徴とする請求項1記載の光電変換素子である。 The invention according to claim 2 is the photoelectric conversion element according to claim 1, wherein the flexible transparent base material is a silicon resin.

前記フレキシブル透明基材として耐熱性を有するシリコン樹脂を用いることにより、高温プロセス(光電変換層の作製プロセス)に耐久することができる。 By using a heat-resistant silicon resin as the flexible transparent substrate, it can be durable to a high-temperature process (photoelectric conversion layer manufacturing process).

請求項3に記載の発明は、前記フレキシブル透明基材と前記透明電極の間にガスバリア層を形成したことを特徴とする請求項1または請求項2に記載の光電変換素子である。 The invention according to claim 3 is the photoelectric conversion element according to claim 1 or 2, wherein a gas barrier layer is formed between the flexible transparent substrate and the transparent electrode.

このようにすることで、透明電極を水蒸気から保護することができる。 By doing in this way, a transparent electrode can be protected from water vapor | steam.

請求項4に記載の発明は、前記モスアイ構造を有する表面が、凸部が200〜2000Åの平均直径(ピッチ)を有した概略円柱状であり、アスペクト比(凸部の高さ/凸部の幅)は0.4〜0.5の関係を満たしていることを特徴とする請求項1乃至請求項3のいずれか1項に記載の光電変換素子。 According to a fourth aspect of the present invention, the surface having the moth-eye structure has a substantially cylindrical shape with convex portions having an average diameter (pitch) of 200 to 2000 mm, and an aspect ratio (height of convex portions / convex portions). 4. The photoelectric conversion element according to claim 1, wherein the width satisfies a relationship of 0.4 to 0.5. 5.

このようにすることで、効率良く入射光を多方向へ散乱させることが可能となり、光電変換素子の出力を向上することができる。 By doing in this way, incident light can be efficiently scattered in multiple directions, and the output of the photoelectric conversion element can be improved.

請求項5に記載の発明は、少なくとも、フレキシブル透明基材、透明電極、半導体層が光入射側からこの順に積層されてなる光電変換素子において、
前記フレキシブル透明基材上に透明樹脂でモスアイ構造を形成したことを特徴とする光電変換素子である。
The invention according to claim 5 is at least a photoelectric conversion element in which a flexible transparent substrate, a transparent electrode, and a semiconductor layer are laminated in this order from the light incident side.
The photoelectric conversion element is characterized in that a moth-eye structure is formed of a transparent resin on the flexible transparent substrate.

このような構成にすることで、透明電極表面に高密度かつ緻密かつ均質な凹凸形状(テクスチャー構造)を形成することができ、入射光を多方向へ散乱させることが可能となり、光電変換効率を向上することができる。 By adopting such a configuration, it is possible to form a high-density, dense and homogeneous uneven shape (texture structure) on the transparent electrode surface, and to scatter incident light in multiple directions, and to improve the photoelectric conversion efficiency. Can be improved.

請求項6に記載の発明は、前記透明樹脂がシリコン樹脂であることを特徴とする請求項5に記載の光電変換素子である。 The invention according to claim 6 is the photoelectric conversion element according to claim 5, wherein the transparent resin is a silicon resin.

前記透明樹脂として耐熱性を有するシリコン樹脂を用いることにより、高温プロセス(光電変換層の作製プロセス)に耐久することができる。 By using a heat-resistant silicon resin as the transparent resin, it is possible to endure a high-temperature process (a process for producing a photoelectric conversion layer).

請求項7に記載の発明は、前記透明樹脂と前記透明電極の間にガスバリア層を形成したことを特徴とする請求項5または請求項6に記載の光電変換素子である。 The invention according to claim 7 is the photoelectric conversion element according to claim 5 or 6, wherein a gas barrier layer is formed between the transparent resin and the transparent electrode.

このようにすることで、透明電極を水蒸気から保護することができる。 By doing in this way, a transparent electrode can be protected from water vapor | steam.

