JP2008001941A - Composite material, and its manufacturing method - Google Patents

Composite material, and its manufacturing method Download PDF

Info

Publication number
JP2008001941A
JP2008001941A JP2006172027A JP2006172027A JP2008001941A JP 2008001941 A JP2008001941 A JP 2008001941A JP 2006172027 A JP2006172027 A JP 2006172027A JP 2006172027 A JP2006172027 A JP 2006172027A JP 2008001941 A JP2008001941 A JP 2008001941A
Authority
JP
Japan
Prior art keywords
oxide
composite material
layer
metal
mainly composed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006172027A
Other languages
Japanese (ja)
Other versions
JP5151077B2 (en
Inventor
Hironori Hatono
広典 鳩野
Masahiro Mizukane
正博 水兼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2006172027A priority Critical patent/JP5151077B2/en
Publication of JP2008001941A publication Critical patent/JP2008001941A/en
Application granted granted Critical
Publication of JP5151077B2 publication Critical patent/JP5151077B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite material in which a metal or a resin material is joined with a structure consisting mainly of an oxide, and the high adhesive force on its interface can be kept, and its manufacturing method. <P>SOLUTION: The manufacturing method of the composite material comprises a step of depositing an oxide thin layer on a surface of a metal or an organic material by an aerosol deposition method, and a step of joining the oxide thin layer with a structure mainly consisting of an oxide on an interface therebetween by a chemical bond via oxygen molecules. The composite material manufactured by the manufacturing method has a high joining strength by an anchor structure achieved by the aerosol deposition method on the interface between the metal or the organic material and the oxide thin layer as an intermediate layer for joining. Further, the composite material has a high joining strength by the chemical bond via oxygen on the interface between the oxide thin layer and the structure consisting mainly of the oxide. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、金属または有機物材料と酸化物を主体とする構造物が接合して構成された複合材料とその製造方法に関する発明である。   The present invention relates to a composite material formed by joining a metal or organic material and a structure mainly composed of an oxide, and a method for manufacturing the same.

従来から材料表面に酸化物などの膜を形成させる手段として、ゾルゲル法やポリシラザン法などが知られている。これらは溶液からの処理で、材料表面に前駆体のゾルを形成させ、これに熱処理を加えるなどして金属酸化物を形成させる方法であるが、密着力を得るのは難しく、ガラスやクロム酸化物などを表面に形成している金属材料などにおいては、材料の表面に露出している酸素と結合させて密着力を得て、実用を図ることが行われている。しかしながら金属材料あるいは樹脂材料表面に、例えばゾルゲルやポリシラザンなどの化学反応を利用して金属酸化物であるセラミックスやガラスの膜を形成させる際において、金属材料表面の酸化層に存在するOH基が少ない場合、あるいは酸化しにくい金属材料を使用する場合などでは、この金属元素と溶液由来の反応生成酸素との結合サイトが少ないために、形成された膜と金属材料との接合強度が弱く、剥離が生じやすかった。すなわち表面に酸素の少ない金属や樹脂と、酸化物セラミックスなどの異種の材料同士を接合させる力として、M(金属材料中の金属原子)−O(酸素)−M`(セラミック構造物中の金属元素)の結合をうまく利用させることが難しかった。   Conventionally, a sol-gel method, a polysilazane method, and the like are known as means for forming a film such as an oxide on the surface of a material. These are treatments from a solution, in which a precursor sol is formed on the surface of the material and a metal oxide is formed by, for example, heat treatment. However, it is difficult to obtain adhesion, but it is difficult to obtain glass or chromium oxidation. In the case of a metal material or the like having an object or the like formed on the surface thereof, it has been practiced to obtain an adhesive force by being combined with oxygen exposed on the surface of the material. However, when a ceramic or glass film that is a metal oxide is formed on the surface of a metal material or resin material using a chemical reaction such as sol-gel or polysilazane, there are few OH groups present in the oxide layer on the surface of the metal material. In this case, or when using a metal material that is difficult to oxidize, the bonding strength between the metal element and the reaction-generated oxygen derived from the solution is small. It was easy to occur. That is, M (metal atom in the metal material) -O (oxygen) -M ` (metal in the ceramic structure) is used as a force for joining different materials such as oxide ceramics and the like with a metal or resin with less oxygen on the surface. It was difficult to make effective use of (element) bonds.

これの密着性を改善するための手法として、特許文献1では、Ca、Mg、Sr、Ba、Zn、Co、Cr、Si、Al、P、Mo、Mn、Ni、W、V、Nb、Zrから成る群から選ばれた元素の酸化物を金属製の基材に塗布して化学的に吸着させて固定して下地処理層とした後、酸化チタンゾルを塗布して光触媒層を形成することで、密着性を向上させることが開示されている。しかしながらこの方法も金属基板の金属元素と酸化物膜の酸素との化学結合を密着力の原動力としていると考えられ、金属基板表面にOH基が少ない場合には効果が薄いものと考えられる。   As a method for improving the adhesion, Patent Document 1 discloses Ca, Mg, Sr, Ba, Zn, Co, Cr, Si, Al, P, Mo, Mn, Ni, W, V, Nb, and Zr. By applying an oxide of an element selected from the group consisting of a metal substrate, chemically adsorbing and fixing it to form a base treatment layer, and then applying a titanium oxide sol to form a photocatalyst layer. It is disclosed to improve the adhesion. However, this method is also considered to have a chemical bond between the metal element of the metal substrate and oxygen of the oxide film as a driving force of the adhesion, and is considered to be less effective when there are few OH groups on the surface of the metal substrate.

