JP2008006465A - Method for joining dissimilar metals - Google Patents

Method for joining dissimilar metals Download PDF

Info

Publication number
JP2008006465A
JP2008006465A JP2006179367A JP2006179367A JP2008006465A JP 2008006465 A JP2008006465 A JP 2008006465A JP 2006179367 A JP2006179367 A JP 2006179367A JP 2006179367 A JP2006179367 A JP 2006179367A JP 2008006465 A JP2008006465 A JP 2008006465A
Authority
JP
Japan
Prior art keywords
plate
joining
melting point
irradiated
dissimilar metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006179367A
Other languages
Japanese (ja)
Other versions
JP4957093B2 (en
Inventor
Minoru Kasukawa
実 粕川
Hiroshi Sakurai
寛 桜井
Nariyuki Nakagawa
成幸 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006179367A priority Critical patent/JP4957093B2/en
Publication of JP2008006465A publication Critical patent/JP2008006465A/en
Application granted granted Critical
Publication of JP4957093B2 publication Critical patent/JP4957093B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for joining dissimilar metals capable of joining dissimilar metallic materials with each other without impairing the flexibility of the appearance and the design by irradiating high energy beams from the outer side of a vehicle body when the method is applied to the joining of an automobile body structure using, for example, a light alloy-made roof panel. <P>SOLUTION: A first plate 1 formed of a high melting point material and a second plate 2 formed of a low melting point material are superposed on each other and irradiated with the high energy beams from the second plate 2 side to perform the lap welding of these plates. Through-holes 2a are formed in the second plate 2 in a stitched manner. A third plate 3 formed of a high melting point material of the similar kind to that of the first plate is further superposed on the second plate 2. The first plate 1 and the third plate 3 are intermittently weld-joined by the high energy beams B irradiated on the third plate 3 via the through-holes 2a. Then, a part in the vicinity of the joining with melting is pressed to join the first and third plates 1, 3 with the second plate 2 in the vicinity of the weld-joined part. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、異種金属、例えばスチール材のような高融点金属材料から成る板材の間に、これらよりも融点の低い金属材料、例えばアルミニウム合金などから成る板材を挟んだ継手を電子ビームやレーザビーム等のような高エネルギービームを用いて接合する方法に関するものである。   The present invention provides an electron beam or laser beam with a joint in which a metal material having a melting point lower than these, such as an aluminum alloy, is sandwiched between plates made of a high melting point metal material such as a steel material. It is related with the method of joining using high energy beams, such as these.

従来、電子ビームやレーザビーム等のような高エネルギービームを用いた異種材料の接合においては、脆い金属間化合物の生成を抑制するために、デフォーカスさせた高エネルギービームを高融点材料の側に照射し、高融点材料側からの伝熱によって接合界面の低融点材料側を溶融させて接合する方法がとられていた。   Conventionally, in the joining of dissimilar materials using a high energy beam such as an electron beam or a laser beam, the defocused high energy beam is applied to the high melting point material side in order to suppress the formation of brittle intermetallic compounds. A method has been used in which the low melting point material side of the bonding interface is melted and bonded by irradiation and heat transfer from the high melting point material side.

このような場合、溶接条件をコントロールし、接合界面において、片側の材料(低融点材料)のみを溶融させ、材料の拡散を利用して接合することにより金属間化合物層の成長を抑制し、その厚さを薄くすることによって、両方の材料を共に溶融させて接合した場合に較べて、接合部の単位面積当りの強度を高くすることができると考えられており、例えば非特許文献1には、アルミニウム合金の上に鋼板を重ね、鋼板の上方からレーザビームを照射することによって、界面を固相/液相状態として異種材の接合を行なう方法が記載されている。   In such a case, the welding conditions are controlled, only the material on one side (low melting point material) is melted at the joining interface, and the growth of the intermetallic compound layer is suppressed by joining using the diffusion of the material. By reducing the thickness, it is considered that the strength per unit area of the joint can be increased as compared to the case where both materials are melted and joined together. In addition, a method is described in which a steel plate is stacked on an aluminum alloy and a laser beam is irradiated from above the steel plate to join different materials with the interface in a solid phase / liquid phase state.

また、非特許文献2には、機械的締結、すなわちアルミニウム合金側からリベットなどを打ち込むことによって、アルミニウム合金製パネルを鋼製の車体骨格構造に接合する方法が記載されている。
「溶接学会全国大会講演概要」、社団法人日本溶接学会、2003年4月、第72集、p.152 三菱自動車 テクニカルレビュー 2004、No.16、p.82
Non-Patent Document 2 describes a method of joining an aluminum alloy panel to a steel body frame structure by mechanical fastening, that is, driving a rivet or the like from the aluminum alloy side.
“Overview of the National Conference of the Japan Welding Society”, Japan Welding Society, April 2003, Vol. 72, p. 152 Mitsubishi Motors Technical Review 2004, No. 16, p. 82

しかしながら、上記非特許文献1に記載の方法においては、鋼板からの伝熱により接合界面のアルミニウム合金を溶融させるため、必ず、アルミニウム合金の上に鋼板を重ねて、鋼板側の外側方向からレーザビームを照射しなければならないという接合継手の構造設計上の制約があった。
すなわち、車両の軽量化による燃費向上や運動性能向上を目的として、車体パネルにアルミニウム合金などの軽合金を用いた車体構造が求められているが、例えば低重心化による性能向上効果を高めるために、ルーフパネルにアルミニウム合金を用いた場合、車体骨格構造である鋼部材とアルミニウム合金部材との接合構造は、鋼部材の上から、アルミニウム合金から成るルーフパネルが重ねられ、レーザヘッドの近接性から、車体骨格構造の外側、つまりアルミニウム合金製のルーフパネルの側からレーザビームを照射しなければならない接合構造となる。また、ルーフパネルに限らず、他の車体外板パネルにアルミニウム合金を用いた場合も、鋼製の車体骨格構造の上にアルミニウム合金製の車体パネルを重ねる構造となるため、上記のように、鋼板側からレーザビームを照射するような方法は適用できないことになる。
However, in the method described in Non-Patent Document 1, the aluminum alloy at the bonding interface is melted by heat transfer from the steel plate. Therefore, the steel plate is always stacked on the aluminum alloy, and the laser beam is emitted from the outer side on the steel plate side. There was a restriction on the structural design of the joints that had to be irradiated.
That is, for the purpose of improving fuel efficiency and athletic performance by reducing the weight of the vehicle, a vehicle body structure using a light alloy such as an aluminum alloy for the vehicle body panel is required. For example, in order to enhance the performance improvement effect by lowering the center of gravity When an aluminum alloy is used for the roof panel, the joining structure between the steel member and the aluminum alloy member, which is a vehicle body skeleton structure, is formed by stacking the roof panel made of aluminum alloy on the steel member, and the proximity of the laser head. This is a joint structure in which a laser beam must be irradiated from the outside of the body frame structure, that is, from the side of the roof panel made of aluminum alloy. Moreover, not only the roof panel, but also when using an aluminum alloy for other vehicle body outer panel, because it becomes a structure in which the aluminum alloy vehicle body panel is overlaid on the steel vehicle body skeleton structure, as described above, A method of irradiating a laser beam from the steel plate side cannot be applied.

そこで、実用的には、上記非特許文献2に記載の機械的締結による方法の採用が考えられるが、この方法では、外観やデザインの自由度などに制約が生じる場合があるという問題点があった。   Therefore, in practice, the use of the mechanical fastening method described in Non-Patent Document 2 is conceivable. However, this method has a problem in that there may be restrictions on the appearance and the degree of freedom of design. It was.

本発明は、異種金属材料の接合技術における上記課題に鑑みてなされたものであって、例えば、軽合金製のルーフパネルを用いた自動車の車体構造の接合に適用した場合に、車体の外側からの高エネルギービーム照射によって、外観やデザインの自由度などを損なうことなくこれら異種金属材料を互いに接合することができる異種金属の接合方法を提供することを目的としている。   The present invention has been made in view of the above problems in the joining technique of dissimilar metal materials. For example, when applied to the joining of a vehicle body structure using a light alloy roof panel, the invention can be applied from the outside of the vehicle body. It is an object of the present invention to provide a dissimilar metal joining method capable of joining these dissimilar metal materials to each other without impairing the appearance and the degree of freedom of design.

本発明者らは、上記目的を達成するため、鋭意検討を重ねた結果、鋼製車体部材の上に重ねた軽合金製ルーフパネルの上に、さらに鋼製板材を重ねて接合するようになすことによって、上記課題が解決できることを見出し、本発明を完成するに到った。   In order to achieve the above-mentioned object, the present inventors have made extensive studies, and as a result, a steel plate material is further stacked and joined on a light alloy roof panel stacked on a steel body member. Thus, the inventors have found that the above problems can be solved, and have completed the present invention.