請求項8に記載の発明は、前記モスアイ構造を有する表面が、凸部が200〜2000Åの平均直径(ピッチ)を有した概略円柱状であり、アスペクト比(凸部の高さ/凸部の幅)は0.4〜0.5の関係を満たしていることを特徴とする請求項5乃至請求項7のいずれか1項に記載の光電変換素子である。 According to an eighth aspect of the present invention, the surface having the moth-eye structure has a substantially cylindrical shape with convex portions having an average diameter (pitch) of 200 to 2000 mm, and an aspect ratio (height of convex portions / convex portions). 8. The photoelectric conversion element according to claim 5, wherein the width satisfies a relationship of 0.4 to 0.5.

このようにすることで、効率良く入射光を多方向へ散乱させることが可能となり、光電変換素子の出力を向上することができる。 By doing in this way, incident light can be efficiently scattered in multiple directions, and the output of the photoelectric conversion element can be improved.

本発明によれば、光の散乱(光電変換素子内における光の閉じ込め効果)に優れた光電変換効率が高い、可撓性を有するフィルムを基材として用いた光電変換素子を得ることができる。 ADVANTAGE OF THE INVENTION According to this invention, the photoelectric conversion element using the film which has the photoelectric conversion efficiency excellent in the scattering of light (the light confinement effect in a photoelectric conversion element) and high as a base material can be obtained.

図1にモスアイ反射防止パターンを形成した光電変換素子構造を示す。
図1は一例であり、基材1の光入射側にも反射防止パターンを形成してもよい。
また、入射光を散乱させるため透明基材内に散乱体を導入しても良い。
FIG. 1 shows a photoelectric conversion element structure in which a moth-eye antireflection pattern is formed.
FIG. 1 is an example, and an antireflection pattern may also be formed on the light incident side of the substrate 1.
Further, a scatterer may be introduced into the transparent substrate in order to scatter incident light.

フレキシブル透明基材1の材料としては、紫外領域から赤外領域まで幅広く透明性があり、可撓性を有し、透明導電膜及び光電変換層の形成時の熱に対する耐熱性(およそ250℃)を有し、屋外で使用するための耐候性有するシリコン樹脂を用いることができる。 The material of the flexible transparent substrate 1 is widely transparent from the ultraviolet region to the infrared region, has flexibility, and heat resistance to heat when forming the transparent conductive film and the photoelectric conversion layer (approximately 250 ° C.) And a weather-resistant silicon resin for outdoor use can be used.

シリコン樹脂は、例えば、光電変換層3がアモルファスシリコンの場合、アモルファスシリコンの吸収波長である300〜750nmの波長対して少なくとも90%以上の透過率を有している。 For example, when the photoelectric conversion layer 3 is amorphous silicon, the silicon resin has a transmittance of at least 90% with respect to a wavelength of 300 to 750 nm which is an absorption wavelength of amorphous silicon.

モスアイ構造の凸部のピッチは光電変換層3の吸収波長の300nmよりも少なくとも小さい必要があり、更に、入射光の入射角が変化するためそれより更に小さいことが必要である。 The pitch of the convex portions of the moth-eye structure needs to be at least smaller than the absorption wavelength of 300 nm of the photoelectric conversion layer 3, and further needs to be smaller than that because the incident angle of incident light changes.

膜質の良い透明電極形成や光電変換層形成のため、モスアイ構造のアスペクト比は小さい方が適しているがモスアイ構造を付加する効果を得るためにはある程度のアスペクト比が必要である。
モスアイ構造のアスペクト比(凸部の高さ/凸部の幅)は0.4〜0.5が好ましい。
In order to form a transparent electrode or a photoelectric conversion layer with good film quality, it is suitable that the aspect ratio of the moth-eye structure is small, but a certain aspect ratio is required to obtain the effect of adding the moth-eye structure.
The aspect ratio of the moth-eye structure (the height of the convex portion / the width of the convex portion) is preferably 0.4 to 0.5.