また特許文献2では、基材上にシランカップリング剤を下塗りして固定膜を形成させた後、この上にポリシラザン含有液の相を形成し、シリカ膜を被覆する製造法によりシリカ層を密着良く形成させる技術が開示されている。これは、樹脂材料表面の有機高分子と、シランカップリング剤中の有機官能基との親和性により密着力が改善される仕組みを利用しており、特に樹脂材料基板を利用する際に採用可能な方法である。この方法は金属基材に対して効力をもたないものと考えられる。   Further, in Patent Document 2, a silane coupling agent is primed on a base material to form a fixed film, a polysilazane-containing liquid phase is formed thereon, and the silica layer is adhered by a manufacturing method for coating the silica film. Techniques for forming well are disclosed. This uses a mechanism that improves adhesion due to the affinity between the organic polymer on the surface of the resin material and the organic functional group in the silane coupling agent, and is particularly applicable when using a resin material substrate. It is a simple method. This method is believed to have no effect on metal substrates.

一方室温で様々な基材上にセラミックスの構造物を直接形成させる方法としてエアロゾルデポジション法が知られている。特許文献3では樹脂基材上のエアロゾルデポジション方を用いて、脆性材料の構造物を形成させる方法について開示がある。特許文献4では、板状の基材に金属酸化物層を形成し、この上にカルボキシル基が共有結合で固定化されたマイクロアレイ用基板に関する開示がある。すなわち、エアロゾルデポジション法によって形成した密着力の高い金属酸化物層表面に分子を無数に強固に固定した例である。   On the other hand, an aerosol deposition method is known as a method for directly forming ceramic structures on various substrates at room temperature. Patent Document 3 discloses a method of forming a brittle material structure using an aerosol deposition method on a resin substrate. Patent Document 4 discloses a microarray substrate in which a metal oxide layer is formed on a plate-like base material and a carboxyl group is immobilized thereon by a covalent bond. In other words, this is an example in which molecules are infinitely firmly fixed on the surface of a metal oxide layer having high adhesion formed by an aerosol deposition method.

特開2000−14755号公報JP 2000-14755 A 特開2003−183016号公報Japanese Patent Laid-Open No. 2003-183016 特開2004−091614号公報JP 2004-091614 A 特開2004−069355号公報JP 2004-069355 A

本発明は、上記問題を解決するためになされたもので、本発明の課題は、金属や樹脂材料と酸化物を主体とする構造物とが接合された複合材料において、その界面での密着力を高く保つことである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an adhesive force at the interface of a composite material in which a metal or resin material and a structure mainly composed of an oxide are bonded. Is to keep it high.

上記課題を解決すべく本発明では、金属または有機物材料の表面にエアロゾルデポジション法にて酸化物薄層を形成する工程と、この酸化物薄層と酸化物を主体とする構造物とをこれらの界面において酸素分子を介して化学結合を生じさせて接合させる工程と、からなる複合材料の製造方法とした。   In order to solve the above problems, the present invention includes a step of forming a thin oxide layer on the surface of a metal or organic material by an aerosol deposition method, and a structure mainly composed of the thin oxide layer and the oxide. And a step of producing a chemical bond via oxygen molecules at the interface and joining them.

酸化物薄層と酸化物を主体とする構造物を接合する工程は、ゾルゲル法、ポリシラザン法、シランカップリング法などの溶液処理法とした。   The step of joining the oxide thin layer and the structure mainly composed of oxide was a solution treatment method such as a sol-gel method, a polysilazane method, or a silane coupling method.

またこの複合構造物の製造方法により製造された複合材料であり、酸化物薄層の層厚が1μm未満とした。また金属または有機物材料の表面と、酸化物薄層との界面にはアンカー層が形成されている複合材料とした。   Moreover, it is the composite material manufactured by this manufacturing method of a composite structure, and the layer thickness of the oxide thin layer was made into less than 1 micrometer. Further, a composite material in which an anchor layer was formed at the interface between the surface of the metal or organic material and the thin oxide layer was used.

また酸化物を主体とする構造物が光触媒活性を有する複合材料とした。   Further, a structure mainly composed of an oxide was used as a composite material having photocatalytic activity.

本発明によれば、金属または有機物材料と、酸化物を主体とする構造物とで形成される複合材料において、その界面での密着力を高く保つことが可能となる。   According to the present invention, in a composite material formed of a metal or organic material and a structure mainly composed of an oxide, it is possible to keep high adhesion at the interface.

