JP2008028381A - Method for manufacturing metal oxide film, laminated body and electronic device - Google Patents

Method for manufacturing metal oxide film, laminated body and electronic device Download PDF

Info

Publication number
JP2008028381A
JP2008028381A JP2007161753A JP2007161753A JP2008028381A JP 2008028381 A JP2008028381 A JP 2008028381A JP 2007161753 A JP2007161753 A JP 2007161753A JP 2007161753 A JP2007161753 A JP 2007161753A JP 2008028381 A JP2008028381 A JP 2008028381A
Authority
JP
Japan
Prior art keywords
metal oxide
oxide film
film
metal
crystal plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007161753A
Other languages
Japanese (ja)
Other versions
JP5126950B2 (en
Inventor
Yuki Miyamoto
ゆき 宮本
Tetsuo Tsuchiya
哲男 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
TDK Corp
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, TDK Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007161753A priority Critical patent/JP5126950B2/en
Publication of JP2008028381A publication Critical patent/JP2008028381A/en
Application granted granted Critical
Publication of JP5126950B2 publication Critical patent/JP5126950B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1283Control of temperature, e.g. gradual temperature increase, modulation of temperature
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/143Radiation by light, e.g. photolysis or pyrolysis

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a metal oxide film which can produce the metal oxide film with sufficiently high crystalline orientation easily, at low cost, and almost without damaging the base material and metal oxide film, as well as to provide a laminated body and an electronic device. <P>SOLUTION: The manufacturing method includes a step of forming a metal film 14 having a crystalline plane (111) on a base material 10, a step of forming a metal oxide film 20 on a crystalline plane (111) of the metal film 14, and a step of irradiating ultraviolet rays to the metal oxide film 20 while keeping the temperature of the metal oxide film 20 formed on the crystalline plane (111) of the metal film 14 within the range from 25 to 600°C. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、金属酸化物膜の製造方法、積層体、及び、電子デバイスに関する。   The present invention relates to a method for manufacturing a metal oxide film, a laminate, and an electronic device.

従来より、電子デバイスの製造等においては、電極膜等の基材上に結晶配向度の高い金属酸化膜を形成することが求められている。金属酸化物としては、例えば、Ba及びTiを含む金属酸化物(BaTiO等)等が例示できる。 Conventionally, in the manufacture of electronic devices and the like, it is required to form a metal oxide film having a high degree of crystal orientation on a substrate such as an electrode film. Examples of the metal oxide include a metal oxide containing Ba and Ti (BaTiO 3 or the like).

基材上に結晶配向度の高い金属酸化物膜を形成する方法としては、単結晶基板上や、結晶配向度の高いバッファ膜や電極膜上に、金属酸化物膜をエピタキシャル成長させる方法(例えば特許文献1〜3、非特許文献1参照)が知られている。また、600℃以上にされた基材上に金属酸化物をスパッタ法により成膜させる方法も知られている。さらに、CVD法やゾルゲル法によって形成した非晶質の金属酸化膜に対して紫外線やレーザ光を照射して結晶化することも知られている(例えば、特許文献4〜6参照)。
特許3608459号公報 特許2834355号公報 特許2916116号公報 特開平6−140385号公報 特開平9−157855号公報 特開平5−247658号公報 J. Appl. Phys., Vol. 65, (1998), pp1666-1670
As a method of forming a metal oxide film having a high degree of crystal orientation on a substrate, a method of epitaxially growing a metal oxide film on a single crystal substrate, a buffer film or an electrode film having a high degree of crystal orientation (for example, a patent) Documents 1 to 3 and Non-Patent Document 1) are known. Also known is a method of forming a metal oxide film on a base material at 600 ° C. or higher by sputtering. Furthermore, it is also known to crystallize an amorphous metal oxide film formed by a CVD method or a sol-gel method by irradiating ultraviolet rays or laser light (for example, see Patent Documents 4 to 6).
Japanese Patent No. 36060859 Japanese Patent No. 2834355 Japanese Patent No. 2916116 JP-A-6-140385 JP-A-9-157855 JP-A-5-247658 J. Appl. Phys., Vol. 65, (1998), pp1666-1670

しかしながら、単結晶基板は高価であり、また、結晶配向度の高い電極膜やバッファ膜を得る事も困難であり、また、600℃以上の高温下で基材上に金属酸化物を成膜すると基材の酸化や、基材と金属酸化物膜との熱膨張率の差等により基材及び金属酸化物膜を含む積層体にダメージを与えるおそれがあり、基材の選択の幅を狭めることでデバイスの可能性を小さくしてしまっている。さらに、非晶質の金属酸化物膜に紫外線やレーザ光を照射するだけでは、十分に結晶配向度の高い金属酸化物膜を得ることは困難である。   However, a single crystal substrate is expensive, and it is difficult to obtain an electrode film or a buffer film having a high degree of crystal orientation. Further, when a metal oxide is formed on a substrate at a high temperature of 600 ° C. or higher. There is a risk of damaging the laminate including the base material and the metal oxide film due to oxidation of the base material, difference in thermal expansion coefficient between the base material and the metal oxide film, etc., and narrowing the selection range of the base material Has reduced the potential of the device. Furthermore, it is difficult to obtain a metal oxide film having a sufficiently high degree of crystal orientation simply by irradiating an amorphous metal oxide film with ultraviolet rays or laser light.

本発明は上記課題に鑑みてなされたものであり、十分に結晶配向度の高い金属酸化物膜を、簡易、低コスト、かつ、基材及び金属酸化物膜に損傷を殆ど与えずに得ることが可能な金属酸化物膜の製造方法、積層体、及び電子デバイスを提供することを目的とする。   The present invention has been made in view of the above problems, and provides a metal oxide film having a sufficiently high degree of crystal orientation, which is simple, low cost, and hardly damages the substrate and the metal oxide film. An object of the present invention is to provide a method for manufacturing a metal oxide film, a laminate, and an electronic device.