モスアイ構造形成方法としては、基板上にレジストを塗布し電子線やUVにより凹凸パターンを形成し、該凹凸パターン上に電鋳によりNiを積層し、原版を作製し、該原版の凹凸形成面上に、UV硬化性の樹脂を流し込みUVを照射し剥がすことでモスアイ構造を形成する方法を用いることができる。 As a moth-eye structure forming method, a resist is applied on a substrate, a concavo-convex pattern is formed by an electron beam or UV, Ni is laminated on the concavo-convex pattern by electroforming, a master is prepared, and a concavo-convex formation surface of the master is formed. In addition, a method of forming a moth-eye structure by pouring a UV curable resin, irradiating with UV, and peeling it off can be used.

透明電極2の材料としてはZnO、SnOおよびITOを用いる事ができる。
光電変換層としてアモルファスシリコンを、水素プラズマ法を用いて成膜する場合、透明電極2の材料としては耐水素プラズマ性を有するZnOやSnOを用いる事が望ましい。
As a material of the transparent electrode 2, ZnO, SnO 2 and ITO can be used.
In the case where amorphous silicon is formed as the photoelectric conversion layer using the hydrogen plasma method, it is desirable to use ZnO or SnO 2 having hydrogen plasma resistance as the material of the transparent electrode 2.

光電変換層3の材料としては、シリコン系材料(アモルファス、微結晶、多結晶)やCIGS系材料、2−6族系材料を用いることができ、フレキシブル透明基材1の耐熱性を考えるとシリコン系が好ましい。 As the material of the photoelectric conversion layer 3, silicon materials (amorphous, microcrystal, polycrystal), CIGS materials, and 2-6 group materials can be used. Considering the heat resistance of the flexible transparent substrate 1, silicon is used. A system is preferred.

光電変換層3の構造としては、pin構造が好ましく、アモルファスと微結晶等のタンデム構造でもよい。 The structure of the photoelectric conversion layer 3 is preferably a pin structure, and may be a tandem structure such as amorphous or microcrystalline.

裏面電極4の材料としては、Ag、Alなどの金属やZnOを用いることができる。 As a material for the back electrode 4, a metal such as Ag or Al or ZnO can be used.

裏面電極4の構造としては、ZnOをテクスチャー化して形成し、その上に金属を積層することにより、光散乱(光閉じ込め)効果を加えてもよい。 As the structure of the back electrode 4, a light scattering (light confinement) effect may be added by forming textured ZnO and laminating a metal thereon.

まず、電子線描画により形成したレジスト版(凹凸ピッチ200nm、高さ100nm)を作製し、その後、レジスト上に電鋳法を用いてNiを積層したNi原版を作製し、その原版にUV硬化性シリコン樹脂を流し込み、該UV硬化性シリコン樹脂にUVを照射し硬化させることにより、凸部が1000Åの平均直径(ピッチ)を有した概略円柱状であり、アスペクト比(凸部の高さ/凸部の幅)が0.45であるモスアイ構造を持つ150μm厚のシリコン樹脂シートを形成した。 First, a resist plate (uneven pitch 200 nm, height 100 nm) formed by electron beam drawing is prepared, and then a Ni original plate in which Ni is laminated on the resist using an electroforming method is prepared. By pouring a silicone resin and irradiating and curing the UV curable silicone resin with UV, the projections are roughly cylindrical with an average diameter (pitch) of 1000 mm, and the aspect ratio (height of projections / convex A 150 μm-thick silicon resin sheet having a moth-eye structure with a width of 0.45 was formed.

次に、モスアイ構造上にガスバリア層(酸化珪素層(膜厚30nm))を、RFマグネトロンスパッタ法を用いて形成した。 Next, a gas barrier layer (silicon oxide layer (film thickness: 30 nm)) was formed on the moth-eye structure by using an RF magnetron sputtering method.