本発明の一態様においては、金属または有機物材料の表面にエアロゾルデポジション法にて酸化物薄層を形成する工程を施すことで、下記するアンカー層に基づき材料上に強固に固定された酸化物層を形成させる。続いて酸化物を主体とする構造物と前記酸化物薄層とをこれらの酸素リッチな界面において酸素分子を介して化学結合を生じさせて接合させる工程により、酸化物層と構造物を強固に接合させる。従ってこれらの効果で金属または有機物材料と構造物が強固に接合された複合材料が得られる。   In one embodiment of the present invention, an oxide thin layer is formed on the surface of a metal or organic material by an aerosol deposition method, so that the oxide is firmly fixed on the material based on the anchor layer described below. A layer is formed. Subsequently, the oxide layer and the structure are strongly bonded to each other by the step of joining the oxide-based structure and the thin oxide layer to each other through an oxygen molecule at the oxygen-rich interface. Join. Therefore, a composite material in which the metal or organic material and the structure are firmly bonded can be obtained by these effects.

ここでエアロゾルデポジション法について説明する。この方法はセラミックスなどの脆性材料微粒子をガス中に分散させたエアロゾルをノズルから基材に向けて噴射し、金属やガラス、セラミックスやプラスチックなどの様々な基材に微粒子を衝突させ、この衝突の衝撃により脆性材料微粒子を変形や破砕を起させしめてこれらを接合させ、基材上に微粒子の構成材料からなる構造物をダイレクトで形成させることを特徴としており、特に加熱手段を必要としない常温で構造物が形成可能であり、焼成体同等の機械的強度を保有する構造物を得ることができる。この方法に用いられる装置は、基本的にエアロゾルを発生させるエアロゾル発生器と、エアロゾルを基材に向けて噴射するノズルとからなり、ノズルの開口よりも大きな面積で構造物を作製する場合には、基材とノズルを相対的に移動・揺動させる位置制御手段を有し、減圧下で作製を行う場合には構造物を形成させるチャンバーと真空ポンプを有し、またエアロゾルを発生させるためのガス発生源を有することが一般的である。   Here, the aerosol deposition method will be described. In this method, an aerosol in which fine particles of brittle materials such as ceramics are dispersed in a gas is sprayed from a nozzle toward the base material, and the fine particles collide with various base materials such as metal, glass, ceramics, and plastic. It is characterized by causing brittle material fine particles to be deformed or crushed by impact and joining them together to directly form a structure consisting of fine particle constituent materials on the substrate, especially at room temperature that does not require heating means A structure can be formed, and a structure having mechanical strength equivalent to that of the fired body can be obtained. The apparatus used in this method basically consists of an aerosol generator for generating aerosol and a nozzle for injecting the aerosol toward the base material. When a structure is produced with a larger area than the opening of the nozzle, In addition, it has a position control means that moves and swings the base material and the nozzle relative to each other, and has a chamber and a vacuum pump for forming a structure when producing under reduced pressure, and also generates aerosol It is common to have a gas source.

エアロゾルデポジション法のプロセス温度は常温であり、微粒子材料の融点より十分に低い温度、すなわち数百℃以下で構造物形成が行われるところにひとつの特徴がある。   The process temperature of the aerosol deposition method is room temperature, and one feature is that the structure is formed at a temperature sufficiently lower than the melting point of the particulate material, that is, several hundred degrees C. or less.

また使用される微粒子はセラミックスや半導体などの脆性材料を主体とし、同一材質の微粒子を単独であるいは混合させて用いることができるほか、異種の脆性材料微粒子を混合させたり、複合させて用いることが可能である。また一部金属材料や有機物材料などを脆性材料微粒子に混合させたり、脆性材料微粒子表面にコーティングさせて用いることも可能である。これらの場合でも構造物形成の主となるものは脆性材料である。   In addition, the fine particles used are mainly brittle materials such as ceramics and semiconductors, and fine particles of the same material can be used alone or mixed, and different fine particles of brittle material can be mixed or used in combination. Is possible. Further, it is also possible to mix a part of a metal material or an organic material with brittle material fine particles or to coat the surface of brittle material fine particles. Even in these cases, the main component of structure formation is a brittle material.

この手法によって形成される構造物において、結晶性の脆性材料微粒子を原料として用いる場合、構造物の脆性材料部分は、その結晶子サイズが原料微粒子のそれに比べて小さい多結晶体であり、その結晶は実質的に結晶配向性がない場合が多く、脆性材料結晶同士の界面にはガラス層からなる粒界層が実質的に存在しないと言え、さらに構造物の一部は基材表面に食い込むアンカー層を形成することが多いという特徴がある。   In the structure formed by this method, when crystalline brittle material fine particles are used as a raw material, the brittle material portion of the structure is a polycrystalline body whose crystallite size is smaller than that of the raw material fine particles, and the crystal In many cases, there is substantially no crystal orientation, and it can be said that there is substantially no grain boundary layer consisting of a glass layer at the interface between brittle material crystals, and a part of the structure is an anchor that bites into the substrate surface It is characterized by often forming a layer.

この方法により形成される構造物は、微粒子同士が圧力によりパッキングされ、物理的な付着で形態を保っている状態のいわゆる圧粉体とは明らかに異なり、十分な強度を保有している。   The structure formed by this method clearly has a sufficient strength unlike a so-called green compact in which fine particles are packed by pressure and keeps a form by physical adhesion.

