JP2008007742A5 - - Google Patents

Download PDF

Info

Publication number
JP2008007742A5
JP2008007742A5 JP2006344158A JP2006344158A JP2008007742A5 JP 2008007742 A5 JP2008007742 A5 JP 2008007742A5 JP 2006344158 A JP2006344158 A JP 2006344158A JP 2006344158 A JP2006344158 A JP 2006344158A JP 2008007742 A5 JP2008007742 A5 JP 2008007742A5
Authority
JP
Japan
Prior art keywords
aromatic polyamide
heat
resin composition
resistant resin
acid amide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006344158A
Other languages
Japanese (ja)
Other versions
JP2008007742A (en
JP5041209B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2006344158A priority Critical patent/JP5041209B2/en
Priority claimed from JP2006344158A external-priority patent/JP5041209B2/en
Publication of JP2008007742A publication Critical patent/JP2008007742A/en
Publication of JP2008007742A5 publication Critical patent/JP2008007742A5/ja
Application granted granted Critical
Publication of JP5041209B2 publication Critical patent/JP5041209B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

耐熱性樹脂組成物、その製造方法、耐熱性樹脂成形物、及び表面実装用電子部品Heat resistant resin composition, production method thereof, heat resistant resin molded product, and electronic component for surface mounting

本発明はポリアリーレンスルフィド樹脂と芳香族ポリアミド樹脂とを含む樹脂組成物、その製造方法、耐熱性樹脂成形物、及び表面実装用電子部品に関する。   The present invention relates to a resin composition containing a polyarylene sulfide resin and an aromatic polyamide resin, a method for producing the same, a heat-resistant resin molded product, and an electronic component for surface mounting.

ポリフェニレンスルフィド樹脂に代表されるポリアリーレンスルフィド樹脂は高い融点と、優れた難燃性、耐薬品性を有し、成形時の流動性も良好であるため、主に射出成形用エンジニアリングプラスチックとして各種電子部品、機械部品、自動車部品に広く使われている。   Polyarylene sulfide resins typified by polyphenylene sulfide resins have a high melting point, excellent flame resistance and chemical resistance, and good fluidity during molding. Widely used in parts, machine parts and automobile parts.

近年、電気・電子工業の分野では、製品の小型化や生産性の向上に伴い、樹脂系電子部品のプリント基板上への実装方式が所謂サーフェスマウント方式(以下「SMT方式」と略記する。)と呼ばれる表面実装方式に移行している。このSMT方式により電子部品を基板上に実装する技術は、従来、錫−鉛共晶はんだ(融点184℃)が一般的であったが、近年、環境汚染の問題から、その代替材料として錫をベースに数種類の金属を添加した所謂鉛フリーはんだが利用されている。   In recent years, in the field of electrical and electronic industries, with the miniaturization of products and the improvement of productivity, the mounting method of resin-based electronic components on a printed circuit board is a so-called surface mount method (hereinafter abbreviated as “SMT method”). It has shifted to the surface mounting method called. Conventionally, a tin-lead eutectic solder (melting point: 184 ° C.) is generally used as a technology for mounting electronic components on a substrate by this SMT method. However, in recent years, tin has been used as an alternative material due to environmental pollution problems. So-called lead-free solder in which several kinds of metals are added to the base is used.

かかる鉛フリーはんだは、錫−鉛共晶はんだよりも融点が高く、例えば、錫−銀共晶はんだの場合には融点220℃にも達する為、表面実装時には加熱炉(リフロー炉)の温度を更に上昇させなければならず、コネクター等の樹脂系電子部品をはんだ付けする際、加熱炉(リフロー炉)内において当該電子部品が融解又は変形を生じてしまうという問題があった。よって、表面実装用電子部品用の樹脂材料には耐熱性の高いものが強く求められていた。   Such lead-free solder has a higher melting point than tin-lead eutectic solder. For example, in the case of tin-silver eutectic solder, the melting point reaches 220 ° C. There is a problem that when the resin-based electronic component such as the connector is soldered, the electronic component is melted or deformed in the heating furnace (reflow furnace). Therefore, a resin material having high heat resistance has been strongly demanded as a resin material for surface mount electronic components.

一方、高耐熱性の樹脂材料としてポリアリーレンサルファイドと芳香族ポリアミドとを溶融混練することによって得られる樹脂組成物が知られている(例えば、特許文献1及び特許文献2参照)。しかしながら、ポリアリーレンサルファイドと芳香族ポリアミドとは一般に相溶性が低く、両者を均一混合することが困難な為、芳香族ポリアミド自体の弱点である吸湿性の低さが顕著に現われてしまい、加熱炉(リフロー炉)を通過した電子部品の外観にブリスターが発生し易くなる他、リフロー炉を通過した後の曲げ強度などの機械的物性を低下させてしまうものであった。更に、ポリアリーレンサルファイドと芳香族ポリアミドとの分散性に劣ることに加え、芳香族ポリアミドを多量に用いていることから難燃性が低くなり、電子・電気部品への要求特性を満足することができないものであった。
特開平2−123159号公報 特開平5−5060号公報
On the other hand, resin compositions obtained by melt-kneading polyarylene sulfide and aromatic polyamide as a highly heat-resistant resin material are known (see, for example, Patent Document 1 and Patent Document 2). However, polyarylene sulfide and aromatic polyamide are generally low in compatibility, and it is difficult to uniformly mix them, so the low hygroscopicity that is a weak point of aromatic polyamide itself appears remarkably. In addition to facilitating the occurrence of blisters on the external appearance of the electronic component that passed through the (reflow furnace), mechanical properties such as bending strength after passing through the reflow furnace were reduced. Furthermore, in addition to inferior dispersibility between polyarylene sulfide and aromatic polyamide, the use of a large amount of aromatic polyamide reduces flame retardancy and satisfies the required characteristics for electronic and electrical parts. It was impossible.
JP-A-2-123159 JP-A-5-5060

従って、本発明が解決しようとする課題は、耐熱性に優れ、リフロー炉を通過させて高温条件下に加熱処理を行っても曲げ強度等の機械的強度が低下することなく、更に優れた難燃性をも兼備した耐熱性樹脂組成物、その製造方法、及び、表面実装用電子部品を提供することにある。   Therefore, the problem to be solved by the present invention is excellent in heat resistance, and even if the heat treatment is performed under a high temperature condition through a reflow furnace, the mechanical strength such as bending strength is not lowered, and further excellent difficulty is achieved. The object is to provide a heat-resistant resin composition that also has flammability, a method for producing the same, and an electronic component for surface mounting.

本発明者は上記課題を解決すべく鋭意検討した結果、ポリアリーレンスルフィド樹脂(A)と、テレフタル酸アミドを必須の構造単位とする芳香族ポリアミド(B)とを所定割合で配合し、かつ、前記芳香族ポリアミド(B)を前記ポリアリーレンスルフィド樹脂(A)中に微分散させることによって、その成形物をプリント基板上へ表面実装させる際、加熱炉(リフロー炉)内の高温条件下の熱処理を施しても、曲げ強度等の機械的強度の低下を招くことなく、優れた耐熱性を発現すると共に、優れた難燃性を発現することを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventor blended polyarylene sulfide resin (A) and aromatic polyamide (B) having terephthalic acid amide as an essential structural unit at a predetermined ratio, and When finely dispersing the aromatic polyamide (B) in the polyarylene sulfide resin (A), when the molded product is surface-mounted on a printed circuit board, heat treatment under a high temperature condition in a heating furnace (reflow furnace) Even if it applied, it discovered that it exhibited the outstanding heat resistance and the outstanding flame retardance, without causing decline in mechanical strength, such as bending strength, and came to complete this invention.

即ち、本発明は、非ニュートン指数が1.3〜0.9のポリアリーレンスルフィド樹脂(A)、テレフタル酸アミドを必須の構造単位とする芳香族ポリアミド(B)であって、下記構造式aで表されるテレフタル酸アミド構造を、該芳香族ポリアミド(B)を構成する全酸アミド構造単位に対して65モル%以上の割合で含有する芳香族ポリアミド(B)を前者/後者の質量比が70/30〜95/5なる割合で含有し、前記ポリアリーレンスルフィド樹脂(A)をマトリックスとして前記芳香族ポリアミド(B)が粒子状に分散しており、かつ、前記芳香族ポリアミド(B)の粒子の平均径が0.1〜1.0μmの範囲となるものであることを特徴とする耐熱性樹脂組成物に関する。 That is, the present invention is a polyarylene sulfide resin (A) having a non-Newtonian index of 1.3 to 0.9, and an aromatic polyamide (B) having terephthalic acid amide as an essential structural unit, wherein the structural formula a The former / the latter mass ratio of the aromatic polyamide (B) containing the terephthalic acid amide structure represented by the formula (1) at a ratio of 65 mol% or more with respect to all the acid amide structural units constituting the aromatic polyamide (B). There in a proportion to be 70 / 30-95 / 5, the polyarylene sulfide resin (a) the aromatic polyamide as the matrix (B) is dispersed in the form of particles, and the aromatic polyamide (B ) Particles having an average diameter in the range of 0.1 to 1.0 μm.

Figure 2008007742
Figure 2008007742
(式中、Rは炭素原子数2〜12のアルキレン基を表す。)(In the formula, R represents an alkylene group having 2 to 12 carbon atoms.)

本発明は、更に、非ニュートン指数が1.3〜0.9のポリアリーレンスルフィド樹脂(A)テレフタル酸アミドを必須の構造単位とする芳香族ポリアミド(B)であって上記構造式aで表されるテレフタル酸アミド構造を、該芳香族ポリアミド(B)を構成する全酸アミド構造単位に対して65モル%以上の割合で含有する芳香族ポリアミド(B)を、二軸混練押出機に投入し、樹脂成分の吐出量(kg/hr)とスクリュー回転数(rpm)との比率(吐出量/スクリュー回転数)が0.02〜0.2(kg/hr/rpm)なる条件下に溶融混練することを特徴とする耐熱性樹脂組成物の製造方法に関する。 The present invention further non-Newtonian index of 1.3 to 0.9 polyarylene sulfide resin (A), the an aromatic polyamide of terephthalic acid amide as an essential structural unit (B), the structural formula a A twin-screw kneading extruder containing an aromatic polyamide (B) containing a terephthalic acid amide structure represented by the formula (I) at a ratio of 65 mol% or more with respect to all acid amide structural units constituting the aromatic polyamide (B) And the ratio of the resin component discharge rate (kg / hr) to the screw rotation speed (rpm) is 0.02 to 0.2 (kg / hr / rpm). The present invention relates to a method for producing a heat-resistant resin composition characterized by melting and kneading.

本発明は、更に、非ニュートン指数が1.3〜0.9のポリアリーレンスルフィド樹脂(A)、テレフタル酸アミドを必須の構造単位とする芳香族ポリアミド(B)であって、上記構造式aで表されるテレフタル酸アミド構造を、該芳香族ポリアミド(B)を構成する全酸アミド構造単位に対して65モル%以上の割合で含有する芳香族ポリアミド(B)を前者/後者の質量比が70/30〜95/5なる割合で含有する耐熱性樹脂組成物からなる成形物であって、かつ、該成形物の破断面を有機溶剤でエッチング処理した後、該破断面を走査型電子顕微鏡(2500倍)にて観察した際、該エッチング処理によって形成された空孔の平均径が0.1〜1.0μmの範囲の範囲となるものであることを特徴とする耐熱性樹脂成形物に関する。 The present invention further relates to a polyarylene sulfide resin (A) having a non-Newtonian index of 1.3 to 0.9 and an aromatic polyamide (B) having terephthalic acid amide as an essential structural unit, wherein the structural formula a The former / the latter mass ratio of the aromatic polyamide (B) containing the terephthalic acid amide structure represented by the formula (1) at a ratio of 65 mol% or more with respect to all the acid amide structural units constituting the aromatic polyamide (B). there a molded product made of a heat-resistant resin composition containing in a ratio of 70 / 30-95 / 5, and, after the etching treatment with an organic solvent fracture surface of the molded product, scanning the該破section Heat-resistant resin molding characterized in that, when observed with an electron microscope (2500 times), the average diameter of pores formed by the etching treatment is in the range of 0.1 to 1.0 μm. About things

本発明は、更に、前記耐熱性樹脂組成物の成形物と、金属端子とを必須の構成要素とすることを特徴とする表面
実装用電子部品に関する。
The present invention further relates to an electronic component for surface mounting, wherein the molded product of the heat-resistant resin composition and a metal terminal are essential components.

本発明によれば、耐熱性に優れ、リフロー炉を通過させて高温条件下に加熱処理を行っても曲げ強度等の機械的強度が低下することなく、かつ、優れた難燃性をも兼備した耐熱性樹脂組成物、その製造方法、耐熱性樹脂成形物、及び、表面実装用電子部品を提供できる。   According to the present invention, the heat resistance is excellent, the mechanical strength such as bending strength is not lowered even when the heat treatment is performed under a high temperature condition through a reflow furnace, and excellent flame retardancy is also provided. The heat resistant resin composition, the production method thereof, the heat resistant resin molded product, and the electronic component for surface mounting can be provided.