すなわち、本発明は上記知見に基づくものであって、本発明の異種金属の接合方法においては、高融点材料から成る第1の板材と低融点材料から成る第2の板材を重ね合わせ、第2の板材の側からの高エネルギービーム照射によってこれら板材を重ね接合するに際し、第2の板材に第1の板材と同種の高融点材料から成る第3の板材をさらに重ね、第3の板材表面に照射した高エネルギービームにより第2の板材を貫通させて第1の板材と第2の板材を溶融接合することを特徴とし、同じく重ね合わせた第1の板材と第2の板材を第2の板材の側から高エネルギービームを照射して接合するに際し、第2の板材に貫通孔をステッチ状に設けると共に、この第2の板材に第1の板材と同種の高融点材料から成る第3の板材をさらに重ね、第3の板材に照射した高エネルギービームにより上記貫通孔を介して第1の板材と第3の板材を断続的に溶融接合したのち、溶融接合近傍部を加圧するようになすことを特徴としている。   That is, the present invention is based on the above knowledge, and in the dissimilar metal joining method of the present invention, the first plate material made of a high melting point material and the second plate material made of a low melting point material are overlapped, When these plates are stacked and joined by irradiation with a high energy beam from the side of the plate, a third plate made of the same high melting point material as the first plate is further stacked on the second plate, and the surface of the third plate is stacked. The second plate member is penetrated by the irradiated high energy beam and the first plate member and the second plate member are melt-bonded, and the first plate member and the second plate member that are overlapped are also used as the second plate member. When a high energy beam is irradiated from the side of the first plate material, a through hole is provided in the second plate material in a stitch shape, and the second plate material is made of the same high melting point material as the first plate material. And repeat the third After intermittently fusion bonding the first plate and the third plate through the through-hole by a high-energy beam irradiating the wood is characterized by forming to pressurize the molten bonding vicinity.

本発明によれば、高融点材料から成る第1の板材と低融点材料から成る第2の板材を重ね合わせ、第2の板材の側からの高エネルギービーム照射によってこれら板材を重ね接合するに際し、第2の板材に第1の板材と同種の高融点材料から成る第3の板材をさらに重ねて接合するようにしたことから、例えば低重心化を図った上記のような骨格構造を備えた車体の組み立てにおいても、車体の外側からの高エネルギービーム照射によって異種材料の重ね接合が可能になるため、継手構造上の制約が解消され、自由度の高い構造設計が可能になり、外観やデザインの自由度を向上させることができる。   According to the present invention, when a first plate made of a high melting point material and a second plate made of a low melting point material are overlapped, and these plate members are lap-joined by high energy beam irradiation from the second plate side, Since the third plate made of the same high melting point material as that of the first plate is further overlapped and joined to the second plate, for example, the vehicle body having the skeleton structure as described above with a low center of gravity. Assembling of different materials is also possible by irradiating with high energy beam from the outside of the car body, so the restrictions on the joint structure are eliminated and structural design with a high degree of freedom is possible. The degree of freedom can be improved.

以下に、本発明の異種金属の接合方法について、さらに詳細、かつ具体的に説明する。   In the following, the method for joining dissimilar metals of the present invention will be described in more detail and specifically.

本発明の異種金属の接合方法においては、上記したように、高融点材料から成る第1の板材と第3の板材との間に低融点材料から成る第2の板材を挟んだ状態で高エネルギービームを照射するようにしているので、いずれの側からでも高エネルギービームが高融点材料の表面に照射されることになり、自動車車体の組み立てにおいては、車体の外側からのビーム照射によっても低重心骨格構造の車体における異材接合に対応することができるようになり、構造設計や溶接施工上の制約が解消される。   In the dissimilar metal joining method of the present invention, as described above, the high energy is obtained with the second plate made of the low melting point material sandwiched between the first plate made of the high melting point material and the third plate. Because the beam is irradiated, a high energy beam is irradiated on the surface of the high melting point material from either side, and in the assembly of an automobile body, the low center of gravity is also obtained by beam irradiation from the outside of the vehicle body. It becomes possible to cope with dissimilar material joining in a skeleton structure vehicle body, and the restrictions on structural design and welding construction are eliminated.

すなわち、第3の板材の表面に照射した高エネルギービームによって、これよりも低融点の材料から成る第2の板材を貫通させて、第1と第3の板材を溶融接合することによって、これら3枚の板材を一度に接合することができる。このとき、第2の板材を貫通させ、第1の板材まで溶融するような溶接条件で接合を行う。   That is, by passing a second plate material made of a material having a lower melting point than that by a high energy beam irradiated on the surface of the third plate material, the first and third plate materials are melt-bonded. A single plate can be joined at a time. At this time, joining is performed under welding conditions such that the second plate material is penetrated and the first plate material is melted.

また、第2の板材に貫通孔をあらかじめステッチ状に設けておき、貫通孔を設けた第2の板材にさらに第1の板材と同種の高融点材料から成る第3の板材を重ね、第3の板材表面に照射した高エネルギービームによって、この貫通孔を介して第1の板材と第3の板材を溶融接合すると共に、溶融接合近傍部を加圧することによって、この加圧と溶融接合部からの伝熱によって、第2の材料の両面を溶融接合近傍部において第1及び第3の材料にそれぞれ接合することができ、上記同様に継手構造上の制約が解消され、自由度の高い構造設計が可能になると共に、高融点材料同士の溶融接合に加えて、この溶融接合部の周囲では高融点材料と低融点材料との接合が行われるため、高い継手強度が得られることになる。   Further, through holes are provided in a stitch shape in advance in the second plate material, and a third plate material made of a high melting point material of the same type as the first plate material is further stacked on the second plate material provided with the through holes. The first plate material and the third plate material are melt-bonded through the through-holes with the high energy beam irradiated on the surface of the plate material, and the vicinity of the melt-bonding is pressurized to thereby remove the pressure and the melt-bonded portion. With this heat transfer, both surfaces of the second material can be joined to the first and third materials in the vicinity of the melt joint, respectively, and the restrictions on the joint structure are eliminated as in the above, and the structure design with a high degree of freedom is achieved. In addition to the fusion bonding between the high melting point materials, the high melting point material and the low melting point material are joined around the fusion joining portion, so that a high joint strength can be obtained.

なお、本発明において、第1の板材と第3の板材を同種の高融点材料から成るものとしているが、本発明において『同種』とは、金属組織や成分系が同じものを意味し、同一規格のものはもとより、例えば炭素鋼と合金鋼、軟鋼と高張力鋼などのように別規格であってもフェライト組織である限り、本発明では『同種』ということになる。   In the present invention, the first plate material and the third plate material are made of the same kind of high melting point material. In the present invention, “same type” means the same metal structure and component system, and the same. In the present invention, as long as it has a ferrite structure even if it is a different standard such as carbon steel and alloy steel, mild steel and high-tensile steel, etc., it will be “same type” in the present invention.

図1及び図2は、本発明における異種金属の接合要領の説明図であって、図1は高エネルギービームBの移動方向、すなわち接合線と直交する方向から見た側面図、図2(a)〜(c)は、図1における切断線a、b、cにおけるそれぞれ断面図である。   FIG. 1 and FIG. 2 are explanatory views of the procedure for joining dissimilar metals in the present invention. FIG. 1 is a side view seen from the direction of movement of the high energy beam B, that is, the direction perpendicular to the joining line. ) To (c) are cross-sectional views taken along cutting lines a, b, and c in FIG.

これら図に示すように、高融点材料(例えば、鋼材)から成る第1の板材1の上に、低融点材料(例えば、アルミニウム合金材)から成る第2の板材2が重ねられる。
このとき、第2の板材2には、接合進行方向を長手方向とした長孔2a(貫通孔)が断続的にステッチ状にあらかじめ形成されており、この第2の板材2の上には、高融点材料(例えば、鋼材)から成る第3の板材3が重ねられている。
As shown in these drawings, a second plate material 2 made of a low melting point material (for example, an aluminum alloy material) is overlaid on a first plate material 1 made of a high melting point material (for example, a steel material).
At this time, in the second plate member 2, a long hole 2a (through hole) whose longitudinal direction is the joining progress direction is intermittently formed in advance in a stitch shape, and on the second plate member 2, A third plate 3 made of a high melting point material (for example, steel) is stacked.

第2の板材2における長孔2aの直上位置に、高エネルギービームとして、第3の板材3の側からその表面上に焦点を合わせたレーザビームBを長孔2aに沿って移動させながら照射し、図2(b)に示すように、第3の板材3を溶け落ちさせ、第1の板材1と共に溶融させて、これら板材3と板材1を溶融接合すると共に、レーザ照射位置の直後を加圧ローラ10によって、第3の板材3を第1の板材1に押し付ける方向に加圧する。
レーザビームBの照射によって溶融接合された板材3と板材1の接合部からの伝熱によって第2の板材2が加熱され、当該加熱と加圧ローラ10による加圧によって、図2(c)に示すように、第1の板材1と第2の板材2の界面、第3の板材3と第2の板材2の界面が接合部4、5において接合される。
A laser beam B focused on the surface of the second plate 2 from the side of the third plate 3 is irradiated as a high energy beam at a position directly above the long hole 2a while moving along the long hole 2a. As shown in FIG. 2 (b), the third plate 3 is melted down and melted together with the first plate 1, and the plate 3 and the plate 1 are melted and joined, and immediately after the laser irradiation position is added. The third roller 3 is pressed by the pressure roller 10 in the direction in which it is pressed against the first plate 1.
The second plate material 2 is heated by heat transfer from the joint portion of the plate material 3 and the plate material 1 which are melt-bonded by the irradiation of the laser beam B, and the heating and pressurization by the pressure roller 10 cause the heating to occur in FIG. As shown, the interface between the first plate member 1 and the second plate member 2 and the interface between the third plate member 3 and the second plate member 2 are joined at the joints 4 and 5.