この構造物形成において、脆性材料微粒子が破砕・変形を起していることは、原料として用いる脆性材料微粒子および形成された脆性材料構造物の結晶子サイズをX線回折法で測定することにより判断できる。すなわちエアロゾルデポジション法で形成される構造物の結晶子サイズは、原料微粒子の結晶子サイズよりも小さい値を示す。微粒子が破砕や変形をすることで形成されるずれ面や破面には、もともと内部に存在し別の原子と結合していた原子が剥き出しの状態となった新生面が形成される。この表面エネルギーが高い活性な新生面が、隣接した脆性材料表面や同じく隣接した脆性材料の新生面あるいは基板表面と接合することにより構造物が形成されるものと考えられる。また微粒子の表面に水酸基が程よく存在する場合では、微粒子の衝突時に微粒子同士や微粒子と構造物との間に生じる局部のずり応力により、メカノケミカルな酸塩基脱水反応が起き、これら同士が接合するということも考えられる。外部からの連続した機械的衝撃力の付加は、これらの現象を継続的に発生させ、微粒子の変形、破砕などの繰り返しにより接合の進展、緻密化が行われ、脆性材料構造物が成長するものと考えられる。   In this structure formation, the brittle material fine particles are crushed and deformed by measuring the brittle material fine particles used as a raw material and the crystallite size of the formed brittle material structure by X-ray diffraction. it can. That is, the crystallite size of the structure formed by the aerosol deposition method is smaller than the crystallite size of the raw material fine particles. A new surface in which atoms originally present inside and bonded to other atoms are exposed is formed on the slip surface or fracture surface formed by crushing or deforming fine particles. This active new surface having a high surface energy is considered to be formed by joining the surface of the adjacent brittle material, the new surface of the adjacent brittle material, or the substrate surface. In addition, when hydroxyl groups are present on the surface of the fine particles moderately, a mechanochemical acid-base dehydration reaction occurs due to local shear stress generated between the fine particles and between the fine particles and the structure when the fine particles collide with each other. It can be considered. The addition of continuous mechanical impact force from the outside causes these phenomena to occur continuously, and the progress and densification of joints are performed by repeated deformation and crushing of fine particles, and brittle material structures grow. it is conceivable that.

上述のエアロゾルデポジション法によれば、サブミクロン粒径の脆性材料微粒子を高速で衝突させることで、基材に微粒子が食い込んでアンカー部を形成し、さらにその微粒子の上に微粒子が衝突して膜状のセラミック層が形成されるため、セラミック層の強度も高い上に基材との密着性も非常に高い。例えば、アルミ合金基板上のセラミック層の密着強度は引き倒し式試験法により80MPaを超える密着力を示し、ガラス上のセラミック層においては、密着力が高いために、セラミック層の引き剥がしを実施するとガラス基材自体が破壊する。   According to the above-described aerosol deposition method, brittle material fine particles having a submicron particle size collide at high speed, so that the fine particles bite into the base material to form anchor portions, and the fine particles collide with the fine particles. Since a film-like ceramic layer is formed, the strength of the ceramic layer is high and the adhesion to the substrate is very high. For example, the adhesion strength of the ceramic layer on the aluminum alloy substrate shows an adhesion strength exceeding 80 MPa by a pull-down test method, and the ceramic layer on the glass has a high adhesion strength. The glass substrate itself is destroyed.

またエアロゾルデポジション法は通常1μm以上の脆性材料の厚膜を形成させる独自技術として発展してきたが、この発明で利用するセラミック層は金属や樹脂材料と、別の酸化物を主体とする構造物とを密着力良く接合させるための中間層として利用するため、層厚は非常に薄くてよい。エアロゾルデポジション法で利用される原料微粒子のサイズはサブミクロンであるため、形成される酸化物層の層厚は1原料微粒子サイズと同じサブミクロンか、せいぜい1μmも形成させれば十分中間層として機能できることが考えられる。さらには、密着力が許せば、膜状まで行かず、微粒子が基材上でアンカー層を形成しつつ点在して固定化された島状構造でも利用できる。   In addition, the aerosol deposition method has been developed as a unique technique for forming a thick film of brittle material of 1 μm or more, but the ceramic layer used in this invention is a structure mainly composed of metal or resin material and another oxide. Therefore, the layer thickness may be very thin. Since the size of the raw material fine particles used in the aerosol deposition method is submicron, the layer thickness of the oxide layer to be formed is the same submicron as the size of one raw material fine particle, or at most 1 μm can be formed as an intermediate layer. It is possible to function. Furthermore, if the adhesive force permits, it can be used even in an island structure in which fine particles are scattered and fixed while forming an anchor layer on the base material without going to a film shape.

さらには、エアロゾルデポジション法は、マスクを用いたデポジションにより基材の任意の領域にのみセラミック層を形成させることが容易であるため、酸化物を主体とする構造物を接合したい領域にのみへの適用ができる。   Furthermore, the aerosol deposition method makes it easy to form a ceramic layer only in an arbitrary area of a substrate by deposition using a mask, so that it is only in areas where oxide-based structures are to be joined. Can be applied.