スパッタ条件を以下に示す。
ターゲット;Si
スパッタガス:O;Ar=1:9
スパッタガス流量;50sccm
圧力;0.5Pa
投入電力;300W/cm
基板温度;100℃
The sputtering conditions are shown below.
Target; Si
Sputtering gas: O 2 ; Ar = 1: 9
Sputtering gas flow rate: 50 sccm
Pressure; 0.5Pa
Input power: 300 W / cm 2
Substrate temperature: 100 ° C

次に、ガスバリア層上に透明電極としてZnO層(膜厚200nm)を、RFマグネトロンスパッタ法を用いて形成した。 Next, a ZnO layer (thickness: 200 nm) was formed as a transparent electrode on the gas barrier layer using an RF magnetron sputtering method.

スパッタ条件を以下に示す。
ターゲット;ZnO・Ga2O3(Ga2O3 5.6wt%)
スパッタガス:アルゴン
ガス圧力;0.3Pa
投入電力;300W/cm
基板温度;100℃
The sputtering conditions are shown below.
Target: ZnO.Ga2O3 (Ga2O3 5.6 wt%)
Sputtering gas: Argon gas pressure; 0.3 Pa
Input power: 300 W / cm 2
Substrate temperature: 100 ° C

次に、透明電極上に、光電変換層(a−Si)を、PECVD法を用いて形成した。 Next, a photoelectric conversion layer (a-Si) was formed on the transparent electrode using a PECVD method.

PECVD条件を以下に示す。
(p層(20nm))
原料ガスおよび原料ガス流量;SiH:7sccm、H:50sccm、B:50sccm
圧力;50Pa
電力;8W
基板温度;200℃
(i層(500nm))
原料ガスおよび原料ガス流量;SiH:5sccm、H:50sccm
圧力;50Pa
電力;20W
基板温度;180℃
(n層(40nm))
原料ガスおよび原料ガス流量;SiH:3sccm、H:48sccm、PH:2sccm
圧力;50Pa
電力;5W
基板温度;200℃
The PECVD conditions are shown below.
(P layer (20 nm))
Source gas and source gas flow rate; SiH 4 : 7 sccm, H 2 : 50 sccm, B 2 H 6 : 50 sccm
Pressure: 50Pa
Power: 8W
Substrate temperature: 200 ° C
(I layer (500 nm))
Source gas and source gas flow rate; SiH 4 : 5 sccm, H 2 : 50 sccm
Pressure: 50Pa
Power: 20W
Substrate temperature: 180 ° C
(N layer (40 nm))
Source gas and source gas flow rate; SiH 4 : 3 sccm, H 2 : 48 sccm, PH 3 : 2 sccm
Pressure: 50Pa
Electric power: 5W
Substrate temperature: 200 ° C

最後に、光電変換層上に裏面電極(Ag)を、EB蒸着法を用いて形成することにより光電変換素子を得た。 Finally, a back surface electrode (Ag) was formed on the photoelectric conversion layer by using an EB vapor deposition method to obtain a photoelectric conversion element.

EB蒸着条件を以下に示す。
ガス圧力;50Pa
投入電力;300W/cm
基板温度;100℃
The EB deposition conditions are shown below.
Gas pressure; 50Pa
Input power: 300 W / cm 2
Substrate temperature: 100 ° C

次に、ソーラーシュミレーターを用い、太陽電池規格AM1.5(100mW/cm)照射条件下における電流−電圧特性を評価した。 Next, the current-voltage characteristics under solar cell standard AM1.5 (100 mW / cm 2 ) irradiation conditions were evaluated using a solar simulator.

開放電圧は0.5V、短絡電流は24mA/cm、形状因子は0.75、変換効率は9.0%であった。 The open circuit voltage was 0.5 V, the short circuit current was 24 mA / cm 2 , the form factor was 0.75, and the conversion efficiency was 9.0%.