このとき、図3(a)〜(c)に示すように、上記第1の板材1及び第3の板材3の一方、又は両方に、第2の部材2に形成された長孔2aの形状の大きさと間隔に合わせた突起1a、3aをあらかじめ設けておき、これら突起1a、3aを第2の部材2に形成された長孔2aに嵌合させることが望ましく、これによって第1の板材1と第3の板材3とがより一層接し易くなることから、より効率よくこれら板材1,3を溶融接合することができるようになる。
なお、上記図には、板材1,3の両方に突起1a、3aを形成し、これら突起先端部をあらかじめ接触させた例を示しているが、板材1,3の一方のみに突起1a又は3aを設けるようにしてもよい。また、必ずしも突起先端部を相手板材に接触させる必要はなく、突起形成によって、板材1,3同士がより接近することから、それなりの効果が得られることになる。
At this time, as shown to Fig.3 (a)-(c), the shape of the long hole 2a formed in the 2nd member 2 in one or both of the said 1st board | plate material 1 and the 3rd board | plate material 3 It is desirable to provide projections 1a and 3a in accordance with the size and interval of each of them in advance, and to fit these projections 1a and 3a into the long holes 2a formed in the second member 2, whereby the first plate 1 And the third plate material 3 are more easily contacted with each other, so that the plate materials 1 and 3 can be melt-bonded more efficiently.
In addition, although the said figure shows the example which formed protrusion 1a, 3a in both board | plate materials 1 and 3, and made these protrusion front-end | tips contact previously, protrusion 1a or 3a is shown only in one side of board | plate materials 1 and 3. May be provided. Further, it is not always necessary to bring the tip of the protrusion into contact with the mating plate material, and the plate materials 1 and 3 come closer to each other by forming the protrusion, so that a certain effect can be obtained.

また、このとき、上記第1の板材1と第2の板材2の間、及び第3の板材3と第2の板材2の間に、これらの材料とは異なる材料であって、上記第1、第3の板材1,3及び第2の板材2の少なくとも一方と共晶溶融を生じる第4の材料を介在させることが望ましく、こうすることによって、第1の板材1と第2の板材2との溶融接合部からの伝熱と加圧によって、上記溶融接合部の近傍における異種材料界面に比較的低温度で共晶溶融が生じることから、より低温状態で酸化皮膜を接合界面から除去することができ、接合界面温度の上昇を防止して金属間化合物の生成を抑制し、異種金属から成る板材の新生面同士が強固に接合されるようになることから、特にアルミニウム材やマグネシウム材のように表面に緻密な酸化皮膜が形成される材料を含む異種金属の接合に好適に用いることができる。   At this time, between the first plate 1 and the second plate 2 and between the third plate 3 and the second plate 2, these materials are different from each other, and the first plate It is desirable to interpose at least one of the third plate members 1 and 3 and the second plate member 2 with a fourth material that causes eutectic melting. By doing so, the first plate member 1 and the second plate member 2 are disposed. Since eutectic melting occurs at a relatively low temperature at the dissimilar material interface in the vicinity of the melt-bonded portion due to heat transfer and pressurization from the melt-bonded portion to the oxide joint, the oxide film is removed from the bond interface at a lower temperature. It is possible to prevent the rise of the bonding interface temperature, suppress the formation of intermetallic compounds, and the new surfaces of the plate materials made of different metals will be firmly bonded together, especially like aluminum materials and magnesium materials A dense oxide film is formed on the surface It can be suitably used for bonding dissimilar metals including fees.

このとき、第4の材料を上記板材の間に介在させるための具体的手段としては、接合しようとする板材の少なくとも一方の接合面に第4の材料をめっきすることが望ましく、これによって第4の材料をインサート材としてパネル間に挟み込む工程を省略することができ、加工工数の低減によって作業効率が向上するばかりでなく、共晶反応によって溶融されためっき層が表面の不純物と共に接合部の周囲に排出された後に、めっき層の下から極めて清浄な新生面が現れることになり、より強固な接合が可能となる。   At this time, as a specific means for interposing the fourth material between the plate materials, it is desirable to plate the fourth material on at least one joint surface of the plate materials to be joined. The process of sandwiching the above material as an insert material between the panels can be omitted, and not only the work efficiency is improved by reducing the processing man-hours, but also the plating layer melted by the eutectic reaction together with the surface impurities around the joints. After being discharged, an extremely clean new surface appears from under the plating layer, and a stronger bond is possible.

そして、例えば、アルミニウム合金材やマグネシウム合金材などの軽合金製パネルと鋼材から成る異種金属パネルの接合に際しては、鋼材として、アルミニウムやマグネシウムと低融点共晶を形成する第4の金属である亜鉛がその表面にあらかじめめっきされている、いわゆる亜鉛めっき鋼板を用いることができる。この場合には、新たにめっきを施したり、特別な準備を要したりすることもなく、防錆目的で亜鉛めっきを施した通常の市販鋼材をそのまま使用することができ、極めて簡便かつ安価に、異種金属パネルの強固な接合を行なうことができるようになる。   For example, when joining a dissimilar metal panel made of a light alloy panel such as an aluminum alloy material or a magnesium alloy material and a steel material, zinc, which is a fourth metal that forms a low melting point eutectic with aluminum or magnesium, is used as the steel material. Can be used a so-called galvanized steel sheet whose surface is pre-plated. In this case, it is possible to use a normal commercial steel material that has been galvanized for the purpose of rust prevention as it is without any new plating or special preparation. This makes it possible to perform strong bonding of dissimilar metal panels.

ここで、共晶溶融について、Al−Zn系合金の例について説明する。
図4は、Al−Zn系2元状態図を示すものであって、図に示すようにAl−Zn系における共晶点(Te)は、655Kであり、Alの融点933Kよりもはるかに低い温度で共晶反応が生じる。
したがって、図に示した共晶点を利用してAlとZnの共晶溶融を作り出し、アルミニウム材の接合時における酸化皮膜除去や相互拡散などの接合作用に利用することによって、低温接合が実施でき、接合界面における金属間化合物の成長を極めて有効に抑制することができる。
Here, an example of an Al—Zn alloy will be described for eutectic melting.
FIG. 4 shows an Al—Zn-based binary phase diagram. As shown in the figure, the eutectic point (Te) in the Al—Zn system is 655 K, which is much lower than the melting point of Al 933 K. A eutectic reaction occurs at temperature.
Therefore, by using the eutectic points shown in the figure to create eutectic melting of Al and Zn, and using them for bonding effects such as oxide film removal and interdiffusion during bonding of aluminum materials, low temperature bonding can be performed. The growth of intermetallic compounds at the bonding interface can be extremely effectively suppressed.

ここで、共晶溶融とは共晶反応を利用した溶融を意味し、2つの金属(又は合金)が相互拡散して生じた相互拡散域の組成が共晶組成となった場合に、保持温度が共晶温度以上であれば共晶反応により液相が形成される。例えばアルミニウムと亜鉛の場合、アルミニウムの融点は933K、亜鉛の融点は692.5Kであるのに対して、この共晶金属はそれぞれの融点より低い655Kにて溶融する。
したがって、両金属の清浄面を接触させ、655K以上に加熱保持すると反応が生じる。これを共晶溶融といい、Al−95%Znが共晶組成となるが、共晶反応自体は合金成分に無関係な一定の変化であり、合金組成は共晶反応の量を増減するに過ぎない。
Here, eutectic melting means melting utilizing a eutectic reaction, and when the composition of an interdiffusion region formed by mutual diffusion of two metals (or alloys) becomes a eutectic composition, a holding temperature. If is equal to or higher than the eutectic temperature, a liquid phase is formed by the eutectic reaction. For example, in the case of aluminum and zinc, the melting point of aluminum is 933 K and the melting point of zinc is 692.5 K, whereas this eutectic metal melts at 655 K, which is lower than the respective melting points.
Therefore, a reaction occurs when the clean surfaces of both metals are brought into contact and heated to 655K or higher. This is called eutectic melting, and Al-95% Zn has a eutectic composition, but the eutectic reaction itself is a constant change unrelated to the alloy components, and the alloy composition only increases or decreases the amount of eutectic reaction. Absent.

一方、アルミニウム材の表面には酸化皮膜が存在するが、これは高エネルギービームの照射による加熱と、その直後の所定温度での加圧によってアルミニウム材に塑性変形が生じることにより物理的に破壊されることになる。
すなわち、加圧によって材料表面の微視的な凸部同士が擦れ合うことから、一部の酸化皮膜の局所的な破壊によってアルミニウムと亜鉛が接触した部分から共晶溶融が生じ、この液相の生成によって近傍の酸化皮膜が破砕、分解されてさらに共晶溶融が全面に拡がる反応の拡大によって、酸化皮膜破壊の促進と液相を介した接合が達成される。
On the other hand, an oxide film exists on the surface of the aluminum material, and this is physically destroyed by plastic deformation of the aluminum material due to heating by irradiation with a high energy beam and pressurization at a predetermined temperature immediately after that. Will be.
That is, microscopic projections on the surface of the material rub against each other by pressurization, so eutectic melting occurs from the part where aluminum and zinc contact due to local destruction of some oxide films, and this liquid phase is generated. By accelerating the reaction in which the nearby oxide film is crushed and decomposed and further eutectic melting spreads over the entire surface, the destruction of the oxide film and the joining via the liquid phase are achieved.