このセラミック層の材料として、本発明では酸化物を利用するために、当然酸素に富んだ酸化物層となり、基材の上に強固に固定されたこの酸化物層の表面に酸化物を主体とする構造物を、酸素を介した化学結合を生じせしめて接合させるために、この界面における接合強度も十分高いものとなるわけである。   As a material for this ceramic layer, in order to use an oxide in the present invention, it naturally becomes an oxide layer rich in oxygen, and the oxide is mainly formed on the surface of this oxide layer firmly fixed on the substrate. In order to cause the structure to be bonded to form a chemical bond via oxygen, the bonding strength at this interface is sufficiently high.

本案件において「酸化物を主体とする」とは、構造物の主材料あるいは構造の骨材となるものが酸化物であり、その組織は多結晶、単結晶、アモルファス(ガラス)状態の何れでも良い。またこの酸化物を主体とする構造物の骨材の中に別の有機物成分や無機成分が粒子状などで分散されていてもよい。また組成中にアミノプロピル基、グリシドキシ基、メタクリロキシ基、N-フェニルアミノプロピル基、メルカプト基、ビニル基、ハロゲン基、エポキシ基、アミノ基、イソシアネート基などの官能基が金属元素に付随していても良く、このような場合はこの構造物の上に樹脂系塗料などの有機物を接合するときや、有機系の接着剤を塗布するなどして、さらにこの上に別の様々な形状、大きさ、材質(有機物、金属、セラミックスなど含む)の構造体を接着させる場合に好適となる。これらの酸化物を主体とする構造物はゾルゲル法、ポリシラザン法、シランカップリング法などの溶液法により容易に得ることが可能である。 “Oxide-based” in this project means that the main material of the structure or the aggregate of the structure is an oxide, and its structure can be either polycrystalline, single crystal, or amorphous (glass) good. Further, another organic component or inorganic component may be dispersed in the form of particles or the like in the aggregate of the structure mainly composed of the oxide. In addition, functional groups such as aminopropyl group, glycidoxy group, methacryloxy group, N-phenylaminopropyl group, mercapto group, vinyl group, halogen group, epoxy group, amino group, and isocyanate group are attached to the metal element in the composition. In this case, various other shapes and sizes may be added to this structure by bonding organic substances such as resin paints or applying an organic adhesive. It is suitable for bonding a structure of material (including organic matter, metal, ceramics, etc.). A structure mainly composed of these oxides can be easily obtained by a solution method such as a sol-gel method, a polysilazane method, or a silane coupling method.

エアロゾルデポジション法で酸化物層を形成させる方法について述べる。図1はエアロゾルデポジション装置10を示したものであり、窒素ガスボンベ101の先にガス搬送管102を介してエアロゾル発生器103が設置され、その下流側に例えば直径2mmのエアロゾル搬送管104を介して酸化物層形成室105内に配置された例えば直径2mmの導入開口と10mm×0.4mmの導出開口をもつノズル106に接続されている。エアロゾル発生器103内には脆性材料微粒子例えば酸化アルミニウム微粒子粉体が充填されている。ノズル106の開口の先には、XYステージ107に保持された金属あるいは樹脂製の基材108が配置されている。酸化物層形成室105は真空ポンプ109と接続されている。   A method for forming an oxide layer by the aerosol deposition method will be described. FIG. 1 shows an aerosol deposition apparatus 10 in which an aerosol generator 103 is installed at the tip of a nitrogen gas cylinder 101 via a gas conveyance pipe 102 and, for example, via an aerosol conveyance pipe 104 having a diameter of 2 mm on the downstream side. For example, the nozzle 106 is connected to a nozzle 106 having an introduction opening having a diameter of 2 mm and a discharge opening having a diameter of 10 mm × 0.4 mm. The aerosol generator 103 is filled with brittle material fine particles, for example, aluminum oxide fine particle powder. A metal or resin base material 108 held by an XY stage 107 is disposed at the tip of the nozzle 106. The oxide layer formation chamber 105 is connected to a vacuum pump 109.

以下に従来のエアロゾルデポジション装置10の作用を述べる。窒素ガスボンベ101を開栓し、ガス搬送管102を通じてガスをエアロゾル発生器103内に送り込み、同時にエアロゾル発生器103を運転させて脆性材料微粒子と窒素ガスが適当比で混合されたエアロゾルを発生させる。また真空ポンプ109を稼動させ、エアロゾル発生器103と酸化物薄層形成室105の間に差圧を生じさせる。エアロゾルはこの差圧に乗って下流側のエアロゾル搬送管104に導入されて加速し、ノズル106より基材108に向けて噴射する。基材108はXYステージ107により2軸に揺動され、エアロゾル衝突位置を変化させつつ、微粒子の衝突により基材108上に膜状あるいは島状の酸化物層が形成されていく。   The operation of the conventional aerosol deposition apparatus 10 will be described below. The nitrogen gas cylinder 101 is opened, gas is fed into the aerosol generator 103 through the gas transport pipe 102, and at the same time, the aerosol generator 103 is operated to generate an aerosol in which brittle material fine particles and nitrogen gas are mixed at an appropriate ratio. Further, the vacuum pump 109 is operated to generate a differential pressure between the aerosol generator 103 and the oxide thin layer forming chamber 105. The aerosol rides on this differential pressure, is introduced into the aerosol transport pipe 104 on the downstream side, accelerates, and is sprayed from the nozzle 106 toward the base material 108. The base material 108 is swung in two axes by the XY stage 107, and a film-like or island-like oxide layer is formed on the base material 108 by collision of fine particles while changing the aerosol collision position.

