JP2007535835A - 汎用rake受信機アーキテクチャにおける連続的な干渉の除去 - Google Patents

汎用rake受信機アーキテクチャにおける連続的な干渉の除去 Download PDF

Info

Publication number
JP2007535835A
JP2007535835A JP2007501744A JP2007501744A JP2007535835A JP 2007535835 A JP2007535835 A JP 2007535835A JP 2007501744 A JP2007501744 A JP 2007501744A JP 2007501744 A JP2007501744 A JP 2007501744A JP 2007535835 A JP2007535835 A JP 2007535835A
Authority
JP
Japan
Prior art keywords
signal
detection stage
signal detection
interest
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007501744A
Other languages
English (en)
Inventor
ステファン ジェームズ グラント,
ジュン‐フ チェン,
レオニド クラスニー,
カール ジェームズ モルナール,
イ−ピン エリック ワン,
Original Assignee
テレフオンアクチーボラゲット エル エム エリクソン(パブル)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テレフオンアクチーボラゲット エル エム エリクソン(パブル) filed Critical テレフオンアクチーボラゲット エル エム エリクソン(パブル)
Publication of JP2007535835A publication Critical patent/JP2007535835A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/7103Interference-related aspects the interference being multiple access interference
    • H04B1/7107Subtractive interference cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/7103Interference-related aspects the interference being multiple access interference
    • H04B1/7105Joint detection techniques, e.g. linear detectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/7103Interference-related aspects the interference being multiple access interference
    • H04B1/7107Subtractive interference cancellation
    • H04B1/71072Successive interference cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/7103Interference-related aspects the interference being multiple access interference
    • H04B1/7107Subtractive interference cancellation
    • H04B1/71075Parallel interference cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • H04B1/7115Constructive combining of multi-path signals, i.e. RAKE receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • H04B1/7115Constructive combining of multi-path signals, i.e. RAKE receivers
    • H04B1/712Weighting of fingers for combining, e.g. amplitude control or phase rotation using an inner loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/7097Direct sequence modulation interference
    • H04B2201/709727GRAKE type RAKE receivers

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)

Abstract

受信機が、合成された受信信号の中に含まれる複数の注目信号を復号する受信機回路を含む。受信機は、合成された受信信号の中に含まれる各々の信号を検出するための複数の信号検出段を含む。各検出回路は、少なくとも1つの汎用RAKE合成回路を含み、出力時に検出信号を生成する。最終段を除く各段はさらに信号再生回路を含んでおり、次の段に渡される段入力信号から、その段によって検出された注目信号を除去することによって、注目信号の連続検出が前に検出された信号の累積除去から恩恵を受けるようになっている。

Description

汎用RAKE受信機アーキテクチャにおける連続的な干渉の除去に関する。
先端的な第3世代(3G)無線通信システムは、音声、高速パケット・データ、マルチメディア・サービス等、いくつかの異なる種類のサービスをサポートしている。さらに、3Gシステムでは、ユーザが複数の異なるサービスに同時にアクセスできる。これらのサービスへの需要に対応するため、将来の無線通信システムは第2世代(2G)システムより高い処理能力を提供する必要がある。処理能力を高めるには追加の帯域を割り当てればよいが、これは実現性が低い。よって、すでに割り当てられている帯域をもっと効率良く使えばよい。
WCDMA (Wideband Code Division Multiple Access、広帯域符号分割多元接続)は、3Gサービスへの需要を満たすのに役立つことが期待されている技術の一つである。WCDMAは広帯域周波数チャネル上の無線通信のための多元接続技術である。狭帯域符号分割多元接続(CDMA)と同様、WCDMAは拡散符号を用いて狭帯域信号を周波数チャネルの幅全体に拡げる。各ユーザは個別のチャネル上で送信し、他のユーザと同時に送信することもできる。複数のユーザからの信号は通信チャネル上での送信中に合成されるため、受信機は、時間および周波数において重なり合う、すべてのユーザ信号の合計を受信する。
米国特許第6,363,104号明細書 米国特許出願第09/344,898号明細書 米国特許出願第09/344,899号明細書
現在のところ実現されているWCDMAは、他のユーザについて考慮せずに各ユーザからの信号を個別に検出するRAKE受信機と呼ばれる単一ユーザ受信機を用いている。RAKE受信機は、単一ユーザの拡散符号に適合されている複数のRAKEフィンガを含んでいる。各RAKEフィンガは、ユーザ信号の多様なマルチパスを検出するための多様な時間的遅延の一つにそれぞれ整合されている。これらのRAKEフィンガは、ユーザに割り当てられた特定の拡散符号を用いてそのユーザの信号を逆拡散する相関器を含んでいる。他のユーザからの信号はすべて、雑音として扱われる。RAKE合成回路が各RAKEフィンガから出力される逆拡散信号を合成して、信号対雑音比(SN比)が向上した合成信号が得られる。
従来型のRAKE受信機は受信信号のSN比を向上させることができるが、他のユーザの信号によって引き起こされた干渉、すなわち、多元接続干渉(MAI)やシンボル間干渉(ISI)には対応していない。多元接続干渉やシンボル間干渉はCDMAシステムの処理能力に制限を加える。多元接続干渉の原因は、マルチパス・フェージング・チャネルにおける多様な拡散符号間の相互相関である。シンボル間干渉の原因は、マルチパスチャネルに発生する送信信号のひずみである。ユーザ数が増加すると、多元接続干渉も増加する。ユーザ数が多くなると、従来型の単一ユーザ受信機では、干渉レベルが高くなると弱いユーザ信号を検出できないおそれがある。
最近になって、単一アンテナ型の汎用RAKE(G−RAKE)受信機が開発され、干渉の抑圧効果が改善された。干渉の抑圧は多元接続干渉やシンボル間干渉を有色ガウス雑音として扱うことによって達成される。フィンガ全域の雑音相関が、その後、フィンガ遅延を適合させて重みを合成することによって利用される。このようにして、ユーザ信号間の直交性が部分的に復元される。G−RAKE受信機は米国特許第6,363,104号および米国特許出願第09/344,898号および第09/344,899号において説明されており、そのいずれも参照により本願に援用する。
マルチユーザ検出(MUD)が単一ユーザ検出の代替案として提案されており、多元接続干渉を抑圧してシステムの能力の向上に効果的な方法であることが分かっている。マルチユーザ検出システムでは、干渉元ユーザからの信号が個々のユーザ信号の検出に使用される。マルチユーザ検出システムの例は、連続的干渉除去(SIC)と決定フィードバック(DF)を含む。連続的干渉除去による手法は、干渉元ユーザのビットについて一旦決定が下されると、チャネルの情報を使用して受信機において干渉信号を再生することで、再生された干渉信号を受信信号から除去できるという考えに基づいている。このプロセスは一人以上の他のユーザの信号について連続的に繰り返され、他のユーザに関連する信号の各々が検出されるにつれて徐々に干渉が減っていく。通常、最も強い信号が最初に検出されて受信信号から除去され、これによって、より弱い信号について干渉が軽減される。