共晶組成は相互拡散によって自発的達成されるため、組成のコントロールは必要ない。必須条件は2種の金属あるいは合金の間に、低融点の共晶反応が存在することであり、アルミニウムと亜鉛の共晶溶融の場合、亜鉛に代えてZn−Al合金を用いる場合には、少なくとも亜鉛が95%以上の組成でなければならない。   Since the eutectic composition is spontaneously achieved by interdiffusion, composition control is not necessary. The essential condition is that a low melting eutectic reaction exists between the two metals or alloys. In the case of eutectic melting of aluminum and zinc, when using Zn-Al alloy instead of zinc, The composition must be at least 95% zinc.

図5(a)〜(e)は、本発明による異種金属パネルの接合プロセスとして、亜鉛めっき鋼板(高融点金属パネル)とアルミニウム合金板材(低融点金属パネル)との接合例を示す概略図である。
まず、図5(a)に示すように、少なくとも接合界面側の表面に、Alと共晶を形成する第3の金属材料として機能する亜鉛めっき層1pが施された亜鉛めっき鋼板1と、アルミニウム合金材2を用意し、図5(b)に示すように、これら亜鉛めっき鋼板1とアルミニウム合金材2を亜鉛めっき層1pが内側になるように重ねる。なお、アルミニウム合金材2の表面には酸化皮膜2cが生成している。
FIGS. 5A to 5E are schematic views showing an example of joining a galvanized steel sheet (high melting point metal panel) and an aluminum alloy sheet (low melting point metal panel) as a joining process of dissimilar metal panels according to the present invention. is there.
First, as shown in FIG. 5A, a galvanized steel sheet 1 provided with a galvanized layer 1p functioning as a third metal material that forms a eutectic with Al on at least the surface on the bonding interface side, and aluminum An alloy material 2 is prepared, and as shown in FIG. 5B, the galvanized steel sheet 1 and the aluminum alloy material 2 are overlapped so that the galvanized layer 1p is on the inside. An oxide film 2 c is generated on the surface of the aluminum alloy material 2.

次に、高エネルギービームを亜鉛めっき鋼板1に照射し、接合界面が所定の温度範囲となったところで、両パネルを加圧し、接合面を相対的に押圧すると、押圧による塑性変形や熱的衝撃などによって、図5(c)に示すように材料表面の微視的な接触部において、酸化皮膜2cが局部的に破壊される。   Next, when the galvanized steel sheet 1 is irradiated with a high energy beam and the joining interface reaches a predetermined temperature range, both panels are pressurized and the joining surfaces are relatively pressed, so that plastic deformation and thermal shock are caused by the pressing. As a result, the oxide film 2c is locally broken at the microscopic contact portion of the material surface as shown in FIG.

これによって、亜鉛とアルミニウムの局部的な接触が生じ、そのときの温度状態に応じて、図5(d)に示すように、亜鉛とアルミニウムの共晶溶融が生じ、共晶溶融金属Meと共に酸化皮膜2cや接合界面の不純物などから成る排出物が接合部の外側(矢印方向)に排出されることにより、所定の接合面積が確保され、その結果、図5(e)に示すように、アルミニウム合金材と鋼材の新生面同士が極めて薄い反応層Lによって直接接合され、鋼板1とアルミニウム合金材2の強固な金属接合が得られることなる。なお、反応層Lと鋼材1の間には材料や接合条件によって鋼への亜鉛の薄い拡散層が生じる場合もあるが、接合強度への影響は少なく、実質的な問題はない。   As a result, local contact between zinc and aluminum occurs, and depending on the temperature state at that time, as shown in FIG. 5 (d), eutectic melting of zinc and aluminum occurs, which is oxidized together with the eutectic molten metal Me. A discharge material composed of the film 2c and impurities at the bonding interface is discharged to the outside (in the direction of the arrow) of the bonded portion, so that a predetermined bonded area is secured. As a result, as shown in FIG. The new surfaces of the alloy material and the steel material are directly joined by the extremely thin reaction layer L, and a strong metal joint between the steel plate 1 and the aluminum alloy material 2 is obtained. Although a thin diffusion layer of zinc to steel may occur between the reaction layer L and the steel material 1 depending on the material and joining conditions, there is little influence on the joining strength and there is no substantial problem.

本発明の異種金属の接合方法における板材の具体的な組み合せとしては、例えば鋼材とアルミニウム合金材の組み合せを挙げることができ、このとき両材料の間に介在させる第4の材料としては、アルミニウム合金と低融点共晶を形成する材料でありさえすれば特に限定されることはなく、例えば、上記した亜鉛(Zn)の他に、銅(Cu)、錫(Sn)、銀(Ag)、ニッケル(Ni)などを用いることができる。
すなわち、これら金属とAlとの共晶金属は、母材であるアルミニウム合金材の融点以下で溶融するため、脆弱な金属間化合物が生成し易い鋼材とアルミニウム合金材の接合においても、低温で酸化皮膜の除去ができ、接合過程での接合界面における金属間化合物の生成が抑制でき、強固な接合が可能になる。
As a specific combination of the plate materials in the joining method of different metals of the present invention, for example, a combination of a steel material and an aluminum alloy material can be mentioned. At this time, a fourth material interposed between the two materials is an aluminum alloy. As long as it is a material that forms a low melting point eutectic, there is no particular limitation. For example, in addition to zinc (Zn), copper (Cu), tin (Sn), silver (Ag), nickel (Ni) or the like can be used.
That is, the eutectic metal of these metals and Al melts below the melting point of the aluminum alloy material, which is the base material, so that even when joining steel materials and aluminum alloy materials where fragile intermetallic compounds are easily formed, oxidation occurs at a low temperature. The film can be removed, the formation of intermetallic compounds at the bonding interface during the bonding process can be suppressed, and strong bonding becomes possible.

また、本発明の接合方法を自動車ボディの組み立てに適用することを考えた場合、被接合パネルの材料は鋼材とアルミニウムとの組み合せがほとんどであるが、将来的には鋼材とマグネシウム、あるいはアルミニウムとマグネシウムとの組み合せなども考えられる。
鋼材パネルとマグネシウムパネルとの接合に際しては、後述する実施例と同様に鋼材側にめっきした亜鉛とマグネシウムの間に共晶反応を生じさせて接合することが可能である。さらに、アルミニウムパネルとマグネシウムパネルを接合する場合においても、亜鉛や銀を第4の材料として利用することが可能である。
Moreover, when considering the application of the joining method of the present invention to the assembly of an automobile body, the material of the panel to be joined is mostly a combination of steel and aluminum, but in the future, steel and magnesium or aluminum A combination with magnesium is also conceivable.
When joining a steel panel and a magnesium panel, it is possible to cause a eutectic reaction between zinc and magnesium plated on the steel side in the same manner as in the examples described later. Furthermore, when joining an aluminum panel and a magnesium panel, it is possible to utilize zinc or silver as the fourth material.

なお、本発明においては、第4の材料として、上記したような純金属に限定される必要はなく、共晶金属は2元合金も3元合金も存在するため、これらの少なくとも1種の金属を含む合金であってもよい。   In the present invention, the fourth material is not necessarily limited to the pure metal as described above, and eutectic metal includes both binary alloys and ternary alloys, and therefore, at least one of these metals. An alloy containing may be used.

したがって、図1〜3に示した説明図において、第1の板材1及び第3の板材3として、亜鉛めっき鋼板を使用することによって、共晶反応の利用による強固な異材接合をより容易に行なうことができる。
すなわち、第3の板材3の側からレーザビームBを長孔2aの直上位置に照射し、図2(b)に示すように、第3の板材3を溶け落ちさせて、亜鉛めっき鋼板から成る板材3と板材1を溶融接合すると共に、溶融接合部の周辺を加圧ローラ10によって、図2(c)に示すように加圧する。
Therefore, in the explanatory view shown in FIGS. 1 to 3, by using a galvanized steel plate as the first plate member 1 and the third plate member 3, strong dissimilar material joining by using a eutectic reaction is more easily performed. be able to.
That is, the laser beam B is irradiated from the side of the third plate 3 to the position immediately above the long hole 2a, and the third plate 3 is melted down as shown in FIG. The plate material 3 and the plate material 1 are melt-bonded, and the periphery of the melt-bonded portion is pressed by the pressure roller 10 as shown in FIG.