続いて施される酸化物を主体とする構造物の形成方法には、様々な手法が採用できる。例えばゾルゲル法であれば、市販のディップコート剤をエアロゾルデポジション法により表面に酸化物層を形成させた基材を浸せきあるいはフローコートにより塗布し、自然乾燥をさせたのち、必要に応じて例えば500〜600℃で熱処理を行い、構造物の組織化、固定化を行えばよい。さらにこの上に別の構造体を形成させることも任意である。   Various methods can be adopted as a method for forming a structure mainly composed of oxide to be subsequently applied. For example, in the case of the sol-gel method, a commercially available dip coating agent is immersed in a substrate having an oxide layer formed on the surface by an aerosol deposition method or applied by flow coating, and is naturally dried. A heat treatment may be performed at 500 to 600 ° C. to organize and fix the structure. Furthermore, it is optional to form another structure thereon.

図2には、上述のような方法で作製した複合材料20の断面模式図を示す。基材21は例えば表面にOH基を有しにくい金属である。酸化物薄層22は酸化アルミニウムや酸化ケイ素、酸化チタンなどの様々な酸化物が利用でき、その層厚は1μm以下でよい。尚、酸化物薄層22はアンカー部22aによって基材21に一部が食い込んだ状態で強固に保持される。そして、酸化物薄層22の上に形成された酸化物を主体とする構造物23は、例えば高い光触媒機能有するアナターゼ型酸化チタンゾルゲル膜などが利用できる。   In FIG. 2, the cross-sectional schematic diagram of the composite material 20 produced by the above methods is shown. The base material 21 is a metal that hardly has an OH group on the surface, for example. Various oxides such as aluminum oxide, silicon oxide, and titanium oxide can be used for the oxide thin layer 22, and the layer thickness may be 1 μm or less. Note that the oxide thin layer 22 is firmly held by the anchor portion 22a in a state where a part of the oxide thin layer 22 bites into the base material 21. The structure 23 mainly composed of oxide formed on the oxide thin layer 22 can use, for example, an anatase-type titanium oxide sol-gel film having a high photocatalytic function.

これにより貴金属材料上にエアロゾルデポジション法で形成したアンカー部によって強固に固定された酸化アルミニウムとその上に酸素により化学結合で強固に接着された酸化チタン膜が得られ、密着性に優れる効果がある。またこの構造の別の利点として、金属材料上に直接酸化チタン膜をゾルゲルで形成し、600℃などの高温処理した場合に、金属元素が酸化チタン膜に拡散して光触媒活性を劣化させるという不具合が、酸化アルミニウム薄層という中間層の存在によりなくなることが挙げられる。   As a result, an aluminum oxide that is firmly fixed by an anchor portion formed on the noble metal material by an aerosol deposition method and a titanium oxide film that is firmly bonded by oxygen through a chemical bond thereon can be obtained. is there. Another advantage of this structure is that when a titanium oxide film is directly formed on a metal material with a sol-gel and processed at a high temperature such as 600 ° C., the metal element diffuses into the titanium oxide film and degrades the photocatalytic activity. Is eliminated by the presence of an intermediate layer called an aluminum oxide thin layer.

複合材料20の基材21を樹脂材料とし、酸化物薄層22に酸化アルミニウムなどの酸化物、その上の構造物23を光触媒酸化チタンゾルゲル膜とすることで、樹脂上に密着性に優れたゾルゲル膜を形成させることができ、さらに酸化アルミニウムがバリヤー層となって光触媒活性により樹脂材料が劣化するという不具合もなくなる。   The base material 21 of the composite material 20 is a resin material, the oxide thin layer 22 is an oxide such as aluminum oxide, and the structure 23 thereon is a photocatalytic titanium oxide sol-gel film. A sol-gel film can be formed, and further, there is no problem that the aluminum oxide becomes a barrier layer and the resin material is deteriorated by the photocatalytic activity.

図3は、本発明に基づく別の一態様となる複合材料30の断面模式図である。基材31は例えば表面にOH基を有しにくい金属である。酸化物薄層32は酸化アルミニウムなどを用いる。その上に酸化珪素のゾルゲル膜33を主体とし、このゾルゲル膜33中に分散した光触媒酸化チタン超微粒子34を有する構造物が形成されている。   FIG. 3 is a schematic cross-sectional view of a composite material 30 according to another aspect of the present invention. The base material 31 is, for example, a metal that hardly has OH groups on the surface. The oxide thin layer 32 is made of aluminum oxide or the like. A structure having the photocatalytic titanium oxide ultrafine particles 34 dispersed in the sol-gel film 33 is mainly formed on the sol-gel film 33 of silicon oxide.