従って、本発明の耐熱性樹脂組成物は、高温域で優れた耐熱性を発現し、表面実装用の電子部品に用いられる場合、基体へのはんだ付けの際、高温下に曝されてもはんだ付け工程後に該電子部品の機械強度変化、及び外観変化が非常に小さいという特徴を有する。よって、耐熱性樹脂組成物はSMT方式におけるプリント基板上へのはんだ付けに供されるコネクター、スイッチ、リレー、コイルボビン、コンデンサー等に特に有用である。   Therefore, the heat-resistant resin composition of the present invention exhibits excellent heat resistance at high temperatures, and when used in surface-mounting electronic components, it is soldered even when exposed to high temperatures when soldered to a substrate. It has the feature that the mechanical strength change and appearance change of the electronic component are very small after the attaching process. Therefore, the heat-resistant resin composition is particularly useful for connectors, switches, relays, coil bobbins, capacitors, etc. used for soldering onto a printed circuit board in the SMT method.

本発明の耐熱性樹脂組成物は、前記した通り、非ニュートン指数が1.3〜0.9のポリアリーレンスルフィド樹脂(A)、テレフタル酸アミドを必須の構造単位とする芳香族ポリアミド(B)であって、下記構造式aで表されるテレフタル酸アミド構造を、該芳香族ポリアミド(B)を構成する全酸アミド構造単位に対して65モル%以上の割合で含有する芳香族ポリアミド(B)を前者/後者の質量比が70/30〜95/5なる割合で含有するものである。 As described above, the heat-resistant resin composition of the present invention includes a polyarylene sulfide resin (A) having a non-Newtonian index of 1.3 to 0.9, and an aromatic polyamide (B) having terephthalic acid amide as an essential structural unit. An aromatic polyamide (B) containing a terephthalic acid amide structure represented by the following structural formula a in a proportion of 65 mol% or more with respect to all acid amide structural units constituting the aromatic polyamide (B). ) and in which the former / latter weight ratio in a proportion to be 70 / 30-95 / 5.

Figure 2008007742
Figure 2008007742
(式中、Rは炭素原子数2〜12のアルキレン基を表す。)(In the formula, R represents an alkylene group having 2 to 12 carbon atoms.)

該芳香族ポリアミド(B)の存在比が質量比で上記範囲を上回る場合には、該芳香族ポリアミド(B)の分散性が低下して難燃性が充分発現されなくなる他、耐湿性の低下を招いてリフロー処理後の強度低下を招く、一方、該芳香族ポリアミド(B)の存在比が質量比で上記範囲を下回る場合、耐熱性の改善効果が充分に発現されないものとなる。よって、難燃性、リフロー処理後の機械的強度、耐熱性のバランスに優れる点から前記質量比は特に80/20〜95/5の範囲であることが好ましい。   When the abundance ratio of the aromatic polyamide (B) exceeds the above range in terms of mass ratio, the dispersibility of the aromatic polyamide (B) is lowered and flame retardancy is not sufficiently exhibited, and the moisture resistance is lowered. If the abundance ratio of the aromatic polyamide (B) is less than the above range in terms of mass ratio, the effect of improving heat resistance is not sufficiently exhibited. Therefore, the mass ratio is particularly preferably in the range of 80/20 to 95/5 from the viewpoint of excellent balance between flame retardancy, mechanical strength after reflow treatment, and heat resistance.

また、本発明の耐熱性樹脂組成物は、前記したとおり、前記ポリアリーレンスルフィド樹脂(A)をマトリックスとして前記芳香族ポリアミド(B)が粒子状に分散しており、かつ、前記芳香族ポリアミド(B)の粒子の平均径が0.1〜1.0μmの範囲となるものである。このように、前記ポリアリーレンスルフィド樹脂(A)をマトリックスとして所定量の該芳香族ポリアミド(B)を微分散させることにより、ポリアリーレンスルフィド樹脂(A)の有する難燃性能を低下させることなく、前記芳香族ポリアミド(B)の持つ優れた耐熱性を発現させることができる。とりわけ、表面実装用電子部品用途において、優れた難燃性を保持させながら、リフロー炉を高温条件下で通過させた後の曲げ強度等の機械的強度に優れるという特異的な性能を発現させることができることは特筆すべき点である。   In addition, as described above, the heat-resistant resin composition of the present invention has the aromatic polyamide (B) dispersed in the form of particles using the polyarylene sulfide resin (A) as a matrix, and the aromatic polyamide ( The average particle diameter of B) is in the range of 0.1 to 1.0 μm. Thus, by finely dispersing a predetermined amount of the aromatic polyamide (B) using the polyarylene sulfide resin (A) as a matrix, without reducing the flame retardant performance of the polyarylene sulfide resin (A), The outstanding heat resistance which the said aromatic polyamide (B) has can be expressed. In particular, in surface mount electronic component applications, to exhibit excellent performance such as excellent mechanical strength such as bending strength after passing through a reflow furnace under high temperature conditions while maintaining excellent flame retardancy. What can be done is a notable point.

前記芳香族ポリアミド(B)の粒子の平均径は、前記耐熱性樹脂組成物からなる成形物の破断面を有機溶剤でエッチング処理した後、該破断面を走査型電子顕微鏡(2500倍)にて観察した際、該エッチング処理によって形成された空孔の径を前記粒子の径と見なしてその平均を求めることができる。   The average diameter of the aromatic polyamide (B) particles is determined by etching the fracture surface of the molded article made of the heat resistant resin composition with an organic solvent, and then examining the fracture surface with a scanning electron microscope (2500 times). When observed, the average of the diameters of the pores formed by the etching treatment can be determined by regarding the diameter of the particles as the diameter of the particles.

即ち、エッチング処理後の破断面の空孔は、前記PAS樹脂(A)をマトリックスとして分散する芳香族ポリアミド(B)の粒子をエッチング処理によって除去して出現する孔状の空隙部であり、その径は芳香族ポリアミド(B)の粒子径に一致する。そこで、本発明では、該エッチング処理によって形成された空孔の径を前記粒子の粒子径と見なしてその平均を求めることにより、前記芳香族ポリアミド(B)の粒子の平均径を算出したものである。   That is, the voids in the fractured surface after the etching treatment are pore-like voids that appear when the aromatic polyamide (B) particles dispersed using the PAS resin (A) as a matrix are removed by the etching treatment. The diameter corresponds to the particle diameter of the aromatic polyamide (B). Therefore, in the present invention, the average diameter of the particles of the aromatic polyamide (B) is calculated by determining the average of the pores formed by the etching treatment as the particle diameter of the particles. is there.

ここで、上記した成形物の破断面を形成する方法は、例えば、耐熱性樹脂組成物を射出成形によって幅12mm×長さ62.5mm×厚さ3mmの試験片に成形し、得られた成形物を−40℃〜−60℃に冷却した後、ASTM D−256(荷重30kg)に準拠してアイゾット衝撃試験を実施して破断面を形成する方法が挙げられる。   Here, the method for forming the fracture surface of the molded product described above is, for example, molding a heat-resistant resin composition into a test piece having a width of 12 mm, a length of 62.5 mm, and a thickness of 3 mm by injection molding. A method of forming a fracture surface by cooling an object to −40 ° C. to −60 ° C. and then carrying out an Izod impact test in accordance with ASTM D-256 (load 30 kg).

また、前記成形物の破断面をエッチング処理する方法は、上記の方法で破断した成形物の破断面を、芳香族ポリアミド(B)を溶解しうる有機溶媒でエッチング処理して該芳香族ポリアミド(B)を除去する方法である。エッチング処理の具体的方法は、耐熱性樹脂組成物の成形物を破断した際の破断面を前記有機溶媒に浸漬し、超音波をあて、次いで、アセトンで前記破断面を洗浄し、その後、該破断面を乾燥させることにより行うことができる。ここで、エッチング処理に使用し得る有機溶剤は、前記芳香族ポリアミド(B)の分散粒子を選択的に溶解除去し得るものであればよく、例えば、クロロホルム、2−プロパノール、トリフロロ酢酸などが挙げられる。   In addition, the method of etching the fracture surface of the molded product may be performed by etching the fracture surface of the molded product fractured by the above method with an organic solvent capable of dissolving the aromatic polyamide (B). This is a method of removing B). A specific method of etching treatment is to immerse the fracture surface when the molded product of the heat-resistant resin composition is fractured in the organic solvent, apply ultrasonic waves, and then wash the fracture surface with acetone. This can be done by drying the fracture surface. Here, the organic solvent that can be used for the etching treatment may be any solvent that can selectively dissolve and remove the dispersed particles of the aromatic polyamide (B), and examples thereof include chloroform, 2-propanol, and trifluoroacetic acid. It is done.

これらの中でも特に本発明では芳香族ポリアミド(B)の溶解性に優れる点からトリフロロ酢酸が好ましい。また、エッチング処理は加熱条件下から常温で行うことができ、例えば、10℃〜60℃の温度条件下にて行うことができる。特に、前記したトリフロロ酢酸を有機溶媒として用いる場合、低温での処理が可能で、エッチング処理後の空孔の変形を回避できる為、この場合、具体的には15℃〜30℃にてエッチング処理を行うことが好ましい。このようにしてエッチング処理された成形物の破断面には、芳香族ポリアミド(B)が除去され、エッチング処理前に微分散していた芳香族ポリアミド(B)の粒子部分に同一径の空孔が形成されている。   Of these, trifluoroacetic acid is particularly preferred in the present invention because of the excellent solubility of the aromatic polyamide (B). Moreover, an etching process can be performed at normal temperature from a heating condition, for example, can be performed on the temperature conditions of 10 to 60 degreeC. In particular, when the above-described trifluoroacetic acid is used as an organic solvent, it can be processed at a low temperature and can avoid deformation of vacancies after the etching process. In this case, specifically, the etching process is performed at 15 ° C. to 30 ° C. It is preferable to carry out. The aromatic polyamide (B) is removed from the fracture surface of the molded article thus etched, and the pores of the same diameter are formed in the particles of the aromatic polyamide (B) finely dispersed before the etching process. Is formed.

そして、前記平均径はこのようにしてエッチング処理した破断面の同一面上の2箇所をそれぞれ走査型電子顕微鏡にて2500倍で観察し、1箇所あたり2600μmの範囲に観察される全ての空孔の直径を計測し、2箇所分の空孔の平均、即ち5200μmの範囲に観察される全ての空孔の平均を求めたものである。ここで空孔の直径の計測は、具体的には、2500倍で撮影した走査型電子顕微鏡写真をA3サイズに拡大し、グラフテック(株)製「KD4600」に代表されるグラフィックデジタイザーを用いて行うことができる。 Then, the average diameter is observed at two places on the same surface of the fractured surface etched in this manner at a magnification of 2500 with a scanning electron microscope, and all the voids observed in the range of 2600 μm 2 per place are observed. The diameter of the holes was measured, and the average of the holes for two places, that is, the average of all the holes observed in the range of 5200 μm 2 was obtained. Here, the hole diameter is specifically measured by enlarging a scanning electron micrograph taken at a magnification of 2500 to A3 size and using a graphic digitizer represented by “KD4600” manufactured by Graphtec Corporation. be able to.

このようにして算出される空孔の平均径は、前記芳香族ポリアミド(B)の粒子の平均径に一致し、0.1〜1.0μmの範囲となるものであり、本発明ではこれを上回る場合には、モルフォルジーの崩れによって難燃性が発現されなくなる他、リフロー処理後の機械的強度が低下する。一方、芳香族ポリアミド(B)の量が不足する場合、前記平均径が上記範囲を下回るものとなって耐熱性が充分に発現されないものとなる。よって、これらの性能バランスに優れる点から、前記空孔の平均径は特に0.1〜0.6μmであることが好ましい。   The average diameter of the pores thus calculated corresponds to the average diameter of the particles of the aromatic polyamide (B) and falls within the range of 0.1 to 1.0 μm. If it exceeds the upper limit, flame resistance will not be exhibited due to the collapse of the morphology, and the mechanical strength after the reflow treatment will decrease. On the other hand, when the amount of the aromatic polyamide (B) is insufficient, the average diameter is less than the above range, and the heat resistance is not sufficiently exhibited. Therefore, the average diameter of the pores is particularly preferably 0.1 to 0.6 μm from the viewpoint of excellent performance balance.

本発明に使用するポリアリーレンスルフィド樹脂(A)(以下「PAS樹脂(A)」と略記する。)は、芳香族環と硫黄原子とが結合した構造を繰り返し単位とする樹脂構造を有するものであり、具体的には、下記構造式(1)   The polyarylene sulfide resin (A) (hereinafter abbreviated as “PAS resin (A)”) used in the present invention has a resin structure having a repeating unit of a structure in which an aromatic ring and a sulfur atom are bonded. Yes, specifically, the following structural formula (1)

Figure 2008007742
(式中、R及びRは、それぞれ独立的に水素原子、炭素原子数1〜4のアルキル基、ニトロ基、アミノ基、フェニル基、メトキシ基、エトキシ基を表す。)で表される構造部位を繰り返し単位とする樹脂である。
Figure 2008007742
(Wherein R 5 and R 6 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a nitro group, an amino group, a phenyl group, a methoxy group, or an ethoxy group). It is a resin having a structural site as a repeating unit.

ここで、前記構造式(1)で表される構造部位は、特に該式中のR及びRは、前記PAS樹脂(A)の機械的強度の点から水素原子であることが好ましく、その場合、下記構造式(2)で表されるパラ位で結合するもの、及び下記構造式(3)で表されるメタ位で結合するものが挙げられる。 Here, in the structural part represented by the structural formula (1), R 5 and R 6 in the formula are preferably hydrogen atoms from the viewpoint of the mechanical strength of the PAS resin (A), In that case, what couple | bonds in the para position represented by following Structural formula (2) and what couple | bonds in the meta position represented by following Structural formula (3) are mentioned.