板材3と板材1の溶融接合部からの伝熱によって第2の板材2が加熱され、第1の板材1と第2の板材2の界面、第3の板材3と第2の板材2の界面が共晶反応の発現する所定の温度に保持されると共に、加圧ローラ10によって所定の圧力に保持されると、亜鉛とアルミニウムの共晶溶融が生じ、共晶溶融金属と共に酸化皮膜や不純物などが接合界面から円滑に排出されることによって、各板材の新生面同士が接合部4,5において直接接合され、第1及び第3の板材1,3と第2の板材2(アルミニウム合金材)の強固な金属接合が得られることなる。
なお、上記加圧ローラ10の加圧面10aには、適当な曲率を有する湾曲面を設けることが望ましく、このようにすることによって酸化皮膜や共晶反応物などの接合界面からの排出性を向上させることができる。
The second plate member 2 is heated by heat transfer from the melt-bonded portion of the plate member 3 and the plate member 1, and the interface between the first plate member 1 and the second plate member 2, and the interface between the third plate member 3 and the second plate member 2. Is maintained at a predetermined temperature at which eutectic reaction occurs and is maintained at a predetermined pressure by the pressure roller 10, eutectic melting of zinc and aluminum occurs, and an oxide film, impurities, etc. together with the eutectic molten metal Is smoothly discharged from the bonding interface, the new surfaces of the plate members are directly bonded to each other at the bonding portions 4 and 5, and the first and third plate members 1 and 3 and the second plate member 2 (aluminum alloy material) A strong metal bond can be obtained.
The pressure surface 10a of the pressure roller 10 is desirably provided with a curved surface having an appropriate curvature, which improves the discharge performance from the bonding interface such as an oxide film or a eutectic reaction product. Can be made.

例えば、図6(a)に示すように、加圧面、すなわち第3の板材3との接触面を凸形状とした2個の加圧ローラ11を用いて、板材3と板材1の溶融接合部の両側部分を加圧するようにしたり、図6(b)に示すように、上記加圧ローラ11を2個連結したような形状を備えた加圧ローラ12を用いて、同様に溶融接合部の両側部分を加圧するようにしたりすることが望ましく、このような断面形状のローラ11あるいは12を用いて、加圧する部位に中央部が高くなるような圧力分布を持たせることによって、高融点材料から成る板材1及び3と低融点材料から成る板材2との接合界面から共晶溶融金属などを効率よく排出させることができるようになり、健全で高強度な接合が可能となる。   For example, as shown in FIG. 6 (a), a melt bonding portion between the plate material 3 and the plate material 1 using two pressure rollers 11 having a pressure surface, that is, a contact surface with the third plate material 3 is convex. The pressure roller 12 having a shape such that two pressure rollers 11 are connected to each other as shown in FIG. It is desirable to pressurize both side portions, and by using the roller 11 or 12 having such a cross-sectional shape, by giving a pressure distribution such that the central portion is high at the portion to be pressed, the high melting point material is used. The eutectic molten metal and the like can be efficiently discharged from the bonding interface between the plate materials 1 and 3 and the plate material 2 made of a low melting point material, so that sound and high strength bonding is possible.

さらに、図7に示すように、高融点材料から成る第1及び第3の板材1,3に、第2の板材2の側に凸となるような突起1b、3bを形成することも望ましい。すなわち、板材にあらかじめこのような突起1b、3bを設けておき、加圧される部位に中央部が高くなるような圧力分布を持たせることによって、同様に接合界面からの共晶溶融金属などの排出性を高めることができる。
以上のような手順で接合を行うことで、3枚の板材を一度に、高能率に接合することが可能となる。
Furthermore, as shown in FIG. 7, it is also desirable to form protrusions 1b and 3b that are convex toward the second plate 2 on the first and third plates 1 and 3 made of a high melting point material. That is, by providing such projections 1b and 3b in advance on the plate material and giving the pressure distribution such that the central portion is high at the part to be pressed, eutectic molten metal or the like from the joint interface is similarly obtained. Emission can be increased.
By joining in the above procedure, it becomes possible to join the three plate materials at a high efficiency at a time.

以下、本発明を実施例に基づいて具体的に説明する。なお、本発明は、これら実施例のみに限定されるものではない。   Hereinafter, the present invention will be specifically described based on examples. In addition, this invention is not limited only to these Examples.

(実施例1)
図8は、本発明の異種金属の接合方法を自動車車体のルーフ構造に適用した例を示すものであって、その接合要領を示す断面図である。
図に示すように、鋼製のレールインナ11(板厚:1.4mm)と、レールアウタ12(板厚:0.8mm)と、サイドアウタ13(板厚:0.8mm)が溶接により組み立てられた車体部材の上方から、6000系アルミニウム合金から成るルーフパネル21(板厚:1.0mm)が重ねられる。
(Example 1)
FIG. 8 shows an example in which the dissimilar metal joining method of the present invention is applied to the roof structure of an automobile body, and is a cross-sectional view showing the joining procedure.
As shown in the drawing, a steel rail inner 11 (plate thickness: 1.4 mm), a rail outer 12 (plate thickness: 0.8 mm), and a side outer 13 (plate thickness: 0.8 mm) were assembled by welding. A roof panel 21 (plate thickness: 1.0 mm) made of a 6000 series aluminum alloy is stacked from above the vehicle body member.

車体部材のサイドアウタ13には接合面13aが設けてあり、ルーフパネル21の端部に形成された接合フランジ21aがこの部分に重ねられている。
さらに、ルーフパネル21(第2の部材)の接合フランジ21aの上には、鋼製のリテーナ31(板厚:0.8mm)が重ねられる。
The side outer 13 of the vehicle body member is provided with a joining surface 13a, and a joining flange 21a formed at the end of the roof panel 21 is overlapped with this part.
Further, a steel retainer 31 (plate thickness: 0.8 mm) is overlaid on the joining flange 21a of the roof panel 21 (second member).

そして、リテーナ31の側から、当該リテーナ31の表面に焦点を合わせたレーザビームBをステッチ状に照射する。   Then, the laser beam B focused on the surface of the retainer 31 is irradiated in a stitch shape from the retainer 31 side.

レーザビームBとしては、Nd:YAGレーザを用い、照射条件については、リテーナ31表面にレーザビームを照射して、リテーナ31とルーフパネル21の接合フランジ21a双方が貫通溶融し、さらに車体部材のサイドアウタ13の一部までが溶融するような溶融状態となるようにレーザのデフォーカス径、レーザ出力、送り速度を設定した。
具体的には、最大出力3kWのレーザ発振器と、焦点距離150mmのレンズを用い、リテーナ31の表面上においてジャストフォーカスとなるよう焦点を調整し、レーザ出力2.0kW、送り速度0.7〜1.0 m/minとして照射した。またレーザ照射中はアルゴンガスを25L/minの流量で流し接合部をシールドした。
As the laser beam B, an Nd: YAG laser is used. Regarding the irradiation conditions, the surface of the retainer 31 is irradiated with the laser beam, and both the retainer 31 and the joining flange 21a of the roof panel 21 are penetrated and melted. The laser defocus diameter, the laser output, and the feed rate were set so that a part of 13 was melted.
Specifically, using a laser oscillator with a maximum output of 3 kW and a lens with a focal length of 150 mm, the focal point is adjusted so that the focus is just on the surface of the retainer 31, and the laser output is 2.0 kW and the feed rate is 0.7 to 1. Irradiation was performed at 0.0 m / min. During laser irradiation, argon gas was flowed at a flow rate of 25 L / min to shield the joint.

このとき、レーザビームBは、車体部材に対して、相対的に移動可能に構成されており、レーザビームBをルーフパネル21の接合フランジ21aに沿って移動させながら、リテーナ31の側から車体部材に向けて照射すると、溶融部がリテーナ31とルーフパネル21の接合フランジ21aを貫通し、さらに車体部材のサイドアウタ13の一部まで到達し、ルーフパネル21の接合フランジ21aを挟む形で、リテーナ31とサイドアウタ13とが溶融接合され、ルーフパネルがサイドアウタ13に固定される。   At this time, the laser beam B is configured to be movable relative to the vehicle body member. While moving the laser beam B along the joining flange 21a of the roof panel 21, the vehicle body member is viewed from the retainer 31 side. , The molten portion passes through the joining flange 21a of the retainer 31 and the roof panel 21, reaches a part of the side outer 13 of the vehicle body member, and sandwiches the joining flange 21a of the roof panel 21 so as to sandwich the retainer 31. And the side outer 13 are melt-bonded, and the roof panel is fixed to the side outer 13.

(実施例2)
図9及び図10は、本発明の異種金属の接合方法を自動車車体のルーフ構造に適用した例を示すものであって、図9は、当該車体の接合構造を示す斜視図、図10はその接合要領を示す断面図である。
図に示すように、いずれも鋼製のレールインナ11(板厚:14mm)と、レールアウタ12(板厚:0.8mm)と、サイドアウタ13(板厚:0.8mm)が溶接により組み立てられた車体部材の上方から、6000系アルミニウム合金から成るルーフパネル22(板厚:1.0mm)が重ねられる。
車体部材のサイドアウタ13には接合面13aが設けてあり、ルーフパネル22の端部に形成された接合フランジ22aがこの部分に重ねられ、当該接合フランジ22aには、長孔22b(貫通孔)が断続的に開けてある。
(Example 2)
9 and 10 show an example in which the dissimilar metal joining method of the present invention is applied to the roof structure of an automobile body. FIG. 9 is a perspective view showing the joining structure of the car body, and FIG. It is sectional drawing which shows the junction point.
As shown in the figure, the steel rail inner 11 (plate thickness: 14 mm), rail outer 12 (plate thickness: 0.8 mm), and side outer 13 (plate thickness: 0.8 mm) were assembled by welding. A roof panel 22 (plate thickness: 1.0 mm) made of a 6000 series aluminum alloy is stacked from above the vehicle body member.
The side outer 13 of the vehicle body member is provided with a joining surface 13a, and a joining flange 22a formed at the end of the roof panel 22 is overlapped on this portion. The joining flange 22a has a long hole 22b (through hole). It is open intermittently.