本発明にかかる金属酸化物膜の製造方法は、基材上に(111)結晶面を有する金属膜を形成する工程と、金属膜の(111)結晶面上に金属酸化物膜を直接形成する工程と、金属酸化物膜の温度を25〜600℃に維持し、金属酸化物膜に対して紫外線を照射する工程と、を備える。   The method for producing a metal oxide film according to the present invention includes a step of forming a metal film having a (111) crystal plane on a substrate, and directly forming the metal oxide film on the (111) crystal plane of the metal film. And a step of maintaining the temperature of the metal oxide film at 25 to 600 ° C. and irradiating the metal oxide film with ultraviolet rays.

本発明によれば、基材の種類を問わず金属酸化物膜の結晶配向度を十分に高めることができる。また、温度がそれほど高くないので基材や金属酸化物膜に対して損傷を与えにくい。   According to the present invention, the degree of crystal orientation of the metal oxide film can be sufficiently increased regardless of the type of substrate. Further, since the temperature is not so high, the base material and the metal oxide film are hardly damaged.

ここで、金属酸化物膜がBa及びTiを含む金属酸化物膜であることが好ましい。特に、ペロブスカイト型金属酸化物膜であることが好ましい。この場合には、金属酸化物膜において、特に(100)結晶面を膜面と平行に優先配向させることが可能である。   Here, the metal oxide film is preferably a metal oxide film containing Ba and Ti. In particular, a perovskite metal oxide film is preferable. In this case, in the metal oxide film, the (100) crystal plane can be preferentially oriented in parallel with the film plane.

また、紫外線の波長は、100〜500nmであることが好ましい。また、紫外線はレーザ光であることが好ましい。特に紫外線が、パルスレーザ光であることが好ましい。   Moreover, it is preferable that the wavelength of an ultraviolet-ray is 100-500 nm. Moreover, it is preferable that an ultraviolet-ray is a laser beam. In particular, the ultraviolet light is preferably pulsed laser light.

そして、パルスレーザ光のエネルギーが、1パルスあたり40〜400mJ/cm、好ましくは、60〜300mJ/cmであることが好ましい。 And it is preferable that the energy of a pulse laser beam is 40-400 mJ / cm < 2 > per pulse, Preferably, it is 60-300 mJ / cm < 2 >.

また、パルスレーザ光のパルス周波数は1〜1000Hz、好ましくは、1〜100Hzであることが好ましい。   The pulse frequency of the pulsed laser light is 1-1000 Hz, preferably 1-100 Hz.

本発明に係る積層体は、(111)結晶面を有する金属膜と、金属膜の(111)結晶面上に直接設けられた金属酸化物膜と、を備え、金属酸化物膜のX線回折チャートにおける(100)結晶面の回折線のピーク強度をI(100)とし、(110)結晶面の回折線のピーク強度をI(110)としたとき、ピーク強度比(I(100)/I(110))が2以上、好ましくは2.1以上、より好ましくは2.2以上である。なお、上述のピーク強度比を結晶配向度Fとする。   The laminate according to the present invention includes a metal film having a (111) crystal plane and a metal oxide film provided directly on the (111) crystal plane of the metal film, and X-ray diffraction of the metal oxide film When the peak intensity of the diffraction line on the (100) crystal plane in the chart is I (100) and the peak intensity of the diffraction line on the (110) crystal plane is I (110), the peak intensity ratio (I (100) / I (110)) is 2 or more, preferably 2.1 or more, more preferably 2.2 or more. The above-described peak intensity ratio is defined as the degree of crystal orientation F.

このような積層体は上述の製造方法により容易に作製される。   Such a laminate is easily produced by the above-described manufacturing method.

ここで、金属酸化物膜はBa及びTiを含む金属酸化物膜であることが好ましい。   Here, the metal oxide film is preferably a metal oxide film containing Ba and Ti.

また、本発明に係る電子デバイスは、上述の積層体を有する電子デバイスである。   Moreover, the electronic device which concerns on this invention is an electronic device which has the above-mentioned laminated body.

本発明によれば、十分に結晶配向度の高い金属酸化物膜を、簡易、低コスト、かつ、基材に損傷を殆ど与えずに得ることが可能となる。   According to the present invention, a metal oxide film having a sufficiently high degree of crystal orientation can be obtained simply, at low cost, and with little damage to the substrate.

以下に、図1を参照しつつ、本実施形態に係る金属酸化物膜の製造方法、及び、積層体について説明する。   Below, the manufacturing method of the metal oxide film which concerns on this embodiment, and a laminated body are demonstrated, referring FIG.

まず、基材10を用意する。基材10は特に限定されず、単層基材でもよく、多層積層基材でもよい。例えば、単結晶材料、多結晶材料、非晶質材料等の基板が使用できる。基板の組成も特に限定されず、例えば、Si、GaAs、GaP、InP、SiC等の半導体基板、SiO、Al,MgO,SrTiO等の金属酸化物基板、Cu,Ni等の金属基板、LTCC(Low Temperature Co−fired Ceramics)、アルミナ等のセラミックス基板等が挙げられる。 First, the base material 10 is prepared. The base material 10 is not specifically limited, A single layer base material may be sufficient and a multilayer laminated base material may be sufficient. For example, a substrate made of a single crystal material, a polycrystalline material, an amorphous material, or the like can be used. The composition of the substrate is also not particularly limited. For example, a semiconductor substrate such as Si, GaAs, GaP, InP, or SiC, a metal oxide substrate such as SiO 2 , Al 2 O 3 , MgO, or SrTiO 3, or a metal such as Cu or Ni. Examples include substrates, LTCC (Low Temperature Co-fired Ceramics), ceramic substrates such as alumina, and the like.