<比較例1>
微細凹凸パターンを設けなかったこと以外は実施例と同様にして光電変換素子を作製し、実施例と同様に電池特性を測定した。
<Comparative Example 1>
A photoelectric conversion element was produced in the same manner as in the example except that the fine uneven pattern was not provided, and the battery characteristics were measured in the same manner as in the example.

開放電圧は0.52V、短絡電流は18mA/cm、形状因子は0.75、変換効率は7.2%であった。 The open circuit voltage was 0.52 V, the short circuit current was 18 mA / cm 2 , the form factor was 0.75, and the conversion efficiency was 7.2%.

比較例の光電変換素子よりも実施例の光電変換素子の方が、光電電流が大きく、変換効率が高い事が確認された。 It was confirmed that the photoelectric conversion element of the example had a larger photoelectric current and higher conversion efficiency than the photoelectric conversion element of the comparative example.

本発明の、太陽電池およびその製造方法は、電気自動車、携帯電話、自動販売機、宇宙船用電源等に用いる太陽電池に利用できる。 The solar cell and the manufacturing method thereof according to the present invention can be used for a solar cell used for an electric vehicle, a mobile phone, a vending machine, a power supply for a spacecraft, and the like.

本発明の太陽電池の断面の一部を示す説明図である。It is explanatory drawing which shows a part of cross section of the solar cell of this invention. 本発明の太陽電池の断面の一部を示す説明図である。It is explanatory drawing which shows a part of cross section of the solar cell of this invention.

符号の説明Explanation of symbols

1 フレキシブル透明基材
2 透明電極
3 光電変換層
4 裏面電極
5 透明樹脂
DESCRIPTION OF SYMBOLS 1 Flexible transparent base material 2 Transparent electrode 3 Photoelectric conversion layer 4 Back surface electrode 5 Transparent resin

Claims (8)

少なくとも、フレキシブル透明基材、透明電極、半導体層が光入射側からこの順に積層されてなる光電変換素子において、
前記フレキシブル透明基材の透明電極側にモスアイ構造が形成されていることを特徴とする光電変換素子。
At least in a photoelectric conversion element in which a flexible transparent substrate, a transparent electrode, and a semiconductor layer are laminated in this order from the light incident side,
A photoelectric conversion element characterized in that a moth-eye structure is formed on the transparent electrode side of the flexible transparent substrate.
前記フレキシブル透明基材がシリコン樹脂であることを特徴とする請求項1記載の光電変換素子。 The photoelectric conversion element according to claim 1, wherein the flexible transparent substrate is a silicon resin. 前記フレキシブル透明基材と前記透明電極の間にガスバリア層を形成したことを特徴とする請求項1または請求項2に記載の光電変換素子。 The photoelectric conversion element according to claim 1, wherein a gas barrier layer is formed between the flexible transparent substrate and the transparent electrode. 前記モスアイ構造を有する表面が、凸部が200〜2000Åの平均直径(ピッチ)を有した概略円柱状であり、アスペクト比(凸部の高さ/凸部の幅)は0.4〜0.5の関係を満たしていることを特徴とする請求項1乃至請求項3のいずれか1項に記載の光電変換素子。 The surface having the moth-eye structure has a substantially cylindrical shape with convex portions having an average diameter (pitch) of 200 to 2000 mm, and the aspect ratio (height of convex portions / width of convex portions) is 0.4 to 0.00. 5. The photoelectric conversion element according to claim 1, wherein the relationship 5 is satisfied. 少なくとも、フレキシブル透明基材、透明電極、半導体層が光入射側からこの順に積層されてなる光電変換素子において、
前記フレキシブル透明基材上に透明樹脂でモスアイ構造を形成したことを特徴とする光電変換素子。
At least in a photoelectric conversion element in which a flexible transparent substrate, a transparent electrode, and a semiconductor layer are laminated in this order from the light incident side,
A photoelectric conversion element, wherein a moth-eye structure is formed of a transparent resin on the flexible transparent substrate.
前記透明樹脂がシリコン樹脂であることを特徴とする請求項5に記載の光電変換素子。 The photoelectric conversion element according to claim 5, wherein the transparent resin is a silicon resin. 前記透明樹脂と前記透明電極の間にガスバリア層を形成したことを特徴とする請求項5または請求項6に記載の光電変換素子。 The photoelectric conversion element according to claim 5, wherein a gas barrier layer is formed between the transparent resin and the transparent electrode. 前記モスアイ構造を有する表面が、凸部が200〜2000Åの平均直径(ピッチ)を有した概略円柱状であり、アスペクト比(凸部の高さ/凸部の幅)は0.4〜0.5の関係を満たしていることを特徴とする請求項5乃至請求項7のいずれか1項に記載の光電変換素子。 The surface having the moth-eye structure has a substantially cylindrical shape with convex portions having an average diameter (pitch) of 200 to 2000 mm, and the aspect ratio (height of convex portions / width of convex portions) is 0.4 to 0.00. The photoelectric conversion element according to claim 5, wherein the relationship 5 is satisfied.
JP2006207770A 2006-07-31 2006-07-31 Photoelectric conversion element Pending JP2008034687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006207770A JP2008034687A (en) 2006-07-31 2006-07-31 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006207770A JP2008034687A (en) 2006-07-31 2006-07-31 Photoelectric conversion element