決定フィードバック(DF)による手法も同様の考えに基づいている。但し、減算は受信信号のプロセス後のバージョン、すなわち、受信機決定統計値に対して行われる。さらに、減算する量は、前に検出されたユーザ・ビットから、決定フィードバック等化処理と同様の方法で決定される。マルチユーザ検出システムは多元接続干渉を減少させるのに有効だが、ユーザ数の拡大につれて最適なマルチユーザ検出システムの複雑性が急激に高まる。従って、最も実際的なマルチユーザ検出システムは、最適に満たない検出システムを使うことになる。
現在、3G無線通信システムで、特に、WCDMAやその他のシステムにおけるHSDPA(high−speed−downlink−packet−access、高速下り回線パケット・アクセス)について、データ速度を高速化するため、MIMO(multiple−input−multiple−output、マルチ入力/マルチ出力)アンテナ・システムに対する関心が高まっている。MIMOは驚異的な能力拡大をもたらすことが分かっている。通常の運用環境では、MIMOチャネルが周波数選択式であり、シンボル間干渉や多元接続干渉を引き起こす。加えて、フラット・フェージング・チャネルにおいてでさえ、自己干渉や符号再利用干渉が発生する。これは、符号の制限の問題を避けるため、HSDPAで使用される拡散符号がアンテナ全体で再利用されることが多いからである。MIMOシステムの課題は、適度な算出上の複雑度を維持しながら高性能を達成するようなMUD受信機を設計することである。なぜなら、移動端末の処理能力は限られており、また、マルチコードマルチアンテナ通信であるため復調すべき信号数が多いからである。
これまでMIMOシステムの研究の多くは、連続的干渉除去と決定フィードバックの両方の手法を使用することを提案している、有名なVertical−Bell−laboratories−LAyered Space−Time (V−BLAST)システムに焦点を絞ってきた。V−BLASTシステムにおいて、連続的干渉除去又は決定フィードバックを用いる干渉除去では、復号する前の検出ビットを基にしている。なぜなら、異なる情報信号が合同で符号化されているからである。最近になって、HSDPAと共に使用するV−BLASTの有望な代替案が提案された。PARC(Per−Antenna−Rate−Control、アンテナごとのレート制御)と呼ばれるものである。この手法ではV−BLASTよりかなり高速のデータ速度が得られる。PARCの考え方は、送受信アーキテクチャの組み合わせに基づいている。各アンテナへのストリームについてそれぞれ異なる速度で独立して符号化が実行され、その後、受信機で、連続的干渉除去(SIC)の適用と復号処理が行われる。連続的干渉除去の各段(ステージ)で信号対干渉および雑音比に基づいて、アンテナ毎の速度のフィードバックが必要である。この考え方によって、MIMOのフラット・フェージング・チャネルの完全なオープンループ性能が達成され、高速のデータ速度が提供される可能性が示されている。
本発明は、受信機回路が汎用RAKE(G−RAKE)アーキテクチャを採用し、受信した合成信号の中の注目信号を、一組をなす連続した複数の信号検出段を用いて検出する方法および装置を含む。一連の連続した信号検出段は、先行する信号検出段のそれぞれにおいて検出された注目信号を、その組における次の信号検出段へ提供されることになっている入力信号から連続的に除去するように配置され構成されている。各信号検出段における信号検出には、G−RAKE合成器(コンバイナ)の利用が役に立つ。G−RAKE合成器は、各信号検出段に提供される各入力信号の逆拡散値間の阻害相関を算出する。その際に、各信号検出段で算出された阻害相関がその信号検出段に提供された特定の入力信号に依存するように算出される。従って、連続した信号検出段の各々について算出した阻害相関は、先行する信号検出段で検出された注目信号の連続的除去の関数として変化する。
従って、一つ以上の例示的な実施形態において、本発明は、二つ以上の注目信号を含む、受信した合成通信信号を処理する方法を含む。本方法は、一連の連続した複数の信号検出段において連続信号のうちの注目信号を個別に検出する工程、および、その組における次の信号検出段へ渡される入力信号について各信号検出段で検出された注目信号を除去する工程を含む。各信号検出段において注目信号を検出する工程は、その信号検出段における入力信号についのて複数の逆拡散値間の阻害相関の関数として合成重みを生成する工程と、合成重みに従って逆拡散値を合成する工程を含んでいる。
上記の方法について補足すると、例示的な受信機回路が、複数の連続した信号検出段を含む。各信号検出段には、RAKE合成回路が含まれる。RAKE合成回路は、受信した合成通信信号から導出された信号検出段への入力信号について複数の逆拡散値を合成することによって、合成通信信号の中の受信した注目信号を検出するように構成されている。また、最終段を除く各信号検出段には、さらに、次の信号検出段へ渡すことなっている入力信号から、その信号検出段によって検出された注目信号を除去するように構成された信号再生回路が含まれている。各信号検出段の例示的なRAKE合成回路は、RAKE合成重みを生成するように構成されている。このRAKE合成重みは、入力信号についての複数の逆拡散値間の一つ以上の阻害相関に基づいて注目信号を検出するために使用される。
本発明の多くの例示的実施形態の詳細を論じたり図解したりすることは、ある程度の複雑さを必然的に伴う。そのような複雑な内容は本明細書の後半に記述する例示的な詳細説明の中でより詳しく検討するとして、まずは本発明の巨視的な側面について、図1に示す比較的単純な図を参考にしながら説明する。
図1について検討する前に、本発明は大まかに言ってG−RAKEをベースにした信号検出と連続的な干渉除去を組み合わせたものの応用に関係していることをご理解いただきたい。本明細書で使用される用語「G−RAKE」は、RAKE回路によってRAKE合成された逆拡散値のストリーム間についての阻害相関を算出するRAKE合成回路やRAKE合成方法を示している。そのような阻害は、例えば、多元接続干渉、拡散符号の積極的な再利用、チャネル・フェージング条件等が原因で発生する。ここで留意すべきは、自セルの多元接続干渉は干渉の一因となり、一方で、他セルの多元接続干渉は雑音として処理されうることである。しかし、それとは関係なく、本明細書で以下に説明するとおり、本発明書で使用されるG−RAKE処理は、連続的な干渉除去処理に適合されており、前に述べたように、例示的な信号検出チェーンによる連続したステージ(段)における阻害相関算出は、連続的な信号除去から生じる阻害条件の変化を反映している。
図1を参照すると、例示的な無線通信システム8は、チャネル11を通じて通信する送信機10と受信機12を含むのが分かる。これらは通常、送受信信号の処理パス(例えばフィルタパルス形)の影響および送信媒体(例えば送信機と受信機間の伝搬パス)の影響を含んでいると考えられる。例えば送信機10は無線基地局に含まれているか、もしくは関連していてもよいし、他方、受信機12は移動端末、例えば携帯無線電話、PDA、ノートパソコン、その他の無線通信機能を持つ装置に含まれているか、もしくは関連していてもよい。
送信機10と受信機12は、例えば無線信号フォーマットまたはプロトコルに従って動作する。無線信号フォーマットまたはプロトコルとは、IS−95B/IS−2000(CDMA 2000)、符号分割多元接続(CDMA)、広帯域CDMA(WCDMA)、およびユニバーサル移動体通信システム(UMTS)標準のうちの一つであってもよいが、それにのみ限定されることはない。このように、本発明については下記の説明においてさまざまな点でWCDMAシステムの用語を用いて説明するが、本発明が他の標準を使った他の環境においても採用されうることは当業者には明白であろう。
さらに、例示的な送信機10は、各種の望ましい送信機の構成に従って構成してもよいことを理解すべきである。例えば、送信機10は複数の送信機アンテナを使用してユーザの望む信号を同時並行的なサブストリームとして送信することを特徴とするBLAST構成(例えばCR−BLAST)に従って構成されてもよい。この手法を使えば、所与のユーザについての情報信号は並行するサブストリームに分割され、その各々は個別に符号化されてもよい。受信機12で、サブストリームは、通常、複数の受信機アンテナを使用してマルチパス受信され、本発明に従って、受信したサブストリームの各々は、一組の信号検出段で、注目信号として連続的に検出されうる。そして各サブストリームの影響は、信号検出段のチェーンを下方に進むにつれて連続的に除去される。そのような構成において、例示的な受信機12は、各信号検出段を送信機アンテナの所与の一つと関連付けてもよい。もちろん、送信機10が、PARCのような他の送信方法向けに構成されていてもよい。それについては本明細書の中でもっと詳しく説明する。例示的な受信機12の選択された態様が、所与の送信機に含まれる構造の特定の機能を利用するように構成されてもよい。
図2は、無線フロントエンドが複数の受信機アンテナと一つ以上の無線プロセッサ14、および本発明の例示的な実施形態に従って構成されている受信機回路16を含むという特徴を持つ、受信機12の例示的な詳細を示す図である。受信機回路16は、複数の連続した信号検出段18−1から18−Mまでを含んでおり、例示的構成において、各段は、信号検出回路20、および、加算回路24を含むか、またはそれに関連付けられている信号再生回路22を含んでいる。
動作中、無線プロセッサ14は、複数の注目信号を含む受信した合成信号に対応するデジタル化されたサンプル信号を提供するように構成されている。そのような信号は、2つ以上の送信機アンテナから送信された同じ情報、所与のユーザ信号(例えば、BLASTやPARC)の異なるサブストリーム、マルチ符号信号の中の異なるストリーム等を表してもよい。
いずれにしても、連続する信号検出段18は、受信した合成信号、例えば、信号S、S、、、、Sの中で注目信号の連続的検出を提供するように構成されており、さらに、検出チェーンにおいて、後続の段(後段)が、先行する段(前段)における信号検出と除去によって恩恵を受けるような形で、検出した信号の連続的除去を提供するように構成されている。上記で明らかなように、各信号検出段18において注目信号を検出し、次段18に提供されることになっている入力信号から当該検出された注目信号を除去することを基本として、カスケード接続された信号検出段の入力信号から「干渉」が連続的に順次除去される。