また、このような基板に、MgO、ITO、ZnO、SnO等の金属酸化物膜、Au、Pt、Ag、Ir、Ru、Co、Ni、Fe、Cu、Al等の金属膜等の下地膜を1層又は複数層形成した基材10も使用できる。これらの下地層は、基板自体の酸化や、スパッタ法等により容易に形成できる。 In addition, a base film such as a metal oxide film such as MgO, ITO, ZnO, SnO 2, a metal film such as Au, Pt, Ag, Ir, Ru, Co, Ni, Fe, Cu, Al, etc. It is also possible to use the base material 10 in which one or more layers are formed. These underlayers can be easily formed by oxidation of the substrate itself or sputtering.

具体的には、基材10としては、例えば、図1に示すように、Si等の半導体基板11上に、バッファ膜として、SiO等の金属酸化物膜12、及び、TiO等の金属酸化物膜13を積層したものが好ましい。SiO膜は、Si基板を酸化性雰囲気中で高温にすることにより形成できる。また、TiO膜はスパッタ等により形成できる。 Specifically, as the base material 10, for example, as shown in FIG. 1, a metal oxide film 12 such as SiO 2 and a metal such as TiO 2 as a buffer film on a semiconductor substrate 11 such as Si. What laminated | stacked the oxide film 13 is preferable. The SiO 2 film can be formed by raising the temperature of the Si substrate in an oxidizing atmosphere. The TiO 2 film can be formed by sputtering or the like.

続いて、基材10の表面に、(111)結晶面が配向した金属膜14を形成する。例えば、基材10の表面に、スパッタ法等により、0.01〜30μm程度のPt,Ni,Cu等の金属膜を形成すると、表面が(111)結晶面に配向した金属膜14を容易に得ることができる。   Subsequently, a metal film 14 having a (111) crystal plane oriented is formed on the surface of the substrate 10. For example, when a metal film of Pt, Ni, Cu or the like of about 0.01 to 30 μm is formed on the surface of the base material 10 by sputtering or the like, the metal film 14 whose surface is oriented to the (111) crystal plane can be easily formed. Obtainable.

続いて、金属膜14の(111)結晶面上に金属酸化物膜20を直接形成する。金属酸化物の組成は特に限定されないが、例えば、チタン酸バリウム(BT)、チタン酸バリウムストロンチウム(BST)等のBa及びTiを含む金属酸化物が好ましい。   Subsequently, the metal oxide film 20 is directly formed on the (111) crystal plane of the metal film 14. The composition of the metal oxide is not particularly limited. For example, a metal oxide containing Ba and Ti such as barium titanate (BT) and barium strontium titanate (BST) is preferable.

金属酸化物膜20を形成する方法は特に限定されない。例えば、いわゆる化学溶液法、すなわち、金属アルコキシド、金属有機酸塩や無機金属塩等を含む溶液を、例えば、スピンコート法等によって金属膜14上に塗布し、乾燥により溶媒を蒸発させ、仮焼きにより金属アルコキシド、金属有機酸塩や無機金属塩等を分解することにより金属酸化物膜20を作成することができる。原料となる金属化合物としては、金属アルコキシド(例えば、Ti(OC、Ba(OC、Zr(OC、Pb(OC、Sr(OC等)、有機酸金属塩(例えば、2−エチルヘキサン酸バリウム、2−エチルヘキサン酸ジルコニル、2−エチルヘキサン酸チタン、2−エチルヘキサン酸鉛、2−エチルヘキサン酸ストロンチウム等、ラウリン酸塩、アセチルアセトナート等)等が挙げられ、無機金属塩としては、金属硝酸塩(例えば、Ba(NO)、Sr(NO))、金属酢酸塩(例えば、Ba(CHCOO)・HO、Pb(CHCOO))・3HO)、金属炭酸塩(BaCO、SrCO)等が挙げられる。 The method for forming the metal oxide film 20 is not particularly limited. For example, a so-called chemical solution method, that is, a solution containing a metal alkoxide, a metal organic acid salt, an inorganic metal salt, or the like is applied onto the metal film 14 by, for example, a spin coating method, the solvent is evaporated by drying, and calcined Thus, the metal oxide film 20 can be formed by decomposing a metal alkoxide, a metal organic acid salt, an inorganic metal salt, or the like. As a metal compound used as a raw material, metal alkoxide (for example, Ti (OC 2 H 5 ) 4 , Ba (OC 2 H 5 ) 2 , Zr (OC 2 H 5 ) 4 , Pb (OC 2 H 5 ) 2 , Sr (OC 2 H 5) 2, etc.), an organic acid metal salt (e.g., barium 2-ethyl hexanoate, 2-ethylhexanoate, zirconyl 2-ethylhexanoate of titanium, lead 2-ethylhexanoate, 2-ethylhexanoic acid Strontium, laurate, acetylacetonate, etc.), and inorganic metal salts include metal nitrates (for example, Ba (NO 3 ) 2 , Sr (NO 3 ) 2 ), metal acetates (for example, Ba). (CH 3 COO) 2 .H 2 O, Pb (CH 3 COO)) 2 .3H 2 O), metal carbonates (BaCO 3 , SrCO 3 ) and the like.

また、金属酸化物膜20を、金属酸化物をターゲットとしたスパッタリング法やCVD、レーザーアブレーション法等のいわゆる気相法により製造することもできる。この場合の成膜温度は室温〜500℃が好ましい。   The metal oxide film 20 can also be manufactured by a so-called gas phase method such as sputtering, CVD, or laser ablation using a metal oxide as a target. In this case, the film forming temperature is preferably room temperature to 500 ° C.