さらに、ルーフパネル22(第2の部材)の接合フランジ21aの上には、鋼製のリテーナ31(板厚:0.8mm)が重ねられる。
なお、上記サイドアウタ1(第1の板材)3及びリテーナ3(第3の板材)1には、表面に亜鉛めっきが施された市販の亜鉛めっき鋼板を用いている。
Further, a steel retainer 31 (plate thickness: 0.8 mm) is overlaid on the joining flange 21a of the roof panel 22 (second member).
The side outer 1 (first plate material) 3 and the retainer 3 (third plate material) 1 are made of commercially available galvanized steel sheets whose surfaces are galvanized.

そして、ルーフパネル22の接合フランジ22aに断続的に形成した長孔22bの位置に沿って、リテーナ31の側から、当該リテーナ31の表面に点を合わせたレーザビームBを照射しながら、その直後の位置を加圧ローラ10によって、リテーナ31とルーフパネル22の接合フランジ22aを車体部材のサイドアウタ13に押し付ける方向に加圧する。   Immediately after irradiating the surface of the retainer 31 with a laser beam B along the surface of the retainer 31 along the position of the elongated hole 22b formed intermittently in the joint flange 22a of the roof panel 22, The pressure roller 10 presses the joining flange 22a of the retainer 31 and the roof panel 22 in a direction in which the position is pressed against the side outer 13 of the vehicle body member.

レーザビームBとしては、Nd:YAGレーザを用い、照射条件については、リテーナ31表面にレーザビームを照射して、リテーナ31と車体部材のサイドアウタ13を溶融接合した後、リテーナ31及びサイドアウタ13内の伝熱と加圧ローラ10による加圧に基づいて、アルミニウム合金製のルーフパネル22と亜鉛めっき鋼板製のサイドアウタ13及びリテーナ31が密着した接合界面に共晶溶融が生じる温度以上となるようにレーザのデフォーカス径、レーザ出力、送り速度を設定した。
具体的には、最大出力3kWのレーザ発振器と、焦点距離150mmのレンズを用い、リテーナ31の表面上においてジャストフォーカスとなるよう焦点を調整し、レーザ出力1.0kW、送り速度0.7〜1.0 m/minとして照射した。またレーザ照射中はアルゴンガスを25L/minの流量で流し接合部をシールドした。
As the laser beam B, an Nd: YAG laser is used, and the irradiation conditions are as follows. Based on heat transfer and pressure applied by the pressure roller 10, the laser is heated to a temperature above which eutectic melting occurs at the joint interface where the roof panel 22 made of aluminum alloy, the side outer 13 made of galvanized steel and the retainer 31 are in close contact. The defocus diameter, laser output, and feed rate were set.
Specifically, using a laser oscillator with a maximum output of 3 kW and a lens with a focal length of 150 mm, the focus is adjusted so that the focus is just on the surface of the retainer 31, and the laser output is 1.0 kW and the feed rate is 0.7 to 1. Irradiation was performed at 0.0 m / min. During laser irradiation, argon gas was flowed at a flow rate of 25 L / min to shield the joint.

このとき、レーザビームBと加圧ローラ10は、車体部材に対して、相対的に移動可能に構成されており、まず、レーザビームBをルーフパネル22の接合フランジ22aに断続的に開けられた長孔22bに沿って移動させながら、リテーナ31の側から車体部材に向けて照射すると、接合フランジ22aの長孔22bを通してリテーナ31とサイドアウタ13とが溶融接合される(図2(b)参照)。
これに続いて、加圧ローラ10の加圧によってルーフパネル22の接合フランジ22aが加熱されたリテーナ31とサイドアウタ13の接合面13aに押し付けられて密着し、リテーナ31とサイドアウタ13の溶融接合部からの伝熱によって、接合フランジ22aに形成された長孔22bの周囲が加熱され、リテーナ31と接合フランジ22aの接合界面、及びサイドアウタ13と接合フランジ22aの接合界面が共晶反応の発現する温度に保持されると共に、加圧ローラ10によって加圧されることから、図5(a)〜(e)に示したように、接合界面に共晶溶融が生じ、共晶溶融金属が界面の酸化物や、その他の生成物と共に接合界面から円滑に排出される結果、金族間化合物が生成させるようなこともなく、ルーフパネル21とサイドアウタ13、ルーフパネル22とリテーナ31が溶融接合部の近傍部において接合される。
At this time, the laser beam B and the pressure roller 10 are configured to be relatively movable with respect to the vehicle body member. First, the laser beam B is intermittently opened on the joining flange 22a of the roof panel 22. When irradiating the body member from the side of the retainer 31 while moving along the long hole 22b, the retainer 31 and the side outer 13 are melt-bonded through the long hole 22b of the joining flange 22a (see FIG. 2B). .
Following this, the joining flange 22a of the roof panel 22 is pressed against and brought into close contact with the joining surface 13a of the side outer 13 by the pressure of the pressure roller 10, and from the fusion joining portion of the retainer 31 and the side outer 13 Due to this heat transfer, the periphery of the long hole 22b formed in the joining flange 22a is heated, and the joining interface between the retainer 31 and the joining flange 22a and the joining interface between the side outer 13 and the joining flange 22a are brought to a temperature at which a eutectic reaction appears. Since it is held and pressed by the pressure roller 10, eutectic melting occurs at the bonding interface as shown in FIGS. 5A to 5E, and the eutectic molten metal becomes an oxide at the interface. As a result of being smoothly discharged from the joint interface together with other products, no intermetallic compound is generated, and the roof panel 21 and Outer 13, roof panel 22 and the retainer 31 are joined in the vicinity of the melting joint.

ここで、リテーナ31とアルミニウム合金製のルーフパネル22の接合フランジ22aの剛性に比較し、鋼製の構造部材である車体部材の剛性が十分に高いため、加圧ローラ10の加圧に対して、図11に示すようなリベットRによる接合の場合に較べて、車室内側からの押えTが必要ないことから、ルーフパネル22と車体部材の接合位置や構造を比較的自由に設定できるので設計自由度が高く、しかも接合フランジ幅もリベット接合に比べて狭くできるため、車体としての外観品質も向上する。   Here, compared with the rigidity of the joining flange 22a of the retainer 31 and the roof panel 22 made of aluminum alloy, the rigidity of the vehicle body member, which is a steel structural member, is sufficiently high. Compared to the case of joining with rivets R as shown in FIG. 11, since the presser T from the vehicle interior side is not required, the joining position and structure of the roof panel 22 and the vehicle body member can be set relatively freely. Since the degree of freedom is high and the width of the joining flange can be narrower than that of rivet joining, the appearance quality as a vehicle body is improved.

本発明による異種金属の接合要領を説明する図であって、接合線と直交する方向から見た側面図である。It is a figure explaining the joining point of the dissimilar metal by this invention, Comprising: It is the side view seen from the direction orthogonal to a joining line. (a)〜(c)は図1における切断線a、b、cについてのそれぞれ断面図である。(A)-(c) is each sectional drawing about the cutting lines a, b, and c in FIG. (a)〜(c)は本発明の他の実施形態における切断線a、b、cについてのそれぞれ断面図である。(A)-(c) is each sectional drawing about the cutting lines a, b, and c in other embodiment of this invention. Al−Zn系2元状態図における共晶点を示すグラフである。It is a graph which shows the eutectic point in an Al-Zn type binary phase diagram. (a)〜(e)は第3の材料を介在させた異種金属パネルの接合過程を概略的に示す工程図である。(A)-(e) is process drawing which shows roughly the joining process of the dissimilar-metal panel which interposed the 3rd material. (a)及び(b)は加圧ローラの実施形態例を示す説明図である。(A) And (b) is explanatory drawing which shows the embodiment of a pressure roller. 第1及び第3の板材に突起を形成した実施形態例を示す説明図である。It is explanatory drawing which shows the example of embodiment which formed the protrusion in the 1st and 3rd board | plate material. 本発明の第1の実施例による鋼製車体部材とアルミニウム製ルーフパネルの接合要領を示す断面図である。It is sectional drawing which shows the joining procedure of the steel vehicle body member and aluminum roof panel by the 1st Example of this invention. 本発明の第2の実施例による鋼製車体部材とアルミニウム製ルーフパネルの接合構造を示す斜視図である。It is a perspective view which shows the joining structure of the steel vehicle body member and aluminum roof panel by the 2nd Example of this invention. 図9に示した鋼製車体部材とアルミニウム製ルーフパネルの接合要領を示す断面図である。FIG. 10 is a cross-sectional view showing a joining procedure of the steel vehicle body member and the aluminum roof panel shown in FIG. 9. 鋼製車体部材とアルミニウム製ルーフパネルのリベットによる接合構造例を示す概略断面図である。It is a schematic sectional drawing which shows the example of a joining structure by the rivet of a steel vehicle body member and an aluminum roof panel.