このようにして、酸化物を主体とした構造物には、酸化物を骨格として様々な機能付与材料を添加、混在させることができる。例えばテフロン粒子や二硫化モリブデンなどが考えられる。   In this way, various function-providing materials can be added to and mixed with the oxide-based structure as a main component. For example, Teflon particles or molybdenum disulfide can be considered.

本発明による複合材料の製造方法を利用すれば、密着性の高い層を有する複合材料が達成でき、金属やプラスチックの基材上に強固に固定された光触媒膜や、シリカ膜、潤滑膜、磁性膜、酸化物ポーラス膜などが挙げられる。   By using the composite material manufacturing method according to the present invention, a composite material having a highly adhesive layer can be achieved, and a photocatalyst film, silica film, lubricating film, magnetic film firmly fixed on a metal or plastic substrate. Examples thereof include a film and an oxide porous film.

本発明で使用するエアロゾルデポジション装置を示す装置図である。It is an apparatus figure which shows the aerosol deposition apparatus used by this invention. 本発明の製造方法で作製された複合材料の一態様を示す断面模式図である。It is a cross-sectional schematic diagram which shows the one aspect | mode of the composite material produced with the manufacturing method of this invention. 本発明の製造方法で作製された複合材料の一態様を示す断面模式図である。It is a cross-sectional schematic diagram which shows the one aspect | mode of the composite material produced with the manufacturing method of this invention.

符号の説明Explanation of symbols

10…エアロゾルデポジション装置
101…窒素ガスボンベ
102…ガス搬送管
103…エアロゾル発生器
104…エアロゾル搬送管
105…酸化物薄層形成室
106…ノズル
107…XYステージ
108…基材
20…複合材料
21…基材
22…酸化物薄層
22a…アンカー部
23…酸化物を主体とする構造物
DESCRIPTION OF SYMBOLS 10 ... Aerosol deposition apparatus 101 ... Nitrogen gas cylinder 102 ... Gas conveyance pipe 103 ... Aerosol generator 104 ... Aerosol conveyance pipe 105 ... Oxide thin layer formation chamber 106 ... Nozzle 107 ... XY stage 108 ... Base material 20 ... Composite material 21 ... Base material 22 ... oxide thin layer 22a ... anchor portion 23 ... structure mainly composed of oxide

Claims (8)

金属または有機物材料の表面にエアロゾルデポジション法にて酸化物薄層を形成する工程と、前記酸化物薄層と酸化物を主体とする構造物とをこれらの界面において酸素分子を介して化学結合を生じさせて接合させる工程と、からなる複合材料の製造方法。 A process of forming an oxide thin layer on the surface of a metal or organic material by an aerosol deposition method and a chemical bond between the oxide thin layer and a structure mainly composed of oxide via oxygen molecules at the interface between them. And producing a composite material comprising the steps of: 前記酸化物薄層と前記酸化物を主体とする構造物を接合する工程が、ゾルゲル法であることを特徴とする請求項1に記載の複合材料の製造方法。 The method for producing a composite material according to claim 1, wherein the step of joining the thin oxide layer and the structure mainly composed of the oxide is a sol-gel method. 前記酸化物薄層と前記酸化物を主体とする構造物を接合する工程が、ポリシラザン法であることを特徴とする請求項1に記載の複合材料の製造方法。 The method for producing a composite material according to claim 1, wherein the step of joining the thin oxide layer and the structure mainly composed of the oxide is a polysilazane method. 前記酸化物薄層と前記酸化物を主体とする構造物を接合する工程が、シランカップリング法であることを特徴とする請求項1に記載の複合材料の製造方法。 The method for producing a composite material according to claim 1, wherein the step of joining the thin oxide layer and the structure mainly composed of the oxide is a silane coupling method. 請求項1乃至4の複合材料の製造方法により製造された複合材料。 A composite material manufactured by the composite material manufacturing method according to claim 1. 前記酸化物薄層の層厚が1μm未満であることを特徴とする請求項5に記載の複合材料。 The composite material according to claim 5, wherein the thin oxide layer has a thickness of less than 1 μm. 前記金属または有機物材料の表面と、前記酸化物薄層との界面にはアンカー層が形成されていることを特徴とする請求項5または6に記載の複合材料。 The composite material according to claim 5 or 6, wherein an anchor layer is formed at an interface between the surface of the metal or organic material and the thin oxide layer. 前記酸化物を主体とする構造物が光触媒活性を有することを特徴とする請求項7に記載の複合材料。
The composite material according to claim 7, wherein the structure mainly composed of the oxide has photocatalytic activity.
JP2006172027A 2006-06-22 2006-06-22 Composite material and manufacturing method thereof Expired - Fee Related JP5151077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006172027A JP5151077B2 (en) 2006-06-22 2006-06-22 Composite material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006172027A JP5151077B2 (en) 2006-06-22 2006-06-22 Composite material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008001941A true JP2008001941A (en) 2008-01-10
JP5151077B2 JP5151077B2 (en) 2013-02-27