金属酸化物膜20の膜厚は、例えば、0.01〜30μmとすることが好ましい。   The thickness of the metal oxide film 20 is preferably 0.01 to 30 μm, for example.

なお、上述のようにして形成された金属酸化物膜20は結晶配向度が殆ど無い非晶質(アモルファス)状態か、あるいは、結晶配向度があってもその程度は極めて低く、各種電子デバイスの誘電体に対して要求される十分な比抵抗が通常発現しにくい。   Note that the metal oxide film 20 formed as described above is in an amorphous state having almost no crystal orientation, or even if there is a crystal orientation, the degree is extremely low. Sufficient specific resistance required for the dielectric is usually difficult to develop.

続いて、この金属酸化物膜20を、25〜600℃程度、好ましくは、25〜500℃程度に維持し、その状態でこの金属酸化物膜20に対して紫外線を照射する。紫外線の波長は、例えば、100〜500nm、好ましくは、100〜400nmである。紫外線としては、ArF(193nm)、XeCl(308nm)、KrF(248nm)等のレーザ光であることが好ましい。また、レーザ光の中でも、パルスレーザ光が好ましい。1パルスあたりのエネルギーは、40〜400mJ/cmであることが好ましく、パルス周波数(1秒間に照射するパルスの数)は1〜100Hz程度とすることが好ましい。なお、1パルスの照射時間は、例えば、10〜100nsとすることができる。また、金属酸化物膜の各場所に対して照射する総パルス数は例えば、5〜50000とすることができる。 Subsequently, the metal oxide film 20 is maintained at about 25 to 600 ° C., preferably about 25 to 500 ° C., and the metal oxide film 20 is irradiated with ultraviolet rays in this state. The wavelength of the ultraviolet light is, for example, 100 to 500 nm, preferably 100 to 400 nm. The ultraviolet light is preferably laser light such as ArF (193 nm), XeCl (308 nm), KrF (248 nm). Of the laser beams, pulsed laser beams are preferable. The energy per pulse is preferably 40 to 400 mJ / cm 2 , and the pulse frequency (number of pulses irradiated per second) is preferably about 1 to 100 Hz. In addition, the irradiation time of 1 pulse can be 10-100 ns, for example. Moreover, the total number of pulses irradiated with respect to each place of a metal oxide film can be 5-50000, for example.

具体的には、例えば、図2のような装置を用いることができる。加熱ステージ110上に基材10を載せて基材10上の金属酸化物膜20を25〜500℃に維持し、この金属酸化物膜20に対してレーザ光源200からレーザ光を照射すればよい。   Specifically, for example, an apparatus as shown in FIG. 2 can be used. The base material 10 is placed on the heating stage 110 and the metal oxide film 20 on the base material 10 is maintained at 25 to 500 ° C., and laser light is irradiated from the laser light source 200 to the metal oxide film 20. .

なお、パルス光でなく連続光でも実施は可能であり、また、レーザ光でなくても水銀ランプ等の紫外線ランプの光を照射しても実施は可能である。また、図2以外の装置によって金属酸化物膜20を加熱しても良いのは言うまでもない。   It should be noted that the present invention can be carried out using continuous light instead of pulsed light, and can also be carried out by irradiating light from an ultraviolet lamp such as a mercury lamp without using laser light. Needless to say, the metal oxide film 20 may be heated by an apparatus other than FIG.

そして、上述の温度条件下で、金属酸化物に対して紫外線を照射すると、金属酸化物膜20の結晶配向度が顕著に向上する。   When the metal oxide is irradiated with ultraviolet rays under the above temperature conditions, the degree of crystal orientation of the metal oxide film 20 is significantly improved.

特に、金属膜14の表面が(111)結晶面であり、この金属膜14の(111)結晶面上に金属酸化物膜20が直接形成されており、さらに、金属酸化物膜20がBa及びTiを含む金属酸化物から形成された膜である場合には、上述の温度条件下での紫外線照射により、金属酸化物の(100)結晶面を膜面と平行に特に優先配向させることができて特に好ましい。具体的には、金属酸化物膜20のX線回折チャートにおける(100)結晶面の回折線のピーク強度をI(100)とし、(110)結晶面の回折線のピーク強度をI(110)としたとき、結晶配向度F、すなわち、ピーク強度比F=(I(100)/I(110))を2以上とすることが容易である。このような構造の金属膜14及び金属酸化物膜20を有する積層体50は従来得られなかったものである。ここで、X線回折チャートにおける(100)結晶面の回折線は擬立方晶として指数付けしたものであってよい。擬立方晶とは、例えば、(100)結晶面と(001)結晶面との格子定数の差が小さくなり、X線回折による解析では分離困難であることを意味する。金属膜14の膜厚は、0.01〜500μm程度であることが好ましい。   In particular, the surface of the metal film 14 is a (111) crystal plane, the metal oxide film 20 is directly formed on the (111) crystal plane of the metal film 14, and the metal oxide film 20 further includes Ba and In the case of a film formed from a metal oxide containing Ti, the (100) crystal plane of the metal oxide can be particularly preferentially oriented parallel to the film plane by ultraviolet irradiation under the temperature conditions described above. It is particularly preferable. Specifically, the peak intensity of the diffraction line on the (100) crystal plane in the X-ray diffraction chart of the metal oxide film 20 is I (100), and the peak intensity of the diffraction line on the (110) crystal plane is I (110). In this case, it is easy to set the crystal orientation degree F, that is, the peak intensity ratio F = (I (100) / I (110)) to 2 or more. The laminate 50 having the metal film 14 and the metal oxide film 20 having such a structure has not been obtained conventionally. Here, the diffraction line of the (100) crystal plane in the X-ray diffraction chart may be indexed as a pseudo-cubic crystal. Pseudocubic means, for example, that the difference in lattice constant between the (100) crystal plane and the (001) crystal plane is small, and it is difficult to separate by analysis by X-ray diffraction. The film thickness of the metal film 14 is preferably about 0.01 to 500 μm.