符号の説明Explanation of symbols

1、13 第1の板材(鋼板、亜鉛めっき鋼板:高融点材料)
1a 突起
1p 亜鉛めっき層(第4の材料)
2、21、22 第2の板材(アルミニウム合金材:低融点材料)
2a、22b 長孔(貫通孔)
3、31 第3の板材(鋼板、亜鉛めっき鋼板:高融点材料)
4a 突起
B レーザビーム(高エネルギービーム)
1, 13 First plate (steel plate, galvanized steel plate: high melting point material)
1a Protrusion 1p Zinc plating layer (4th material)
2, 21, 22 Second plate material (aluminum alloy material: low melting point material)
2a, 22b Long hole (through hole)
3, 31 Third plate (steel plate, galvanized steel plate: high melting point material)
4a Protrusion B Laser beam (high energy beam)

Claims (10)

高融点材料から成る第1の板材と低融点材料から成る第2の板材を重ね合わせ、第2の板材の側から高エネルギービームを照射してこれら板材を重ね接合するに際し、第2の板材にさらに第1の板材と同種の高融点材料から成る第3の板材を重ね、当該第3の板材に照射した高エネルギービームにより第2の板材を貫通させて第1の板材と第3の板材を断続的に溶融接合することを特徴とする異種金属の接合方法。   When a first plate made of a high melting point material and a second plate made of a low melting point material are overlapped and a high energy beam is irradiated from the side of the second plate, the two plate members are overlapped. Further, a third plate made of a high melting point material of the same type as the first plate is overlapped, and the second plate is penetrated by the high energy beam irradiated to the third plate, and the first plate and the third plate are separated. A method for joining dissimilar metals, characterized by intermittent melting and joining. 高融点材料から成る第1の板材と低融点材料から成る第2の板材を重ね合わせ、第2の板材の側から高エネルギービームを照射してこれら板材を重ね接合するに際し、第2の板材に貫通孔をステッチ状に設けると共に、当該第2の板材にさらに第1の板材と同種の高融点材料から成る第3の板材を重ね、第3の板材に照射した高エネルギービームにより上記貫通孔を介して第1の板材と第3の板材を断続的に溶融接合したのち、溶融接合近傍部を加圧することを特徴とする異種金属の接合方法。   When a first plate made of a high melting point material and a second plate made of a low melting point material are overlapped and a high energy beam is irradiated from the side of the second plate, the two plate members are overlapped. A through hole is provided in a stitch shape, and a third plate made of a high melting point material of the same type as the first plate is further stacked on the second plate, and the through hole is formed by a high energy beam irradiated to the third plate. A method for joining dissimilar metals, wherein the first plate member and the third plate member are intermittently melt-bonded to each other, and then the melt-bonding vicinity is pressurized. 上記第1及び第3の板材の少なくとも一方に、第2の板材に設けた貫通孔に嵌合する突起を形成することを特徴とする請求項2に記載の異種金属の接合方法。   The method for joining dissimilar metals according to claim 2, wherein a protrusion that fits into a through hole provided in the second plate member is formed on at least one of the first and third plate members. 上記第1及び第3の板材と第2の板材の間にこれら材料とは異なる第4の材料を介在させた状態で、高エネルギービームを照射し、上記第1、第3の板材及び第2の板材の少なくとも一方と第4の材料との間で共晶溶融を生じさせて接合することを特徴とする請求項2又は3に記載の異種金属の接合方法。   In a state where a fourth material different from these materials is interposed between the first and third plate materials and the second plate material, a high energy beam is irradiated, and the first, third plate materials, and second material are irradiated. 4. The method for joining dissimilar metals according to claim 2, wherein eutectic melting occurs between at least one of the plate members and the fourth material for joining. 5. 上記第1、第3の板材及び第2の板材の少なくとも一方に、第4の材料によるめっきが施してあることを特徴とする請求項4に記載の異種金属の接合方法。   5. The dissimilar metal joining method according to claim 4, wherein plating with a fourth material is performed on at least one of the first and third plate members and the second plate member. 上記第1及び第3の板材が亜鉛めっき鋼板であって、該亜鉛めっき鋼板にめっきされている亜鉛を第4の材料として利用することを特徴とする請求項5に記載の異種金属の接合方法。   6. The method for joining dissimilar metals according to claim 5, wherein the first and third plate members are galvanized steel plates, and zinc plated on the galvanized steel plates is used as a fourth material. . 上記第2の板材がアルミニウム合金から成るものであることを特徴とする請求項6に記載の異種金属の接合方法。   7. The method for joining dissimilar metals according to claim 6, wherein the second plate material is made of an aluminum alloy. 上記板材の溶融接合近傍部を加圧するに際して、加圧面が凸形状をなす2個のローラを用いて、溶融接合部の両側を加圧することを特徴とする請求項4〜7のいずれか1つの項に記載の異種金属の接合方法。   When pressurizing the vicinity of the melt-bonded portion of the plate material, both sides of the melt-bonded portion are pressed using two rollers having a pressing surface having a convex shape. The joining method of the dissimilar metals as described in the item. 上記板材の溶融接合近傍部を加圧するに際して、加圧面が凸形状をなす2個のローラを一体化してなるローラを用いて、溶融接合部の両側を加圧することを特徴とする請求項4〜7のいずれか1つの項に記載の異種金属の接合方法。   5. When pressurizing the melt bonding vicinity portion of the plate material, both sides of the melt bonding portion are pressed using a roller formed by integrating two rollers whose pressing surfaces form convex shapes. 8. The method for joining dissimilar metals according to any one of items 7 to 9. 上記第1及び第3の板材における第2の板材との接合面に、第2の板材側に突出する湾曲面を設けることを特徴とする請求項4〜9のいずれか1つの項に記載の異種金属の接合方法。   The curved surface which protrudes in the 2nd board | plate material side is provided in the joint surface with the 2nd board | plate material in the said 1st and 3rd board | plate material, The any one of Claims 4-9 characterized by the above-mentioned. Dissimilar metal joining method.
JP2006179367A 2006-06-29 2006-06-29 Dissimilar metal joining method Active JP4957093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006179367A JP4957093B2 (en) 2006-06-29 2006-06-29 Dissimilar metal joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006179367A JP4957093B2 (en) 2006-06-29 2006-06-29 Dissimilar metal joining method

Publications (2)

Publication Number Publication Date
JP2008006465A true JP2008006465A (en) 2008-01-17
JP4957093B2 JP4957093B2 (en) 2012-06-20

Family

ID=39065151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006179367A Active JP4957093B2 (en) 2006-06-29 2006-06-29 Dissimilar metal joining method

Country Status (1)

Country Link
JP (1) JP4957093B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131124A1 (en) * 2008-04-21 2009-10-29 本田技研工業株式会社 Joining method for and jointed structure of metal members, and brazing filler metal
JP2009279648A (en) * 2008-04-21 2009-12-03 Honda Motor Co Ltd Joining method for and joined structure of metal member
WO2010026892A1 (en) * 2008-09-08 2010-03-11 日産自動車株式会社 Dissimilar metal joining method for magnesium alloy and steel
JP2010086782A (en) * 2008-09-30 2010-04-15 Sanyo Electric Co Ltd Sealed type battery and its manufacturing method
KR101272050B1 (en) 2011-11-11 2013-06-07 주식회사 성우하이텍 Method of laser welding
US8492005B2 (en) 2008-01-17 2013-07-23 Nissan Motor Co., Ltd. Joining method and joint structure of dissimilar metal
WO2014104716A1 (en) * 2012-12-28 2014-07-03 주식회사 포스코 Structure for fixing automotive roof module
JP2016059954A (en) * 2014-09-19 2016-04-25 新日鐵住金株式会社 Resistance spot welding method
JP2016128173A (en) * 2015-01-09 2016-07-14 新日鐵住金株式会社 Resistance spot welding method
WO2017170213A1 (en) * 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 Joint structure
WO2017170518A1 (en) * 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 Joint structure
WO2017170517A1 (en) * 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 Laser welding method
WO2017169998A1 (en) * 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 Joint structure
WO2018056172A1 (en) * 2016-09-26 2018-03-29 株式会社神戸製鋼所 Spot welding method for joining different materials, joining assistance member, and different material welded joint
WO2018142994A1 (en) * 2017-01-31 2018-08-09 パナソニックIpマネジメント株式会社 Junction structure
CN109689271A (en) * 2016-09-20 2019-04-26 株式会社神户制钢所 Dissimilar material engagement arc-welding process, engagement accessory and welding dissimilar materials joint
US11806809B2 (en) 2018-03-05 2023-11-07 Panasonic Intellectual Property Management Co., Ltd. Joining structure and joining method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137370A (en) * 1977-05-09 1978-11-30 Toshiba Corp Mounting method for movable member
JPS54147149A (en) * 1978-05-11 1979-11-17 Toshiba Corp Laser welding method
JPS5825889A (en) * 1981-08-11 1983-02-16 Toshiba Corp Joining method for hard and brittle member and metallic member
JPH05318155A (en) * 1992-05-25 1993-12-03 Nkk Corp Laser welding method for zinc electroplated steel plate
JPH0852581A (en) * 1994-08-09 1996-02-27 Nkk Corp Structure of laser beam welded part of laminated steel sheets
JP2005169418A (en) * 2003-12-09 2005-06-30 Nissan Motor Co Ltd Method and device for joining dissimilar materials
JP2006000886A (en) * 2004-06-17 2006-01-05 Furukawa Sky Kk Method for producing metal combined member
JP2006179367A (en) * 2004-12-24 2006-07-06 Nissan Motor Co Ltd Method of manufacturing electrode for battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137370A (en) * 1977-05-09 1978-11-30 Toshiba Corp Mounting method for movable member
JPS54147149A (en) * 1978-05-11 1979-11-17 Toshiba Corp Laser welding method
JPS5825889A (en) * 1981-08-11 1983-02-16 Toshiba Corp Joining method for hard and brittle member and metallic member
JPH05318155A (en) * 1992-05-25 1993-12-03 Nkk Corp Laser welding method for zinc electroplated steel plate
JPH0852581A (en) * 1994-08-09 1996-02-27 Nkk Corp Structure of laser beam welded part of laminated steel sheets
JP2005169418A (en) * 2003-12-09 2005-06-30 Nissan Motor Co Ltd Method and device for joining dissimilar materials
JP2006000886A (en) * 2004-06-17 2006-01-05 Furukawa Sky Kk Method for producing metal combined member
JP2006179367A (en) * 2004-12-24 2006-07-06 Nissan Motor Co Ltd Method of manufacturing electrode for battery