Figure 2008007742
Figure 2008007742

これらの中でも、特に繰り返し単位中の芳香族環に対する硫黄原子の結合は前記構造式(2)で表されるパラ位で結合した構造であることが前記PAS樹脂(A)の耐熱性や結晶性の面で好ましい。   Among these, the heat resistance and crystallinity of the PAS resin (A) include that the bond of the sulfur atom to the aromatic ring in the repeating unit is a structure bonded at the para position represented by the structural formula (2). It is preferable in terms of

また、前記PAS樹脂(A)は、前記構造式(1)で表される構造部位のみならず、下記の構造式(4)〜(7)で表される構造部位を、前記構造式(1)で表される構造部位との合計の30モル%以下で含んでいてもよい。   In addition, the PAS resin (A) includes not only the structural part represented by the structural formula (1) but also the structural part represented by the following structural formulas (4) to (7). ) And 30 mol% or less of the total with the structural site represented by.

Figure 2008007742
Figure 2008007742

特に本発明では上記構造式(4)〜(7)で表される構造部位は10モル%以下であることが、PAS樹脂(A)の耐熱性、機械的強度の点から好ましい。前記PAS樹脂(A)中に、上記構造式(4)〜(7)で表される構造部位を含む場合、それらの結合様式としては、ランダム共重合体、ブロック共重合体の何れであってもよい。   In particular, in the present invention, the structural site represented by the structural formulas (4) to (7) is preferably 10 mol% or less from the viewpoint of the heat resistance and mechanical strength of the PAS resin (A). In the case where the PAS resin (A) includes a structural portion represented by the structural formulas (4) to (7), the bonding mode thereof is either a random copolymer or a block copolymer. Also good.

また、前記PAS樹脂(A)は、その分子構造中に、下記構造式(8)で表される3官能性の構造部位、或いは、ナフチルスルフィド結合などを有していてもよいが、他の構造部位との合計モル数に対して、3モル%以下が好ましく、特に1モル%以下であることが好ましい。   The PAS resin (A) may have a trifunctional structural site represented by the following structural formula (8) or a naphthyl sulfide bond in its molecular structure, 3 mol% or less is preferable with respect to the total number of moles with the structural site, and particularly preferably 1 mol% or less.

Figure 2008007742
Figure 2008007742

かかるPAS樹脂(A)は、例えば下記(1)〜(3)によって製造することができる。
(1)N−メチルピロリドン、ジメチルアセトアミドなどのアミド系溶剤やスルホラン等のスルホン系溶媒中で硫化ナトリウムとp−ジクロルベンゼンを反応させる方法、
(2)p−ジクロルベンゼンを硫黄と炭酸ソーダの存在下で重合させる方法、
(3)p−クロルチオフェノールの自己縮合による方法
Such PAS resin (A) can be produced by, for example, the following (1) to (3).
(1) A method of reacting sodium sulfide and p-dichlorobenzene in an amide solvent such as N-methylpyrrolidone or dimethylacetamide or a sulfone solvent such as sulfolane,
(2) A method of polymerizing p-dichlorobenzene in the presence of sulfur and sodium carbonate,
(3) Method by self-condensation of p-chlorothiophenol

これらの中でも(1)のN−メチルピロリドン、ジメチルアセトアミドなどのアミド系溶剤やスルホラン等のスルホン系溶媒中で硫化ナトリウムとp−ジクロルベンゼンを反応させる方法が反応の制御が容易であり、工業的生産性に優れる点から好ましい。ここで、前記(1)の方法において、前記硫化ナトリウムは市販のものを用いてもよいし、或いは、予めアミド系溶剤やスルホン系溶媒中で、水硫化ナトリウムと水酸化ナトリウムとを反応させるか、又は、硫化水素と水酸化ナトリウムとを反応させて、硫化ナトリウムを生成させて、次いで、p−ジクロルベンゼンを反応系内に加えて重合を行う方法を採用してもよい。また、前記(1)の方法において、硫化ナトリウムとp−ジクロルベンゼンを反応させる際には、重合度を調節するためにカルボン酸のアルカリ金属塩やスルホン酸のアルカリ金属塩を添加したり、水酸化アルカリを添加することが好ましい。   Among these, (1) the method of reacting sodium sulfide and p-dichlorobenzene in an amide solvent such as N-methylpyrrolidone or dimethylacetamide or a sulfone solvent such as sulfolane is easy to control the reaction. From the viewpoint of excellent productivity. Here, in the method (1), a commercially available sodium sulfide may be used, or sodium hydrosulfide and sodium hydroxide may be reacted in advance in an amide solvent or a sulfone solvent. Alternatively, a method may be employed in which hydrogen sulfide and sodium hydroxide are reacted to form sodium sulfide, and then p-dichlorobenzene is added to the reaction system to perform polymerization. In the method (1), when sodium sulfide and p-dichlorobenzene are reacted, an alkali metal salt of carboxylic acid or an alkali metal salt of sulfonic acid is added to adjust the degree of polymerization, It is preferable to add alkali hydroxide.

また、前記PAS樹脂(A)の中でも特に成形物の機械的強度、芳香族ポリアミド(B)の分散能に優れ、成形物の耐熱性が飛躍的に向上する点から実質的に線状構造を有する所謂リニア型ポリアリーレンスルフィド樹脂であることが好ましい。具体的には、本発明では、非ニュートン指数が1.3〜0.9のものを用いるが、特に1.2〜1.0であることが好ましい。 Also, among the PAS resins (A), the mechanical strength of the molded product and the dispersibility of the aromatic polyamide (B) are particularly excellent, and the linear structure is substantially improved from the point that the heat resistance of the molded product is dramatically improved. A so-called linear polyarylene sulfide resin is preferable. Specifically, in the present invention, those having a non-Newtonian index of 1.3 to 0.9 are used , with 1.2 to 1.0 being particularly preferable.

ここで、前記非ニュートン指数とは、前記PAS樹脂(A)をキャピラリーレオメーターにて、温度300℃の条件下、直径1mm、長さ40mmのダイスを用いて100〜1000(sec−1)の剪断速度に対する剪断応力を測定し、これらの対数プロットした傾きから計算した値である。 Here, the non-Newtonian index means that the PAS resin (A) is 100 to 1000 (sec −1 ) using a capillary rheometer and a die having a diameter of 1 mm and a length of 40 mm under a temperature of 300 ° C. The shear stress with respect to the shear rate was measured, and the value calculated from the logarithmically plotted slopes.

また、前記PAS樹脂(A)は、芳香族ポリアミド(B)との相溶性の点から、メルトフローレートが、1〜3000g/10分、更に好ましくは10〜1500g/10分の範囲にあるものが好ましい。なお、当該メルトフローレートは、ASTM D1238−86による316℃/5000g荷重下(オリフィス:0.0825±0.002インチ径×0.315±0.001インチ長さ)で測定した値である。   The PAS resin (A) has a melt flow rate of 1 to 3000 g / 10 minutes, more preferably 10 to 1500 g / 10 minutes, from the viewpoint of compatibility with the aromatic polyamide (B). Is preferred. The melt flow rate is a value measured by ASTM D1238-86 under a load of 316 ° C./5000 g (orifice: 0.0825 ± 0.002 inch diameter × 0.315 ± 0.001 inch length).

更に、前記PAS樹脂(A)は、バリの発生を抑制して成形性を向上させる点から、前記したリニア型ポリアリーレンスルフィド樹脂に、前記構造式(8)で表されるような多分岐構造を有する分岐状ポリアリーレンスルフィド樹脂を少量配合して粘度調整することが好ましく、この場合、混合物の状態で非ニュートン指数が1.3〜0.9であって、かつ、メルトフローレートが10〜1500g/10分のものであることが好ましい。   Furthermore, the PAS resin (A) has a multi-branched structure represented by the structural formula (8) in the above-described linear polyarylene sulfide resin from the viewpoint of improving the moldability by suppressing the generation of burrs. It is preferable to adjust the viscosity by blending a small amount of a branched polyarylene sulfide resin having a non-Newtonian index of 1.3 to 0.9 in the state of the mixture and a melt flow rate of 10 to 10. It is preferable that it is 1500 g / 10 minutes.

ここで、上記したリニア型ポリアリーレンスルフィド樹脂は、例えば、アルカリ金属硫化物又はアルカリ金属過硫化物、酢酸ナトリウム三水和物等のアルカリ金属カルボン酸、有機アミドの混合物に、p−ジハロゲンベンゼンを、加え反応させる方法が挙げられる。   Here, the above-described linear polyarylene sulfide resin is prepared by, for example, adding p-dihalogenbenzene to a mixture of alkali metal carboxylic acid such as alkali metal sulfide or alkali metal persulfide, sodium acetate trihydrate, or organic amide. , And a reaction method.

以上詳述したPAS樹脂(A)は、更に、残存金属イオン量を低減して耐湿特性を改善するとともに、重合の際副生する低分子量不純物の残存量を低減できる点から、該PAS樹脂(A)を製造した後に、酸で処理し、次いで、水で洗浄されたものであることが好ましい。   The PAS resin (A) described in detail above further reduces moisture content by reducing the amount of residual metal ions, and further reduces the residual amount of low molecular weight impurities by-produced during polymerization. It is preferable that after A) is produced, it is treated with an acid and then washed with water.

ここで使用し得る酸は、酢酸、塩酸、硫酸、リン酸、珪酸、炭酸、プロピル酸がPAS樹脂(A)の分解することなく残存金属イオン量を効率的に低減できる点から好ましく、なかでも酢酸、塩酸が好ましい。   The acid that can be used here is preferable in that acetic acid, hydrochloric acid, sulfuric acid, phosphoric acid, silicic acid, carbonic acid, and propyl acid can efficiently reduce the amount of residual metal ions without decomposition of the PAS resin (A). Acetic acid and hydrochloric acid are preferred.

酸処理の方法は、酸または酸水溶液にPAS樹脂を浸漬する方法が挙げられる。この際、必要に応じさらに攪拌または加熱してもよい。   Examples of the acid treatment method include a method of immersing the PAS resin in an acid or an aqueous acid solution. At this time, further stirring or heating may be performed as necessary.

ここで、前記酸処理の具体的方法は、酢酸を用いる場合を例に挙げれば、まずpH4の酢酸水溶液を80〜90℃に加熱し、その中にPAS樹脂(A)を浸漬し、20〜40分間攪拌する方法が挙げられる。   Here, as a specific method of the acid treatment, for example, in the case of using acetic acid, first, an aqueous acetic acid solution having a pH of 4 is heated to 80 to 90 ° C., and the PAS resin (A) is immersed in the solution. The method of stirring for 40 minutes is mentioned.

このようにして酸処理されたPAS樹脂(A)は、残存している酸または塩等を物理的に除去するため、次いで、水または温水で数回洗浄する。このときに使用される水としては、蒸留水または脱イオン水であることが好ましい。   The acid-treated PAS resin (A) is then washed several times with water or warm water in order to physically remove the remaining acid or salt. The water used at this time is preferably distilled water or deionized water.

また、前記酸処理に供せられるPAS樹脂(A)は、粉粒体であることが好ましく、具体的には、ペレットのような粒状体でも、重合した後のスラリ−状態体にあるものでもよい。   Further, the PAS resin (A) to be subjected to the acid treatment is preferably a powder, specifically, a granular material such as a pellet or a polymer in a slurry state after polymerization. Good.

次に、本発明に使用する芳香族ポリアミド(B)は、テレフタル酸アミドを必須の構造単位として分子構造中に有するものである。本発明では、芳香族ポリアミド(B)においてこのようなテレフタル酸アミドを必須の構造単位とすることから、その剛直な分子構造に起因して優れた耐熱性と機械的強度とを耐熱性樹脂組成物に付与することができる。   Next, the aromatic polyamide (B) used in the present invention has terephthalic acid amide as an essential structural unit in the molecular structure. In the present invention, since such terephthalic acid amide is an essential structural unit in the aromatic polyamide (B), the heat resistant resin composition exhibits excellent heat resistance and mechanical strength due to its rigid molecular structure. Can be given to objects.

ここで、芳香族ポリアミド(B)の必須の構造単位であるテレフタル酸アミド構造は、具体的には、下記構造式aで表される構造部位が挙げられる。前記構造式a中、Rは炭素原子数2〜12アルキレン基を表す。かかるテレフタル酸アミド構造は、具体的には、テレフタル酸、又はテレフタル酸ジハライドと、炭素原子数2〜12の脂肪族ジアミンとの反応によって形成されるものである。   Here, specific examples of the terephthalic acid amide structure, which is an essential structural unit of the aromatic polyamide (B), include a structural portion represented by the following structural formula a. In the structural formula a, R represents an alkylene group having 2 to 12 carbon atoms. Specifically, the terephthalic acid amide structure is formed by a reaction between terephthalic acid or terephthalic acid dihalide and an aliphatic diamine having 2 to 12 carbon atoms.