また、上述のような金属酸化物膜の形成工程と、この金属酸化物膜を所定の温度に維持しつつ紫外線を照射する金属酸化物処理工程と、を含む一連の工程を複数回繰り返すことにより、図3に示すように結晶配向度の優れた金属酸化物膜20を多数積層して比較的厚みのある金属酸化物膜20Aを形成してもよい。   In addition, by repeating a series of processes including the above-described metal oxide film forming process and the metal oxide treatment process of irradiating ultraviolet rays while maintaining the metal oxide film at a predetermined temperature, a plurality of times. As shown in FIG. 3, a relatively thick metal oxide film 20A may be formed by laminating a large number of metal oxide films 20 having excellent crystal orientation.

続いて、この様にして得られた金属酸化物膜を用いた電子デバイスの例として、誘電体膜として金属酸化物膜20を含む薄膜コンデンサ素子1について、図4を参照して詳細に説明する。   Subsequently, as an example of an electronic device using the metal oxide film thus obtained, a thin film capacitor element 1 including a metal oxide film 20 as a dielectric film will be described in detail with reference to FIG. .

この薄膜コンデンサ素子1は、Si等の基板11上に、バッファ(密着)層として、SiO等の金属酸化物膜12及びTiO等の金属酸化物膜13を形成し、Au、Pt、Ag、Ir、Ru、Co、Ni、Fe、Cu、Al等の金属膜(電極膜)14を形成し、金属酸化物層20又は20Aを形成し、さらに、金属酸化物膜20又は20A上にさらに電極としての金属膜14を形成したものである。 In this thin film capacitor element 1, a metal oxide film 12 such as SiO 2 and a metal oxide film 13 such as TiO 2 are formed as a buffer (adhesion) layer on a substrate 11 such as Si, and Au, Pt, Ag , Ir, Ru, Co, Ni, Fe, Cu, Al, or the like is formed, a metal oxide layer 20 or 20A is formed, and further on the metal oxide film 20 or 20A A metal film 14 is formed as an electrode.

基板11の厚みは例えば0.1〜5mm、バッファ層の厚みは例えば5〜2000nm、金属膜14の厚みは例えば0.01〜500μm、金属酸化物膜20又は20Aの厚みは例えば100〜1000nmとすることができる。   The thickness of the substrate 11 is, for example, 0.1 to 5 mm, the thickness of the buffer layer is, for example, 5 to 2000 nm, the thickness of the metal film 14 is, for example, 0.01 to 500 μm, and the thickness of the metal oxide film 20 or 20A is, for example, 100 to 1000 nm. can do.

このような薄膜コンデンサ素子1においては、金属酸化物膜20の結晶配向度が高いので、金属酸化物膜20の膜厚が薄くても好適な性能を発揮し得る。なお、このような金属酸化物膜20を一対の金属膜14で挟んだ構造の積層体を有する電子デバイスは、薄膜コンデンサに限られず、FeRAM、チューナブルフィルタ等のデバイスにも使用可能である。   In such a thin film capacitor element 1, since the crystal orientation degree of the metal oxide film 20 is high, suitable performance can be exhibited even if the metal oxide film 20 is thin. Note that an electronic device having a stacked structure in which such a metal oxide film 20 is sandwiched between a pair of metal films 14 is not limited to a thin film capacitor, and can be used for devices such as FeRAMs and tunable filters.

次に、具体的な実施例を示し更に詳細に本願発明について説明する。なお、本願発明は以下の実施例に限定されるものではない。   Next, the present invention will be described in more detail by showing specific examples. The present invention is not limited to the following examples.

(実施例1)
まず基材を用意した。まず、表面に熱酸化膜が500nm形成された多結晶のSi基板上にスパッタ法によりTiO膜を20nm形成し、さらに、TiO膜上にスパッタ法によりPt膜を200nm形成した。Pt膜の表面は(111)結晶面に配向していた。
(Example 1)
First, a substrate was prepared. First, a 20 nm TiO 2 film was formed by sputtering on a polycrystalline Si substrate having a thermal oxide film of 500 nm formed on the surface, and a 200 nm Pt film was further formed by sputtering on the TiO 2 film. The surface of the Pt film was oriented in the (111) crystal plane.

続いて、7wt%のチタン酸バリウム膜形成用のチタン、及び、バリウムを含む金属化合物原料液を、スピンコータ(3000rpm、15sec)でPt膜上に塗布し、ホットプレート上で150℃10分間乾燥させ、その後、ホットプレートで400℃10分間仮焼きを行ってPt膜上にほぼ非晶質のチタン酸バリウム膜(膜厚約110nm)を金属酸化物膜として形成した。   Subsequently, a titanium compound for forming a 7 wt% barium titanate film and a metal compound raw material liquid containing barium were applied onto the Pt film with a spin coater (3000 rpm, 15 sec), and dried on a hot plate at 150 ° C. for 10 minutes. Thereafter, calcination was performed at 400 ° C. for 10 minutes on a hot plate to form a substantially amorphous barium titanate film (thickness: about 110 nm) as a metal oxide film on the Pt film.