Publications (1)

Publication Number Publication Date
JP2008034687A true JP2008034687A (en) 2008-02-14

Family

ID=39123792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006207770A Pending JP2008034687A (en) 2006-07-31 2006-07-31 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP2008034687A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238893A (en) * 2009-03-31 2010-10-21 Mitsubishi Materials Corp SOLAR CELL WHOSE STRUCTURE LAYER IS (Zn, Ga, Al)O BASED TRANSPARENT ELECTRODE LAYER, AND ZnO-Ga2O3-Al BASED SPUTTERING TARGET USED FOR FORMING THE (Zn, Ga, Al)O BASED TRANSPARENT ELECTRODE LAYER
JP2011233412A (en) * 2010-04-28 2011-11-17 Mitsubishi Rayon Co Ltd Transparent conductive laminate and method for manufacturing the same
CN105826471A (en) * 2016-03-24 2016-08-03 吉林大学 Polymer solar cell having double bionic light trapping effect and plasma surface resonance effect and preparation method of polymer solar cell
JP2017032806A (en) * 2015-08-03 2017-02-09 国立大学法人東京工業大学 Method for manufacturing antireflection fine protrusion
CN108682712A (en) * 2018-05-15 2018-10-19 上海电力学院 Apply the double-deck moth ocular structure film in solar film battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274533A (en) * 1998-03-23 1999-10-08 Sharp Corp Manufacture of solar cell, solar cell manufactured thereby and manufacture of semiconductor element
JP2000252504A (en) * 1999-03-04 2000-09-14 Kanegafuchi Chem Ind Co Ltd Silicon thin film optoelectric transducer device and manufacture thereof
JP2003249670A (en) * 2001-12-19 2003-09-05 Toppan Printing Co Ltd Solar battery for flexible display, display device and electronic book
JP2004258364A (en) * 2003-02-26 2004-09-16 Seiko Epson Corp Light-using device, display body, power generating body, and manufacturing method of light-using device
JP2006039450A (en) * 2004-07-30 2006-02-09 Seiko Epson Corp Method for forming antireflection film, apparatus for forming antireflection film, antireflection film and optical component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274533A (en) * 1998-03-23 1999-10-08 Sharp Corp Manufacture of solar cell, solar cell manufactured thereby and manufacture of semiconductor element
JP2000252504A (en) * 1999-03-04 2000-09-14 Kanegafuchi Chem Ind Co Ltd Silicon thin film optoelectric transducer device and manufacture thereof
JP2003249670A (en) * 2001-12-19 2003-09-05 Toppan Printing Co Ltd Solar battery for flexible display, display device and electronic book
JP2004258364A (en) * 2003-02-26 2004-09-16 Seiko Epson Corp Light-using device, display body, power generating body, and manufacturing method of light-using device
JP2006039450A (en) * 2004-07-30 2006-02-09 Seiko Epson Corp Method for forming antireflection film, apparatus for forming antireflection film, antireflection film and optical component