Figure 2008007742
Figure 2008007742

ここで用いる炭素原子数2〜12の脂肪族ジアミンは、具体的には、エチレンジアミン、プロパンジアミン、1,4−ブタンジアミン、1,6−ヘキサンジアミン、1,7−ヘプタンジアミン、1,8−オクタンジアミン、1,9−ノナンジアミン、1,10−デカンジアミン、1,11−ウンデカンジアミン、1,12−ドデカンジアミン等の直鎖状脂肪族アルキレンジアミン;1−ブチル−1,2−エタンジアミン、1,1−ジメチル−1,4−ブタンジアミン、1−エチル−1,4−ブタンジアミン、1,2−ジメチル−1,4−ブタンジアミン、1,3−ジメチル−1,4−ブタンジアミン、1,4−ジメチル−1,4−ブタンジアミン、2,3−ジメチル−1,4−ブタンジアミン、2−メチル−1,5−ペンタンジアミン、3−メチル−1,5−ペンタンジアミン、2,5−ジメチル−1,6−ヘキサンジアミン、2,4−ジメチル−1,6−ヘキサンジアミン、3,3−ジメチル−1,6−ヘキサンジアミン、2,2−ジメチル−1,6−ヘキサンジアミン、2,2,4−トリメチル−1,6−ヘキサンジアミン、2,4,4−トリメチル−1,6−ヘキサンジアミン、2,4−ジエチル−1,6−ヘキサンジアミン、2,2−ジメチル−1,7−ヘプタンジアミン、2,3−ジメチル−1,7−ヘプタンジアミン、2,4−ジメチル−1,7−ヘプタンジアミン、2,5−ジメチル−1,7−ヘプタンジアミン、2−メチル−1,8−オクタンジアミン、3−メチル−1,8−オクタンジアミン、4−メチル−1,8−オクタンジアミン、1,3−ジメチル−1,8−オクタンジアミン、1,4−ジメチル−1,8−オクタンジアミン、2,4−ジメチル−1,8−オクタンジアミン、3,4−ジメチル−1,8−オクタンジアミン、4,5−ジメチル−1,8−オクタンジアミン、2,2−ジメチル−1,8−オクタンジアミン、3,3−ジメチル−1,8−オクタンジアミン、4,4−ジメチル−1,8−オクタンジアミン、5−メチル−1,9−ノナンジアミン等の分岐鎖状脂肪族アルキレンジアミン;シクロヘキサンジアミン、メチルシクロヘキサンジアミン、イソホロンジアミン、ノルボルナンジメチルアミン、トリシクロデカンジメチルアミン等の脂環族ジアミン類が挙げられる。   Specific examples of the aliphatic diamine having 2 to 12 carbon atoms used herein include ethylenediamine, propanediamine, 1,4-butanediamine, 1,6-hexanediamine, 1,7-heptanediamine, and 1,8- Linear aliphatic alkylenediamine such as octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine; 1-butyl-1,2-ethanediamine, 1,1-dimethyl-1,4-butanediamine, 1-ethyl-1,4-butanediamine, 1,2-dimethyl-1,4-butanediamine, 1,3-dimethyl-1,4-butanediamine, 1,4-dimethyl-1,4-butanediamine, 2,3-dimethyl-1,4-butanediamine, 2-methyl-1,5-pentanediamine, 3- Til-1,5-pentanediamine, 2,5-dimethyl-1,6-hexanediamine, 2,4-dimethyl-1,6-hexanediamine, 3,3-dimethyl-1,6-hexanediamine, 2, 2-dimethyl-1,6-hexanediamine, 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1,6-hexanediamine, 2,4-diethyl-1,6 -Hexanediamine, 2,2-dimethyl-1,7-heptanediamine, 2,3-dimethyl-1,7-heptanediamine, 2,4-dimethyl-1,7-heptanediamine, 2,5-dimethyl-1 , 7-heptanediamine, 2-methyl-1,8-octanediamine, 3-methyl-1,8-octanediamine, 4-methyl-1,8-octanediamine, 1,3-dimethyl-1, -Octanediamine, 1,4-dimethyl-1,8-octanediamine, 2,4-dimethyl-1,8-octanediamine, 3,4-dimethyl-1,8-octanediamine, 4,5-dimethyl-1 , 8-octanediamine, 2,2-dimethyl-1,8-octanediamine, 3,3-dimethyl-1,8-octanediamine, 4,4-dimethyl-1,8-octanediamine, 5-methyl-1 Branched aliphatic alkylene diamines such as 1,9-nonanediamine; and alicyclic diamines such as cyclohexanediamine, methylcyclohexanediamine, isophoronediamine, norbornanedimethylamine, and tricyclodecanedimethylamine.

これらの中でも特に耐湿性と機械的強度の点から炭素原子数4〜8の直鎖状脂肪族アルキレンジアミン、炭素原子数5〜10の分岐鎖状脂肪族アルキレンジアミンが好ましい。   Among these, a linear aliphatic alkylene diamine having 4 to 8 carbon atoms and a branched aliphatic alkylene diamine having 5 to 10 carbon atoms are particularly preferable from the viewpoint of moisture resistance and mechanical strength.

また、前記芳香族ポリアミド(B)は、テレフタル酸アミド構造の他に、下記構造式bで表されるイソフタル酸アミド構造を有することが、前記芳香族ポリアミド(B)自体の融点を下げてPAS樹脂(A)との相溶性を改善できる点から好ましい。   In addition to the terephthalic acid amide structure, the aromatic polyamide (B) has an isophthalic acid amide structure represented by the following structural formula b to reduce the melting point of the aromatic polyamide (B) itself, and It is preferable from the viewpoint of improving the compatibility with the resin (A).

Figure 2008007742
(式中、Rは構造式aのおけるRと同義である。)
Figure 2008007742
(Wherein R has the same meaning as R in structural formula a)

更に、前記芳香族ポリアミド(B)は、テレフタル酸アミド構造の他に、下記構造式cで表される酸アミド構造を有していてもよい。   Furthermore, the aromatic polyamide (B) may have an acid amide structure represented by the following structural formula c in addition to the terephthalic acid amide structure.

Figure 2008007742
(式中、Rは構造式aのおけるRと同義であり、Rは、テレフタル酸又はイソフタル酸の他の芳香族炭化水素基又は炭素原子数4〜10の脂肪族炭化水素基を表す。)
Figure 2008007742
(In the formula, R is synonymous with R in the structural formula a, and R 2 represents another aromatic hydrocarbon group of terephthalic acid or isophthalic acid or an aliphatic hydrocarbon group having 4 to 10 carbon atoms. )

ここで、上記構造式cで表される酸アミド構造は、テレフタル酸若しくはイソフタル酸の他の芳香族ジカルボン酸、又は、炭素原子数4〜10の脂肪族ジカルボン酸、その酸エステル化物、その酸無水物、又はその酸ハライドと、炭素原子数2〜12の脂肪族ジアミンとの反応によって形成されるものである。ここで用いるテレフタル酸若しくはイソフタル酸の他の芳香族ジカルボン酸は、具体的には、フタル酸、ナフタレンジカルボン酸、9−オキソフルオレンジカルボン酸、アントラセンジカルボン酸、アントラキノンジカルボン酸、ビフェニレンジカルボン酸、テルフェニルジカルボン酸、クアテルフェニルジカルボン酸、アゾベンゼンジカルボン酸等のジカルボン酸類が挙げられる。   Here, the acid amide structure represented by the structural formula c is an aromatic dicarboxylic acid other than terephthalic acid or isophthalic acid, an aliphatic dicarboxylic acid having 4 to 10 carbon atoms, an acid esterified product thereof, or an acid thereof. It is formed by a reaction between an anhydride or an acid halide thereof and an aliphatic diamine having 2 to 12 carbon atoms. Specific examples of terephthalic acid or other aromatic dicarboxylic acid used herein include phthalic acid, naphthalenedicarboxylic acid, 9-oxofluorenedicarboxylic acid, anthracene dicarboxylic acid, anthraquinone dicarboxylic acid, biphenylene dicarboxylic acid, terphenyl Examples thereof include dicarboxylic acids such as dicarboxylic acid, quaterphenyl dicarboxylic acid, and azobenzene dicarboxylic acid.

また、炭素原子数4〜10の脂肪族ジカルボン酸は、具体的には、マロン酸、ジメチルマロン酸、コハク酸、グルタル酸、アジピン酸、2−メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、2,2−ジメチルグルタル酸、3,3−ジエチルコハク酸、アゼライン酸、セバシン酸、スベリン酸等の脂肪族ジカルボン酸;1,3−シクロペンタンジカルボン酸、1,4−シクロヘキサンジカルボン酸等の脂環式ジカルボン酸等の脂肪族ジカルボン酸類が挙げられる。   Further, the aliphatic dicarboxylic acid having 4 to 10 carbon atoms specifically includes malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, 2 Aliphatic dicarboxylic acids such as 1,2-dimethylglutaric acid, 3,3-diethylsuccinic acid, azelaic acid, sebacic acid and suberic acid; alicyclic rings such as 1,3-cyclopentanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid Aliphatic dicarboxylic acids such as formula dicarboxylic acids.

上記したテレフタル酸若しくはイソフタル酸の他の芳香族ジカルボン酸、又は、炭素原子数4〜10の脂肪族ジカルボン酸の酸エステル化物は、具体的には、メチルエステル体、エチルエステル体、t−ブチルエステル体等が挙げられ、また、前記芳香族ジカルボン酸又は前記脂肪族ジカルボン酸の酸ハライドを構成するハロゲン原子は臭素原子、塩素原子が挙げられる。   Specific examples of the above-mentioned aromatic dicarboxylic acid other than terephthalic acid or isophthalic acid or an acid esterified product of an aliphatic dicarboxylic acid having 4 to 10 carbon atoms include methyl ester, ethyl ester, and t-butyl. Examples of the halogen atom constituting the aromatic dicarboxylic acid or the acid halide of the aliphatic dicarboxylic acid include a bromine atom and a chlorine atom.

前記芳香族ポリアミド(B)は、上述したとおり前記構造式aで表されるテレフタル酸アミド構造を必須の構造部位として有するものであるが、前記芳香族ポリアミド(B)中のテレフタル酸アミド構造の含有率は、耐熱性改善の効果が顕著になる点から、該芳香族ポリアミド(B)を構成するジカルボン酸残基の総数に対して、65モル%以上となる割合である。ここで、ジカルボン酸残基とは、前記芳香族ポリアミド(B)の原料として用いたジカルボン酸に起因する構造部位であり、その総数は前記芳香族ポリアミド(B)を製造する際のジカルボン酸の仕込み総数に等しい。 The aromatic polyamide (B) has the terephthalic acid amide structure represented by the structural formula a as an essential structural part as described above, but the terephthalic acid amide structure in the aromatic polyamide (B) content, from the viewpoint of the effect of improving heat resistance becomes remarkable, relative to the total number of dicarboxylic acid residue constituting the aromatic polyamide (B), Ru ratio der to be 65 mol% or more. Here, the dicarboxylic acid residue is a structural part derived from the dicarboxylic acid used as a raw material for the aromatic polyamide (B), and the total number of the dicarboxylic acid residues is the same as that of the dicarboxylic acid used to produce the aromatic polyamide (B). It is equal to the total number of preparations.

更に前記芳香族ポリアミド(B)は、耐熱性と耐湿性とのバランスから
前記構造式aで表されるテレフタル酸アミド構造を65〜95モル%、
前記構造式cで表される酸アミド構造を35〜5モル%で構成されるポリアミド(b1)、或いは、
前記構造式aで表されるテレフタル酸アミド構造を65〜75モル%、
前記構造式bで表されるイソフタル酸アミド構造を25〜10モル%、
前記構造式cで表される酸アミド構造を10〜15モル%、
で構成されるポリアミド(b2)が好ましい。
Furthermore, the aromatic polyamide (B) has a terephthalic acid amide structure represented by the structural formula a from 65 to 95 mol% from the balance between heat resistance and moisture resistance,
Polyamide (b1) composed of 35 to 5 mol% of the acid amide structure represented by the structural formula c, or
65 to 75 mol% of the terephthalic acid amide structure represented by the structural formula a,
25-10 mol% of isophthalic acid amide structure represented by the structural formula b,
10-15 mol% of an acid amide structure represented by the structural formula c,
Polyamide (b2) composed of

また、前記芳香族ポリアミド(B)は、前記PAS樹脂(A)への分散性の点から融点290〜330℃、また、Tg90〜140℃であることが好ましい。   The aromatic polyamide (B) preferably has a melting point of 290 to 330 ° C. and Tg of 90 to 140 ° C. from the viewpoint of dispersibility in the PAS resin (A).

本発明に使用する芳香族ポリアミド(B)は、例えば、以下の(1)乃至(3)の方法によって製造することができる。
(1)テレフタル酸を含むジカルボン酸成分の酸ハライドと、炭素原子数2〜12の脂肪族ジアミンを含むジアミン成分とを、お互いに相溶しない二種の溶媒に溶解した後、アルカリおよび触媒量の第4級アンモニウム塩の存在下に2液を混合、撹拌して重縮合反応を行う界面重合法。
(2)テレフタル酸を含むジカルボン酸成分の酸ハライドと、炭素原子数2〜12の脂肪族ジアミンを含むジアミン成分とを第3級アミンなどの酸を受容するアルカリ性化合物の存在下、有機溶媒中で反応せしめる溶液重合法。
(3)テレフタル酸を含むジカルボン酸成分のジエステル化物と、芳香族ジアミンを原料として溶融状態でアミド交換反応する溶融重合法。
The aromatic polyamide (B) used in the present invention can be produced, for example, by the following methods (1) to (3).
(1) After dissolving an acid halide of a dicarboxylic acid component containing terephthalic acid and a diamine component containing an aliphatic diamine having 2 to 12 carbon atoms in two kinds of solvents that are not compatible with each other, alkali and catalytic amount An interfacial polymerization method in which two liquids are mixed and stirred in the presence of a quaternary ammonium salt to conduct a polycondensation reaction.
(2) An acid halide of a dicarboxylic acid component containing terephthalic acid and a diamine component containing an aliphatic diamine having 2 to 12 carbon atoms in an organic solvent in the presence of an alkaline compound that accepts an acid such as a tertiary amine Solution polymerization method in which the reaction is carried out.
(3) A melt polymerization method in which an amide exchange reaction is performed in a molten state using a diesterified product of a dicarboxylic acid component containing terephthalic acid and an aromatic diamine as raw materials.