続いて、ホットプレート上で金属酸化物膜を400℃に維持しながら、KrFパルスレーザ源から、1パルスあたりの照射エネルギーが70mJ/cm、合計パルス数が1000、パルス周波数(1秒間に照射されるパルスの数)が10Hzとなるように紫外線パルスレーザを各場所に照射し、その後金属酸化物膜を常温に戻した。 Subsequently, while maintaining the metal oxide film at 400 ° C. on the hot plate, the irradiation energy per pulse is 70 mJ / cm 2 , the total number of pulses is 1000, and the pulse frequency (irradiated for 1 second) from the KrF pulse laser source. Each position was irradiated with an ultraviolet pulse laser so that the number of applied pulses was 10 Hz, and then the metal oxide film was returned to room temperature.

(実施例2〜5)
実施例2〜5では、合計パルス数をそれぞれ2000,3000,4000,6000とする以外は実施例1と同様とした。
(Examples 2 to 5)
Examples 2 to 5 were the same as Example 1 except that the total number of pulses was 2000, 3000, 4000, and 6000, respectively.

(実施例6〜7)
実施例6〜7では、金属酸化物膜として、チタン酸バリウム膜に代えて、(Ba,Sr)TiO膜(膜厚約120nm)を形成し、金属酸化物膜のレーザ照射時の温度を300℃とし、紫外線パルスレーザのパルス周波数を30Hzとし、1パルスのエネルギーを実施例6では80mJ/cmとし実施例7では90mJ/cmとする以外はそれぞれ実施例1と同様とした。なお、金属酸化物膜におけるBaとSrとの元素モル比は7:3である。
(Examples 6 to 7)
In Examples 6 to 7, instead of the barium titanate film, a (Ba, Sr) TiO 3 film (film thickness of about 120 nm) is formed as the metal oxide film, and the temperature of the metal oxide film during laser irradiation is set. and 300 ° C., the pulse frequency of the pulsed ultraviolet laser as a 30 Hz, except that the energy of one pulse as in example 80 mJ / cm 2 in 6 and 90 mJ / cm 2 in example 7 was the same as each example 1. The element molar ratio of Ba and Sr in the metal oxide film is 7: 3.

(実施例8)
実施例8では、金属酸化物膜の形成及び当該金属酸化物に対する所定温度条件下での紫外線照射処理を含む工程を合計2回繰り返す以外は実施例1と同様にした。
(Example 8)
Example 8 was the same as Example 1 except that the process including the formation of the metal oxide film and the ultraviolet irradiation treatment under a predetermined temperature condition for the metal oxide was repeated a total of two times.

(比較例1)
紫外線照射をせずに、仮焼き後にさらに、800℃で金属酸化物膜の焼成を行った以外は実施例1と同様にして金属酸化物膜を得た。
(Comparative Example 1)
A metal oxide film was obtained in the same manner as in Example 1 except that the metal oxide film was further baked at 800 ° C. after calcination without ultraviolet irradiation.

図6に実施例1〜5における金属酸化物膜のX線回折チャートを、図7に実施例6〜7における金属酸化物膜のX線回折チャートを、図8に実施例8における金属酸化物膜のX線回折チャートを、図9に比較例3における金属酸化物膜のX線回折チャートを図示する。   6 shows an X-ray diffraction chart of the metal oxide film in Examples 1 to 5, FIG. 7 shows an X-ray diffraction chart of the metal oxide film in Examples 6 to 7, and FIG. 8 shows a metal oxide film in Example 8. The X-ray diffraction chart of the film is shown in FIG. 9, and the X-ray diffraction chart of the metal oxide film in Comparative Example 3 is shown in FIG.

実施例1〜8においては、金属酸化物膜がX線回折チャートにおいて(100)の十分な結晶配向を有することがわかった。一方、比較例1においては、(100)の結晶配向はほとんど認められなかった。   In Examples 1 to 8, it was found that the metal oxide film had a sufficient crystal orientation of (100) in the X-ray diffraction chart. On the other hand, in Comparative Example 1, almost no (100) crystal orientation was observed.

図1は、本発明の実施形態に係る金属酸化物膜の製造方法を説明するための概略断面図である。FIG. 1 is a schematic cross-sectional view for explaining a method for producing a metal oxide film according to an embodiment of the present invention. 図2は、本発明の実施形態に係る金属酸化物膜の製造方法を説明するための図1に続く概略断面図である。FIG. 2 is a schematic cross-sectional view subsequent to FIG. 1 for explaining the metal oxide film manufacturing method according to the embodiment of the present invention. 図3は、本発明の実施形態に係る金属酸化物膜の製造方法を説明するための概略断面図である。FIG. 3 is a schematic cross-sectional view for explaining a method for producing a metal oxide film according to an embodiment of the present invention. 図4は、本発明の実施形態に係る電子デバイスを説明するための概略断面図である。FIG. 4 is a schematic cross-sectional view for explaining an electronic device according to an embodiment of the present invention. 図5は、実施例1〜8及び比較例1の金属酸化物膜の製造方法及びその結果を示す表である。FIG. 5 is a table showing methods for producing metal oxide films of Examples 1 to 8 and Comparative Example 1 and results thereof. 図6は、実施例1〜5における金属酸化物膜のX線回折チャートである。FIG. 6 is an X-ray diffraction chart of the metal oxide films in Examples 1 to 5. 図7は、実施例6〜7における金属酸化物膜のX線回折チャートである。FIG. 7 is an X-ray diffraction chart of the metal oxide films in Examples 6-7. 図8は、実施例8における金属酸化物膜のX線回折チャートである。FIG. 8 is an X-ray diffraction chart of the metal oxide film in Example 8. 図9は、比較例1における金属酸化物膜のX線回折チャートである。FIG. 9 is an X-ray diffraction chart of the metal oxide film in Comparative Example 1.

符号の説明Explanation of symbols

1…薄膜コンデンサ素子(電子デバイス)、10…基材、20…金属酸化物膜、14…金属膜、50…積層体。   DESCRIPTION OF SYMBOLS 1 ... Thin film capacitor element (electronic device), 10 ... Base material, 20 ... Metal oxide film, 14 ... Metal film, 50 ... Laminated body.