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8492005B2 (en) 2008-01-17 2013-07-23 Nissan Motor Co., Ltd. Joining method and joint structure of dissimilar metal
WO2009131124A1 (en) * 2008-04-21 2009-10-29 本田技研工業株式会社 Joining method for and jointed structure of metal members, and brazing filler metal
JP2009279648A (en) * 2008-04-21 2009-12-03 Honda Motor Co Ltd Joining method for and joined structure of metal member
US8492675B2 (en) 2008-04-21 2013-07-23 Honda Motor Co., Ltd. Laser welding Al and Fe members with Zn filler
WO2010026892A1 (en) * 2008-09-08 2010-03-11 日産自動車株式会社 Dissimilar metal joining method for magnesium alloy and steel
JP2010082692A (en) * 2008-09-08 2010-04-15 Nissan Motor Co Ltd Dissimilar metal joining method for magnesium alloy and steel
US9174298B2 (en) 2008-09-08 2015-11-03 Nissan Motor Co., Ltd. Dissimilar metal joining method for magnesium alloy and steel
JP2010086782A (en) * 2008-09-30 2010-04-15 Sanyo Electric Co Ltd Sealed type battery and its manufacturing method
KR101272050B1 (en) 2011-11-11 2013-06-07 주식회사 성우하이텍 Method of laser welding
US9873168B2 (en) 2011-11-11 2018-01-23 Sungwoo Hitech Co., Ltd. Method of laser welding
WO2014104716A1 (en) * 2012-12-28 2014-07-03 주식회사 포스코 Structure for fixing automotive roof module
KR101438783B1 (en) * 2012-12-28 2014-09-15 주식회사 포스코 Structure for fixing roof module of vehicle
CN105102310A (en) * 2012-12-28 2015-11-25 Posco公司 Structure for fixing motor vehicle roof module
JP2016508096A (en) * 2012-12-28 2016-03-17 ポスコ Automobile roof module fixing structure
CN105102310B (en) * 2012-12-28 2017-10-27 Posco公司 Car roof module fixing construction
US10196092B2 (en) 2012-12-28 2019-02-05 Posco Structure for fixing motor vehicle roof module
JP2016059954A (en) * 2014-09-19 2016-04-25 新日鐵住金株式会社 Resistance spot welding method
JP2016128173A (en) * 2015-01-09 2016-07-14 新日鐵住金株式会社 Resistance spot welding method
CN108883500A (en) * 2016-03-30 2018-11-23 松下知识产权经营株式会社 Method for laser welding
JPWO2017170213A1 (en) * 2016-03-30 2019-02-14 パナソニックIpマネジメント株式会社 Junction structure
WO2017169998A1 (en) * 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 Joint structure
CN113828920A (en) * 2016-03-30 2021-12-24 松下知识产权经营株式会社 Joint structure
JP7015998B2 (en) 2016-03-30 2022-02-04 パナソニックIpマネジメント株式会社 Laser welding method
JP7407354B2 (en) 2016-03-30 2024-01-04 パナソニックIpマネジメント株式会社 Laser welding method
CN108778609A (en) * 2016-03-30 2018-11-09 松下知识产权经营株式会社 Connected structure
CN108883484A (en) * 2016-03-30 2018-11-23 松下知识产权经营株式会社 Connected structure
WO2017170518A1 (en) * 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 Joint structure
CN109070269A (en) * 2016-03-30 2018-12-21 松下知识产权经营株式会社 Connected structure
WO2017170213A1 (en) * 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 Joint structure
JPWO2017170518A1 (en) * 2016-03-30 2019-02-07 パナソニックIpマネジメント株式会社 Junction structure
JPWO2017169998A1 (en) * 2016-03-30 2019-02-07 パナソニックIpマネジメント株式会社 Junction structure
JP7012205B2 (en) 2016-03-30 2022-01-28 パナソニックIpマネジメント株式会社 Joined structure
JPWO2017170517A1 (en) * 2016-03-30 2019-02-28 パナソニックIpマネジメント株式会社 Laser welding method
CN109070269B (en) * 2016-03-30 2021-11-12 松下知识产权经营株式会社 Joint structure
US10981246B2 (en) 2016-03-30 2021-04-20 Panasonic Intellectual Property Management Co., Ltd. Laser welding method
WO2017170517A1 (en) * 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 Laser welding method
US11806806B2 (en) 2016-03-30 2023-11-07 Panasonic Intellectual Property Management Co., Ltd. Joint structure
US11376691B2 (en) 2016-03-30 2022-07-05 Panasonic Intellectual Property Management Co., Ltd. Joint structure
CN108883484B (en) * 2016-03-30 2020-09-15 松下知识产权经营株式会社 Joint structure
CN108778609B (en) * 2016-03-30 2020-09-15 松下知识产权经营株式会社 Joint structure
CN109689271A (en) * 2016-09-20 2019-04-26 株式会社神户制钢所 Dissimilar material engagement arc-welding process, engagement accessory and welding dissimilar materials joint
EP3517243A4 (en) * 2016-09-26 2021-04-07 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Spot welding method for joining different materials, joining assistance member, and different material welded joint
CN109789514A (en) * 2016-09-26 2019-05-21 株式会社神户制钢所 Dissimilar material engagement dot welding method, engagement accessory and welding dissimilar materials joint
JP2018051570A (en) * 2016-09-26 2018-04-05 株式会社神戸製鋼所 Dissimilar material jointing spot welding method, joint auxiliary member, and dissimilar material welding coupling
WO2018056172A1 (en) * 2016-09-26 2018-03-29 株式会社神戸製鋼所 Spot welding method for joining different materials, joining assistance member, and different material welded joint
CN110234463A (en) * 2017-01-31 2019-09-13 松下知识产权经营株式会社 Connected structure
JP6998513B2 (en) 2017-01-31 2022-01-18 パナソニックIpマネジメント株式会社 Joined structure
CN110234463B (en) * 2017-01-31 2021-12-21 松下知识产权经营株式会社 Joint structure
EP3578290A4 (en) * 2017-01-31 2020-02-19 Panasonic Intellectual Property Management Co., Ltd. Junction structure
US11536305B2 (en) 2017-01-31 2022-12-27 Panasonic Intellectual Property Management Co., Ltd. Junction structure
JPWO2018142994A1 (en) * 2017-01-31 2019-11-21 パナソニックIpマネジメント株式会社 Junction structure
WO2018142994A1 (en) * 2017-01-31 2018-08-09 パナソニックIpマネジメント株式会社 Junction structure
US11806809B2 (en) 2018-03-05 2023-11-07 Panasonic Intellectual Property Management Co., Ltd. Joining structure and joining method

Also Published As

Publication number Publication date
JP4957093B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP4957093B2 (en) Dissimilar metal joining method
JP4868210B2 (en) Bonding method of dissimilar materials
JP4961532B2 (en) Method and apparatus for joining dissimilar metals
JP4601052B2 (en) Dissimilar metal joining method
JP4780526B2 (en) Joining method, joining apparatus and joining structure of different materials
JP4905766B2 (en) Method and structure for joining dissimilar metals by resistance welding
CN211903865U (en) Vapor chamber
WO2018056172A1 (en) Spot welding method for joining different materials, joining assistance member, and different material welded joint
JP4326492B2 (en) Dissimilar materials joining method using laser welding
JP2009000700A (en) Different-mental joining method and joined sructure
JP4919006B2 (en) Dissimilar metal panel joining method
JP4961530B2 (en) Method of joining dissimilar metals by resistance spot welding
JP5051608B2 (en) Method of joining dissimilar metals by resistance spot welding
JP4868226B2 (en) Dissimilar metal joining method
JP4768487B2 (en) Dissimilar material joining method
JP4868222B2 (en) Method and apparatus for joining dissimilar metal panels
JP2006326612A (en) Method of welding different kind of metal by resistance seam welding
JP2008264822A (en) Method and structure of joining different metal
JP5424005B2 (en) Dissimilar metal joining method
JP4931506B2 (en) Dissimilar material joining method
JP4518892B2 (en) Dissimilar material joining method
JP4566091B2 (en) Dissimilar material joining method
JP2006326613A (en) Resistance seam welding method for different kind of metal and its welding structure
JP5207156B2 (en) Dissimilar materials joining equipment
JP2008264820A (en) Structure and method for joining different kind metals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120119

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4957093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150