本発明の耐熱性樹脂組成物は、上記した通り、PAS樹脂(A)、テレフタル酸アミドを必須の構造単位とする芳香族ポリアミド(B)を前者/後者の質量比が70/30〜95/5なる割合で含有するものであるが、本発明では更にエポキシ系シランカップリング剤(C)を併用することが、前記芳香族ポリアミド(B)の分散性が飛躍的に向上し、良好なモルフォルジーを形成することによって耐熱性及び難燃性の改善効果が一層顕著なものとなる点から好ましい。   As described above, the heat-resistant resin composition of the present invention is composed of PAS resin (A) and aromatic polyamide (B) having terephthalic acid amide as an essential structural unit, with the former / latter mass ratio of 70/30 to 95 /. In the present invention, the use of the epoxy-based silane coupling agent (C) further improves the dispersibility of the aromatic polyamide (B), resulting in a good morphology. It is preferable from the point that the effect of improving heat resistance and flame retardancy becomes more remarkable.

ここで前記エポキシ系シランカップリング剤(C)は、エポキシ構造含有基と2個以上のアルコキシ基とが珪素原子に結合した構造を有するシラン化合物であり、前記エポキシ構造含有基はグリシドキシアルキル基、3,4−エポキシシクロヘキシルアルキル基が挙げられる。また、これらの構造中に存在するアルキル基は炭素原子数1〜4の直鎖型アルキル基であることが好ましく、一方、前記アルコキシ基は具体的にはメトキシ基及びエトキシ基が挙げられる。このようなエポキシ系シランカップリング剤(C)は、具体的には、γ−グリシドキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、及びエポキシ系シリコーンオイルが挙げられる。また、前記エポキシ系シリコーンオイルは炭素原子数2〜6アルコキシ基を繰り返し単位として2単位乃至6単位で構成されるポリアルキレンオキシ基を有する化合物が挙げられる。前記エポキシ系シランカップリング剤(C)のなかでも、特に、前記芳香族ポリアミド(B)の分散性向上の効果が顕著である点からγ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシランに代表されるグリシドキシアルキルトリアルコキシシラン化合物が好ましい。   Here, the epoxy-based silane coupling agent (C) is a silane compound having a structure in which an epoxy structure-containing group and two or more alkoxy groups are bonded to a silicon atom, and the epoxy structure-containing group is a glycidoxyalkyl. Group, and 3,4-epoxycyclohexylalkyl group. Moreover, it is preferable that the alkyl group which exists in these structures is a C1-C4 linear alkyl group, On the other hand, the said alkoxy group specifically includes a methoxy group and an ethoxy group. Specifically, such epoxy-based silane coupling agents (C) include γ-glycidoxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and γ-glycidoxypropyl. Examples include triethoxysilane and epoxy silicone oil. Examples of the epoxy-based silicone oil include compounds having a polyalkyleneoxy group composed of 2 to 6 units having a C2-6 alkoxy group as a repeating unit. Among the epoxy-based silane coupling agents (C), γ-glycidoxypropyltrimethoxysilane and γ-glycidoxy are particularly effective since the effect of improving the dispersibility of the aromatic polyamide (B) is remarkable. Glycidoxyalkyltrialkoxysilane compounds represented by propyltriethoxysilane are preferred.

前記エポキシ系シランカップリング剤(C)の配合量は、前記PAS樹脂(A)と前記芳香族ポリアミド(B)との合計量100質量部に対し、0.01〜5質量部であることが好ましく、特に0.1〜2質量部であることが好ましい。   The compounding amount of the epoxy silane coupling agent (C) is 0.01 to 5 parts by mass with respect to 100 parts by mass of the total amount of the PAS resin (A) and the aromatic polyamide (B). Particularly preferred is 0.1 to 2 parts by mass.

また、本発明では、上記各成分に加え、更にハイドロタルサイト類化合物(D)を併用することが前記PAS樹脂(A)と前記芳香族ポリアミド(B)との溶融混練時或いは成形物のリフロー炉における熱処理時におけるポリマー成分の熱分解を抑制して、優れた機械的強度や難燃性の一層の向上が図れる点、及び、熱処理後の成形物外観を改善効果が一層顕著なものとなる点から好ましい。   In the present invention, in addition to the above components, the hydrotalcite compound (D) may be used in combination with the melt-kneading of the PAS resin (A) and the aromatic polyamide (B) or reflow of the molded product. Suppresses the thermal decomposition of polymer components during heat treatment in the furnace, and can further improve the excellent mechanical strength and flame retardancy, and the effect of improving the appearance of the molded product after heat treatment becomes more remarkable. It is preferable from the point.

ここで用いるハイドロタルサイト類化合物(D)は、2価の金属イオンと3価の金属イオンの水酸化物を層状結晶構造として有し、該層状結晶構造の層間に陰イオンを含む構造を有する無機化合物、或いは、その焼成物である。かかるハイドロタルサイト類化合物(D)を構成する2価の金属イオンは、例えば、Mg2+、Mn2+、Fe2+、Co2+、Ni2+、Cu2+、及びZn2+が挙げられ、3価の金属イオンはAl3+、Fe3+、Cr3+、Co3+、及びIn3+が挙げられる。また、陰イオンは、OH、F、Cl、Br、NO3−、CO3−、SO 2−、Fe(CN) 3−及びCHCOO、モリブテン酸イオン、ポリモリブテン酸イオン、バナジウム酸イオン、ポリバナジウム酸イオンが挙げられる。 The hydrotalcite compound (D) used here has a layered crystal structure of a divalent metal ion and a trivalent metal ion hydroxide, and has a structure including an anion between the layers of the layered crystal structure. It is an inorganic compound or a fired product thereof. Examples of the divalent metal ions constituting the hydrotalcite compound (D) include Mg 2+ , Mn 2+ , Fe 2+ , Co 2+ , Ni 2+ , Cu 2+ , and Zn 2+. The ions include Al 3+ , Fe 3+ , Cr 3+ , Co 3+ , and In 3+ . Further, the anions include OH , F , Cl , Br , NO 3− , CO 3− , SO 4 2− , Fe (CN) 6 3−, and CH 3 COO , molybdate and polymolybten. Acid ions, vanadate ions, and polyvanadate ions may be mentioned.

これらの中でも、特に、ポリアリーレンスルフィド樹脂(A)に起因する酸成分とのイオン交換能に優れ、ガス発生防止効果が顕著である点から、3価の金属イオンはAl3+であって、陰イオンはCO であることが好ましく、具体的には、例えば下記式M2+ 1−xAl(OH)・(COX/2mHO 式1
(式1中、M2+はMg,Ca及びZnよりなる群から選ばれた二価金属イオンを示し、そしてx及びmは、0<x<0.5かつ0≦m≦2を満足する数値である。)で表される化合物であることが好ましい。
Among these, in particular, the trivalent metal ion is Al 3+ because it is excellent in ion exchange ability with the acid component derived from the polyarylene sulfide resin (A) and has a remarkable effect of preventing gas generation. The ion is preferably CO 3 , specifically, for example, the following formula M 2+ 1-x Al x (OH) 2. (CO 3 ) X / 2 mH 2 O Formula 1
(In Formula 1, M 2+ represents a divalent metal ion selected from the group consisting of Mg, Ca and Zn, and x and m are numerical values satisfying 0 <x <0.5 and 0 ≦ m ≦ 2. It is preferable that it is a compound represented by.

前記式1を満足する化合物は、例えば、Mg2+ Al(OH)16・(CO)・4HOで表される天然ハイドロタルサイトの他、
Mg0.7Al0.3(OH)(CO0.15・0.54HO、
Mg4.5Al(OH)13CO・3.5HO、
Mg4.3Al(OH)12.6CO・3.5HO、
Mg4.2Al(OH)12.4CO
ZnAl(OH)16CO・4HO、
CaAl(OH)16CO3・4HO等が挙げられる。
The compound satisfying the formula 1 is, for example, a natural hydrotalcite represented by Mg 2+ 6 Al 2 (OH) 16. (CO 3 ) .4H 2 O,
Mg 0.7 Al 0.3 (OH) 2 (CO 3 ) 0.15 · 0.54H 2 O,
Mg 4.5 Al 2 (OH) 13 CO 3 · 3.5H 2 O,
Mg 4.3 Al 2 (OH) 12.6 CO 3 · 3.5H 2 O,
Mg 4.2 Al 2 (OH) 12.4 CO 3 ,
Zn 6 Al 2 (OH) 16 CO 3 .4H 2 O,
Ca 6 Al 2 (OH) 16 CO 3 .4H 2 O and the like can be mentioned.

これらのなかでも特に本発明ではガス発生防止の点から下記式2で表されるMg−Al系ハイドロタルサイト様化合物であることが特に好ましい。
Mg2+ 1−xAl(OH)・(COX/2mHO式 2
(式2中、x及びmは、0<x<0.5かつ0≦m≦2を満足する数値である。)
Among these, the Mg—Al hydrotalcite-like compound represented by the following formula 2 is particularly preferable in the present invention from the viewpoint of preventing gas generation.
Mg 2+ 1-x Al x (OH) 2. (CO 3 ) X / 2 mH 2 O formula 2
(In Formula 2, x and m are numerical values satisfying 0 <x <0.5 and 0 ≦ m ≦ 2.)

前記ハイドロタルサイト類化合物(D)の配合量は、ガス発生防止効果が顕著なものとなる点から本発明の耐熱性樹脂組成物中0.1〜1.0質量%、或いは、前記PAS樹脂(A)及び前記芳香族ポリアミド(B)の合計質量100質量部に対して0.01〜5質量部であることが好ましく、特に0.1〜2質量部であることが好ましい。   The blending amount of the hydrotalcite compound (D) is 0.1 to 1.0% by mass in the heat-resistant resin composition of the present invention, or the PAS resin from the point that the effect of preventing gas generation is remarkable. It is preferable that it is 0.01-5 mass parts with respect to 100 mass parts of total mass of (A) and the said aromatic polyamide (B), and it is especially preferable that it is 0.1-2 mass parts.

本発明の耐熱性樹脂組成物は、PAS樹脂(A)、テレフタル酸アミドを必須の構造単位とする芳香族ポリアミド(B)、更に望ましくは前記エポキシ系シランカップリング剤(C)の各成分に加え、更に繊維状強化材(E−1)又は無機質フィラー(E−2)を配合することが成形物の機械的強度の点から好ましい。   The heat-resistant resin composition of the present invention comprises PAS resin (A), aromatic polyamide (B) having terephthalic acid amide as an essential structural unit, and more preferably each component of the epoxy-based silane coupling agent (C). In addition, it is preferable from the viewpoint of the mechanical strength of the molded product that a fibrous reinforcing material (E-1) or an inorganic filler (E-2) is further blended.

前記繊維状強化材(E−1)は、例えば、ガラス繊維、PAN系又はピッチ系の炭素繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化ホウ素繊維、窒化ケイ素繊維、ホウ素繊維、ホウ酸アルミニウム繊維、チタン酸カリウム繊維、更にステンレス、アルミニウム、チタン、銅、真ちゅう等の金属の繊維状物の無機質繊維状物質、及びアラミド繊維等の有機質繊維状物質等が挙げられる。   Examples of the fibrous reinforcing material (E-1) include glass fibers, PAN-based or pitch-based carbon fibers, silica fibers, silica-alumina fibers, zirconia fibers, boron nitride fibers, silicon nitride fibers, boron fibers, and boric acid. Examples thereof include aluminum fibers, potassium titanate fibers, inorganic fibrous materials such as stainless steel, aluminum, titanium, copper, brass and other metallic fibrous materials, and organic fibrous materials such as aramid fibers.

また、無機質フィラー(E−2)は、例えば、マイカ、タルク、ワラステナイト、セリサイト、カオリン、クレー、ベントナイト、アスベスト、アルミナシリケート、ゼオライト、パイロフィライトなどの珪酸塩や炭酸カルシウム、炭酸マグネシウム、ドロマイトなどの炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、アルミナ、酸化マグネシウム、シリカ、ジルコニア、チタニア、酸化鉄などの金属酸化物、ガラスビーズ、セラミックビーズ、窒化ホウ素、炭化珪素、燐酸カルシウムなどが挙げられる。これらの繊維状強化材(E−1)、無機質フィラー(E−2)は、単独使用でも2種以上を併用してもよい。   The inorganic filler (E-2) includes, for example, silicates such as mica, talc, wollastonite, sericite, kaolin, clay, bentonite, asbestos, alumina silicate, zeolite, pyrophyllite, calcium carbonate, magnesium carbonate, Carbonate such as dolomite, sulfate such as calcium sulfate and barium sulfate, metal oxide such as alumina, magnesium oxide, silica, zirconia, titania and iron oxide, glass beads, ceramic beads, boron nitride, silicon carbide, calcium phosphate, etc. Is mentioned. These fibrous reinforcing materials (E-1) and inorganic fillers (E-2) may be used alone or in combination of two or more.