Claims (10)

基材上に、(111)結晶面を有する金属膜を形成する工程と、
前記金属膜の(111)結晶面上に金属酸化物膜を直接形成する工程と、
前記金属酸化物膜の温度を25〜600℃に維持し、前記金属酸化物膜に対して紫外線を照射する工程と、を備える金属酸化物膜の製造方法。
Forming a metal film having a (111) crystal plane on a substrate;
Forming a metal oxide film directly on the (111) crystal plane of the metal film;
Maintaining the temperature of the metal oxide film at 25 to 600 ° C., and irradiating the metal oxide film with ultraviolet rays.
前記金属酸化物膜はBa及びTiを含む金属酸化物である請求項1に記載の金属酸化物膜の製造方法。   The method of manufacturing a metal oxide film according to claim 1, wherein the metal oxide film is a metal oxide containing Ba and Ti. 前記紫外線の波長は、100〜500nmである請求項1又は2記載の金属酸化物膜の製造方法。   The method for producing a metal oxide film according to claim 1 or 2, wherein the wavelength of the ultraviolet light is 100 to 500 nm. 前記紫外線はレーザ光である請求項1〜3のいずれかに記載の金属酸化物膜の製造方法。   The method for producing a metal oxide film according to claim 1, wherein the ultraviolet light is laser light. 前記レーザ光はパルスレーザ光である請求項4に記載の金属酸化物膜の製造方法。   The method for producing a metal oxide film according to claim 4, wherein the laser beam is a pulsed laser beam. 前記パルスレーザ光のエネルギーは、1パルスあたり40〜400mJ/cmである請求項5に記載の金属酸化物膜の製造方法。 The method for producing a metal oxide film according to claim 5, wherein the energy of the pulse laser beam is 40 to 400 mJ / cm 2 per pulse. 前記パルスレーザ光のパルス周波数は1〜1000Hzである請求項5又は6に記載の金属酸化物膜の製造方法。   The method of manufacturing a metal oxide film according to claim 5 or 6, wherein a pulse frequency of the pulse laser beam is 1-1000 Hz. (111)結晶面を有する金属膜と、
前記金属膜の(111)結晶面上に直接設けられた金属酸化物膜と、を備え、
前記金属酸化物膜のX線回折チャートにおける(100)結晶面の回折線のピーク強度をI(100)とし、(110)結晶面の回折線のピーク強度をI(110)としたとき、ピーク強度比(I(100)/I(110))が2以上である積層体。
A metal film having a (111) crystal plane;
A metal oxide film provided directly on the (111) crystal plane of the metal film,
The peak intensity of the diffraction line on the (100) crystal plane in the X-ray diffraction chart of the metal oxide film is I (100), and the peak intensity of the diffraction line on the (110) crystal plane is I (110). A laminate having an intensity ratio (I (100) / I (110)) of 2 or more.
前記金属酸化物はBa及びTiを含む金属酸化物である請求項8に記載の積層体。   The laminate according to claim 8, wherein the metal oxide is a metal oxide containing Ba and Ti. 請求項8又は9の積層体を有する電子デバイス。   An electronic device having the laminate according to claim 8.
JP2007161753A 2006-06-20 2007-06-19 Method for manufacturing metal oxide film, laminate, and electronic device Active JP5126950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007161753A JP5126950B2 (en) 2006-06-20 2007-06-19 Method for manufacturing metal oxide film, laminate, and electronic device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006170232 2006-06-20
JP2006170232 2006-06-20
JP2007161753A JP5126950B2 (en) 2006-06-20 2007-06-19 Method for manufacturing metal oxide film, laminate, and electronic device

Publications (2)

Publication Number Publication Date
JP2008028381A true JP2008028381A (en) 2008-02-07
JP5126950B2 JP5126950B2 (en) 2013-01-23

Family

ID=39118653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007161753A Active JP5126950B2 (en) 2006-06-20 2007-06-19 Method for manufacturing metal oxide film, laminate, and electronic device

Country Status (1)