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238893A (en) * 2009-03-31 2010-10-21 Mitsubishi Materials Corp SOLAR CELL WHOSE STRUCTURE LAYER IS (Zn, Ga, Al)O BASED TRANSPARENT ELECTRODE LAYER, AND ZnO-Ga2O3-Al BASED SPUTTERING TARGET USED FOR FORMING THE (Zn, Ga, Al)O BASED TRANSPARENT ELECTRODE LAYER
JP2011233412A (en) * 2010-04-28 2011-11-17 Mitsubishi Rayon Co Ltd Transparent conductive laminate and method for manufacturing the same
JP2017032806A (en) * 2015-08-03 2017-02-09 国立大学法人東京工業大学 Method for manufacturing antireflection fine protrusion
CN105826471A (en) * 2016-03-24 2016-08-03 吉林大学 Polymer solar cell having double bionic light trapping effect and plasma surface resonance effect and preparation method of polymer solar cell
CN105826471B (en) * 2016-03-24 2018-02-27 吉林大学 A kind of double bionical sunken light have polymer solar battery of Plasmon Surface Resonance effect and preparation method thereof concurrently
CN108682712A (en) * 2018-05-15 2018-10-19 上海电力学院 Apply the double-deck moth ocular structure film in solar film battery

Similar Documents

Publication Publication Date Title
Tan et al. Highly transparent modulated surface textured front electrodes for high‐efficiency multijunction thin‐film silicon solar cells
TW201135949A (en) Holey electrode grids for photovoltaic cells with subwavelength and superwavelength feature sizes
JP2003069061A (en) Laminated photovoltaic transducer device
JP2008181965A (en) Laminated optoelectric converter and its fabrication process
JP2003179241A (en) Thin film solar cell
TW200830567A (en) Solar cell and method for manufacturing the same
JP2010219388A (en) Thin film solar cell, and method of manufacturing the same
Tamang et al. On the interplay of cell thickness and optimum period of silicon thin‐film solar cells: light trapping and plasmonic losses
EP2728623A1 (en) Thin film solar cell and method for manufacturing same
JP2008034686A (en) Photoelectric conversion device and manufacturing method thereof
JP2008034687A (en) Photoelectric conversion element
CN111009590A (en) HJT solar cell and preparation method thereof
JP2008270562A (en) Multi-junction type solar cell
JP4193961B2 (en) Multi-junction thin film solar cell
TW201242069A (en) Improved method for manufacturing a photovoltaic device comprising a TCO layer
JP2009117463A (en) Thin-film photoelectric conversion device
JP2005244073A (en) Solar cell and method for manufacturing the same
JP2005347444A (en) Photovoltaic element
WO2010134360A1 (en) Thin film solar cell and method for manufacturing same
JP2013179217A (en) Solar cell and manufacturing method for the same
JP2012019128A (en) Thin film photoelectric conversion device
JP2011096730A (en) Thin-film solar cell and method of manufacturing the same
Zhong et al. Quasi-omnidirectional crystalline silicon solar cells
CN104681639A (en) Polycrystalline silicon film solar battery based on flexible substrate and preparation method of polycrystalline silicon film solar battery
KR20150006926A (en) Scattering metal-nanostructure-layer covered electrode and solar cell using the same, and a methods of manufacturing them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121106