本発明に使用する繊維状強化材(E−1)又は無機質フィラー(E−2)の配合量は、PAS樹脂(A)と芳香族ポリアミド(B)との合計量100質量部に対し、1〜200重量部の範囲であること、特に20〜120質量部の範囲であることが好ましい。また繊維状強化材(E−1)又は無機質フィラー(E−2)は、本発明の耐熱性樹脂成形物品の性能を損なわない範囲で、シランカップリング剤あるいはチタンカップリング剤等の表面処理剤で表面処理を施したものであってもよい。   The amount of the fibrous reinforcing material (E-1) or inorganic filler (E-2) used in the present invention is 1 with respect to 100 parts by mass of the total amount of the PAS resin (A) and the aromatic polyamide (B). It is preferable that it is in the range of -200 parts by weight, particularly in the range of 20-120 parts by weight. The fibrous reinforcing material (E-1) or the inorganic filler (E-2) is a surface treatment agent such as a silane coupling agent or a titanium coupling agent as long as the performance of the heat-resistant resin molded article of the present invention is not impaired. The surface treatment may be performed.

更に、本発明の耐熱性樹脂組成物には、本発明の効果を損なわない範囲で、酸化防止剤、加工熱安定剤、可塑剤、離型剤、着色剤、滑剤、耐候性安定剤、発泡剤、防錆剤、ワックスを適量添加してもよい。   Furthermore, the heat resistant resin composition of the present invention includes an antioxidant, a processing heat stabilizer, a plasticizer, a mold release agent, a colorant, a lubricant, a weather resistance stabilizer, foaming, as long as the effects of the present invention are not impaired. An appropriate amount of an agent, a rust inhibitor, and a wax may be added.

更に本発明の耐熱性樹脂組成物は、更に、要求される特性に合わせてその他の樹脂成分を適宜配合してもよい。ここで使用し得る樹脂成分としては、エチレン、ブチレン、ペンテン、ブタジエン、イソプレン、クロロプレン、スチレン、α−メチルスチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、(メタ)アクリロニトリルなどの単量体の単独重合体または共重合体、ポリウレタン、ポリエステル、ポリブチレンテレフタレート・ポリエチレンテレフタレート等のポリエステル、ポリアセタール、ポリカーボネート、ポリサルホン、ポリアリルサルホン、ポリエーテルサルホン、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリイミド、ポリアミドイミド、ポリエーテルイミド、シリコーン樹脂、エポキシ樹脂、フェノキシ樹脂、液晶ポリマー、ポリアリールエーテルなどの単独重合体、ランダム共重合体またはブロック共重合体、グラフト共重合体等が挙げられる。   Furthermore, the heat resistant resin composition of the present invention may further contain other resin components in accordance with required properties. Examples of the resin component that can be used here include ethylene, butylene, pentene, butadiene, isoprene, chloroprene, styrene, α-methylstyrene, vinyl acetate, vinyl chloride, acrylic acid ester, methacrylic acid ester, (meth) acrylonitrile, and the like. Monomer homopolymer or copolymer, Polyester such as polyurethane, polyester, polybutylene terephthalate, polyethylene terephthalate, polyacetal, polycarbonate, polysulfone, polyallylsulfone, polyethersulfone, polyphenylene ether, polyetherketone, polyether Single weight of ether ketone, polyimide, polyamideimide, polyetherimide, silicone resin, epoxy resin, phenoxy resin, liquid crystal polymer, polyaryl ether, etc. Body, a random copolymer or a block copolymer and a graft copolymer, and the like.

以上詳述した耐熱性樹脂組成物を製造する方法は、具体的には、前記PAS樹脂(A)およびテレフタル酸アミドを必須の構造単位とする芳香族ポリアミド(B)を、更に必要に応じてその他の配合成分をタンブラー又はヘンシェルミキサーなどで均一に混合、次いで、2軸押出機に投入し、樹脂成分の吐出量(kg/hr)とスクリュー回転数(rpm)との比率(吐出量/スクリュー回転数)が0.02〜0.2(kg/hr/rpm)なる条件下に溶融混練する方法が挙げられる。かかる条件下に製造することによって前記PAS樹脂(A)をマトリックスとして微分酸する前記芳香族ポリアミド(B)の平均径を0.1〜1.0μmに調整することができる。   The method for producing the heat-resistant resin composition described in detail above specifically includes the aromatic polyamide (B) having the PAS resin (A) and terephthalic acid amide as essential structural units, if necessary. Mix other ingredients uniformly with a tumbler or Henschel mixer, etc., then put into a twin-screw extruder, ratio of resin component discharge rate (kg / hr) to screw speed (rpm) (discharge rate / screw) Examples of the method include melt kneading under the condition that the number of rotations is 0.02 to 0.2 (kg / hr / rpm). By producing it under such conditions, the average diameter of the aromatic polyamide (B) that differentiates with the PAS resin (A) as a matrix can be adjusted to 0.1 to 1.0 μm.

上記製造方法につき更に詳述すれば、前記した各成分を2軸押出機内に投入し、設定温度330℃、樹脂温度350℃程度の温度条件下に溶融混練する方法が挙げられる。この際、樹脂成分の吐出量は回転数250rpmで5〜50kg/hrの範囲となる。なかでも特に分散性の点から20〜35kg/hrであることが好ましい。 The above production method will be described in more detail. A method may be mentioned in which the above-described components are put into a twin-screw extruder and melt-kneaded under temperature conditions of a set temperature of 330 ° C. and a resin temperature of about 350 ° C. At this time, the discharge amount of the resin component is in a range of 5 to 50 kg / hr at a rotation speed of 250 rpm. Especially, it is preferable that it is 20-35 kg / hr from the point of a dispersibility.

よって、樹脂成分の吐出量(kg/hr)とスクリュー回転数(rpm)との比率(吐出量/スクリュー回転数)は、特に0.08〜0.14(kg/hr/rpm)であることが好ましい。また、2軸押出機のトルクは最大トルクが20〜100(A)、特に25〜80(A)となる範囲であることが前記芳香族ポリアミド(B)の分散性が良好となる点から好ましい。   Therefore, the ratio of the resin component discharge rate (kg / hr) to the screw speed (rpm) (discharge rate / screw speed) is particularly 0.08 to 0.14 (kg / hr / rpm). Is preferred. The torque of the twin-screw extruder is preferably in the range where the maximum torque is 20 to 100 (A), particularly 25 to 80 (A), from the viewpoint of good dispersibility of the aromatic polyamide (B). .

また、前記配合成分のうち繊維状強化材(E−1)は、前記2軸押出機のサイドフィーダーから該押出機内に投入することが該繊維状強化材(E−1)の分散性が良好となる点から好ましい。かかるサイドフィーダーの位置は、前記2軸押出機のスクリュー全長に対する、押出機樹脂投入部から該サイドフィーダーまでの距離の比率が、0.1〜0.6であることが好ましい。中でも0.2〜0.4であることが特に好ましい。   In addition, the fibrous reinforcing material (E-1) among the above-mentioned blending components can be introduced into the extruder from the side feeder of the twin-screw extruder so that the dispersibility of the fibrous reinforcing material (E-1) is good. It is preferable from the point which becomes. The position of the side feeder is preferably such that the ratio of the distance from the extruder resin charging part to the side feeder with respect to the total screw length of the biaxial extruder is 0.1 to 0.6. Among these, 0.2 to 0.4 is particularly preferable.

このようにして溶融混練された耐熱性樹脂組成物はペレットとして得られ、次いで、これを成形機に供して溶融成形することにより、目的とする成形物が得られる。   The heat-resistant resin composition melt-kneaded in this manner is obtained as pellets, and then subjected to melt molding using a molding machine to obtain the desired molded product.

ここで溶融成形する方法は、例えば、射出成形、押出成形、圧縮成形等が挙げられるが、このうち表面実装用電子部品の成型用としては射出成形が特に好ましい。   Examples of the melt molding method include injection molding, extrusion molding, and compression molding. Among these, injection molding is particularly preferable for molding of electronic components for surface mounting.

このようにして得られる成形物は、具体的には、非ニュートン指数が1.3〜0.9のポリアリーレンスルフィド樹脂(A)、テレフタル酸アミドを必須の構造単位とする芳香族ポリアミド(B)であって、下記構造式aで表されるテレフタル酸アミド構造を、該芳香族ポリアミド(B)を構成する全酸アミド構造単位に対して65モル%以上の割合で含有する芳香族ポリアミド(B)を前者/後者の質量比が70/30〜95/5なる割合で含有する耐熱性樹脂組成物からなるものであって、かつ、該成形物の破断面を有機溶剤でエッチング処理した後、該破断面を走査型電子顕微鏡(2500倍)にて観察した際、該エッチング処理によって形成された空孔の平均径が0.1〜1.0μmの範囲の範囲となるものであり、耐熱性に優れ、高温域での弾性率が高い為、はんだ付けされる成形物として使用することができる。特に、前記した通り、表面実装用の電子部品用途においては、加熱炉(リフロー炉)内の基体の表面温度が280℃以上の高温になるところ、従来のPAS樹脂では融解又は変形が見られるのに対して、本発明の耐熱性樹脂組成物は、成形物品が融解又は変形を生じることなく該基体にはんだ付けすることが可能である。なお、上記のはんだ付けされる基体の表面温度とは、表面実装方式におけるはんだ付け工程において、実際に測定される基体の表面上の温度である。該基体の具体例としては、SMT方式におけるプリント印刷された配線基板や回路基板等が挙げられる。 Specifically, the molded product thus obtained is composed of a polyarylene sulfide resin (A) having a non-Newtonian index of 1.3 to 0.9 and an aromatic polyamide (B) having terephthalic acid amide as an essential structural unit. And an aromatic polyamide containing a terephthalic acid amide structure represented by the following structural formula a in a proportion of 65 mol% or more with respect to all the acid amide structural units constituting the aromatic polyamide (B) ( B) is composed of a heat-resistant resin composition containing the former / latter mass ratio of 70/30 to 95/5, and the fracture surface of the molded product is etched with an organic solvent. When the fracture surface is observed with a scanning electron microscope (2500 times), the average diameter of the pores formed by the etching treatment is in the range of 0.1 to 1.0 μm, and the heat resistance Excellent Since a high modulus of elasticity at temperature range, it can be used as a molding material to be soldered. In particular, as described above, in the surface mount electronic component application, the surface temperature of the substrate in the heating furnace (reflow furnace) becomes a high temperature of 280 ° C. or higher, but the conventional PAS resin is melted or deformed. On the other hand, the heat resistant resin composition of the present invention can be soldered to the substrate without causing the molded article to melt or deform. The surface temperature of the substrate to be soldered is a temperature actually measured on the surface of the substrate in the soldering process in the surface mounting method. Specific examples of the substrate include printed circuit boards and circuit boards in the SMT method.

Figure 2008007742
Figure 2008007742
(式中、Rは炭素原子数2〜12のアルキレン基を表す。)(In the formula, R represents an alkylene group having 2 to 12 carbon atoms.)

また、上記した表面実装方式での加熱炉(リフロー炉)中での加熱方式には、(1)ヒーター上を移動する耐熱ベルトの上に基板を載せて加熱する熱伝導方式、(2)約220℃の沸点を有するフッ素系液体の凝集時の潜熱を利用するベーパーフェイズソルダリング(VPS)方式、(3)熱風を強制的に循環させているところを通す熱風対流熱伝達方式、(4)赤外線により基板の上部又は上下両面から加熱する赤外線方式、(5)熱風による加熱と赤外線による加熱を組み合わせて用いる方式等が挙げられる。   In addition, the heating method in the heating furnace (reflow furnace) in the surface mounting method described above includes (1) a heat conduction method in which a substrate is heated on a heat-resistant belt moving on the heater, and (2) about Vapor phase soldering (VPS) method using latent heat when a fluorine-based liquid having a boiling point of 220 ° C is agglomerated, (3) Hot air convection heat transfer method through which hot air is forced to circulate, (4) Examples include an infrared method in which heating is performed from the upper or upper and lower surfaces of the substrate with infrared rays, and (5) a method using a combination of heating with hot air and heating with infrared rays.

本発明の耐熱性樹脂組成物の成形物品は、例えば、精密部品、各種電気・電子部品、機械部品、自動車用部品、建築、サニタリー、スポーツ、雑貨等の幅広い分野において使用することができるが、特に難燃性、耐熱性、剛性等々に優れるため、とりわけ、前記した通り、表面実装用電子部品として有用である。   The molded article of the heat-resistant resin composition of the present invention can be used in a wide range of fields such as precision parts, various electric / electronic parts, machine parts, automotive parts, architecture, sanitary, sports, miscellaneous goods, etc. Particularly, since it is excellent in flame retardancy, heat resistance, rigidity, etc., it is particularly useful as an electronic component for surface mounting as described above.

ここで、本発明の表面実装用電子部品は、前記した耐熱性樹脂組成物の成形物と、金属端子とを必須の構成要素とするもので、プリント印刷された配線基板や回路基板上に表面実装方式によって固定されるものである。この電子部品を表面実装方式で基板に固定させるには、該電子部品の金属端子がハンダボールを介して基板上の通電部に接するように基板表面に載せて、上記した加熱方式によってリフロー炉内で加熱することによって、該電子部品を基板にハンダ付けする方法が挙げられる。   Here, the electronic component for surface mounting according to the present invention has the above-described molded product of the heat-resistant resin composition and a metal terminal as essential components, and is printed on a printed circuit board or circuit board. It is fixed by the mounting method. In order to fix the electronic component to the substrate by the surface mounting method, the metal terminal of the electronic component is placed on the surface of the substrate so as to be in contact with the current-carrying portion on the substrate through the solder ball, and the inside of the reflow furnace is performed by the heating method described above. There is a method in which the electronic component is soldered to the substrate by heating at a temperature.