Country Link
JP (1) JP5126950B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156188A (en) * 2006-12-26 2008-07-10 National Institute Of Advanced Industrial & Technology METHOD FOR PRODUCING A-SITE LAYERED ORDERED PEROVSKITE Mn OXIDE THIN FILM
JP2009242204A (en) * 2008-03-31 2009-10-22 National Institute Of Advanced Industrial & Technology Method for producing perovskite-structure oxide
JP2009260301A (en) * 2008-03-26 2009-11-05 Tdk Corp Dielectric element and its manufacturing method
WO2011129341A1 (en) * 2010-04-13 2011-10-20 独立行政法人産業技術総合研究所 Oriented perovskite oxide thin film
JP2012054538A (en) * 2010-09-02 2012-03-15 Mitsubishi Materials Corp Composition for forming dielectric thin film, method for forming dielectric thin film and dielectric thin film formed by the method
JP2013135164A (en) * 2011-12-27 2013-07-08 Ricoh Co Ltd Thin film manufacturing device, thin-film manufacturing method, droplet discharge head, and ink jet recording device
JP2019175969A (en) * 2018-03-28 2019-10-10 Tdk株式会社 Dielectric film and dielectric device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06132579A (en) * 1992-09-01 1994-05-13 Canon Inc Diplacement element, probe using thereof and equipment having the probe
JPH06140385A (en) * 1992-10-26 1994-05-20 Fujitsu Ltd Manufacture of high dielectric constant dielectric thin film
JPH09219587A (en) * 1996-02-09 1997-08-19 Fujitsu Ltd Thin film multilayered circuit substrate and its manufacturing method
JPH09326331A (en) * 1996-06-05 1997-12-16 Matsushita Electric Ind Co Ltd Manufacturing method of (ba, sr)tio3 film, and thin film capacitor using it
JP2003081694A (en) * 2001-09-05 2003-03-19 National Institute Of Advanced Industrial & Technology Thin ferroelectric film and method of manufacturing the same
WO2004070748A1 (en) * 2003-02-05 2004-08-19 Tdk Corporation Electronic parts and method for manufacture thereof
JP2005255424A (en) * 2004-03-09 2005-09-22 Toyota Central Res & Dev Lab Inc Powder with anisotropic shape, production method therefor, crystal-orientated ceramic and production method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06132579A (en) * 1992-09-01 1994-05-13 Canon Inc Diplacement element, probe using thereof and equipment having the probe
JPH06140385A (en) * 1992-10-26 1994-05-20 Fujitsu Ltd Manufacture of high dielectric constant dielectric thin film
JPH09219587A (en) * 1996-02-09 1997-08-19 Fujitsu Ltd Thin film multilayered circuit substrate and its manufacturing method
JPH09326331A (en) * 1996-06-05 1997-12-16 Matsushita Electric Ind Co Ltd Manufacturing method of (ba, sr)tio3 film, and thin film capacitor using it
JP2003081694A (en) * 2001-09-05 2003-03-19 National Institute Of Advanced Industrial & Technology Thin ferroelectric film and method of manufacturing the same
WO2004070748A1 (en) * 2003-02-05 2004-08-19 Tdk Corporation Electronic parts and method for manufacture thereof
JP2005255424A (en) * 2004-03-09 2005-09-22 Toyota Central Res & Dev Lab Inc Powder with anisotropic shape, production method therefor, crystal-orientated ceramic and production method therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156188A (en) * 2006-12-26 2008-07-10 National Institute Of Advanced Industrial & Technology METHOD FOR PRODUCING A-SITE LAYERED ORDERED PEROVSKITE Mn OXIDE THIN FILM
JP2009260301A (en) * 2008-03-26 2009-11-05 Tdk Corp Dielectric element and its manufacturing method
JP2009242204A (en) * 2008-03-31 2009-10-22 National Institute Of Advanced Industrial & Technology Method for producing perovskite-structure oxide
US8586150B2 (en) 2008-03-31 2013-11-19 National Institute Of Advanced Industrial Science And Technology Method for producing perovskite-structure oxide
WO2011129341A1 (en) * 2010-04-13 2011-10-20 独立行政法人産業技術総合研究所 Oriented perovskite oxide thin film
JP2011236112A (en) * 2010-04-13 2011-11-24 National Institute Of Advanced Industrial Science & Technology Oriented perovskite oxide thin film
JP2012054538A (en) * 2010-09-02 2012-03-15 Mitsubishi Materials Corp Composition for forming dielectric thin film, method for forming dielectric thin film and dielectric thin film formed by the method
US9595393B2 (en) 2010-09-02 2017-03-14 Mitsubishi Materials Corporation Dielectric-thin-film forming composition, method of forming dielectric thin film, and dielectric thin film formed by the method
JP2013135164A (en) * 2011-12-27 2013-07-08 Ricoh Co Ltd Thin film manufacturing device, thin-film manufacturing method, droplet discharge head, and ink jet recording device
JP2019175969A (en) * 2018-03-28 2019-10-10 Tdk株式会社 Dielectric film and dielectric device
JP7147219B2 (en) 2018-03-28 2022-10-05 Tdk株式会社 Dielectric film and dielectric element

Also Published As

Publication number Publication date
JP5126950B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
US8557352B2 (en) Method of making a metal oxide film, laminates and electronic devices
JP5126950B2 (en) Method for manufacturing metal oxide film, laminate, and electronic device
JP5740645B2 (en) Oriented perovskite oxide thin films
US8951603B2 (en) Method for producing ferroelectric thin film
KR100671375B1 (en) Thin film multilayer body, electronic device using such thin film multilayer body, actuator, and method for manufacturing actuator
US9793464B2 (en) Ferroelectric film and method for manufacturing the same
JP5930852B2 (en) Method for manufacturing ferroelectric crystal film
JP4348547B2 (en) Method for manufacturing perovskite oxide layer, method for manufacturing ferroelectric memory, and method for manufacturing surface acoustic wave device
US9583270B2 (en) Complex oxide, thin-film capacitive element, liquid droplet discharge head, and method of producing complex oxide
JP6347084B2 (en) Ferroelectric ceramics and method for producing the same
JP5263817B2 (en) Method for producing perovskite structure oxide
JP2008198396A (en) Manufacturing method of superconductive oxide material
JP2008037726A (en) Process for producing superconducting oxide material
Goux et al. Crystalline and electrical properties of pulsed laser deposited BST on platinized silicon substrates
JP2009246242A (en) Producing method of perovskite structure oxide
JP2009242900A (en) Method of manufacturing oxide layer
JP4923756B2 (en) METHOD FOR FORMING LAMINATE FOR THIN FILM DIELECTRIC ELEMENT AND THIN FILM DIELECTRIC ELEMENT
JP2010056454A (en) Method of manufacturing metal oxide layer
JP6149222B2 (en) Ferroelectric film manufacturing apparatus and ferroelectric film manufacturing method
JP2016001662A (en) Dielectric element and piezoelectric element
JP2017063138A (en) Piezoelectric film, piezoelectric device, and method for producing piezoelectric film
JP2009280416A (en) Method for manufacturing dielectric thin film and thin film electronic component
JP6216808B2 (en) Ferroelectric crystal film and manufacturing method thereof
JP2001053224A (en) Thin-film capacitor and manufacture thereof
WO2017002738A1 (en) Ferroelectric ceramic and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5126950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250