Family

ID=39006570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006172027A Expired - Fee Related JP5151077B2 (en) 2006-06-22 2006-06-22 Composite material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5151077B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010036172A (en) * 2008-08-08 2010-02-18 Sumitomo Electric Ind Ltd Metal material and manufacturing method thereof, and case for electronic equipment using the same
JP2010168612A (en) * 2009-01-21 2010-08-05 Fujitsu Ltd Method for manufacturing electroless-plated product
KR101404135B1 (en) 2012-10-15 2014-06-10 한국기계연구원 Catalytic layer coated substrate, method of Fabricating the same, and catalytic structure having catalytic layer coated substrate
EP3459729A4 (en) * 2016-05-16 2020-01-22 National Institute of Advanced Industrial Science and Technology Multilayer structure and method for producing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004195921A (en) * 2002-12-20 2004-07-15 Asahi Glass Co Ltd Plastic formed article
JP2005028225A (en) * 2003-07-08 2005-02-03 Toto Ltd Photocatalytic material
JP2005090833A (en) * 2003-09-17 2005-04-07 Komatsu Ltd Heat exchanger
JP2005109234A (en) * 2003-09-30 2005-04-21 Toto Ltd Electrostatic chuck and method for manufacturing the same
JP2005314804A (en) * 2004-03-31 2005-11-10 Toto Ltd Method for producing coating film with use of aerosol, particulate therefor, coating film and composite material
JP2005321119A (en) * 2004-05-06 2005-11-17 Daikin Ind Ltd Air conditioning system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004195921A (en) * 2002-12-20 2004-07-15 Asahi Glass Co Ltd Plastic formed article
JP2005028225A (en) * 2003-07-08 2005-02-03 Toto Ltd Photocatalytic material
JP2005090833A (en) * 2003-09-17 2005-04-07 Komatsu Ltd Heat exchanger
JP2005109234A (en) * 2003-09-30 2005-04-21 Toto Ltd Electrostatic chuck and method for manufacturing the same
JP2005314804A (en) * 2004-03-31 2005-11-10 Toto Ltd Method for producing coating film with use of aerosol, particulate therefor, coating film and composite material
JP2005321119A (en) * 2004-05-06 2005-11-17 Daikin Ind Ltd Air conditioning system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010036172A (en) * 2008-08-08 2010-02-18 Sumitomo Electric Ind Ltd Metal material and manufacturing method thereof, and case for electronic equipment using the same
JP2010168612A (en) * 2009-01-21 2010-08-05 Fujitsu Ltd Method for manufacturing electroless-plated product
KR101404135B1 (en) 2012-10-15 2014-06-10 한국기계연구원 Catalytic layer coated substrate, method of Fabricating the same, and catalytic structure having catalytic layer coated substrate
EP3459729A4 (en) * 2016-05-16 2020-01-22 National Institute of Advanced Industrial Science and Technology Multilayer structure and method for producing same
US11225436B2 (en) 2016-05-16 2022-01-18 National Institute Of Advanced Industrial Science And Technology Multilayer structure and method for producing same

Also Published As

Publication number Publication date
JP5151077B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
JP4854445B2 (en) CMP conditioner and method of manufacturing the same
Koumoto et al. Micropatterning of titanium dioxide on self-assembled monolayers using a liquid-phase deposition process
Akedo Aerosol deposition method for fabrication of nano crystal ceramic layer
US8974889B2 (en) Nanostructured thin film and method for controlling surface properties thereof
JP5151077B2 (en) Composite material and manufacturing method thereof
CN108780750B (en) Component for semiconductor manufacturing device
TW200540293A (en) Controlled deposition of silicon-containing coatings adhered by an oxide layer
JP2010001555A (en) Nanoparticle coated with silica, nanoparticle deposited substrate, and method for producing them
JP2004518816A (en) Method for increasing the surface of a substrate and catalyst product produced thereby
Park et al. Superhydrophilic transparent titania films by supersonic aerosol deposition
JP2007131943A5 (en)
Shibuya et al. Formation of mullite coating by aerosol deposition and microstructural change after heat exposure
Tan et al. Investigation of the anchor layer formation on different substrates and its feasibility for optical properties control by aerosol deposition
JP5392737B2 (en) Brittle material film structure
JP5057457B2 (en) Magneto-optical material and manufacturing method thereof
TWI658933B (en) Laminated structure and manufacturing method thereof
JP2007320797A (en) Composite structure and its manufacturing method
Zhao et al. Designing nanostructures for sensor applications
Lee et al. Electrically insulative performances of ceramic and clay films deposited via supersonic spraying
JP2003213451A (en) Method of fabricating composite structure
TWI277663B (en) Method for producing coating film using aerosol, fine particles for use therein, and coating film and composite material
Kim et al. Role of TiO2 nanoparticles in the dry deposition of NiO micro-sized particles at room temperature
JP4963009B2 (en) Inorganic film-substrate composite material with improved transparency and method for producing the same
JP5066682B2 (en) Low temperature molding method for brittle material fine particle film
CN107278172A (en) Method for forming catalytic nanometer coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5151077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees