JP2006000886A - Method for producing metal combined member - Google Patents

Method for producing metal combined member Download PDF

Info

Publication number
JP2006000886A
JP2006000886A JP2004179376A JP2004179376A JP2006000886A JP 2006000886 A JP2006000886 A JP 2006000886A JP 2004179376 A JP2004179376 A JP 2004179376A JP 2004179376 A JP2004179376 A JP 2004179376A JP 2006000886 A JP2006000886 A JP 2006000886A
Authority
JP
Japan
Prior art keywords
core material
base plate
compression
skin
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004179376A
Other languages
Japanese (ja)
Inventor
Masakatsu Yoshida
正勝 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky KK
Original Assignee
Furukawa Sky KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky KK filed Critical Furukawa Sky KK
Priority to JP2004179376A priority Critical patent/JP2006000886A/en
Publication of JP2006000886A publication Critical patent/JP2006000886A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Braking Arrangements (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost planar combined member obtained by stacking an Al based sheet material and iron based sheet materials and joining and integrating them, which has high productivity, has reliability as well, and is suitable for a brake rotor. <P>SOLUTION: In two sheet stocks 2A, 2B of iron base materials for surface materials, thorough holes 3A, 3B passing from either sheet face to the other sheet face are previously formed. The two sheet stocks for surface materials are stacked on both the surfaces of a sheet stock 1 of an Al material for a core material, so as to be a stacked body 4. The stacked body is compressed from both the sides. By the compressive force, the material of the sheet stock for a core material is plastically made to flow so as to be infiltrated into the through holes. Also, the compression is performed in such a manner, even after the material of the sheet stock for a core material is filled into the through holes, the compression further progresses, and the sheet stock for a core material and the sheet stocks for surface materials are joined. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明はアルミニウムもしくはアルミニウム合金からなる板状部材とステンレス鋼などの鋼材や、鋳鉄等の鉄系材料からなる板状部材とを重ね合わせて接合一体化してなる板形状の金属複合部材の製造方法に関するものであり、特に車輌のディスクブレーキのブレーキロータ等に最適な金属複合部材を製造する方法に関するものである。   The present invention relates to a method for producing a plate-shaped metal composite member in which a plate-like member made of aluminum or an aluminum alloy and a steel material such as stainless steel, or a plate-like member made of an iron-based material such as cast iron are overlapped and joined together In particular, the present invention relates to a method of manufacturing a metal composite member optimal for a brake rotor of a disk brake of a vehicle.

一般に四輪自動車やオートバイ等に使用されるディスクブレーキのロータ(ブレーキロータ)は、全体として円盤状をなす金属製基板の中央に取付孔を形成するとともに、周辺部分に環状の摺動面を形成し、取付孔を介してホイール等に取付けて使用されるものであり、制動面をブレーキパッドにより挟着することにより初期の制動力を発揮することができる。この種のブレーキロータの金属製基板としては、従来は、鋳鉄やステンレス鋼板等の一体物の鉄系材料を素材とし、これに切削加工やプレス加工を施して所定の形状に加工することによって製造するのが通常である。   In general, disc brake rotors (brake rotors) used in four-wheeled vehicles, motorcycles, etc. have a mounting hole in the center of a disk-shaped metal substrate as a whole, and an annular sliding surface in the periphery. In addition, it is used by being attached to a wheel or the like through an attachment hole, and an initial braking force can be exhibited by sandwiching the braking surface with a brake pad. Conventionally, this type of brake rotor metal substrate is manufactured by using a solid iron-based material such as cast iron or stainless steel plate as a raw material, and cutting and pressing it into a predetermined shape. It is normal to do.

ところで自動車部品については、燃費向上等のために軽量化することが強く望まれており、ブレーキロータについても軽量化することが強く望まれる。しかしながら前述のような鋳鉄やステンレス鋼等の鉄系材料を素材として一体物で形成したブレーキロータでは、その軽量化には限界があった。   By the way, it is strongly desired to reduce the weight of automobile parts in order to improve fuel consumption, and it is also strongly desired to reduce the weight of brake rotors. However, there is a limit to reducing the weight of the brake rotor formed of an iron-based material such as cast iron or stainless steel as a raw material.

一方、軽量な金属としてはアルミニウム系材料が知られているが、アルミニウム系材料をブレーキロータに適用した場合、耐摩耗性の点で問題がある。またブレーキロータは制動時の発熱により高温となるものであり、高温強度が鉄系材料よりも格段に低いアルミニウム材料単独でブレーキロータを製造した場合、高温強度の点で問題が生じる。   On the other hand, an aluminum-based material is known as a lightweight metal, but when the aluminum-based material is applied to a brake rotor, there is a problem in terms of wear resistance. In addition, the brake rotor becomes hot due to heat generated during braking, and when the brake rotor is manufactured solely from an aluminum material whose strength at a high temperature is much lower than that of an iron-based material, a problem arises in terms of the high temperature strength.

そこで耐摩耗性や高温強度に優れた鋳鉄やステンレス鋼等の鉄系材料からなる板材と軽量なアルミニウム材料とからなる板材を接合一体化して、複合金属板材からなるブレーキロータとし、これにより全体として必要な耐摩耗性と高温強度を確保しつつ、軽量化を図ることが考えられている。   Therefore, a plate made of iron-based material such as cast iron and stainless steel with excellent wear resistance and high-temperature strength and a plate made of lightweight aluminum material are joined and integrated into a brake rotor made of a composite metal plate. It is considered to reduce the weight while securing the necessary wear resistance and high temperature strength.

ところで同種金属の接合には直接溶融接合法が広く適用されているが、この直接溶融接合法をアルミニウム材料と鉄系材料との接合に適用した場合、脆い金属間化合物を生成してしまうため、アルミニウム材料と鉄系材料との接合に適用することは実際上困難である。そこでアルミニウム材料と鉄系材料との接合一体化の方法としては、圧接法や機械的接合法、トランジション・ジョイント法、ろう付け法等が適用されている。   By the way, the direct melt bonding method is widely applied to the bonding of the same kind of metal, but when this direct melt bonding method is applied to the bonding of an aluminum material and an iron-based material, a brittle intermetallic compound is generated. It is practically difficult to apply to joining of aluminum material and iron-based material. Therefore, as a method for joining and integrating the aluminum material and the iron-based material, a pressure welding method, a mechanical joining method, a transition joint method, a brazing method, or the like is applied.

前述のようなアルミニウム材料と鉄系材料とを接合するために実用的に適用されている種々の方法のうち、先ず圧接法によれば、優れた継ぎ手を得ることが比較的容易ではあるが、形状面から棒状形状に制限されるのが通常であって、板材への適用は困難とされており、ブレーキロータへの適用も実際上困難である。またトランジション・ジョイント法は、予め圧接法や爆接法で作成したアルミニウム材料と異種金属からなるトランジション・ジョイントと称する接合部材に、それぞれの共金を溶接する方法であるが、異種金属のトランジション・ジョイント自体の製造コストが高価となり、また接合形状に応じた接合部材が得にくいため、特殊な用途にしか使用されておらず、低コスト化が要求されるブレーキロータ等の自動車部品には不向きである。さらに被覆法は、例えばアルミニウム板をつば付き容器形状に加工し、そのつば付き容器の内部に鋼製ナットを挿入して、ボルト貫通穴を形成した接合対象のアルミニウム板に溶接し、穴を合せてつば部先端を溶接する方法である。この方法は、信頼性は高いものの、アルミニウムのつば付き容器の製造コストが高い問題があるとともに、薄板では溶接が困難となるため適用対象が厚板に限定され、また生産性も劣る問題がある。さらにろう付け法のうち、異種金属との接合に適用される方法としてははんだ付け法があり、はんだには低融点金属のZn、Sn、Cdが用いられているが、接合強度が低い点と低融点金属の環境への影響等の点からその使用が制限されざるを得ず、ブレーキロータには不適当であった。さらに機械的接合法の場合、接合強度が低い欠点があり、特に振動を伴なうブレーキロータのような部材では、がたつきが発生しやすいため信頼性に欠け、ブレーキロータには不適当であった。   Among various methods that are practically applied to join the aluminum material and the iron-based material as described above, according to the pressure welding method, it is relatively easy to obtain an excellent joint. Usually, the shape is limited to a bar shape, and it is difficult to apply to a plate material, and it is practically difficult to apply to a brake rotor. In addition, the transition joint method is a method in which the respective co-metals are welded to a joining member called a transition joint made of an aluminum material and a dissimilar metal previously prepared by a pressure welding method or an explosive welding method. The manufacturing cost of the joint itself is expensive, and it is difficult to obtain a joining member according to the joining shape, so it is used only for special purposes and is not suitable for automobile parts such as brake rotors that require lower costs. is there. In addition, the coating method is, for example, processing an aluminum plate into a flanged container shape, inserting a steel nut inside the flanged container, welding to the aluminum plate to be joined formed with bolt through holes, and matching the holes. This is a method of welding the tip of the collar part. Although this method is highly reliable, there are problems in that the manufacturing cost of the aluminum flanged container is high, and since it is difficult to weld with a thin plate, the application target is limited to a thick plate, and the productivity is also inferior. . Furthermore, among the brazing methods, there is a soldering method as a method applied to bonding with dissimilar metals, and low melting point metals Zn, Sn, and Cd are used for the solder, but the bonding strength is low. The use of the low melting point metal has to be restricted in view of the influence on the environment and the like, and is not suitable for the brake rotor. In addition, the mechanical joining method has the disadvantage of low joint strength, especially in parts such as brake rotors with vibrations, which are not reliable because they are prone to rattling and are not suitable for brake rotors. there were.

以上のように、アルミニウム系材料の板材と鉄系材料の板材とを接合一体化させるための従来の接合方法としては、コスト面や生産性、さらには信頼性その他の全ての要求を充分に満足する方法はなく、いずれも特に板状のブレーキロータ用の複合部材を製造するための方法に適用するには問題があった。   As described above, the conventional joining method for joining and integrating the aluminum-based material and the iron-based material sufficiently satisfies all other requirements such as cost, productivity, and reliability. There is no method to do this, and any of them has a problem in applying to a method for producing a composite member for a plate-like brake rotor.

この発明は以上の事情を背景としてなされたもので、アルミニウムもしくはアルミニウム合金の板材と鉄系材料の板材とを接合一体化した板状の金属複合部材を製造するための方法として、比較的低コストでかつ生産性も高く、また信頼性も高くて、特にブレーキロータ用の金属複合部材の製造方法に適した方法を提供することを課題とするものである。   The present invention has been made against the background of the above circumstances, and as a method for manufacturing a plate-shaped metal composite member in which an aluminum or aluminum alloy plate and an iron-based plate are joined and integrated, a relatively low cost is provided. Further, it is an object of the present invention to provide a method that is highly productive and highly reliable, and that is particularly suitable for a method for manufacturing a metal composite member for a brake rotor.

本発明者等が前述の課題を解決するべく種々実験・検討を重ねた結果、基本的には圧接法をベースとしながらも、従来の一般的な圧接法とは異なり、圧縮時に特殊な変形挙動を生じさせるようにして、アルミニウム系材料と鉄系材料という異種金属の板材同士で良好な接合が得られる方法を見出し、この発明をなすに至った。   As a result of various experiments and examinations by the present inventors to solve the above-mentioned problems, it is basically based on the pressure welding method, but unlike the conventional general pressure welding method, it has a special deformation behavior during compression. As a result, the inventors have found a method of obtaining good bonding between plate materials of different metals such as an aluminum-based material and an iron-based material, and have made the present invention.

具体的には、請求項1の発明は、アルミニウムもしくはアルミニウム合金からなる平板状の芯材の両面に鉄系材料からなる平板状の皮材を重ね合わせてこれらを接合一体化してなる金属複合部材の製造方法において、鉄系材料からなる2枚の皮材用素板に、予めその一方の板面から他方の板面まで貫通する貫通孔を形成しておき、その2枚の皮材用素板を、アルミニウムもしくはアルミニウム合金からなる芯材用素板の両面に重ね合わせて積層体とし、その積層体についてその両面側から圧縮し、その圧縮力によって芯材用素板の材料を前記貫通孔内に侵入するように流動変形させ、かつ芯材用素板の材料が貫通孔内に充満された後にもさらに圧縮が進行するように圧縮して、芯材用素板と皮材用素板とを接合することを特徴とするものである。   Specifically, the invention according to claim 1 is a metal composite member obtained by superimposing a flat skin material made of an iron-based material on both sides of a flat core material made of aluminum or an aluminum alloy, and joining and integrating them. In this manufacturing method, a through-hole penetrating from one plate surface to the other plate surface is previously formed in two skin material base plates made of an iron-based material, and the two skin material base materials are formed. A plate is laminated on both sides of a core material plate made of aluminum or an aluminum alloy to form a laminated body, and the laminated body is compressed from both sides thereof, and the material of the core material base plate is compressed by the compression force. The core material base plate and the skin material base plate are subjected to fluid deformation so as to penetrate into the core material, and further compressed after the core base material is filled in the through holes. It is characterized by joining .

また請求項2の発明は、請求項1に記載の金属複合部材の製造方法において、前記皮材用素板の貫通孔の最大径dL0と、芯材用素板の初期外径の最小径dC0との関係が、次の(1)式:
50>dC0/dL0>1 ・・・(1)
を満たすように各素板を用意して、積層体を圧縮することを特徴とするものである。
The invention of claim 2 is the method for producing a metal composite member according to claim 1, wherein the maximum diameter d L0 of the through hole of the base material plate and the minimum outer diameter of the core base plate are set. The relationship with d C0 is the following equation (1):
50> d C0 / d L0 > 1 (1)
Each base plate is prepared so as to satisfy the condition, and the laminate is compressed.

さらに請求項3の発明は、請求項1もしくは請求項2に記載の金属複合部材の製造方法において、前記積層体を圧縮するにあたり、圧縮過程中途の前記貫通孔内に芯材用素板の材料が充満された時点での芯材用素板における皮材用素板に挟まれている部分の芯材用素板の厚みをhC1、貫通孔内に芯材用素板の材料が充満された後さらに圧縮が行なわれて最終的に圧縮が終了した時点での芯材における皮材に挟まれている部分の芯材厚みをhC2とし、これらの厚みhC1、hC2が、次の(2)式:
0.01≦(hC1−hC2)/hC1 ・・・(2)
を満たすように圧縮することを特徴とするものである。
Further, the invention of claim 3 is the method of manufacturing a metal composite member according to claim 1 or 2, wherein the material for the core material plate is placed in the through hole in the middle of the compression process when the laminate is compressed. The thickness of the core material base plate in the core material base plate at the time when the core material is filled is h C1 , and the material of the core base material is filled in the through hole. After that, when the compression is further performed and the compression is finally finished, the thickness of the core material sandwiched between the skin materials is h C2, and these thicknesses h C1 and h C2 are (2) Formula:
0.01 ≦ (h C1 −h C2 ) / h C1 (2)
It compresses so that it may satisfy | fill.

そしてまた請求項4の発明は、請求項1ないし請求項3に記載の金属複合部材の製造方法において、前記積層体を圧縮するにあたり、芯材用素板の温度を200℃以上500℃未満の範囲内の温度に制御した状態で圧縮することを特徴とするものである。   According to a fourth aspect of the present invention, in the method for producing a metal composite member according to any one of the first to third aspects, when the laminate is compressed, the temperature of the core material base plate is 200 ° C or higher and lower than 500 ° C. It compresses in the state controlled to the temperature in the range, It is characterized by the above-mentioned.

さらにまた請求項5の発明は、請求項1ないし請求項4のいずれかの請求項に記載の方法によってブレーキロータ用素板を製造することを特徴とするものである。   Furthermore, the invention of claim 5 is characterized in that a base plate for a brake rotor is manufactured by the method according to any one of claims 1 to 4.

この発明の方法によれば、接合不良が生じることなく良好な接合性でアルミニウム系材料の板材と鉄系材料の板材とを接合一体化することができ、また信頼性、生産性、コスト面のいずれの面でも優れている。またこの発明の方法によれば、予め最終的な形状(例えば取付孔を有するブレーキロータの如く環状部材)を予測した形状の芯材用素板や皮材用素板を使用することによって、複合材とした後の歩留りを大幅に向上させることができ、これにより金属複合部材で問題となりやすいリサイクルについての問題を軽減することができる。さらにこの発明の方法をブレーキロータの製造に適用すれば、両面側に皮材として鉄系材料が存在するため、良好な耐摩耗性を確保できると同時に、高い高温強度を確保することができ、一方軽量なアルミニウム系材料が芯材として用いられることから、鉄系材料の一体物からなるブレーキロータと比較して格段に軽量化することができるとともに、芯材のアルミニウム系材料の熱伝導率が高いところから、芯材が伝熱媒体として機能して放熱を効果的に行なうことができ、結局、耐摩耗性、高温強度、放熱性が良好でかつ軽量なブレーキロータを得ることができる。   According to the method of the present invention, it is possible to join and integrate an aluminum-based material plate and an iron-based material plate material with good bondability without causing poor bonding, and in terms of reliability, productivity, and cost. Both aspects are excellent. Further, according to the method of the present invention, by using a core material base plate or a skin material base plate having a shape predicted in advance for a final shape (for example, an annular member such as a brake rotor having a mounting hole), a composite material is obtained. The yield after making the material can be greatly improved, thereby reducing the problem of recycling that tends to be a problem with the metal composite member. Furthermore, if the method of the present invention is applied to the production of a brake rotor, since iron-based material exists as a skin material on both sides, it is possible to ensure good wear resistance and at the same time ensure high high temperature strength, On the other hand, since a lightweight aluminum-based material is used as a core material, it can be significantly reduced in weight as compared with a brake rotor made of an integrated iron-based material, and the thermal conductivity of the aluminum material of the core material can be reduced. From a high point, the core material can function as a heat transfer medium to effectively radiate heat, and as a result, a lightweight brake rotor with good wear resistance, high-temperature strength and heat dissipation can be obtained.