かかる表面実装用の電子部品は、具体的には、表面実装方式対応用のコネクター、スイッチ、センサー、抵抗器、リレー、コンデンサー、ソケット、ジャック、ヒューズホルダー、コイルボビン、ICやLEDのハウジング等が挙げられる。   Specific examples of such surface mounting electronic components include connectors, switches, sensors, resistors, relays, capacitors, sockets, jacks, fuse holders, coil bobbins, IC and LED housings, and the like for surface mounting systems. It is done.

また、本発明の製造方法で得られる耐熱性樹脂成形物品は、所謂ハロゲン系銅や酸化アンチモン或いは金属水酸化物といった難燃剤を添加することなく、UL耐炎性試験規格UL−94(アンダーライターズ ラボラトリーズ,インコーポレイテッド,(UL)スタンダード No.94)において、V−0に相当する高い難燃性を達成せしめるものである。   In addition, the heat-resistant resin molded article obtained by the production method of the present invention does not contain a flame retardant such as so-called halogenated copper, antimony oxide or metal hydroxide, without adding a UL flame resistance test standard UL-94 (Underwriters). Laboratories, Incorporated, (UL) Standard No. 94) achieves high flame retardancy equivalent to V-0.

以下に、実施例により本発明を更に詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1〜9及び比較例1〜5
表1及び表2に記載する配合比率に従い、ポリアリーレンスルフィド樹脂、芳香族ポリアミド及びその他配合材料(ガラス繊維チョップドストランドを除く)をタンブラーで均一に混合した。その後、東芝機械(株)製ベント付き2軸押出機「TEM−35B」に前記配合材料を投入し、また、サイドフィーダー(スクリュー全長に対する樹脂投入部から該サイドフィーダーまでの距離の比率:0.28)から繊維径10μm、長さ3mmのガラス繊維チョップドストランドを上記配合材料60質量部に対して40質量部の割合で供給しながら、樹脂成分吐出量25kg/hr、スクリュー回転数250rpm、樹脂成分の吐出量(kg/hr)とスクリュー回転数(rpm)との比率(吐出量/スクリュー回転数)=0.1(kg/hr/rpm)、最大トルク65(A)、設定樹脂温度330℃で溶融混練して樹脂組成物のペレットを得た。次いで、このペレットを用いて以下の各種評価試験を行った。
Examples 1-9 and Comparative Examples 1-5
According to the blending ratios described in Tables 1 and 2, polyarylene sulfide resin, aromatic polyamide and other blending materials (excluding glass fiber chopped strands) were uniformly mixed with a tumbler. Thereafter, the blended material was charged into a vented twin-screw extruder “TEM-35B” manufactured by Toshiba Machine Co., Ltd., and the side feeder (the ratio of the distance from the resin charging portion to the side feeder relative to the total length of the screw: 0. 0). 28) while supplying a glass fiber chopped strand having a fiber diameter of 10 μm and a length of 3 mm at a ratio of 40 parts by mass with respect to 60 parts by mass of the above compounded material, a resin component discharge rate of 25 kg / hr, a screw rotation speed of 250 rpm, a resin component Ratio (kg / hr) to screw rotation speed (rpm) (discharge volume / screw rotation speed) = 0.1 (kg / hr / rpm), maximum torque 65 (A), set resin temperature 330 ° C. And kneaded to obtain pellets of the resin composition. Subsequently, the following various evaluation tests were performed using this pellet.

[エッチング処理及び平均径の測定]
樹脂組成物のペレットを、射出成形機を用いて成形し、幅12mm×長さ62.5mm×厚さ3mmの試験片を得た。これを−40℃に冷却した後、ASTM E−256に準拠してアイゾット衝撃試験を行い、該試験片を破断した。この破断された試験片の破断面をトリフロロ酢酸に20℃の温度条件下に浸漬し、超音波で処理して、該破断面に存在する微粒子状の芳香族ポリアミドを除去した。次いで、アセトンで前記破断面を洗浄し、その後、該破断面を30分間乾燥させた。
[Etching treatment and measurement of average diameter]
The pellet of the resin composition was molded using an injection molding machine to obtain a test piece having a width of 12 mm, a length of 62.5 mm, and a thickness of 3 mm. After cooling this to -40 degreeC, the Izod impact test was done based on ASTM E-256, and this test piece was fractured. The fracture surface of the fractured test piece was immersed in trifluoroacetic acid at a temperature of 20 ° C. and treated with ultrasonic waves to remove fine particulate aromatic polyamide present on the fracture surface. Next, the fracture surface was washed with acetone, and then the fracture surface was dried for 30 minutes.

このようにしてエッチング処理された成形物の破断面の任意の2箇所につき、それぞれ2500倍の走査型電子顕微鏡写真を撮影し、これらをA3サイズに拡大し、拡大されたそれぞれの写真において2600μmの範囲に観察される全ての空孔の直径をグラフテック(株)製グラフィックデジタイザー「KD4600」を用いて空孔の直径を計測し、2箇所分併せて平均を算出した。
その結果を表1及び表2に示す。
なお、実施例8の走査型電子顕微鏡写真を図2に、実施例9の走査型電子顕微鏡写真を図3に、比較例2の走査型電子顕微鏡写真を図4にそれぞれ示す。
At two arbitrary positions on the fractured surface of the molded article thus etched, 2500 × scanning electron micrographs were taken, and these were enlarged to A3 size. In each of the enlarged photographs, 2600 μm 2. The diameters of all the holes observed in the above range were measured using a graphic digitizer “KD4600” manufactured by Graphtec Co., Ltd., and the average of the two holes was calculated.
The results are shown in Tables 1 and 2.
In addition, the scanning electron micrograph of Example 8 is shown in FIG. 2, the scanning electron micrograph of Example 9 is shown in FIG. 3, and the scanning electron micrograph of Comparative Example 2 is shown in FIG.

〔はんだリフロー加熱後の曲げ強度及び曲げ破断伸び〕
樹脂組成物のペレットを射出成形機を用いて成形し、幅10mm×長さ50mm×厚さ1.6mmの試験片を得た。次いでこの試験片について、ASTM D790に準じてはんだリフロー加熱後の曲げ強度及び曲げ破断伸びを測定した。リフロー加熱は赤外線リフロー装置(アサヒエンジニアリング社製「TPF−2」)で行った。この際の加熱条件としては、それぞれ180℃で100秒間予備加熱した後、基体表面が280℃に到達するまで加熱保持を行った。つまり、200℃以上の領域で100秒間、220℃以上の領域で90秒間、240℃以上の領域で80秒間、260℃以上の領域で60秒間となるように温度プロファイル(温度曲線)をリフロー装置にて設定を行い、加熱保持を行った。
[Bending strength and bending elongation after solder reflow heating]
A pellet of the resin composition was molded using an injection molding machine to obtain a test piece having a width of 10 mm, a length of 50 mm, and a thickness of 1.6 mm. Next, the bending strength and bending elongation after solder reflow heating were measured for this test piece in accordance with ASTM D790. Reflow heating was performed with an infrared reflow apparatus (“TPF-2” manufactured by Asahi Engineering Co., Ltd.). As heating conditions at this time, each substrate was preheated at 180 ° C. for 100 seconds, and then heated and held until the substrate surface reached 280 ° C. In other words, the temperature profile (temperature curve) is reflowed so as to be 100 seconds in a region of 200 ° C. or higher, 90 seconds in a region of 220 ° C. or higher, 80 seconds in a region of 240 ° C. or higher, and 60 seconds in a region of 260 ° C. or higher. Was set and heated and held.

〔耐ブリスタ性試験A〕
樹脂組成物のペレットを、射出成形機を用いて成形し、形状が縦70mm×横10mm×高さ8mm、0.8mm厚さの箱形コネクターを作した。次いでこの箱形コネクターをプリント基板の上に載せて、前記〔はんだリフロー加熱後の曲げ強度及び曲げ破断伸び〕におけるリフロー条件で加熱した。外観評価は加熱後に箱形コネクターを目視観察し、下記の2段階の基準で評価した。
A:外観に変化なし。
B:ブリスタ又は融解が観察された。
[Blister resistance test A]
Pellets of the resin composition was molded using an injection molding machine, the shape is vertical 70 mm × horizontal 10 mm × height 8 mm, a box-shaped connector 0.8mm thick was created made. Next, this box-shaped connector was placed on a printed circuit board and heated under the reflow conditions described in [Bending strength and bending breaking elongation after solder reflow heating]. Appearance evaluation was carried out by visually observing the box connector after heating and evaluated according to the following two-stage criteria.
A: No change in appearance.
B: Blister or melting was observed.

〔耐ブリスタ性試験B〕
樹脂組成物のペレットを射出成形機を用いて成形し、形状が縦50mm×横10mm×高さ8mm、0.8mm厚さの箱形コネクターを作した。次いでこの箱形コネクターを赤外線加熱炉(山陽精工製、SMTスコープ)を用いて、図1に示す温度プロファイルに従ってリフロー処理を行った。評価は加熱後に箱形コネクターを目視観察し、下記の2段階の基準で評価した。
A:外観に変化なし。
B:ブリスタ又は融解が観察された。
[Blister resistance test B]
Pellets of the resin composition was molded using an injection molding machine, the shape is vertical 50 mm × horizontal 10 mm × height 8 mm, a box-shaped connector 0.8mm thick was created made. Next, this box-shaped connector was subjected to a reflow process according to a temperature profile shown in FIG. 1 using an infrared heating furnace (manufactured by Sanyo Seiko, SMT scope). Evaluation was made by visually observing the box-shaped connector after heating, and evaluated according to the following two-stage criteria.
A: No change in appearance.
B: Blister or melting was observed.

〔燃焼試験〕
UL−94垂直試験に準拠して行った。
[Combustion test]
The test was conducted according to the UL-94 vertical test.

Figure 2008007742
Figure 2008007742

Figure 2008007742
Figure 2008007742

なお、表1及び表2中の配合樹脂、材料は下記のものであり、また、表2中の「観測不可」とは、芳香族ポリアミドが粒子形状を形成していなかったことを意味する。
PPS1:大日本インキ化学工業(株)製リニア型PPS「DSP LR−3G」(非ニュートン指数1.2)
PPS2:大日本インキ化学工業(株)製リニア型PPS「LR−100G」(非ニュートン指数1.1)と、大日本インキ化学工業(株)製分岐型PPS「LT−10G」(非ニュートン指数1.5)とを、前者/後者=80/20(質量比)で混合したポリフェニレンスルフィド樹脂(粘度;メルトフローレート 50g/10分、混合物の非ニュートン指数1.2)
PA6T:ソルベイ・アドバンスト・ポリマーズ(株)製「アモデルA−1004」テレフタル酸65〜70モル%、その他イソフタル酸及びヘキサメチレンジアミンを必須の単量体成分として反応させた芳香族ポリアミド(融点310℃、Tg120℃)
エポキシシラン:γ−グリシドキシプロピルトリメトキシシラン
AD−1:チバ・スペシャリティ・ケミカルズ(株)製ヒンダードフェノール系酸化防止剤「イルガノックス 1098」
AD−2:チバ・スペシャリティ・ケミカルズ(株)製リン系加工熱安定剤「イルガフォス 168」
GF:ガラス繊維チョップドストランド(繊維径10μm、長さ3mm)
The compounded resins and materials in Tables 1 and 2 are as follows, and “not observable” in Table 2 means that the aromatic polyamide did not form a particle shape.
PPS1: Linear Nippon PPS “DSP LR-3G” manufactured by Dainippon Ink & Chemicals, Inc. (non-Newton index 1.2)
PPS2: Dainippon Ink Chemical Co., Ltd. linear PPS "LR-100G" (non-Newton index 1.1) and Dainippon Ink Chemical Co., Ltd. branched PPS "LT-10G" (non-Newton index) 1.5) with the former / the latter = 80/20 (mass ratio) (viscosity; melt flow rate 50 g / 10 min, non-Newtonian index of the mixture 1.2)
PA6T: “Amodel A-1004” manufactured by Solvay Advanced Polymers, Inc. Aromatic polyamide (melting point: 310 ° C.) reacted with 65 to 70 mol% of terephthalic acid and other isophthalic acid and hexamethylenediamine as essential monomer components , Tg120 ° C)
Epoxysilane: γ-glycidoxypropyltrimethoxysilane AD D- 1: Hindered phenol antioxidant “Irganox 1098” manufactured by Ciba Specialty Chemicals Co., Ltd.
AD D -2: Ciba Specialty Chemicals Co., Ltd. phosphorus-based processing heat stabilizers "Irgafos 168"
GF: Glass fiber chopped strand (fiber diameter 10 μm, length 3 mm)

図1は耐ブリスタ性試験Bにおける赤外線加熱炉内の温度プロファイルを示すグラフである。FIG. 1 is a graph showing a temperature profile in the infrared heating furnace in the blister resistance test B. 図2は実施例8の走査型電子顕微鏡写真(2500倍)である。FIG. 2 is a scanning electron micrograph (2500 times magnification) of Example 8. 図3は実施例9の走査型電子顕微鏡写真(2500倍)である。FIG. 3 is a scanning electron micrograph (2500 times) of Example 9. 図4は比較例2の走査型電子顕微鏡写真(2500倍)である。FIG. 4 is a scanning electron micrograph (2500 times magnification) of Comparative Example 2.

Claims (11)

非ニュートン指数が1.3〜0.9のポリアリーレンスルフィド樹脂(A)、テレフタル酸アミドを必須の構造単位とする芳香族ポリアミド(B)であって、下記構造式aで表されるテレフタル酸アミド構造を、該芳香族ポリアミド(B)を構成する全酸アミド構造単位に対して65モル%以上の割合で含有する芳香族ポリアミド(B)を前者/後者の質量比が70/30〜95/5なる割合で含有し、前記ポリアリーレンスルフィド樹脂(A)をマトリックスとして前記芳香族ポリアミド(B)が粒子状に分散しており、かつ、前記芳香族ポリアミド(B)の粒子の平均径が0.1〜1.0μmの範囲となるものであることを特徴とする耐熱性樹脂組成物。
Figure 2008007742
(式中、Rは炭素原子数2〜12のアルキレン基を表す。)
A polyarylene sulfide resin (A) having a non-Newtonian index of 1.3 to 0.9, an aromatic polyamide (B) having terephthalic acid amide as an essential structural unit, and represented by the following structural formula a An aromatic polyamide (B) containing an amide structure in a proportion of 65 mol% or more with respect to all acid amide structural units constituting the aromatic polyamide (B) has a mass ratio of the former / the latter of 70/30 to 95. / 5 , the aromatic polyamide (B) is dispersed in the form of particles using the polyarylene sulfide resin (A) as a matrix, and the average diameter of the particles of the aromatic polyamide (B) Is in a range of 0.1 to 1.0 μm.
Figure 2008007742
(In the formula, R represents an alkylene group having 2 to 12 carbon atoms.)
前記芳香族ポリアミド(B)の粒子の平均径が、前記耐熱性樹脂組成物からなる成形物の破断面を有機溶剤でエッチング処理した後、該破断面を走査型電子顕微鏡(2500倍)にて観察した際、該エッチング処理によって形成された空孔の平均径として算出されるものである請求項1記載の耐熱性樹脂組成物。   The average diameter of the particles of the aromatic polyamide (B) is such that the fracture surface of the molded product made of the heat-resistant resin composition is etched with an organic solvent, and then the fracture surface is examined with a scanning electron microscope (2500 times) The heat-resistant resin composition according to claim 1, which is calculated as an average diameter of pores formed by the etching treatment when observed. 前記ポリアリーレンスルフィド樹脂(A)およびテレフタル酸アミドを必須の構造単位とする芳香族ポリアミド(B)に加え、更に、エポキシ系シランカップリング剤(C)を含有する請求項1記載の耐熱性樹脂組成物。   The heat-resistant resin according to claim 1, further comprising an epoxy silane coupling agent (C) in addition to the aromatic polyamide (B) having the polyarylene sulfide resin (A) and terephthalic acid amide as essential structural units. Composition. 前記(A)〜(C)の各成分に加え、更にハイドロタルサイト類化合物(D)を含有する請求項3記載の耐熱性樹脂組成物。   The heat resistant resin composition according to claim 3, further comprising a hydrotalcite compound (D) in addition to the components (A) to (C). 前記樹脂組成物が、更に、繊維状強化材(E−1)又は無機質フィラー(E−2)を含有する請求項1記載の耐熱性樹脂組成物。   The heat resistant resin composition according to claim 1, wherein the resin composition further contains a fibrous reinforcing material (E-1) or an inorganic filler (E-2). 非ニュートン指数が1.3〜0.9のポリアリーレンスルフィド樹脂(A)テレフタル酸アミドを必須の構造単位とする芳香族ポリアミド(B)であって下記構造式aで表されるテレフタル酸アミド構造を、該芳香族ポリアミド(B)を構成する全酸アミド構造単位に対して65モル%以上の割合で含有する芳香族ポリアミド(B)を、二軸混練押出機に投入し、樹脂成分の吐出量(kg/hr)とスクリュー回転数(rpm)との比率(吐出量/スクリュー回転数)が0.02〜0.2(kg/hr/rpm)なる条件下に溶融混練することを特徴とする耐熱性樹脂組成物の製造方法。
Figure 2008007742
(式中、Rは炭素原子数2〜12のアルキレン基を表す。)
Non-Newtonian index of 1.3 to 0.9 polyarylene sulfide resin (A), the an aromatic polyamide of terephthalic acid amide as an essential structural unit (B), terephthalic acid represented by the following structural formula a The aromatic polyamide (B) containing the amide structure in a proportion of 65 mol% or more with respect to all the acid amide structural units constituting the aromatic polyamide (B) is charged into a twin-screw kneading extruder, and a resin component Melt kneading under the condition that the ratio of the discharge amount (kg / hr) to the screw rotation speed (rpm) (discharge amount / screw rotation speed) is 0.02 to 0.2 (kg / hr / rpm). A method for producing a heat-resistant resin composition.
Figure 2008007742
(In the formula, R represents an alkylene group having 2 to 12 carbon atoms.)
前記(A)及び(B)成分と共に、エポキシ系シランカップリング剤(C)を溶融混練する請求項記載の製造方法。 The manufacturing method of Claim 6 which melt-kneads an epoxy-type silane coupling agent (C) with the said (A) and (B) component. 前記(A)〜(C)成分と共に、ハイドロタルサイト類化合物(D)を溶融混練する請求項記載の製造方法。 The method according to claim 7 , wherein the hydrotalcite compound (D) is melt kneaded together with the components (A) to (C). 更に、繊維状強化材(E−1)又は無機質フィラー(E−2)をサイドフィーダーから前記二軸混練押出機内に投入する請求項の何れか1つに記載の製造方法。 Moreover, the production method according to any one of claims 6-8 for introducing fibrous reinforcing material and (E-1) or the inorganic filler (E-2) from the side feeder to the twin-screw extruder. 非ニュートン指数が1.3〜0.9のポリアリーレンスルフィド樹脂(A)、テレフタル酸アミドを必須の構造単位とする芳香族ポリアミド(B)であって、下記構造式aで表されるテレフタル酸アミド構造を、該芳香族ポリアミド(B)を構成する全酸アミド構造単位に対して65モル%以上の割合で含有する芳香族ポリアミド(B)を前者/後者の質量比が70/30〜95/5なる割合で含有する耐熱性樹脂組成物からなる成形物であって、かつ、該成形物の破断面を有機溶剤でエッチング処理した後、該破断面を走査型電子顕微鏡(2500倍)にて観察した際、該エッチング処理によって形成された空孔の平均径が0.1〜1.0μmの範囲の範囲となるものであることを特徴とする耐熱性樹脂成形物。
Figure 2008007742
(式中、Rは炭素原子数2〜12のアルキレン基を表す。)
A polyarylene sulfide resin (A) having a non-Newtonian index of 1.3 to 0.9, an aromatic polyamide (B) having terephthalic acid amide as an essential structural unit, and represented by the following structural formula a An aromatic polyamide (B) containing an amide structure in a proportion of 65 mol% or more with respect to all acid amide structural units constituting the aromatic polyamide (B) has a mass ratio of the former / the latter of 70/30 to 95. / 5 and comprising a molded product of a heat-resistant resin composition containing a proportion, and, after the etching treatment with an organic solvent fracture surface of the molded product,該破sectional scanning electron microscope (2500 times) A heat-resistant resin molded product having an average diameter of pores formed by the etching treatment in a range of 0.1 to 1.0 μm when observed at 1.
Figure 2008007742
(In the formula, R represents an alkylene group having 2 to 12 carbon atoms.)
請求項1〜の何れか一つに記載の耐熱性樹脂組成物の成形物と、金属端子とを必須の構成要素とすることを特徴とする表面実装用電子部品。 An electronic component for surface mounting comprising the molded product of the heat-resistant resin composition according to any one of claims 1 to 5 and a metal terminal as essential components.
JP2006344158A 2005-12-28 2006-12-21 Heat resistant resin composition, production method thereof, heat resistant resin molded product, and electronic component for surface mounting Active JP5041209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006344158A JP5041209B2 (en) 2005-12-28 2006-12-21 Heat resistant resin composition, production method thereof, heat resistant resin molded product, and electronic component for surface mounting

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005378130 2005-12-28
JP2005378130 2005-12-28
JP2006151593 2006-05-31
JP2006151593 2006-05-31
JP2006344158A JP5041209B2 (en) 2005-12-28 2006-12-21 Heat resistant resin composition, production method thereof, heat resistant resin molded product, and electronic component for surface mounting

Publications (3)

Publication Number Publication Date
JP2008007742A JP2008007742A (en) 2008-01-17
JP2008007742A5 true JP2008007742A5 (en) 2010-02-12
JP5041209B2 JP5041209B2 (en) 2012-10-03

Family

ID=39066224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006344158A Active JP5041209B2 (en) 2005-12-28 2006-12-21 Heat resistant resin composition, production method thereof, heat resistant resin molded product, and electronic component for surface mounting

Country Status (1)

Country Link
JP (1) JP5041209B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200940648A (en) * 2008-01-30 2009-10-01 Dainippon Ink & Chemicals Polyarylene sulfide resin composition, manufacturing method thereof and surface-mount electronic element
TWI428394B (en) 2008-01-31 2014-03-01 Dainippon Ink & Chemicals Polyarylene sulfide resin composition, manufacturing method thereof and surface-mount electronic element
JP5257778B2 (en) * 2008-01-31 2013-08-07 Dic株式会社 Polyarylene sulfide resin composition, method for producing the same, and electronic component for surface mounting
JP2009263635A (en) * 2008-04-03 2009-11-12 Dic Corp Thermoplastic resin composition, process for producing the same, and electronic component for surface mounting
JP5761998B2 (en) * 2008-12-22 2015-08-12 三井化学株式会社 Flame retardant polyamide composition
KR101397817B1 (en) * 2011-09-30 2014-05-20 도레이 카부시키가이샤 Polyphenylene sulfide resin composition, method for producing same, and molded product of same
US8796392B2 (en) * 2011-12-16 2014-08-05 Ticona Llc Low temperature injection molding of polyarylene sulfide compositions
WO2013191207A1 (en) * 2012-06-21 2013-12-27 Dic株式会社 Highly heat dissipating polyarylene sulfide resin composition and molded body
WO2014204220A1 (en) * 2013-06-18 2014-12-24 주식회사 엘지화학 Method for preparing polyamide-based reverse osmosis membrane having remarkable salt rejection and permeation flux, and reverse osmosis membrane prepared by said preparation method
JP2015016667A (en) 2013-07-12 2015-01-29 株式会社ジェイテクト Manufacturing method of electrically insulating resin material and rolling bearing

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0361636B1 (en) * 1988-09-30 1995-01-11 Amoco Corporation Polyamide-polyarylene sulfide blends
JPH02107666A (en) * 1988-10-17 1990-04-19 Idemitsu Petrochem Co Ltd Polyarylene sulfide resin composition
JPH03231969A (en) * 1989-12-07 1991-10-15 Polyplastics Co Polyarylene sulfide resin composition and production thereof
JPH055060A (en) * 1990-12-05 1993-01-14 Mitsui Petrochem Ind Ltd Aromatic polyamide resin composition
JP2879804B2 (en) * 1992-11-30 1999-04-05 東レ株式会社 Method for producing polyphenylene sulfide resin composition
JP3588539B2 (en) * 1996-09-30 2004-11-10 株式会社東芝 Polyphenylene sulfide resin composition and resin-encapsulated semiconductor device using the same
JP3637715B2 (en) * 1997-01-29 2005-04-13 東ソー株式会社 Polyphenylene sulfide resin composition
JP4161579B2 (en) * 2001-07-31 2008-10-08 東レ株式会社 Polyamide resin composition and method for producing the same
JP2004143372A (en) * 2002-10-28 2004-05-20 Dainippon Ink & Chem Inc Polyarylene sulfide resin composition and molded article
JP2005139347A (en) * 2003-11-07 2005-06-02 Toray Ind Inc Thermoplastic resin composition and method for producing the same

Similar Documents

Publication Publication Date Title
JP5041209B2 (en) Heat resistant resin composition, production method thereof, heat resistant resin molded product, and electronic component for surface mounting
KR100971162B1 (en) Heat-resistant resin composition, method for production thereof, heat-resistant resin molded article, and surface-mount electronic element
JP2008007742A5 (en)
JP4356038B2 (en) Polyarylene sulfide resin composition, method for producing the same, and electronic component for surface mounting
JP5341748B2 (en) Polyamide composition
JP2009263635A (en) Thermoplastic resin composition, process for producing the same, and electronic component for surface mounting
WO2009096400A1 (en) Poly(arylene sulfide) resin composition, process for production thereof, and surface mount electronic component
WO2009012932A1 (en) Polyamide compositions and bobbins made thereof
JP5257778B2 (en) Polyarylene sulfide resin composition, method for producing the same, and electronic component for surface mounting
JP5011825B2 (en) Heat resistant resin composition and surface mount electronic component
WO2020246459A1 (en) Polyarylene sulfide resin composition, molded article obtained by molding same, laminate, and production method thereof
JP2015057466A (en) Polyamide elastomer composition and molded body using the same
JPH11181284A (en) Aromatic polysulfone resin composition and its molding product
JP2002309083A (en) Polyamide resin composition
JPWO2019155982A1 (en) Thermoplastic resin composition and molded article formed by molding the thermoplastic resin composition
JPH11241019A (en) Flame-retardant resin composition
JP4161783B2 (en) Polyamide resin composition
JPH05230367A (en) Resin composition and electronic part consisting of the same composition
JP4038607B2 (en) Polyarylene sulfide resin composition
JP2003305780A (en) Method for manufacturing heat-resistant molded resin article and soldering method
JP2003301054A (en) Method of producing heat-resistant resin molded article, and soldering method
JP2000186206A (en) Polyamide resin composition
JP2000212438A (en) Resin composition and molded article made by melt molding resin composition
JPH05239344A (en) Resin composition and electronic part made thereof