この発明の方法においては、芯材用素板としては、純アルミニウムもしくは種々のアルミニウム合金が用いられ、また皮材用素板としては鋳鉄、普通鋼、ステンレス鋼等の鉄系材料が用いられる。芯材用素板のアルミニウムもしくはアルミニウム合金の具体的な成分組成は限定されるものではなく、また皮材用素板の鉄系材料の種類、具体的成分組成も特に限定されるものではなく、いずれも最終の用途、使用環境等によって適宜選択すればよい。例えばブレーキロータとして用いる場合、芯材のアルミニウム合金としては、JIS A5454材等を用いることが望ましく、また皮材の鉄系材料としては、SUS材、FC200材等を用いることが望ましい。   In the method of the present invention, pure aluminum or various aluminum alloys are used as the core material base plate, and iron-based materials such as cast iron, ordinary steel, and stainless steel are used as the skin base material. The specific component composition of aluminum or aluminum alloy of the core material base plate is not limited, and the type of iron-based material of the base material for skin material, the specific component composition is not particularly limited, Any of these may be appropriately selected depending on the final application, use environment, and the like. For example, when used as a brake rotor, it is desirable to use JIS A5454 material as the aluminum alloy of the core material, and it is desirable to use SUS material, FC200 material, etc. as the iron-based material of the skin material.

ここで芯材用素板および皮材用素板の形状について図1を参照して説明すると、芯材用素板1は、全体として平坦な板状(平板状)に作られている。芯材用素板1の平面的な形状は後に改めて説明するように特に限定されないが、通常は円形とされることが多い。一方皮材用素板2A,2Bは、全体として平坦な板状(平板状)に作られていて、それぞれその中央部分に一方の板面から他方の板面まで貫通する貫通孔3A,3Bが形成されている。これらの貫通孔3A,3Bの断面形状(板面側から見た穴形状)は特に制約されるものではないが、通常は円形とされ、場合によっては矩形その他の多角形状、あるいは星型としても良い。なお皮材用素板2A,2Bの全体の平面的形状も特に限定されないが、通常は芯材用素板1と同様に円形とされることが多い。   Here, the shapes of the core material base plate and the skin material base plate will be described with reference to FIG. 1. The core material base plate 1 is formed in a flat plate shape (flat plate shape) as a whole. The planar shape of the core material base plate 1 is not particularly limited, as will be described later, but is usually circular. On the other hand, the skin material base plates 2A and 2B are formed in a flat plate shape (flat plate shape) as a whole, and through-holes 3A and 3B penetrating from one plate surface to the other plate surface are respectively formed in the center portions thereof. Is formed. The cross-sectional shape (hole shape seen from the plate surface side) of these through-holes 3A and 3B is not particularly limited, but is usually circular, and in some cases may be rectangular or other polygonal shapes or star-shaped good. The overall planar shape of the skin material base plates 2A and 2B is not particularly limited, but is usually circular as in the case of the core material base plate 1 in many cases.

上述のようなアルミニウムもしくはアルミニウム合金からなる芯材用素板1および鉄系材料からなる皮材用素板2A,2Bを用いてこの発明を実施するにあたっては、先ず図2の(A)に示すように、芯材用素板1の両面側に皮材用素板2A,2Bを重ね、積層体4とする。このとき、一方の皮材用素板2Aの貫通孔3Aと他方の皮材用素板2Bの貫通孔3Bとの間の部分に芯材用素板1の中央部分が位置している状態、すなわち各貫通孔3A,3Bの一方の側が皮材用素板1によって塞がれている状態とする。そのためには、通常は芯材用素板1の中心と皮材用素板2A,2Bの中心とを一致させてこれらを重ね合わせれば良い。   In carrying out the present invention using the core material base plate 1 made of aluminum or an aluminum alloy and the skin material base plates 2A and 2B made of an iron-based material as described above, first, as shown in FIG. As described above, the skin material base plates 2 </ b> A and 2 </ b> B are overlapped on both surface sides of the core material base plate 1 to obtain a laminate 4. At this time, a state in which the central portion of the core material base plate 1 is located in a portion between the through hole 3A of the one skin material base plate 2A and the through hole 3B of the other skin material base plate 2B, In other words, one side of each of the through holes 3A and 3B is closed by the skin material base plate 1. For that purpose, the center of the core material base plate 1 and the center of the skin material base plates 2A and 2B are usually made to coincide with each other.

このような積層体4を、平坦工具、例えばプレス装置の表面が平坦な金型によってその両面側から圧縮する。具体的には、図2の(A)〜(D)に示すように、プレス装置の上金型5A、下金型5Bとの間に積層体4を配置し、固定された下金型5Bに対して上金型5Aを下降させて積層体4を上金型5A、下金型5Bの間に挟み、さらに上金型5Aを下降させて積層体4の全体を圧縮する。この圧縮時においては、鉄系材料からなる皮材用素板2A,2Bよりも相対的に格段に軟質で変形能の高いアルミニウムもしくはアルミニウム合金からなる芯材用素板1の材料は、単に厚みが減少して外周方向へ径が拡大するだけではなく、図2の(B)に示すようにその芯材用素板の材料の一部が皮材用素板2A,2B内の貫通孔3A,3B内に侵入するように塑性流動し、さらに貫通孔3A,3B内に芯材用素板の材料が完全に充満した後にも図2の(C)に示すように圧縮が進行して塑性流動が進むことにより、芯材と皮材との良好な接合が得られるのである。これらの塑性流動の挙動について図2を参照して次に詳細に説明する。   Such a laminate 4 is compressed from both sides thereof by a flat tool, for example, a mold having a flat surface of a pressing device. Specifically, as shown in FIGS. 2A to 2D, the laminated body 4 is disposed between the upper mold 5A and the lower mold 5B of the press device, and fixed to the lower mold 5B. On the other hand, the upper mold 5A is lowered to sandwich the laminated body 4 between the upper mold 5A and the lower mold 5B, and the upper mold 5A is further lowered to compress the entire laminated body 4. At the time of this compression, the material of the core material base plate 1 made of aluminum or aluminum alloy, which is much softer and has a higher deformability than the skin base materials 2A and 2B made of an iron-based material, is simply a thickness. As shown in FIG. 2B, a part of the material for the core material base plate is partly formed in the through holes 3A in the skin material base plates 2A and 2B. , 3B plastically flows so as to penetrate into the inside, and further, after the material for the core material base plate is completely filled in the through holes 3A, 3B, the compression proceeds as shown in FIG. As the flow proceeds, good bonding between the core material and the skin material can be obtained. The behavior of these plastic flows will now be described in detail with reference to FIG.

先ず仮に2種以上の材料をプレス等により圧縮接合するための従来の一般的な手法に準じて、貫通孔のない2枚の皮材によって芯材を挟んで積層体とし、平坦工具によりその両面側から圧縮した場合を想定すれば、その場合には芯材は圧縮されて厚さが減少し、外径方向に伸びて外周が拡大するだけである。この場合、外径方向に芯材の材料が流れるときには、中心付近に左右前後への流動の分岐点、すなわち中立点と称される材料の流動しない領域が発生することになる。このような中立点領域では、皮材と芯材との間の相対すべりがほとんどないため、両者の物理的接合が充分に行なわれない。またこのような圧縮接合時において皮材と芯材との間に介在する空気は接合の阻害要因となるが、前述のような貫通孔のない皮材を用いた場合、圧縮時には皮材と芯材との間の空気は外周方向へのみ逃げることになり、中立点領域付近では皮材と芯材との間の空気がそのまま封じ込まれてしまいやすい。そしてこれらが相俟って、中立点付近での接合が不充分となり、またこのように充分に接合されない範囲(非接合領域)の大きさのばらつきも大きく、したがってこのような方法を工業的に板材に適用することは不適当である。   First, in accordance with a conventional general method for compressing and joining two or more kinds of materials using a press or the like, a core is sandwiched between two skin materials without through holes, and both surfaces thereof are formed using a flat tool. Assuming the case of compression from the side, in that case, the core material is compressed and the thickness is reduced, and the outer periphery is only expanded by extending in the outer diameter direction. In this case, when the material of the core material flows in the outer diameter direction, a branching point of the flow to the left and right and front and rear, that is, a region where the material does not flow, which is called a neutral point, is generated near the center. In such a neutral point region, since there is almost no relative slip between the skin material and the core material, the physical bonding between the two is not sufficiently performed. In addition, the air intervening between the skin material and the core material at the time of such compression bonding is a hindrance to the bonding. However, when a skin material without a through-hole as described above is used, the skin material and the core are compressed at the time of compression. The air between the materials escapes only in the outer peripheral direction, and the air between the skin material and the core material tends to be sealed in the vicinity of the neutral point region. Together, these results in insufficient bonding in the vicinity of the neutral point, and there is also a large variation in the size of such a region (non-bonding region) where the bonding is not sufficiently performed. It is inappropriate to apply it to board materials.

これに対し、この発明の方法の場合は、皮材用素板2A,2Bに貫通孔3A,3Bを形成しているため、積層体4を、平坦工具(金型5A,5B)により圧縮すれば、先ず図2の(B)に示すように、芯材用素板1の材料は外周方向へ材料が流れると同時に、貫通孔3A,3B内に流入し、またそれに伴って芯材用素板1の材料は中心部に向けて材料が流れる。したがって芯材用素板1の材料は、内径方向(貫通孔3A,3Bに向う方向)と外径方向との2方向に流れるところから、貫通孔3A,3Bよりも外径側の皮材用素板2A,2Bに挟まれている円環状領域のうち、その中間位置において材料が塑性流動しない中立点Pが発生する。ここで、上述の状態で圧縮を終了してしまった場合には、円環状部位の中間の中立点Pの存在により、充分な接合が得られない。しかるにこの発明の方法の場合には、貫通孔3A,3B内に芯材用素板1の材料が充満された後にも圧縮を継続させることとしているため、中立点を排除することができる。すなわち貫通孔3A,3B内に芯材用素板1の材料が充満された後の圧縮過程では、芯材用素板1の材料は、図2の(C)に示すように圧縮により外径方向へのみ流動するため、前述のような円環状部分の中間の中立点Pが消滅し、芯材用素板1と皮材用素板2A,2Bとが接触している部分では全ての領域にわたってその接触面で相対滑りが生じ、その全ての領域にわたって充分に接合されることになる。   On the other hand, in the case of the method of the present invention, since the through holes 3A and 3B are formed in the skin material base plates 2A and 2B, the laminate 4 is compressed by a flat tool (die 5A and 5B). First, as shown in FIG. 2B, the material of the core material plate 1 flows into the through holes 3A and 3B at the same time as the material flows in the outer peripheral direction, and accordingly, the core material element 1 The material of the plate 1 flows toward the center. Therefore, the material of the core material base plate 1 is for the skin material on the outer diameter side from the through holes 3A and 3B from the two directions of the inner diameter direction (direction toward the through holes 3A and 3B) and the outer diameter direction. In the annular region sandwiched between the base plates 2A and 2B, a neutral point P where the material does not plastically flow is generated at an intermediate position. Here, when the compression is terminated in the above-described state, sufficient joining cannot be obtained due to the presence of the neutral point P in the middle of the annular portion. However, in the case of the method of the present invention, since the compression is continued even after the material of the core material base plate 1 is filled in the through holes 3A and 3B, the neutral point can be eliminated. That is, in the compression process after the material for the core material 1 is filled in the through holes 3A and 3B, the material of the core material 1 is compressed by the outer diameter as shown in FIG. Since the fluid flows only in the direction, the neutral point P in the middle of the annular portion as described above disappears, and all the regions in the portion where the core material base plate 1 and the skin material base plates 2A and 2B are in contact with each other Relative slippage occurs at the contact surface over the entire area, and the entire area is fully joined.

このようにして圧縮過程が終了すれば、結果的に芯材用素板の材料が流動しない部分、すなわち中立点と称される領域は、貫通孔3A,3B内の位置のみに存在することになり、その他の皮材用素板2A,2Bに挟まれている部分の芯材用素板1の材料は全て塑性流動することになる。また皮材用素板2A,2Bと芯材用素板1との間に介在する空気は、圧縮時の初期においては外側のものは外周方向に逃げる一方、中心部寄りのものは貫通孔3A,3B内に逃げ、圧縮の後期においてはもっぱら外周方向に逃げ、その結果芯材と皮材との間の空気の封じ込めはほとんど生じない。   When the compression process is completed in this way, a portion where the material of the core material plate does not flow, that is, a region referred to as a neutral point, exists only in positions within the through holes 3A and 3B. Thus, all the material of the core material base plate 1 sandwiched between the other skin material base plates 2A and 2B plastically flows. Further, the air intervening between the skin material base plates 2A and 2B and the core material base plate 1 escapes in the outer peripheral direction in the initial stage at the time of compression, while the air near the center is the through hole 3A. , 3B, and escapes in the outer peripheral direction exclusively in the latter stage of compression, so that almost no air is trapped between the core material and the skin material.

このように、この発明の方法の場合、貫通孔を除く部分、すなわち皮材と芯材とが接合されるべき部分では、圧縮時に塑性流動のない中立点が残ることがなく、全ての領域にわたって芯材材料の塑性流動が生じ、また皮材と芯材との間における空気の封じ込みも生じないため、皮材と芯材とは非接合領域が生じることなく、確実かつ充分に接合されるのである。   Thus, in the case of the method of the present invention, in the portion excluding the through hole, that is, the portion where the skin material and the core material are to be joined, a neutral point without plastic flow does not remain at the time of compression, and the entire region is covered. Since the plastic flow of the core material occurs, and no air is sealed between the skin material and the core material, the skin material and the core material are securely and sufficiently joined to each other without generating a non-joined region. It is.

ここで、皮材用素板に形成しておく貫通孔の断面形状は特に限定されるものではなく、円形のほか、矩形、外筒形状、星型等任意で良いが、その貫通孔の最大径をdL0mmとし、芯材用素板の芯材用素板の初期外径の最小径をdC0mmとすれば、これらを次の(1)式
50>dC0/dL0>1 ・・・(1)
を満たすように定めることが望ましい。但しここで芯材用素板の初期外径の最小径とは、圧縮前における芯材の中心位置(貫通孔の中心位置に対応する)を基準とした外径直径の最小値を意味し、円形の芯材用素板の場合は通常はその直径自体が初期最小径に相当する。
Here, the cross-sectional shape of the through-hole formed in the skin material base plate is not particularly limited, and may be any shape other than a circle, such as a rectangle, an outer cylinder, or a star shape. If the diameter is d L0 mm and the minimum diameter of the initial outer diameter of the core material base plate is d C0 mm, these are expressed by the following formula (1): 50> d C0 / d L0 > 1 ... (1)
It is desirable to set so as to satisfy. However, the minimum diameter of the initial outer diameter of the core material base plate here means the minimum value of the outer diameter diameter based on the center position of the core material before compression (corresponding to the center position of the through hole), In the case of a circular core material base plate, the diameter itself usually corresponds to the initial minimum diameter.

ここで、(1)式の条件が望ましい理由は次の通りである。すなわち、芯材用素板に貫通孔を形成しておく目的は、塑性流動の中立点の排除と、空気の封じ込め排除とにあることから、貫通孔の形状は特に問わないが、芯材の初期外径の最小径dC0と貫通孔の最大径dL0との比dC0/dL0が1以下では、最初から芯材が貫通孔内に入ってしまうか、または貫通孔の一部に芯材用素板で覆われない部分が生じてしまうため、その積層体を圧縮しても、芯材用素板と皮材用素板とが塑性流動面で接触することが全くできないか、または少なくとも塑性流動面で接触できない部分が局部的に生じ、その結果塑性流動面による接合が全く行なわれないか、または少なくとも一部に塑性流動面での接合が生じずに、接合不良が発生することがある。 Here, the reason why the condition of the expression (1) is desirable is as follows. That is, the purpose of forming the through hole in the core material base plate is to eliminate the neutral point of plastic flow and to eliminate air containment, so the shape of the through hole is not particularly limited. When the ratio d C0 / d L0 between the minimum diameter d C0 of the initial outer diameter and the maximum diameter d L0 of the through-hole is 1 or less, the core material enters the through-hole from the beginning or is part of the through-hole. Since the portion that is not covered with the core material base plate is produced, even if the laminate is compressed, the core material base plate and the skin material base plate can not contact at the plastic flow surface at all, Or, at least a part that cannot be contacted on the plastic flow surface is locally generated, and as a result, the joining by the plastic flow surface is not performed at all, or at least a part of the plastic flow surface is not joined, and a joining failure occurs. Sometimes.

一方、dC0/dL0の比が50以上となれば、芯材用素板の材料の塑性流動する範囲が大きくなって、圧縮に多大な荷重が必要となり、そのため圧縮のためのプレス装置が大型化してコスト面で不利となり、また同時に中立点の排除が充分でなくなることもある。 On the other hand, if the ratio of d C0 / d L0 is 50 or more, the plastic flow range of the core material is increased, and a large load is required for compression. The increase in size is disadvantageous in terms of cost, and at the same time, neutral points may not be eliminated sufficiently.

したがって(1)式に示すようにdC0/dL0の比は、1を越え50未満の範囲内と定めた。なお実用上は、その範囲内でも特に10>dC0/dL0>1.5の範囲内が好ましい。 Therefore, as shown in the equation (1), the ratio of d C0 / d L0 is determined to be in the range of more than 1 and less than 50. For practical use, the range of 10> d C0 / d L0 > 1.5 is particularly preferable.

さらにこの発明の方法を実施する場合、積層体の圧縮過程において皮材用素板の貫通孔内に芯材用素板の材料が充満された時点での芯材用素板における皮材用素板に挟まれている部分の厚みをhC1mm、また貫通孔内に芯材用素板の材料が充満された後、最終的に圧縮が終了した時点での芯材用素板における皮材用素板に挟まれている部分の厚み(したがって圧縮接合後の同部分の芯材厚み)をhC2mmとすれば、これらの厚みhC1、hC2が、次の(2)式
0.01≦(hC1−hC2)/hC1 ・・・(2)
を満たすように圧縮することが望ましい。具体的には、(2)式が満たされるように芯材用素板の厚みや皮材用素板の厚み、貫通孔の大きさ(容積)、圧縮量(圧下率)等を定めることが望ましい。
Furthermore, when the method of the present invention is carried out, the skin material element in the core material board at the time when the material of the core material board is filled in the through-holes of the skin material board in the compression process of the laminated body The thickness of the portion sandwiched between the plates is h C1 mm, and after the core material is filled in the through-holes, the skin material in the core material is finally compressed. Assuming that the thickness of the portion sandwiched between the base plates (and hence the thickness of the core material after compression bonding) is h C2 mm, these thicknesses h C1 and h C2 are expressed by the following formula (2) 0. 01 ≦ (h C1 −h C2 ) / h C1 (2)
It is desirable to compress so as to satisfy. Specifically, the thickness of the core material base plate, the thickness of the base material for skin material, the size (volume) of the through hole, the compression amount (reduction rate), etc. can be determined so that the formula (2) is satisfied. desirable.

このように(2)式を満たすように圧縮することが望ましい理由は次の通りである。   The reason why it is desirable to perform compression so as to satisfy equation (2) is as follows.

すなわち、圧縮開始によって芯材用素板の材料が塑性流動を開始し、貫通孔内に芯材用素板材料が充満されるまでの間においては、空気の封じ込みは貫通孔により排除されているが、その間、芯材用素板の材料は、前述のように内径方向(貫通孔に向う方向)と外径方向との2方向に流れるところから、貫通孔よりも外側の皮材用素板に挟まれている領域のうち、貫通孔内径と芯材用素板外径との中間の円環状部分に中立点が発生する。したがってその状態で圧縮を終了してしまった場合には、既に述べたように円環状の中立点の存在により、充分な接合が得られない。しかるにこの発明の方法の場合、既に述べたように貫通孔内に芯材用素板の材料が充満された後にも圧縮を継続させて、芯材の材料を外径方向へのみ流動させているため、前述のような円環状の中立点が消滅し、芯材用素板と皮材用素板とが接触している部分では全ての領域にわたってその接触面で相対滑りが生じ、その全ての領域にわたって充分に接合されることになる。このような接合メカニズムにおいて、(hC1−hC2)/hC1の値、すなわち貫通孔内に芯材用素板の材料が充満された時点より後の圧縮過程における厚み減少率(圧下率)が0.01より小さければ、貫通孔内に芯材用素板の材料が充満された後の圧縮過程での塑性流動が充分ではなくなって、前述の円環状中立点を充分に消滅させることが困難となり、充分な接合が得られなくなるおそれがある。なお(2)式の範囲内でも特に0.2≦(hC1−hC2)/hC1≦0.7の範囲内とすることが望ましい。ここで(hC1−hC2)/hC1の値が0.7を越えれば、芯材のアルミニウムもしくはアルミニウム合金板の厚みが薄くなり過ぎて、構造部材等としての強度が不足するおそれがある。 That is, until the material for the core material starts plastic flow due to the start of compression, and the core material for the core material is filled in the through hole, air sealing is excluded by the through hole. In the meantime, the material for the core material base plate flows in the two directions of the inner diameter direction (the direction toward the through hole) and the outer diameter direction as described above. In the region sandwiched between the plates, a neutral point is generated in an annular portion between the inner diameter of the through hole and the outer diameter of the core material base plate. Therefore, when the compression is finished in that state, sufficient joining cannot be obtained due to the presence of the neutral point of the annular shape as described above. However, in the case of the method of the present invention, as described above, the compression is continued even after the material of the core material base plate is filled in the through-hole, and the material of the core material is allowed to flow only in the outer diameter direction. Therefore, the annular neutral point as described above disappears, and in the portion where the core material base plate and the skin material base plate are in contact, relative slip occurs on the contact surface over the entire region, It will be well joined over the area. In such a joining mechanism, the value of (h C1 −h C2 ) / h C1 , that is, the thickness reduction rate (rolling rate) in the compression process after the point of time when the core plate material is filled in the through holes. Is smaller than 0.01, the plastic flow in the compression process after the material of the core material plate is filled in the through hole is not sufficient, and the above-mentioned annular neutral point can be sufficiently eliminated. This may make it difficult to obtain sufficient bonding. Even within the range of the formula (2), it is particularly preferable that the range is 0.2 ≦ (h C1 −h C2 ) / h C1 ≦ 0.7. Here, if the value of (h C1 −h C2 ) / h C1 exceeds 0.7, the thickness of the core aluminum or aluminum alloy plate becomes too thin, and the strength as a structural member or the like may be insufficient. .

また前述のように積層体を圧縮するにあたっては、芯材用素板の温度を200℃以上、500℃未満の範囲内の温度に維持した状態で圧縮を行なうことが望ましい。   Moreover, when compressing a laminated body as mentioned above, it is desirable to compress in the state which maintained the temperature of the base material board for cores in the temperature within the range of 200 degreeC or more and less than 500 degreeC.

すなわち、アルミニウムおよびアルミニウム合金は、一般に変形抵抗が小さく、圧縮加工に適した素材ではあるが、200℃未満の温度域では変形抵抗が未だかなり大きく、そのため大きな加圧力を必要としてプレス等の圧縮装置のコスト増大を招く。しかるに200℃以上では、変形抵抗の減少が著しくなり、わずかな圧縮力で圧縮変形可能となる。一方500℃以上の高温となれば、皮材用素板の貫通孔内に充満された芯材材料(アルミニウムもしくはアルミニウム合金)が圧縮工具(平坦工具)表面に付着しやすくなって、作業性が低下し、また皮材用素板として用いられている鉄系材料がステンレス板や鋼板であっても、その皮材用素板の表面に酸化が生じて、芯材用素板が接合しにくくなるおそれがある。したがって小さい圧縮力で接合性を高めかつ作業性も良好とするためには、前述のように200℃以上、500℃未満の温度域に芯材用素板を維持した状態で圧縮を行なうことが望ましい。   That is, aluminum and aluminum alloys are generally materials that have low deformation resistance and are suitable for compression processing, but the deformation resistance is still quite large in the temperature range below 200 ° C. Therefore, a compression device such as a press that requires a large pressure is required. Incurs increased costs. However, at 200 ° C. or higher, the deformation resistance is remarkably reduced, and compression deformation is possible with a slight compression force. On the other hand, if the temperature is higher than 500 ° C., the core material (aluminum or aluminum alloy) filled in the through-holes of the skin material base plate is likely to adhere to the surface of the compression tool (flat tool), and workability is improved. Even if the iron-based material used as the base material for the skin material is a stainless steel plate or a steel plate, oxidation occurs on the surface of the base material for the skin material, and the core material base plate is difficult to join. There is a risk. Therefore, in order to improve the bondability and improve the workability with a small compressive force, it is necessary to perform compression while maintaining the core material base plate in a temperature range of 200 ° C. or higher and lower than 500 ° C. as described above. desirable.

なお上述のように芯材用素板を200℃以上、500℃未満の温度域内に維持した状態で圧縮を行なうための具体的手段としては、たとえば積層体をその両面側から圧縮するための平坦工具(金型)にヒータと熱電対等の温度センサを埋め込んでおき、温度センサの検出温度によりヒータをフィードバック制御すれば良い。   In addition, as a concrete means for performing compression in a state where the core material base plate is maintained in a temperature range of 200 ° C. or higher and lower than 500 ° C. as described above, for example, flat for compressing the laminate from both sides thereof A temperature sensor such as a heater and a thermocouple may be embedded in the tool (die), and the heater may be feedback controlled by the temperature detected by the temperature sensor.

なおまた、接合性をより高めるためには、芯材用素板、皮材用素板について、予め表面の酸化皮膜や油汚れ、人間汗、その他の異物等を除去しておくことが望ましい。すなわち、芯材用素板や皮材用素板の表面(接合界面)に酸化皮膜が存在すれば接合が不充分となるから、圧縮加工前に各素板の表面の酸化皮膜をエッチングあるいはサンドペーパー等により除去しておくことが望ましく、また油汚れや人間汗、異物が表面に存在しても接合が不充分となることがあるから、洗浄等によりこれらを確実に除去しておくことが望ましい。   In addition, in order to further improve the bondability, it is desirable to remove in advance surface oxide film, oil stains, human sweat, and other foreign matters from the core material base plate and the skin material base plate. That is, if an oxide film exists on the surface of the core material plate or the skin material base plate (bonding interface), the bonding becomes insufficient. Therefore, the oxide film on the surface of each base plate is etched or sanded before compression processing. It is desirable to remove them with paper, etc., and even if oil stains, human sweat, or foreign objects are present on the surface, bonding may be insufficient. desirable.

以上のようにして圧縮接合された積層体状の金属複合部材、すなわちアルミニウムもしくはアルミニウム合金を芯材としてその両面に鉄系材料からなる皮材を接合してなる金属複合部材を、実際の最終製品に使用するにあたっては、適宜切削加工やプレス打抜加工等を行なって、最終製品形状に加工すれば良い。   A laminated metal composite member compression-bonded as described above, that is, a metal composite member in which aluminum or an aluminum alloy is used as a core material, and a skin material made of an iron-based material is bonded on both sides, is actually the final product. In use, the final product shape may be formed by appropriately performing cutting or press punching.

例えばブレーキロータに使用する場合には、外周部分を真円状に加工するとともに、中央の貫通孔に相当する部分(芯材材料によって埋められている)を打抜きや切削により除去して、その部分をブレーキロータ取付孔とすれば良い。なお用途によっては貫通孔に相当する部分を除去せずに最終製品として使用することも考えられる。   For example, when used for a brake rotor, the outer peripheral portion is processed into a perfect circle, and the portion corresponding to the central through hole (filled with the core material) is removed by punching or cutting, and the portion May be used as a brake rotor mounting hole. Depending on the application, it may be possible to use the final product without removing the portion corresponding to the through hole.

実施例1
芯材用素板として、アルミニウム合金(A5454合金O材)からなる板厚5mm、外径50mmの円板状打抜材を用い、皮材用素板として、中央に円形状の貫通孔を有するステンレス鋼(SUS430)からなる板厚0.4mm、外径60mm、内径(貫通孔の径)30mmのレーザー切断による2枚の円環状皮材を用意した。そして芯材用素板の両面を80番ペーパー砥石により表面を研磨し、その後メチルエチルケトン中にて超音波洗浄を行なった。一方、各皮材用素板の片面を320番ペーパー砥石にて研磨し、次いでメチルエチルケトン中にて超音波洗浄を施した。これらの芯材用素板および2枚の皮材用素板を重ね合わせ、その積層体を図3、図4に概略的に示すような50ton、4ポストタイプの油圧プレス装置により圧縮した。
Example 1
As the core material base plate, a disk-shaped punching material having a thickness of 5 mm and an outer diameter of 50 mm made of an aluminum alloy (A5454 alloy O material) is used, and as the base material for the skin material, a circular through hole is provided at the center. Two annular skins made of stainless steel (SUS430) with a thickness of 0.4 mm, an outer diameter of 60 mm, and an inner diameter (through hole diameter) of 30 mm were prepared. Then, both surfaces of the core material base plate were polished with a No. 80 paper grindstone, and then ultrasonically cleaned in methyl ethyl ketone. On the other hand, one side of each base plate for skin material was polished with a No. 320 paper grindstone, and then subjected to ultrasonic cleaning in methyl ethyl ketone. These core material base plates and two skin material base plates were stacked, and the laminate was compressed by a 50-ton, 4-post type hydraulic press apparatus as schematically shown in FIGS.

ここで、図3において5A,5Bは圧縮用平坦工具としての表面が平坦な上下金型であり、上金型5Aは枠体6内を油圧シリンダ9により昇降可能なスライド7に保持されており、下金型5Bは枠体6に固定されたボルスター8に保持されている。そして上金型5A、下金型5Bには、図4に示すようにそれぞれ複数のヒータ10が埋め込まれるとともに、温度センサとしての熱電対11が埋め込まれており、温度コントローラ12によって温度制御されるようになっている。   Here, in FIG. 3, 5A and 5B are upper and lower molds having a flat surface as a flat tool for compression, and the upper mold 5A is held by a slide 7 that can be moved up and down by a hydraulic cylinder 9 inside the frame body 6. The lower mold 5B is held by a bolster 8 fixed to the frame body 6. A plurality of heaters 10 are embedded in the upper mold 5A and the lower mold 5B, respectively, and a thermocouple 11 as a temperature sensor is embedded in the upper mold 5A and the lower mold 5B, and the temperature is controlled by the temperature controller 12. It is like that.

上述のような油圧プレス装置によって前述の積層体を圧縮するにあたっては、予め上述の温度制御によって上金型5A、下金型5Bを400℃に加熱保持しておき、その400℃の状態で上金型5A、下金型5Bの間に積層体を挟み、3分間保持した後、50tonの加圧力で加圧して圧縮し、接合した。なおここで400℃の金型で3分間挟んだ場合、いずれの材料も通常は約1.5分で金型温度と同一となることが予想されるが、ばらつきに対する安全性を考慮して、3分間挟むこととした。   In compressing the above-described laminate by the hydraulic press device as described above, the upper mold 5A and the lower mold 5B are heated and held at 400 ° C. in advance by the above-described temperature control, and the upper state is maintained at 400 ° C. The laminated body was sandwiched between the mold 5A and the lower mold 5B and held for 3 minutes, and then pressed and compressed with a pressing force of 50 ton and joined. In this case, when sandwiched between 400 ° C. molds for 3 minutes, all materials are expected to be the same as the mold temperature in about 1.5 minutes, but in consideration of safety against variations, It was decided to pinch for 3 minutes.

前述のようにして400℃で3分間保持後、加圧して圧縮接合させることによって得られた接合体(金属複合部材)について、接合部分の断面を金属顕微鏡により観察したところ、接合界面の不良はなく、全体にわたって良好かつ充分に接合されていることが確認された。   Regarding the joined body (metal composite member) obtained by holding at 400 ° C. for 3 minutes as described above and pressurizing and compressing and joining, a cross section of the joined portion was observed with a metal microscope. However, it was confirmed that good and sufficient bonding was achieved throughout.

実施例2
皮材用素板における貫通孔の有無の影響、および貫通孔の最大径dLOと芯材用素板の初期外径の最小径dCOとの比dCO/dLOの値による影響、および加圧・圧縮接合時の温度(加工温度)の影響を調べるため、次のような実施例、比較例を行なった。
Example 2
The effect of the presence or absence of through-holes in the skin material base plate, the effect of the ratio d CO / d LO between the maximum diameter d LO of the through holes and the minimum diameter d CO of the initial outer diameter of the core material base plate, and In order to investigate the influence of temperature (processing temperature) at the time of pressurization and compression bonding, the following examples and comparative examples were performed.

すなわち、芯材用素板としては実施例1と同様にA5454合金アルミニウム板からなる板厚5mm、外径50mmの円板を用いる一方、皮材用素板のSUS430ステンレス鋼板としては、中央部に貫通孔を形成していないもの、中央部に直径(dLO)が5mmの円形状の貫通孔を有するもの、同じく中央部に直径(dLO)が30mmの円形状の貫通孔を有するものを用意した。なおいずれの皮材用素板も厚みは0.4mm、外径60mmの円板状のものである。そしてこれらの芯材用素板、皮材用素板について、実施例1の場合と同様に研磨、洗浄を行なってから、実施例1と同様に重ね合わせ、その積層体について実施例1と同様なプレス装置を用いて、保持・加圧の温度を変化させた点以外の条件については実施例1と同様な条件で加圧による圧縮接合を行なった。なおこの圧縮接合過程では、芯材厚みに関する前記(2)式の値(hC1−hC2)/hC1を調べた。 That is, as the base material for the core material, a disk having a thickness of 5 mm and an outer diameter of 50 mm made of an A5454 alloy aluminum plate is used in the same manner as in Example 1. On the other hand, as the SUS430 stainless steel plate for the base material for the skin material, Those having no through hole, those having a circular through hole with a diameter (d LO ) of 5 mm in the center, and those having a circular through hole with a diameter (d LO ) of 30 mm in the center. Prepared. All the base materials for skin material are in the shape of a disc having a thickness of 0.4 mm and an outer diameter of 60 mm. Then, these core material base plate and skin material base plate are polished and washed in the same manner as in Example 1, and then superposed in the same manner as in Example 1. The laminated body is the same as in Example 1. Using a pressing device, compression bonding by pressurization was performed under the same conditions as in Example 1 except that the temperature of holding and pressurization was changed. In this compression bonding process, the value (h C1 −h C2 ) / h C1 of the equation (2) relating to the core material thickness was examined.

得られた接合体(金属接合部材)について、中央部(但し貫通孔を有する芯材用素板を用いた場合は、貫通孔よりも外側の部分で、貫通孔寄りの部分、すなわち貫通孔内縁に近い接合部分を意味する)および外周に近い部分(外側部)における接合性と、中央部の浮きの有無(接合界面が密着せず、皮材と芯材との間が離れて皮材が浮き上がっている状態の有無)を断面を金属組織顕微鏡により観察し、接合界面が完全に金属接合されている場合を“良”として○印を付し、接合界面が完全に金属接合されていない場合を“不良”として×印を付した。また中心部の浮きの有無は、接合界面を観察して接合界面が離れている場合を“不良”として×印を付し、密着している場合を“良”として○印を付した。   About the obtained bonded body (metal bonding member), in the case of using a core part base plate having a through-hole, a portion closer to the through-hole, that is, a portion closer to the through-hole, that is, an inner edge of the through-hole The joint part close to the outer periphery and the outer part (outer part) and the presence or absence of floating in the central part (the joint interface does not adhere, the skin material and the core material are separated and the skin material is When the cross section is observed with a metallographic microscope and the bonding interface is completely metal-bonded, the mark is marked as “good” and the bonding interface is not completely metal-bonded Is marked as “bad”. In addition, the presence or absence of floating in the center was marked with “X” as “bad” when the bonded interface was observed and marked with “good” when the bonded interface was separated.

Figure 2006000886
Figure 2006000886

表1に示すように、皮材用素板として貫通孔のないものを用いた製造番号1〜10の比較例のうち、150℃以下の低温で圧縮接合を行なった例(製造番号1〜4)の場合は、中央部の板の浮きは認められないものの、中央部分、外側部分ともに接合しておらず、また250℃以上の温度で圧縮接合を行なった例(製造番号5〜10)の場合は、外側部分はいずれも接合されていたが、中央部では板の浮きが認められ、接合していなかった。   As shown in Table 1, among the comparative examples of production numbers 1 to 10 using those having no through-holes as the base material for the skin material, examples in which compression bonding was performed at a low temperature of 150 ° C. or lower (production numbers 1 to 4) In the case of), the central plate is not lifted, but neither the central portion nor the outer portion is bonded, and the compression bonding is performed at a temperature of 250 ° C. or higher (manufacturing numbers 5 to 10). In this case, the outer portions were all joined, but the plate was lifted at the central portion and was not joined.

一方、中央に貫通孔を形成した皮材用素板を用いた例(製造番号11〜20)では、加工温度、圧縮値を種々変化させた全ての例において、中央部での板の浮きが認められなかった。そしてこれらのうち、150℃以下の低温で圧縮接合を行なった例(製造番号11〜14)の場合は、中央部および外側部分で良好な接合が得られなかったが、250℃以上の高温で圧縮接合を行なった例(製造番号15〜20)の場合は、中央部分、外側部分、ともに良好な接合が得られた。またこれらの製造番号15〜20の例の場合、dCO/dLOの値、および(hC1−hC2)/hC1の値もこの発明で規定する範囲内となっており、圧縮接合温度がこの発明で規定する範囲内となっていることと相俟って、優れた接合性が得られたものと思われる。 On the other hand, in the examples (manufacturing numbers 11 to 20) using the base material for skin material in which a through hole is formed in the center, in all the examples in which the processing temperature and the compression value are variously changed, the plate floats at the center. I was not able to admit. Of these, in the case of the compression bonding at a low temperature of 150 ° C. or lower (Production Nos. 11 to 14), good bonding was not obtained at the central portion and the outer portion, but at a high temperature of 250 ° C. or higher. In the case of the example in which compression bonding was performed (manufacturing numbers 15 to 20), good bonding was obtained in both the central portion and the outer portion. In the case of these production numbers 15 to 20, the value of d CO / d LO and the value of (h C1 -h C2 ) / h C1 are also within the range defined by the present invention, and the compression bonding temperature It is considered that excellent bondability is obtained in combination with the fact that the value is within the range specified in the present invention.

実施例3
この実施例3は、加圧による圧縮接合過程における芯材厚みの変化量(hC1−hC2)/hC1が及ぼす影響および圧縮接合温度(加工温度)が及ぼす影響を調べるためのものである。すなわち、芯材用素板としてA5454合金アルミニウム板からなる外径60mmの円板状の種々の厚みのものを用い、皮材用素板として、外径が60mmのSUS430ステンレス鋼板からなりかつ中央部に円形状の貫通孔を有する種々の厚みのものを用いた。そして実施例1と同様にこれらの素板について、研磨、洗浄を行なってから実施例1と同様に重ね合わせ、その積層体について実施例1と同様なプレス装置を用いて、加圧による圧縮接合を行なって、接合体(金属複合部材)を得た。なお加工温度(圧縮接合温度)および圧縮量は種々変化させた。またこの圧縮接合過程では、前記(2)式の値(hC1−hC2)/hC1を調べた。
Example 3
This Example 3 is for investigating the influence of the amount of change (h C1 -h C2 ) / h C1 in the thickness of the core material in the compression bonding process by pressurization and the influence of the compression bonding temperature (working temperature). . That is, the core material base plate is made of an A5454 alloy aluminum plate having an outer diameter of 60 mm and has various thicknesses, and the skin material base plate is made of a SUS430 stainless steel plate having an outer diameter of 60 mm and has a central portion. Various thicknesses having circular through holes were used. Then, these base plates are polished and washed in the same manner as in Example 1 and then superposed in the same manner as in Example 1. The laminated body is compressed by pressure using the same pressing device as in Example 1. To obtain a joined body (metal composite member). The processing temperature (compression bonding temperature) and the amount of compression were variously changed. In this compression joining process, the value (h C1 −h C2 ) / h C1 of the above equation (2) was examined.

得られた接合体(金属複合部材)について、断面の金属顕微鏡による観察によって接合界面の接合性を調べるとともに、中央部分の浮き(接合界面の離れ)と、平坦工具表面(平坦金型表面)へのアルミニウムの凝着の有無、および皮材の酸化の有無を調べた。これらの結果を表2に示す。   About the obtained bonded body (metal composite member), the bonding property of the bonding interface is examined by observing the cross section with a metal microscope, and the central part is floated (separation of the bonding interface) and the flat tool surface (flat mold surface) The presence or absence of aluminum adhesion and the presence or absence of oxidation of the skin material were examined. These results are shown in Table 2.

なお表2において、接合性は、中央部分、外側部分を問わず、完全に金属接合されている場合に○印を付し、一部に金属接合されていない界面が存在するが、実用上支障のない程度の場合に△印を付し、金属接合されていない部分が広くて実用上問題が生じる場合に×印を付した。また中央部の浮きについては、界面の離れが存在しない場合に○印を付した。さらに工具へのアルミ凝着は、凝着が全くなかった場合に○印、わずかに凝着が見られたが実用上支障のない程度の場合に△印、凝着が激しく、操業上問題が生じる場合に×印を付した。そしてまた皮材の酸化については、皮材の酸化が全く認められなかった場合に○印を付し、わずかに酸化が認められたが実用上支障がない場合に△印を付し、酸化が著しく、製品外観上問題がある場合に×印を付した。   In Table 2, the bondability is marked with a circle when the metal part is completely metal-bonded regardless of the central part or the outer part, and there is an interface that is not partly metal-bonded. A Δ mark was given when there was no crack, and a X mark was given when there was a problem in practical use due to the wide area where the metal was not joined. In addition, the floating in the center is marked with a mark when there is no interface separation. Furthermore, aluminum adhesion to the tool was marked with a circle when there was no adhesion, and a slight adhesion was observed, but when there was no practical problem, the adhesion was severe, and there was a problem in operation. A cross was marked when it occurred. In addition, regarding the oxidation of the skin material, a circle is marked when no oxidation of the skin material is observed, and a triangle is marked when oxidation is slightly observed but there is no practical problem. An X mark was given when there was a significant problem in the appearance of the product.

Figure 2006000886
Figure 2006000886

表2に示すように、圧縮接合温度が150℃以下の場合(製造番号21〜23)には、良好な接合性が得られなかった。   As shown in Table 2, when the compression bonding temperature was 150 ° C. or lower (Production Numbers 21 to 23), good bondability was not obtained.

一方、圧縮接合温度が200℃以上の場合(製造番号24〜37)には、接合性はほぼ良好であった。そしてこれらのうち、圧縮接合温度がこの発明で規定する上限を越える550℃の例(製造番号36、37)の場合は、工具へのアルミの凝着が生じるとともに、皮材の酸化による変色が顕著となった。一方、圧縮接合温度がこの発明の範囲内である200〜500℃の範囲内の例(製造番号24〜35)では、工具へのアルミの凝着はほとんど生じず、また皮材の酸化による変色も少なかった。またここで、これらの製造番号24〜35の例の場合は、いずれもdCO/dLOの値、(hC1−hC2)/hC1の値がこの発明で規定する範囲内となっており、圧縮接合温度がこの発明で規定する範囲内となっていることと相俟って、優れた接合性が得られたものと考えられる。 On the other hand, when the compression bonding temperature was 200 ° C. or higher (manufacturing numbers 24 to 37), the bondability was almost good. Of these, in the case of an example of 550 ° C. where the compression bonding temperature exceeds the upper limit specified in the present invention (manufacture numbers 36 and 37), aluminum adheres to the tool and discoloration due to oxidation of the skin material occurs. Became prominent. On the other hand, in the case where the compression bonding temperature is in the range of 200 to 500 ° C., which is within the range of the present invention (manufacture numbers 24 to 35), aluminum hardly adheres to the tool, and the discoloration due to oxidation of the skin material There were few. Here, in the case of these production numbers 24 to 35, the value of d CO / d LO and the value of (h C1 -h C2 ) / h C1 are both within the range defined by the present invention. Thus, it is considered that excellent jointability was obtained in combination with the compression joining temperature being within the range specified in the present invention.

実施例4
芯材用素板として、アルミニウム合金(A5454合金)からなる板厚5mm、外径50mmの円板状打抜材を用い、皮材用素板として、板面中央に正方形状の貫通孔を有するステンレス鋼(SUS430)からなる板厚0.4mm、外径60mm、正方形貫通孔の一辺が10mmのレーザー切断による2枚の円環状皮材を用意した。そしてこれらの素板について、実施例1と同様に研磨、洗浄を行なった後、実施例1と同様に重ね合わせて、実施例1と同様な条件で保持・加圧接合を行なった。得られた接合体(金属複合部材)について、接合部分の断面を金属顕微鏡により観察したところ、接合界面の不良はなく、全体にわたって良好かつ充分に接合されていることが確認された。
Example 4
As a core material base plate, a disk-shaped punching material made of an aluminum alloy (A5454 alloy) with a thickness of 5 mm and an outer diameter of 50 mm is used. As a base material for skin material, a square-shaped through hole is provided at the center of the plate surface. Two annular skins made of stainless steel (SUS430) by laser cutting with a plate thickness of 0.4 mm, an outer diameter of 60 mm, and one side of a square through hole of 10 mm were prepared. Then, these base plates were polished and washed in the same manner as in Example 1, and then superposed in the same manner as in Example 1 to perform holding and pressure bonding under the same conditions as in Example 1. About the obtained joined body (metal composite member), when the cross section of the junction part was observed with the metal microscope, it was confirmed that there is no defect of a joining interface and it has joined well and fully over the whole.

この発明の方法に用いられる芯材用素板および皮材用素板の一例を示す斜視図である。It is a perspective view which shows an example of the base plate for core materials and the base plate for skin materials used for the method of this invention. この発明の方法に従って積層体を圧縮接合する状況を段階的に示す略解的な縦断面図である。It is a rough longitudinal cross-sectional view which shows the condition which carries out compression joining of the laminated body according to the method of this invention in steps. この発明の実施例において使用した油圧プレス装置の全体構成を概略的に示す正面図である。It is a front view which shows roughly the whole structure of the hydraulic press apparatus used in the Example of this invention. この発明の実施例において使用した油圧プレス装置の金型部分の温度制御のための構成を示す平面図である。It is a top view which shows the structure for the temperature control of the metal mold | die part of the hydraulic press apparatus used in the Example of this invention.

符号の説明Explanation of symbols

1 芯材用素板
2A,2B 皮材用素板
3A,3B 貫通孔
4 積層体
5A 上金型
5B 下金型
DESCRIPTION OF SYMBOLS 1 Core material base plate 2A, 2B Skin base material 3A, 3B Through-hole 4 Laminated body 5A Upper die 5B Lower die

Claims (5)

アルミニウムもしくはアルミニウム合金からなる平板状の芯材の両面に鉄系材料からなる平板状の皮材を重ね合わせてこれらを接合一体化してなる金属複合部材の製造方法において、
鉄系材料からなる2枚の皮材用素板に、予めその一方の板面から他方の板面まで貫通する貫通孔を形成しておき、その2枚の皮材用素板を、アルミニウムもしくはアルミニウム合金からなる芯材用素板の両面に重ね合わせて積層体とし、その積層体についてその両面側から圧縮し、その圧縮力によって芯材用素板の材料を前記貫通孔内に侵入するように流動変形させ、かつ芯材用素板の材料が貫通孔内に充満された後にもさらに圧縮が進行するように圧縮して、芯材用素板と皮材用素板とを接合することを特徴とする、金属複合部材の製造方法。
In the method for producing a metal composite member obtained by superimposing a flat skin material made of an iron-based material on both sides of a flat core material made of aluminum or an aluminum alloy and joining and integrating them,
A through-hole penetrating from one plate surface to the other plate surface is previously formed in two skin material base plates made of iron-based material, and the two skin material base plates are made of aluminum or A laminated body is laminated on both sides of the core material plate made of an aluminum alloy, the laminated body is compressed from both sides, and the material of the core material base plate enters the through hole by the compressive force. The core material base plate and the skin material base plate are joined by compressing so that the compression further proceeds even after the material of the core material base plate is filled in the through hole. A method for producing a metal composite member.
請求項1に記載の金属複合部材の製造方法において、
前記皮材用素板の貫通孔の最大径dL0と、芯材用素板の初期外径の最小径dC0との関係が、次の(1)式:
50>dC0/dL0>1 ・・・(1)
を満たすように各素板を用意して、積層体を圧縮することを特徴とする、金属複合部材の製造方法。
In the manufacturing method of the metal composite member according to claim 1,
The relationship between the maximum diameter d L0 of the through hole of the skin material base plate and the minimum outer diameter d C0 of the initial outer diameter of the core material base plate is expressed by the following equation (1):
50> d C0 / d L0 > 1 (1)
Each base plate is prepared so that it may satisfy | fill, and a laminated body is compressed, The manufacturing method of the metal composite member characterized by the above-mentioned.
請求項1もしくは請求項2に記載の金属複合部材の製造方法において、
前記積層体を圧縮するにあたり、圧縮過程中途の前記貫通孔内に芯材用素板の材料が充満された時点での芯材用素板における皮材用素板に挟まれている部分の芯材用素板の厚みをhC1、貫通孔内に芯材用素板の材料が充満された後さらに圧縮が行なわれて最終的に圧縮が終了した時点での芯材における皮材に挟まれている部分の芯材厚みをhC2とし、これらの厚みhC1、hC2が、次の(2)式:
0.01≦(hC1−hC2)/hC1 ・・・(2)
を満たすように圧縮することを特徴とする、金属複合部材の製造方法。
In the manufacturing method of the metal composite member according to claim 1 or 2,
In compressing the laminated body, the core of the portion sandwiched between the base materials for the skin of the core material for the core material at the time when the material for the core material is filled in the through hole in the middle of the compression process The thickness of the material base plate is h C1 , and after the material for the core material base plate is filled in the through hole, further compression is performed, and finally the compression is finished and the material is sandwiched between the skin materials in the core material. The thickness of the core material of the portion is h C2, and these thicknesses h C1 and h C2 are expressed by the following formula (2):
0.01 ≦ (h C1 −h C2 ) / h C1 (2)
A method for producing a metal composite member, wherein the metal composite member is compressed so as to satisfy.
請求項1ないし請求項3に記載の金属複合部材の製造方法において、
前記積層体を圧縮するにあたり、芯材用素板の温度を200℃以上500℃未満の範囲内の温度に制御した状態で圧縮することを特徴とする、金属複合部材の製造方法。
In the manufacturing method of the metal composite member according to claim 1 to claim 3,
A method for producing a metal composite member, comprising compressing the laminate in a state where the temperature of the core material base plate is controlled to a temperature within a range of 200 ° C. or higher and lower than 500 ° C.
請求項1ないし請求項4のいずれかの請求項に記載の方法によってブレーキロータ用素板を製造することを特徴とする、ブレーキロータの製造方法。   A brake rotor manufacturing method, characterized in that a brake rotor base plate is manufactured by the method according to any one of claims 1 to 4.
JP2004179376A 2004-06-17 2004-06-17 Method for producing metal combined member Pending JP2006000886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004179376A JP2006000886A (en) 2004-06-17 2004-06-17 Method for producing metal combined member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004179376A JP2006000886A (en) 2004-06-17 2004-06-17 Method for producing metal combined member

Publications (1)

Publication Number Publication Date
JP2006000886A true JP2006000886A (en) 2006-01-05

Family

ID=35769706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004179376A Pending JP2006000886A (en) 2004-06-17 2004-06-17 Method for producing metal combined member

Country Status (1)

Country Link
JP (1) JP2006000886A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008006465A (en) * 2006-06-29 2008-01-17 Nissan Motor Co Ltd Method for joining dissimilar metals

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008006465A (en) * 2006-06-29 2008-01-17 Nissan Motor Co Ltd Method for joining dissimilar metals

Similar Documents

Publication Publication Date Title
US2718690A (en) Method of producing composite metals
US20090008428A1 (en) Method of manufacturing an article by superplastic forming and diffusion welding
JP4253488B2 (en) Solid state bonding apparatus and solid state bonding method for dissimilar metal thin plates
JP6554263B2 (en) Superplastically formed ultrasonically welded metal structures
JPH0249267B2 (en)
JP3629254B2 (en) Manufacturing method of non-welded magnesium / aluminum bonded member
JP6016095B2 (en) Joining method and joining parts
JP2006000886A (en) Method for producing metal combined member
JP5892306B2 (en) Joining method and joining parts
JP2006007305A (en) Method for manufacturing composite member
US6127051A (en) Copper/steel laminated sheet for use in manufacturing printed circuit boards
JP6740929B2 (en) Method for manufacturing composite member for anodizing treatment and composite member for anodizing treatment
JPS58141880A (en) Joining method of sintered hard alloy
JP2631460B2 (en) Method for producing copper alloy clad material
JP4261037B2 (en) Method for manufacturing brake disc made of metal matrix composite
JP2005193274A (en) Method for manufacturing stacked aluminum alloy die
JPH09300104A (en) Complex tool material of super-hard alloy system
JP2823411B2 (en) Diffusion bonding member manufacturing method
JP3100022B2 (en) Solid phase diffusion bonding using insert material
JP3154361B2 (en) Solid phase diffusion bonding method and material of particle dispersed composite member
JP3218873B2 (en) Solid phase diffusion bonding
JPH035073A (en) Method for joining cemented carbide and steel and joined body thereof
JP2005095918A (en) Method for manufacturing laminated die
JP2567160B2 (en) Method for joining alumina insulating member and metal member of sodium-sulfur battery
JPH08318381A (en) Joining method of metal material