例えば、図示された構成において、信号検出段18−1は、その信号検出回路20を用いてその段の入力信号から注目信号Sを検出する。信号Sは、信号検出段18−1によって検出され、次段へと転送されることになっている入力信号から除去される。従って、次段へと転送されることになっている入力信号は、残った未検出の注目信号S、S、、、、SMを含んでいる。その次段へと転送されることになっている入力信号は、次の信号検出段18−2に渡される。信号検出段18−2は、信号Sを検出してそれをさらに次段へと転送されることになっている入力信号から取り除く。次段へと転送されることになっている入力信号は残りの未検出の注目信号S、、、、Sを含んでいる。信号検出段18−3は、信号Sを検出して除去し、次段へと転送されることになっている入力信号が最終段18−Mによって処理されて、最後の未検出注目信号であるSに達するまで、以下同様に行われる。そのような動作により、一連の信号検出段18を通じて処理が進行するにつれて相互に受信された注目信号により引き起こされる干渉が連続的に弱められていくことから、段18-nに至る入力信号は、先行する全ての信号検出段における除去によって恩恵を受けることが分かる。
この構成を使用して、2つ以上の注目信号を含む受信した合成通信信号を処理する例示的な方法が、受信機回路16を使用して実装されてもよい。受信機回路16は、一連の信号検出段18における連続した段において注目信号を個々に検出し、次の段へ渡されることになっている入力信号について各段で検出される注目信号を除去することを基本とする。一連の信号検出段18の各段において、注目信号の検出工程は、(RAKE)合成重みを、その段における入力信号の逆拡散値間の阻害相関の関数として生成する工程と、合成重みに従って逆拡散値を合成する工程を含む。
図3は、上記方法の一つ以上の実施形態に係る受信機回路16のn番目の段18における信号処理動作の例示的な処理ロジックを示す図である。信号検出段18−nは、受信した合成信号から導出される入力信号を受信する。前段18−(n−1)からの除去信号によって、当該除去信号により引き起こされていた干渉が除去され、干渉が削減された入力信号の逆拡散値について動作が実行される。
信号検出段18−nに含まれる信号検出回路20は、段18−nへ渡された入力信号についての複数の逆拡散値間における阻害相関を算出する。これらの阻害相関は、正味のチャネル推定値と共に合成重みを生成するのに使われ、合成重みは、入力信号の逆拡散値についての複数のストリームをRAKE合成して合成信号を生成するのに使用される(ステップ300、302、304)。異なる複数のストリームは、RAKE逆拡散器のフィンガの遅延整合を変えることによって(すなわち、受信した合成信号に対する時間的な整合がそれぞれ異なるように設定された複数の相関器によって)生成される。
合成された逆拡散値、すなわち、RAKE合成された信号は復調され、注目信号の中で検出されたビットの推定値に対応する軟判定値が得られる。注目信号は符号化されたビットを含む。その場合、軟判定値は復号され、復号されたビットが得られる。信号検出段18−nは、軟判定復号値に対して直接硬判定を実行し、硬判定検出されたビットを得ることによって、または軟判定値から得られる復号されたビットを再符号化することによって、軟判定値からビットを生成する(ステップ306)。RAKE合成された信号の復調から得られる軟判定値から復号されたビット(ステップ308)を得るための復号回路を各段が含んでもよいし、一元化された復号器を使用してもよい。復号されたビットを再符号化して信号再生や除去動作に必要な符号化されたビットを得ようとすると追加の処理が必要になるが、再符号化されたビットは軟判定値の復号の間に行われる誤り訂正によって利益を得る。従って、次の段に向けた除去信号を生成するための再符号化されたビットの使用は、軟判定値に直接硬判低ロジックを適用することによって得られた符号化されたビットより、よりロバストな除去信号をもたらす。一般に、注目信号は符号化されたビットまたは符号化されていないビットを含むことがあり、従って各段で検出されたビットは、符号化されたビットまたは符号化されていないビットに相当することがある。従って、処理は復号を含むこともあり、含まないこともある。本発明はそのような筋書きをすべて予期している。
それとは関係なく、18−nの信号再生回路は、注目信号について検出されたビットに基づいて検出された注目信号を再生することによって、段18−(n+1)の除去信号を生成する。例えば、硬判定検出されたビットが軟判定値から直接生成されてもよいし、そのような軟判定値が(もし適切であるなら)復号され、その後再符号化されて再符号化されたビットが得られてもよい。(ステップ310)。本明細書の後半でもっと詳しく説明するが、次段へと転送されることになっている入力信号は、段18すべてに共通するフロントエンド相関回路による逆拡散値出力を含んでもよい。(複数のRAKEフィンガ33を含む例示的なフロントエンド逆拡散器31の図解については、図4を参照されたい。)この場合、信号再生回路は、符号相互相関情報、すなわち、不完全な直交性や符号の再利用等から生じる符号間の干渉を利用して、共通の逆拡散器と整合性が取れた方法で逆拡散値を再生する。別の実施形態では、次段へと転送されることになっている入力信号は、受信した合成信号から連続的に干渉を除去されたサンプル信号であり、逆拡散は各段18においてローカルに実行される。(例示的な段毎の逆拡散回路31については図5を参照されたい。)この例では、信号再生回路22は、符号化されたビットを変調シンボルにマッピングし、これらのシンボルを同じ拡散符号を使用して逆拡散し、逆拡散されたシンボルにチャネル推定値を適用することによって、段18−(n+1)のための除去信号を生成する。
図6では、信号検出段18の所与の1つについて例示的な詳細を図解しており、上述の装置および方法がもっと理解しやすくなっている。(ここで留意すべきことは、この図は、信号検出段18のすべてに適用されるが、その一連の信号検出段の最終段は、信号再生回路22なしで構成されうることである。)
図示するとおり、例示的な信号検出回路20は、合成回路30、合成重み生成器32、阻害相関推定器34、チャネル推定器36、復調器38、そして任意で復号器40を含む。さらに、例示的な信号再生回路22は、硬判定プロセッサ42と信号再生器44を含む。回路の検出部分が復号器40を含む場合、硬判定プロセッサ42の代替として、信号再生回路22が再符号器46を含んでもよい。もちろん、図の機能的配置は必要に応じて変更できることは理解されるべきである。例えば、復号器40は、再生回路22の中に「位置」して、再符号器46への(そして必要や希望に応じて、より高いレベルの処理回路への)入力信号として、検出信号に対応する復号されたビットを出力することができる。
合成回路30は、入力信号を含む(またはそれから導出される)逆拡散値の多様なストリームを受信して、合成重み生成器32によって生成された合成重みベクトルに従って逆拡散値を合成することによって、RAKE合成された信号を生成する。これらの合成重みは、少なくとも部分的には入力信号の逆拡散値間の阻害相関から、および、注目信号に関連する正味のチャネル応答から、すなわち、送信機/受信機のフィルタ・パルス形および伝搬の影響を含むエンド・ツー・エンドのチャネルから算出される。チャネル推定器36はここに示すように段毎に実装されているか、あるいは受信機回路16の中のどこか他の場所に実装されてもよいが、チャネル推定器36が必要なチャネル推定値を提供するのに対し、阻害相関推定値34は、必要な阻害相関推定値を生成する。本明細書の後半でもっと詳しく説明するとおり、一組の信号検出段18の中で干渉のレベルが連続的に減少するため、阻害相関推定器34は、各段でその段に固有の阻害相関推定値を生成する。
阻害相関とチャネル推定値の関数として算出された合成重みベクトルwを使用して、合成回路30は、これらの合成重みを入力信号の対応する逆拡散値に適用して、RAKE合成された信号を得る。RAKE合成された信号は、阻害相関やチャネル効果等について補正されており、復調器38への入力となる。その合成信号は、受信した合成信号から注目信号について回復された一つ以上の変調シンボルのサンプル信号を含む。今度は、復調器38が、軟判定値を含む復調信号を生成する。この軟判定値は、符号化されたビットに対応している。符号化されたビットは、RAKE合成された信号の変調シンボルに対応している。これらの軟判定値は、一元的な復号器回路に渡されて、注目信号に対応する復号された情報ビットを回復するために復号されてもよいし、信号検出段18の中でローカルに復号されてもよい。
これらの変形例には依存せず、信号再生回路22は、軟判定値に対応するビット(注目信号について検出されたビットの推定値)を得る。それは、硬判定プロセッサ42によってそれらを処理するか、あるいは軟判定値から得られた復号されたビットを再符号化することによって得られる。いずれの場合も、これらのビットは、その後、信号再生器44で注目信号が再生され、次の段に渡される入力信号から除去されるのに用いられる。もちろん、復調信号の軟判定値復号処理の間に行われる誤り訂正によって、再生された信号が注目信号を一層忠実に再生するものとなるため、再符号化されたビットを使用して除去信号を生成すると一層ロバストな除去ができる可能性がある。
一般に、一連の信号検出段18の各段(最終段を除く)において信号再生回路22は、その段によって検出されている注目信号について検出されたビットに基づいて、次の段のための除去信号を生成する。従って、検出されたビットを表す軟判定値が復号され(注目信号のビットが符号化されている場合)、その後再符号化されて、除去信号の生成に用いられるビットを得ることができるし、あるいは、軟判定値が硬判定ロジックに入力されて、除去信号の生成に用いられるビットを得ることもできる。いずれも場合も、除去信号は、対応するチャネル推定値(ネット応答)と符号相互相関を用いて生成される逆拡散値を含むことができる。あるいは、除去信号は対応するチャネル推定値に基づいて再拡散値を含むこともできる。
これらおよびその他の詳細については、本明細書の後半でもっと徹底して検討するが、そのような後述の議論を理解するには、例示的な送信機の構造を深く知ることが役立つと思われる。例示的な送信機の構造の本質は、受信機12の信号検出動作に役立ちうるようにすることである。図7はPARCを実装している送信機10の例示的な構成を示す図である。当業者であれば、PARCがシステム性能を高めるために無線通信システムで使用されるマルチ・ストリーム送信技術であると理解できるはずである。例示的実施例における送信機10は、WCDMAのHSDPAのために構成されている。
この例示的構成において、送信機10は、元の情報ビットストリームをM個のビットストリーム{b(t),b(t),...b(t)}に分割するデマルチプレクサ102、各ビットストリームのための符号化および変調回路104、そして、複数のアンテナ120を含む。各ビットストリーム{b(t),b(t),...b(t)}のための符号化および変調回路104は、ビットストリーム{b(t),b(t),...b(t)}を符号化する符号器106、各ビットストリーム{b(t),b(t),...b(t)}をさらにサブストリームに分割する複数のデマルチプレクサ108、各サブストリームを信号配置座標上のある点にマップする複数のシンボルマッパ110、選択された拡散符号を各サブストリームに適用する複数の信号拡散器112、そして、サブストリームを再合成する合成器114を含む。各ビットストリーム{b(t),b(t),...b(t)}のための符号器106は、元の情報ビットをさまざまなレートで符号化する。レートは受信機からのチャネル品質インジケータのフィードバックに依存する。
各符号器106によって出力される符号化信号は、その後デマルチプレクサ108によってK個のサブストリームに分割される。各サブストリームはK個のシンボル・マッパ110の1つによってシンボルにマップされ、K個の信号拡散器112によってK個の拡散符号のうちの1つを使用して拡散される。K個の拡散符号は異なるアンテナ120上で再利用されてもよい。合成器が、各信号拡散器112からK個の拡散信号を再合成する。各合成器114の出力は、その後合成器116によって、符号化信号と同時に送信された1つ以上の他の信号d(t)と合成される。信号d(t)は、複数の専用チャネル、制御チャネル、および、共通パイロット・チャネルを含んでもよく、ともに自己セル干渉のモデルとなってもよい。図2では、符号化信号の数と送信アンテナ120の数は等しい。しかし、他の実施形態では、符号化信号の数は送信アンテナ120の数と等しいこともあればそれより少ないこともありうる。どの送信アンテナ120を何本使うかという選択は、何らかの測定基準、例えば各送信アンテナ120に対応する信号品質の測定値に基づいてもよい。
図8は、図2に示す全体的なアーキテクチャと整合する受信機12の例示的な部分的詳細を示す図であるが、追加のPARC関連情報を提供している。上述したとおり、受信機12はG−RAKE技術を連続的干渉除去技術と組み合わせて使用して、連続的な検出と干渉除去を用いて複数の注目信号を検出する。ここで、各注目信号はPARC送信の符号化されたサブストリームのうちの異なる1つである可能性がある。受信機12は、複数の受信アンテナ202、受信アンテナ202と連結された逆拡散回路210、そして複数の連続した信号検出段18を含む。ここで留意すべきは、逆拡散器回路210は、先に図示した逆拡散回路31と同じかまたは類似している可能性があり、また、図2に示す受信機フロントエンドは図を単純化するため省略してあるが、一般にはアンテナ202と逆拡散器回路210の間に設けられるということである。
それとは関係なく、各受信アンテナ202は、各送信アンテナ120からマルチパス信号を受信する。各アンテナ202が受信する信号は、K個の符号チャネル上で送信されたM個の相互に干渉する信号の組み合わせである。逆拡散器210は、受信信号を逆拡散して、逆拡散された信号を第1の信号検出段18に出力する。逆拡散された信号は、K個の符号チャネルの1つで送信されたM個の相互に干渉する信号に相当する。
各信号検出段18は、1個の符号器106に対応していて、送信機10の送信構造を補完しており、対応するビットストリームの推定値b(t)を生成する。復号誤りがない場合、各段18の出力は、送信機10に含まれる各符号器106に入力された元の情報のビットストリームb(t)となる。送信機10において、各符号器106から出力された符号化信号が分割され、K個の拡散符号を用いて拡散され、1本の送信アンテナ120を用いて送信される。しかし、当業者であれば、各符号器106について2本以上の送信アンテナ120を用いてもよいことが理解できるであろう。さらに、例示的な実施形態においては、同じK個の拡散符号が各アンテナ120に使用されているが、異なる数の拡散符号が各送信アンテナ120に使用されてもよいし、拡散符号が再利用される必要もない。各送信アンテナ120について異なる拡散符号を使うと、符号の再利用による干渉をなくせるはずである。
いずれにせよ、各信号検出段18において、K個の拡散符号の各々に対応する逆拡散信号は、K個の拡散符号間の相互相関に起因するシンボル間干渉や多元接続干渉を抑圧し、自己干渉や複数の送信アンテナ120全体における符号再利用に起因する符号再利用干渉、あるいはd(t),d...d からの干渉を抑圧するように重み付けされ合成される。合成重みは、G−RAKEに基づいた技術を用いて、各段18において合成重み生成器32によって算出される。G−RAKEに基づいた技術は干渉を有色ガウス雑音として扱い、相関器出力全体について阻害相関を利用して干渉抑圧を達成する。
異なるG−RAKE合成回路を使用して異なる送信器10を構成することもできる。1つ以上の例示的な実施形態において、符号器106と送信アンテナ120間には一対一の対応関係があるため、線形のG−RAKE合成回路が保証されている。しかし、送信器10における符号器出力が1つ以上の送信アンテナ120に適用された場合には、非線形G−RAKE合成回路、例えば、ジョイントディテクション(共同検出)型のG−RAKE合成回路の性能が改善される可能性がある。共同検出型のG−RAKE受信機については、S.J.Grant、K.J.Molnar、G.E.Bottomleyによる“Generalized RAKE receivers for MIMO systems(MIMOシステムのための汎用RAKE受信機)"Proc.VTC’03−Fall、 フロリダ州オーランド、 2003年10月に説明されており、参照により本願に援用する。信号検出段18用の図示されたRAKE合成回路30は、適切なG−RAKE合成法に対して、必要に応じて設計や構成ができるということを、理解すべきである。
G−RAKE合成の後、K個の拡散符号の各々に対応する符号化されたビットが復調され、マルチプレクサ260を使用して多重化される。マルチプレクサ260は、受信機回路16の一部として、受信機12中の他の場所に含まれてもよい。第一の符号器106に対応する符号化信号が、第一の信号検出段18で復号されて出力される。復号された信号はそれから、チャネル推定値および符号相互相関と共に、対応する符号化信号に起因する干渉を表す、次の段のための除去信号を生成するために使用される。除去信号は逆拡散器210から出力された逆拡散信号と合成されて、干渉が減少した逆拡散信号を生成し、それが第2の信号検出段18への入力信号となる。その第2の段が次の注目信号を検出し、さらに次の信号検出段18のための除去信号を生成し、以下同様のことが実行される。このように、上述のプロセスが信号検出段18の各々について繰り返される。但し、最終段18は除去信号を生成する必要がない。なぜなら、最終段18に達すると、注目の未検出信号が1個残っているだけだからである。受信した合成信号の中に含まれる異なる注目信号は、こうして連続的に復号され、連続的に検出された符号化信号の各々の寄与分が、残りの信号検出段18へと転送されることになっている入力信号から除去される。合成重みは、各段18について変化し、前段で実行される除去に起因して漸進的に減少する干渉を反映している。符号化信号がすべて復号された後、元の情報ビットストリームがマルチプレクサ260によって再構成されて、推定されたビットストリームI^を生成する。
図9は、逆拡散器回路210を示す。逆拡散器210は、複数の相関器バンク214と複数のサンプリング・ユニット218を含む。相関器バンク214の各々は、RAKEフィンガとしても知られ、K個の拡散符号のうちの1つに同調し、複数の受信アンテナ202を対象範囲とする1つ以上の相関器を含む。フィンガ配置プロセッサが、従来の単一アンテナG−RAKE受信機と同様の方法で、各相関器バンク214を含むRAKEフィンガのフィンガ遅延を割り当てることがある。例えば、フィンガ配置プロセッサ212は、第1の信号検出段18の中でG−RAKE合成回路の出力における信号対干渉プラス雑音比(SINR)を最大化するようにRAKEフィンガを配置することがある。RAKEフィンガ出力はその後、シンボル間隔t=iTでサンプリングユニット218によってサンプルされ、各々のi番目のシンボル間隔でy(i)と示される複数の逆拡散ベクトルを生成する。逆拡散ベクトルy(i)は、k番目の符号チャネル上でM個の送信アンテナ120から送信されたM個の符号化信号の合成信号を表す。
図10は、信号検出段18の例示的な詳細を示す図である。図示された実施形態において、各信号検出段18は、複数のG−RAKE合成回路222を含む。G−RAKE合成回路222は、前に図示したRAKE合成回路30を集合的に含むと考えてもよい。各段18はさらに、合成重み算出器32、複数の復調器226、関連するマルチプレクサ228を含む。それらは同時に、前に図示した復調器および回路38、そして復号器40を含んでもよい。復号器40の出力は、送信機10において対応する符号器106に入力される情報ビットb(t)の推定値を表す、復号されたビットを含む。誤りがないとき、復号されたビットは元の情報ビットに合致する。また、図のとおり、信号再生回路22は、再符号器46、信号再生器44および1つ以上の加算回路24を含む。前と同様、信号再生回路22は、次段18に渡されることになっている入力信号から、検出された注目信号を除去する。
信号検出段18の各々は、入力{y(i),y(i),・・・ ,y(i)}を持つ。第1の信号検出段18において、入力信号{y(i),y(i),・・・ ,y(i)}は逆拡散器210によって出力される逆拡散ベクトルである。後段の信号検出段18において、入力信号は、前段の信号検出段18によって検出された連続的な除去信号によって連続的に干渉が減少した、さらに後段へと転送されることになっている逆拡散ベクトルである。G−RAKE合成回路222は、同じ合成重みベクトルWを用いて各逆拡散ベクトルK(i)に重み付けして合成する。下付き文字のmは、チェーン中のm番目の信号検出段18を表す。G−RAKE合成回路222は、阻害相関推定器34からの出力に基づいて合成を行う。阻害相関推定器34は、入力信号の逆拡散値間の阻害相関を算出する。合成重み生成器32は、推定器34によって提供される阻害相関に基づいて、関連する信号検出段18について合成重みベクトルWを算出する。
合成重みは、信号検出段18の各々について異なっているが、これは、一連の信号検出段18を通じて信号の処理が進行するにつれて干渉が連続的に除去されることを反映しているからである。ここで留意すべきは、1つ以上の例示的構成において、信号検出段18の各々についての合成重みベクトルWを算出するために、1個の合成重み生成器32が単独で使用されてもよいし、信号検出段18の各々について別個の合成重み生成器32が使用されてもよい。
各信号検出段18の例示的な合成重みベクトルWは次式で与えられる。
Figure 2007535835
式1において、利得ベクトルhは、m番目の送信アンテナ120と複数の受信アンテナ202の間における周波数選択フェージングチャネルを表している。利得ベクトルhは、このチャネルのタップ利得と遅延の関数であると同時にチップ・パルス自己相関の関数でもある。R(m)は、k番目のマルチコード上のi番目のシンボルを検出するとき、m番目の信号検出段18によって「経験される」阻害ベクトルxmk(i)の共分散行列である。上述のように、阻害相関推定器34は必要な阻害相関(共分散)推定値を提供する。
そのような阻害は以下の成分のうち、1つ以上を含むことがある。
1.アンテナ全体にわたる符号の再利用に起因する、他のアンテナM+1、M+2、...、M上のk番目のマルチコードからの自己干渉
2.アンテナM上のk番目のマルチコードからのシンボル間干渉(ISI)
3.アンテナM、M+1、...、M上の他のK−1個のマルチコードからの多元接続干渉(MAI)
4.信号 {d(t)} m=1 からの多元接続干渉(MAI)
5.雑音(他のセルの干渉を含むこともある)
G−RAKE合成回路222の出力は、送信機10で逆多重化(分離)され複数の符号チャネル上で受信機12に送信された、単一の符号化信号に対応する送信シンボルを表す。例示的な実施形態において、同じ符号の信号に対応する送信シンボルは、1本の送信アンテナ120から送信されるが、2本以上の送信アンテナ120の間で分割することも可能である。
復調器226は、G−RAKE合成回路222によって出力された受信シンボルを受信し、i番目のシンボル区間においてm番目の送信アンテナ120から送信されたK個のシンボル{cmk(i)} k=1の各々を復調する。各シンボル区間における各復調器226の出力は、m番目の送信アンテナ120のためのk番目の変調器110への入力に対応する軟判定値である。マルチプレクサ228は、復調器226から出力された軟判定によるビット値を多重化し、それによって図7に示すようにm番目の送信アンテナ120について対応するデマルチプレクサ108によって実行されるプロセスをひっくり返す。マルチプレクサ228の出力は、従って、m番目の送信アンテナ120について符号器106から出力された符号化信号の推定値である。この動作によって、上述のように、復号器40は、マルチプレクサ228から出力された符号化信号の軟判定による推定値を復号し、復号されたビットを生成する。このビットは、m番目の符号器106に入力されてm番目の送信アンテナ120によって送信された元の情報ビットの推定値b^(t)を表している。
復号器40は、このようにm番目の符号器106に適合している。復号器40は、例えば、従来型のViterbi復号器や従来型のMAP復号器を含んでもよい。実際、必要や希望に応じて、いかなる既知の復号技術を使用してもよい。選択された復号方法は本発明には重要ではなく、また当業者にはよく知られているため、復号技術は本明細書では説明しない。
m番目のアンテナによって送信された情報ビットb(t)の情報を使用して、除去信号が生成され、m番目の符号化信号の逆拡散ベクトル{y(i),y(i),・・・ ,y(i)}への寄与分を除去するのに使用可能となる。信号再生回路22は、推定情報ビットb^(t)、チャネル推定値、および、異なる拡散符号間の符号相互相関に基づいてm番目の符号化信号に対応する除去信号を生成する。その相互相関は、逆拡散処理の際に、逆拡散器210で算出されてもよい。あるいは、そのような情報は事前に算出され、受信機メモリ内に格納されていてもよい。
本実施形態における除去信号は、現行の信号検出段18−mへの入力信号として提供された逆拡散信号ベクトルから加算器24によって減算された、一組の除去ベクトルを含む。その結果、干渉が減少した信号が、次の信号検出段18−(m+1)への入力信号として提供される。このようにしてm番目の符号化信号の寄与分が、m+1番目の信号検出段に入力される信号から除去され、次の信号検出段18によって「経験される」干渉が減少する。
図11は、信号再生回路22の中の例示的な信号再生器44を示す図である。ここでは信号再生器44が、再符号器46と関連して示されており、図7に示す送信機のアーキテクチャを補完している。信号再生器44は、符号器46に接続したデマルチプレクサ248、「マッパ」とも呼ばれる複数の変調器250、および、ベクトル生成器252を含む。符号器46は、復号器40から出力される推定情報ビットb^(t)を再符号化して、送信機10においてm番目の符号器106によって出力されるm番目の符号化信号の推定値を生成する。符号器106によって出力される符号化ビットは、その後、デマルチプレクサ248によって、K個の拡散符号の各々に対応するK個のサブストリームに分割される。
デマルチプレクサ248は、m番目の送信アンテナ120についての送信機10におけるデマルチプレクサ108と同じように、符号化信号をサブストリームに分割する。シンボルマッパ250は、符号化ビットを対応する変調シンボルにマップして、m番目の送信アンテナ120によって送信された送信シンボルの推定値 {c^mk(i)} k=1 を生成する。符号器46、デマルチプレクサ248、およびシンボルマッパ250は、送信機10における対応する機能部品と同じように構成されてもよい。ベクトル生成器252は、K個の異なる拡散波形間の符号相互相関関数、および、m番目の送信アンテナ120と複数の受信アンテナ202間のチャネルの推定値を用いて、推定送信シンボルによる逆拡散ベクトル{y(i),y(i),・・・ ,y(i)}のベクトル成分を生成する。
従って、ベクトル生成器252の出力は、一組の除去ベクトルとなり、再構築された除去ベクトルはそれぞれの符号チャネルに対応する。チャネル推定値は、従来の方法で共通のパイロットチャネルから得られ、パイロットに配分された出力の一部に応じた割合で定められる。従って、再構築された干渉ベクトルは、m番目の送信アンテナ120から干渉を完全に除去するには、共通パイロットチャネルとデータチャネル間の出力補正に応じた割合で定める必要がある。
復号信号ではなく、符号化信号の推定値から干渉信号が生成されうることは、当業者には明らかであろう。言い換えると、前述のとおり、信号再生処理は、復号処理の恩恵がなくても、復調器38によって出力される軟判定値に対して硬判定を行うことによって得られる符号化ビットのストリームを再符号化することによって、幾分単純化できる。その場合、信号再生回路は符号器46を使用しないだろう。あるいは、信号再生回路22は復調器226の出力から得られたビット(例えば軟判定値から硬判定により得られたビット)を使用することで、符号器46とデマルチプレクサ248を省略することもできるだろう。さらに、もしそのようなビットが信号再生回路22によって直接使用される場合には、図10のマルチプレクサ228も省略できるだろう。
それとは関係なく、式1で与えられる合成重みベクトルwを算出するには、正味の応答ベクトルhと共分散行列 R(m)の算出が必要となる。正味の応答ベクトルhのq番目の要素は、次式で与えられる。
Figure 2007535835
厳密に言うと、フィンガの指標は、L本の受信アンテナ202全体に広がっているため、qは受信アンテナ指標lの関数となる。従って、表記法q(l)は、この依存関係を意味するのに用いられる。式2において、x( )は、チップ・パルス自己相関関数である。Pは、チャネルタップ数である。glmpとτlmpは、それぞれm番目の送信アンテナ120とl番目の受信アンテナ202間のチャネルにおけるp番目のタップの利得と遅延である。そして、τq(l)は、フィンガ遅延である。
阻害共分散行列R(m)は次式で与えられる。
Figure 2007535835
行列R(m)は、本明細書で、マルチコード阻害行列と呼ばれているが、複数の送信アンテナ120と複数の拡散符号の使用に起因する阻害、すなわち上にリストしたうち、最初の3つの阻害要素を表している。行列Rは、本明細書で、多元接続阻害行列と呼ばれているが、その他の送信信号、例えばパイロット、専用、オーバヘッドチャネルに起因する多元接続干渉、すなわち上記のリストの4番目の阻害を表している。行列Rは、本明細書で、雑音阻害行列と呼ばれているが、阻害の雑音部分を表している。
マルチコード阻害行列R(m)の要素は次式で与えられる。
Figure 2007535835
この式において、SFは拡散因子である。Tはチップ周期である。α(n)はn番目のデータ・サブストリームに配分されたシンボル毎の全エネルギEτの割合である。n=m+l・・・Mの総和を持つ第1項は符号再利用に起因する自己干渉を表している。n=m・・・Mの総和を持つ第2項はシンボル間干渉と複数の拡散符号の利用による多元接続干渉を表している。部分的総和は、前段の信号検出段18のうち任意の段で検出された注目信号に関連する干渉が除去されたという事実を反映する。このため、阻害共分散行列R(m)および従って合成重みベクトルWはそれぞれの信号検出段18で異なる。
多元接続阻害行列Rの要素は次式で与えられる。
Figure 2007535835
ここで、α(m)は信号d(t)に配分された全エネルギの一部分である。R(m)に比べて、式5の第1の総和は、m=1・・・Mから、すなわち送信アンテナ120の全体に対して算出される。これは、パイロット、専用、オーバヘッドチャネルからの干渉が、連続する干渉除去プロセスにおいて取り除かれないからである。
雑音行列の要素は次式で与えられる。
Figure 2007535835
ここでNは雑音電力スペクトル密度であり、δ( )はディラックのデルタ関数である。式6は、異なる受信アンテナ202上の雑音プロセスは無相関であると仮定する。
各段においてG−RAKE合成ベクトルを算出するために、受信機は、利得ベクトルhと阻害共分散行列R(m)を推定する。利得ベクトルhは、G−RAKE受信機と同様の方法でパイロットチャネルからの逆拡散値を使用して簡単に算出されてもよい。しかし、これが機能するためには、送信機10では異なるパイロットが各アンテナ120について使用されると仮定される。y pilot(i) をm番目の送信アンテナ上のパイロットに対応する逆拡散パイロットベクトルとして表すと、利得ベクトルhの推定値は、符号化フレームの区間に対する次の時間平均で与えられる。
Figure 2007535835
ここで、c p,m(i) は既知のパイロットシンボルである。
m番目の信号検出段についての阻害共分散行列R(m)は、チャネルタップ利得およびフィンガ遅延の推定値を用いて上記の式によって明確に生成されうる。チャネル推定値はパイロットチャネルおよびデータチャネル間の出力補正に応じた割合で定める必要がある。
さらに、雑音電力Noを何らかの方法で推定する必要がある。あるいは、阻害共分散行列R(m)は、受信機回路16の各段18への入力について、逆拡散ベクトル上で時間平均を実行することによって推定されてもよい。Ymk(i)をm番目の信号検出段への入力として表す場合、阻害共分散行列R(m)の推定値は次式で与えられる。
Figure 2007535835
上式で、βは、m番目の送信アンテナ120上のパイロットチャネルおよびデータチャネル間の出力補正を表す。
別の手法として、本明細書中でパイロット共分散行列と呼ばれるパイロットチャネル R pilot 上の阻害共分散行列の推定値を使用して、m番目の信号検出段18についての阻害共分散行列R(m)を推定する手法がある。この二つはまったく異なる。その理由は、(1)送信アンテナ120全体に対する符号の再利用は、データチャネル上とは違って、パイロットチャネル上では通常行われないこと、(2)連続的干渉除去(SIC)はパイロットチャネル上で実行されてもよいし、実行されなくてもよいこと、という2点である。
パイロット共分散行列は時間平均によって簡単に推定される。
Figure 2007535835
ここで、x pilot(i) は、m番目のパイロットチャネルによって「経験される」阻害である。これは既知のパイロットシンボルとチャネル利得ベクトルの推定値hを使用して、次式に従ってパイロット逆拡散値から簡単に算出できる。
Figure 2007535835
m番目の信号検出段についての阻害共分散行列R(m)は、その後、符号の再利用を計上するためパイロット共分散行列 R^ pilot に、次の項を足すことによって推定される。この符号再利用の項は、Rと表され、次式で与えられる。
Figure 2007535835
これは、式4の第1項である。さらに、受信機12の最大でm番目の信号検出段18までで除去された干渉を計上するため、1つの項が減算される。この項はRSIC(m)と表され、次式で与えられる。
Figure 2007535835
これは式4の第2項で、最初の加算がn=1・・・m=1に変わったものである。連続的干渉除去(SIC)がパイロットチャネル上で実行されるかどうかに関わらず、これは事実である。なぜなら、パイロットチャネル上の連続的干渉除去は、パイロット干渉のみを取り除くのであって、複数のデータ・サブストリームに起因する干渉は取り除かないからである。
さらに性能を向上させるため、本明細書の中ですでに述べたように、各信号検出段18における合成重みが算出され、シンボル周期に依存する拡散符号相互相関を考慮に入れてもよい。この技術の複雑度は適正であるといえよう。なぜなら、フロントエンドで逆拡散が用いられ、次段へと転送されることになっている入力信号が逆拡散値のストリームを含む実施形態において、そのような符号相互相関が、干渉除去のための逆拡散値の信号再生に使用されているからである。
もちろん、上記で示したように、次段へと転送されることになっている入力信号が逆拡散されるのではなく、入力信号が各信号検出段18によって内部的に逆拡散される前に、その代わりに入力信号から干渉が除去されるように連続的干渉除去が行われてもよい。この手法により、RAKEフィンガの配置が、信号検出段18の全部によって共有される共通の逆拡散回路の中で固定化されるのではなく、信号検出段18の各々において最適化される。トレードオフとしては、逆拡散と再拡散が、信号検出および干渉除去の一部として各信号検出段18において実行されなければならないということである。
そのような段毎の除去に関して、図12は、次段へと転送されることになっている入力信号が受信信号サンプルを含むこと、すなわち、各段が例えば図5に例示するような逆拡散回路30を含むことを特徴とする受信機回路16の実施形態において、信号再生器44の例示的実施形態を示す。描かれた具体的な回路は、図7に示す送信機のアークテクチャに関して特定の用途を有していてもよい。
ここでもまた、信号再生器44は、(任意の)符号器46と関連付けられ、デマルチプレクサ248、複数のシンボルマッパ250、複数の拡散器251、合成器253、そしてフィルタ回路255を含む。符号器46は、復号器40から出力された情報ビットを再符号化して、m番目の送信アンテナ120について、符号器106によって出力された符号化ビットの推定値を生成する。符号器46によって(または図6に示すように硬判定プロセッサ42によって)出力された符号化ビットは、その後、K個の拡散符号の各々に対応するK個のサブストリームに分割される。デマルチプレクサ248は、m番目の送信アンテナ120についての送信機10におけるデマルチプレクサ108と同様に、符号化ビットを符号化サブストリームに分割する。
シンボルマッパ250は、これらの符号化サブストリームのビットを変調シンボルにマップし、m番目の送信アンテナ120によって送信された送信シンボルの推定値 {c^mk(i)} k=1 を生成する。拡散器251は、シンボルマッパ250から出力された送信シンボルを、送信機10が使用したのと同じ拡散符号を用いて拡散する。符号器46、デマルチプレクサ248、シンボルマッパ250、および拡散器251は、送信機10における対応する機能部品のように構成されてもよい。合成器253は、拡散信号を合成して、m番目の符号化信号に寄与する送信信号の推定値を生成する。
チャネルフィルタ255は、m番目の送信アンテナ120に関連する推定チャネル係数を使用して、推定送信信号をフィルタにかける。m番目の送信アンテナ120からL番目の受信アンテナ202への特定のチャネル特性を反映するため、各受信アンテナ202について、チャネルフィルタ255の中で別個のチャネルフィルタリングが用いられてもよい。チャネルフィルタ255から出力されるフィルタ処理された信号は、その後、m番目の信号検出段18への入力信号から減算される。(この説明では図8の逆拡散器210は省略されてもよい。)
少なくとも、図7の送信機の構造に関して述べた例示的な実施形態において、送信機10は、K個の拡散符号について符号器106を1個使用し、各送信アンテナ120上では異なる符号器106が用いられたことが想定されている。従って、各信号検出段18は、M本の送信アンテナの1つに対応している。もちろん、留意すべきことだが、他の実施形態においては、送信機10で1個の符号器106を2個以上の送信アンテナ120に関連させることもできるし、2個以上の符号器106を1本の送信アンテナ120に対応させることもできる。また、それ以外の数の拡散符号を各送信アンテナ120と一緒に用いることもできる。
以上のおよび類似の事例において、注目する送信信号を検出および復号するのに本発明を用いてもよいということを理解すべきである。実際、当業者には、本明細書で説明した基本構造および処理の論理が広範な送信機の配置に適合できることを、すぐに理解できるであろう。
他のバリエーションにおいて、合成重み算出は、最大尤度(ML)法を使う必要はない。代案として、合成重みの算出に最小平均2乗誤差(MMSE)法を使うことがある。どちらの方法を使用しても成果は同じである。しかし、MMSE合成重みの方が、阻害共分散行列R(m)ではなく、データ共分散行列R(m)に基づいているため、算出が簡易である。最小平均2乗誤差(MMSE)法を使うと、合成重みベクトルは次式で与えられる。
Figure 2007535835
データ共分散行列R(m)は、次式に従って、m番目の信号検出段18への入力について、逆拡散ベクトル{y(i),y(i),・・・ ,y(i)}の時間平均に基づいて推定してもよい。
Figure 2007535835
データ共分散行列の算出は、出力補正bの情報が必要でないため、阻害共分散行列の算出より簡易である。最大尤度(ML)と最小平均2乗誤差(MMSE)の合成重みは、実数値の倍率に関係している。
Figure 2007535835
ここで、
Figure 2007535835
である。従って、受信機12の各段における信号対干渉プラス雑音比(SINR)は、合成重みの算出法として最大尤度(ML)と最小平均2乗誤差(MMSE)のどちらを使用しても同じとなる。
信号対干渉プラス雑音比(SINR)算出の説明において留意すべきことは、本発明の例示的な実施形態は、アクティブまたは非アクティブなデータ受信状態に対応する第1または第2の動作モードで、そのような算出を実行するように構成できることである。例えば、受信機12が、所定の時間にデータを受信し、それ以外の時間に他の受信機(すなわち、ユーザ)がサービスを提供されている間は待機すると仮定すると、例示的な受信信号品質測定法は、これらのモード変更を補完することになる。
より具体的には、本発明の1つ以上の実施形態において、受信機回路16は、例えば、サポートする無線通信網に報告を返すような段毎の信号対干渉プラス雑音比(SINR)の推定値を生成するように構成される。アクティブな受信モードで、受信機回路16は、個々の信号検出段18によって実行された信号検出動作に基づいて、すなわち、注目信号によって伝達されたデータの受信に基づいて、これらの信号対干渉プラス雑音比(SINR)の推定値を得る。受信機12にサービスが提供されない非アクティブモードで、例示的な受信機回路16は、上述したようにパイロット相関に基づいて、各慎吾検出段18についての信号対干渉プラス雑音比(SINR)の推定値を得るよう、構成されている。
この後者の場合、パイロット信号は、各種の送信アンテナから利用可能であると仮定する。そして、留意すべきなことは、受信したパイロットに基づいて構築されたパイロット相関行列は、チェーン中の第1の信号検出段18についての信号対干渉プラス雑音比(SINR)の推定値に直接適用可能であるということである。後段の信号検出段18の各々についての信号対干渉プラス雑音比(SINR)の推定値は、連続する段の各々において得られるはずの干渉減少効果の基礎条件に基づいて、受信機回路16によって導出されてもよい。従って、受信機回路16は、最初のパイロット相関行列から開始し、その後、各段18の干渉除去の基礎条件に基づいて各段の行列を連続して修正することによって、後続の信号検出段18での信号対干渉プラス雑音比(SINR)の推定値についてのさらなるパイロット相関行列を導出してもよい。そのような処理は、受信機12がその時点でサービスを提供されていなくても、受信機12が、段毎の信号対干渉プラス雑音比(SINR)についての報告を返せるようにする。そのような報告は、いろいろな理由でネットワークに役立つ可能性がある。例えば、スケジューリングを改善すること、受信機12にサービスを提供するのに用いられる多様な注目信号(例えばサブストリーム)についての最適な信号毎のデータ速度を構成すること、などはその良い例である。
本発明はもちろん、本発明の本質的な特徴から逸脱することなく本明細書で具体的に述べたもの以外の方法で実行される可能性がある。ここに挙げた実施形態は、いかなる点においても、例示にすぎず、本発明を限定するものではなく、添付した請求項の意味する範囲およびそれと均等の範囲に入るすべての変更は、その中に包含されることが意図されている。
図1は、無線通信システムを示す図である。 図2は、本発明の一つ以上の例示的実施形態に従って構成された受信機回路を含む例示的な無線通信受信機を示す図である。 図3は、連続した信号検出および干渉除去のための例示的な受信機回路において、ある信号検出段によって実行された例示的な処理ロジックの図である。 図4は、フロントエンド逆拡散器回路を含む例示的な受信機回路の一実施形態を示す図であり、次段へと転送されることになっている段入力信号が連続的干渉除去を受ける逆拡散値を含むことを特徴としている。 図5は、段毎の逆拡散回路を含む例示的な受信機回路のもう一つの実施形態を示す図であり、次段へと転送されることになっている段入力信号が連続的干渉除去を受ける受信信号サンプルを含むことを特徴としている。 図6は、例示的な信号検出段の詳細を示す図である。 図7は、例示的なMIMO送信機を示す図である。 図8は、本発明の一つ以上の実施形態による受信機のさらなる例示的な詳細を示す図である。 図9は、例示的な逆拡散器回路の詳細を示す図である。 図10は、本発明の一つ以上の実施形態による例示的な受信機回路の一段における信号検出と除去についてのさらなる例示的な詳細を示す図である。 図11は、連続的除去操作について、例示的な信号再生の詳細を示す図である。 図12は、連続的除去操作について、別の例示的な信号再生の詳細を示す図である。

Claims (71)

  1. 2つ以上の注目信号を含む受信された合成通信信号を処理する方法であって、
    一連の信号検出段におけるいくつかの連続した信号検出段で、前記注目信号を個別に検出する検出工程と、
    前記一連の信号検出段において次段となる信号検出段へと提供される入力信号に関して、各信号検出段で、前記注目信号を除去する除去工程と
    を含み、
    各信号検出段において、前記検出工程は、
    前記入力信号に係る複数の逆拡散値についての阻害相関の関数である合成重みを生成する生成工程と、
    前記合成重みに従って複数の前記逆拡散値を合成する合成工程と
    を含む方法。
  2. 各信号検出段において、前記検出工程は、
    前記注目信号に含まれている検出ビットの推定値を表す軟判定値を取得するために、合成された逆拡散値を復調する復調工程を含む、請求項1に記載の方法。
  3. 各信号検出段において取得された前記軟判定値を復号回路へ提供する提供工程と、
    各注目信号について復号されたビットを取得するために前記軟判定値を復号する復号工程と
    を含む、請求項2に記載の方法。
  4. 前記除去工程は、
    前記軟判定値に対して硬判定を実行することで硬判定ビットを生成する生成工程と、
    除去信号を生成するために前記硬判定ビットを再度拡散する再拡散工程と、
    次段となる信号検出段へと提供されることになっている前記入力信号から前記除去信号を減算する減算工程と
    を含む、請求項3に記載の方法。
  5. 前記除去工程は、
    前記軟判定値に対して硬判定を実行することで硬判定ビットを生成する生成工程と、
    除去信号を生成するために前記硬判定ビットに基づいて逆拡散値を生成する生成工程と、
    次段となる信号検出段へと提供されることになっている前記入力信号から前記除去信号を減算する減算工程と
    を含む請求項3に記載の方法。
  6. 前記検出ビットは、
    符号化された符号化ビット
    を含み、
    前記除去工程は、
    復号された復号ビットを取得するために前記軟判定値を復号する復号工程と、
    再度符号化された再符号化ビットを取得するために前記復号ビットを再度符号化する再符号化工程と、
    除去信号を生成するために前記再符号化ビットを再度拡散する再拡散工程と、
    次段となる信号検出段へと提供されることになっている前記入力信号から前記除去信号を減算する減算工程と
    を含む請求項3に記載の方法。
  7. 前記検出ビットは、
    符号化された符号化ビット
    を含み、
    前記除去工程は、
    復号された復号ビットを取得するために前記軟判定値を復号する復号工程と、
    再度符号化された再符号化ビットを取得するために前記復号ビットを再度符号化する再符号化工程と、
    除去信号を生成するために前記再符号化ビットに基づいて逆拡散値を生成する生成工程と、
    次段となる信号検出段へと提供されることになっている前記入力信号から前記除去信号を減算する減算工程と
    請求項3に記載の方法。
  8. 各信号検出段への前記入力信号を生成する際に利用される逆拡散値のストリームを出力するよう構成された1組の相関器において、前記受信された合成通信信号を逆拡散する逆拡散工程をさらに含む、請求項1に記載の方法。
  9. 前記除去工程は、
    前記信号検出段において検出された前記注目信号に対応する逆拡散値を再度生成する再生工程と、
    次段となる信号検出段へ提供されることになっている前記入力信号として供給された前記逆拡散値のストリームから前記逆拡散値を減算する減算工程と
    を含む、請求項8に記載の方法。
  10. 前記注目信号に関連して受信されたパイロット信号に基づいて、基づいて、各信号検出段における前記阻害相関を算出する算出工程をさらに含む、請求項1に記載の方法。
  11. 少なくとも第1の動作モードで動作している間に、
    前記注目信号に関連して受信された前記パイロット信号に基づいて、第1段となる信号検出段用の阻害相関行列を算出する工程と、
    後続の信号検出段用の追加の相互相関行列を、該後続の信号検出段による連続的な干渉除去の仮定的効果に基づいて算出する工程と
    を含む、請求項10に記載の方法。
  12. 各信号検出段において、無線通信ネットワークへ報告するために、該信号検出段用の対応する前記阻害相関行列に基づいて該信号検出段用の信号品質測定値を算出する工程をさらに含む、請求項11に記載の方法。
  13. 各信号検出段への前記入力信号に係る複数の逆拡散値間の阻害相関の推定値に基づいて、各信号検出段用の阻害相関を算出する工程をさらに含む、請求項1に記載の方法。
  14. 前記注目信号に関連して受信されたパイロット信号について算出された1つ以上のパイロット信号相関行列に基づいて、各信号検出段用の阻害相関を算出する工程をさらに含む、請求項1に記載の方法。
  15. 請求項14に記載の前記阻害相関を算出する工程は、
    複数の注目信号間における符号再利用干渉を計上するために、パイロット相関行列と符号再利用行列とを合成する工程
    を含む、請求項14に記載の方法。
  16. 請求項14に記載の前記阻害相関を算出する工程は、
    除去された干渉を計上するために、パイロット相関行列と干渉行列とを合成する工程
    を含む、請求項14に記載の方法。
  17. 受信された合成通信信号を、複数の連続した信号検出段を使用して処理する方法であって、
    前記複数の信号検出段のそれぞれに入力するために、前記受信された合成通信信号から前記信号検出段への入力信号を導出する導出工程と、
    前記入力信号の逆拡散値をについて、各信号検出段において、阻害相関を生成する生成工程と、
    前記阻害相関に基づいて、前記入力信号に係る複数の前記逆拡散値を合成することによって、各信号検出段において、前記合成通信信号によって搬送される注目信号を検出する検出工程と、
    前段に位置する信号検出段において検出された前記注目信号を、後段の信号検出段への前記入力信号から除去する除去工程と
    を含む、方法。
  18. 前記阻害相関の生成工程は、
    前記入力信号の逆拡散値に係る複数の異なるストリーム間の阻害相関を算出する工程を含み、
    前記異なるストリームは、逆拡散回路に備えられる異なるRAKEフィンガからそれぞれ出力された逆拡散値に対応している、請求項17に記載の方法。
  19. 前記検出工程は、
    前記阻害相関に基づいてRAKE合成重みを生成する工程と、
    合成信号を生成するために、前記RAKE合成重みに基づいて、前記逆拡散値に係る複数の異なるストリームを合成する工程と、
    復調された復調信号を取得するために、前記合成信号を復調する工程と、
    前記復調信号から前記注目信号を検出する工程と
    を含む、請求項18に記載の方法。
  20. 前記復調信号から前記注目信号を検出する工程は、
    前記注目信号の復号された復号ビットを取得するために、軟判定値を復号する工程を含む、請求項19に記載の方法。
  21. 前記阻害相関に基づいてRAKE合成重みを生成する工程は、
    前記阻害相関と正味の応答推定値とに基づいて前記RAKE合成重みを生成する工程
    を含む、請求項19に記載の方法。
  22. 前記除去工程は、
    最終段を除く各信号検出段において、前記注目信号における検出ビットに対応する軟判定値を取得するために、合成された逆拡散値を復調する工程と、
    前記軟判定値に基づいて除去信号を生成する工程と、
    次段となる信号検出段へと提供されることになっている前記入力信号から前記除去信号を減算する工程と
    を含む、請求項17に記載の方法。
  23. 前記検出ビットは、前記注目信号に含まれる符号化された符号化ビットに対応し、
    前記軟判定値に基づいて除去信号を生成する工程は、
    前記注目信号についての復号された復号ビットを取得するために、前記軟判定値を復号する工程と、
    前記軟判定値を復号する際に実行されたいずれかの誤り訂正処理の恩恵を受けて再度符号化された再符号化ビットを取得するために、前記復号ビットを再度符号化する工程と、
    前記再符号化ビットから前記除去信号を生成する工程と
    を含む、請求項22に記載の方法。
  24. 記軟判定値に基づいて除去信号を生成する工程は、
    前記注目信号について硬判定された硬判定ビットを取得するために、前記軟判定値について硬判定を実行する工程と、
    前記硬判定ビットから前記除去信号を生成する工程と
    を含む、請求項22に記載の方法。
  25. 各信号検出段において前記除去信号を生成するために使用される前記硬判定ビットとは無関係に、各信号検出段からの前記検出ビットについて復号ビットを取得するために、各信号検出段からの前記軟判定値を復号する復号工程
    をさらに含む、請求項24に記載の方法。
  26. 前記入力信号は、前記受信された合成通信信号から導出された信号サンプルを含み、
    前記検出工程は、
    異なる逆拡散値のストリームを取得するために前記入力信号を逆拡散する工程と、
    前記阻害相関に基づいて、前記異なる逆拡散値のストリームをRAKE合成する工程と
    を含む、請求項17に記載の方法。
  27. 前記除去工程は、
    最終段を除く各信号検出段において、
    除去信号を生成するために、検出された前記注目信号を再度拡散する工程と、
    次段となる信号検出段への入力信号と前記除去信号とを合成する工程と
    を含む、請求項26に記載の方法。
  28. 前記次段となる信号検出段への入力信号と前記除去信号とを合成する工程は、
    前記次段となる信号検出段への入力信号から前記除去信号を減算する工程
    を含む、請求項27に記載の方法。
  29. 前記除去信号を生成するために、検出された前記注目信号を再度拡散する工程は、
    前記注目信号について算出された対応するチャネル推定値に応じて、前記注目信号から再現された符号化ビットを再度拡散する工程
    を含む、請求項27に記載の方法。
  30. 前記入力信号は、
    前記受信された合成通信信号から導出された異なる逆拡散値のストリーム
    を含み、
    前記検出工程は、
    各信号検出段用に決定された前記阻害相関に基づいた各信号検出段用の前記入力信号を含む前記異なる逆拡散値のストリームをRAKE合成する工程
    を含む、請求項17に記載の方法。
  31. 前記除去工程は、
    最終段を除く各信号検出段において、
    前記注目信号に対応する逆拡散値として除去信号を生成する工程と、
    次段となる信号検出段への提供されることになっている前記入力信号に前記除去信号を合成する工程と
    を含む、請求項30に記載の方法。
  32. 請求項31に記載の前記注目信号に対応する逆拡散値として除去信号を生成する工程は、
    前記注目信号に関連する符号化ビットに対応する逆拡散値を生成する工程
    を含み、
    前記逆拡散値は、
    前記受信された合成通信信号を逆拡散することに関連して決定された符号相互相関からなる、
    請求項31に記載の方法。
  33. 請求項31に記載の前記注目信号に対応する逆拡散値として除去信号を生成する工程は、
    前記注目信号に対応するチャネル推定値と、前記受信された合成通信信号を逆拡散することに関連して決定された符号相互相関とに基づいて、前記逆拡散値を生成する工程と
    を含む、請求項31に記載の方法。
  34. 合成通信信号を受信する受信機回路であって、
    複数の連続した信号検出段を含み、
    各信号検出段は、RAKE合成回路を含み、
    前記RAKE合成回路は、受信された前記合成通信信号から導出された入力信号に係る複数の逆拡散値を合成することによって、前記合成通信信号に含まれて受信された注目信号を検出するよう構成されており、
    前記複数の連続した信号検出段のうち、最終段となる信号検出段以外の各信号検出段は、さらに、次段となる信号検出段へ提供されることになっている前記入力信号から検出された前記注目信号を除去するように構成された信号再生回路を含み、
    前記RAKE合成回路は、前記入力信号に係る複数の逆拡散値間における1つ以上の阻害相関に基づいて、前記注目信号を検出する際に使用されるRAKE合成重みを生成するよう合成されている、
    受信機回路。
  35. 各信号検出段は、
    前記RAKE合成重みを生成する合成重み生成回路をさらに含み、
    前記合成重み生成回路は、阻害相関推定器を含むか又は阻害相関推定器に関与しており、該阻害相関推定器は、前記入力信号に係る前記複数の逆拡散値間における1つ以上の阻害相関を推定するよう構成されている、
    請求項34に記載の受信機回路。
  36. 前記RAKE合成重みの生成器は、正味のチャネル推定値と前記阻害相関とに基づいて合成重みを生成する、請求項34に記載の受信機回路。
  37. 前記阻害相関推定器は、阻害相関、干渉相関及び熱雑音相関の少なくとも1つを推定する、請求項34に記載の受信機回路。
  38. 前記阻害相関推定器は、
    前記入力信号に係る逆拡散値の異なるストリーム間における1つ以上の阻害相関を推定するよう構成されており、
    前記異なるストリームは、前記受信機回路に備えられる逆拡散回路の異なるRAKEフィンガからそれぞれ出力される逆拡散値に対応している、
    請求項37に記載の受信機回路。
  39. 前記信号検出段によって検出された前記注目信号に含まれる検出ビットに対応する軟判定値を有する、各信号検出段からの復調信号を受信するように構成された復号回路をさらに含み、
    前記復号回路は、さらに、前記注目信号の全てについて復号された復号ビットを再生するために、各復調信号に含まれる軟判定値を復号するよう構成されている、請求項34に記載の受信機回路。
  40. 各信号検出段は、
    前記注目信号の検出ビットに対応する軟判定値を有する復調信号を生成する復調器と、
    前記軟判定値から復号された復号ビットを生成する復号器と
    を含み、
    前記復号ビットは、前記信号検出段によって検出された前記注目信号として取り扱われる、請求項34に記載の受信機回路。
  41. 前記RAKE合成回路は、前記入力信号に係る逆拡散値の異なるストリーム間における相互相関を算出するように構成されており、
    前記異なるストリームは、逆拡散回路に備えられる異なるRAKEフィンガによって出力される逆拡散値に対応している、請求項34に記載の受信機回路。
  42. 各信号検出段は、
    前記阻害相関に基づいてRAKE合成重みを生成し、
    合成信号を生成するために、前記RAKE合成重みに基づいて、前記逆拡散値の異なるストリームを合成し、
    復調された復調信号を取得するために、前記合成信号を復調することによって、
    前記注目信号を検出する、請求項41に記載の受信機回路。
  43. 前記受信機回路は、
    前記注目信号から前記復調信号を取得するために軟判定値を復号することによって、各信号検出段において生成された対応する前記復調信号から各注目信号を検出するように構成されている、請求項42に記載の受信機回路。
  44. 各信号検出段は、前記注目信号の検出ビットに対応する軟判定値を取得するために、合成された逆拡散値を復調するように構成されており、
    各信号再生回路は、前記軟判定値に基づく除去信号を生成し、次段となる信号検出段へと提供されることになっている前記入力信号から前記除去信号を減算するよう構成されている、請求項34に記載の受信機回路。
  45. 各信号検出段は、前記注目信号についての復号された復号ビットを取得するために前記軟判定値を復号するように構成されており、
    各信号再生回路は、前記軟判定値を復号する際に実行されたいずれかの誤り訂正処理の恩恵を受けて再度符号化された再符号化ビットを取得するために、前記復号ビットを再度符号化し、前記再符号化ビットから前記除去信号を生成し、生成された前記除去信号を、次段となる信号検出段へと提供されることになっている前記入力信号から減算するよう構成されている、請求項44に記載の受信機回路。
  46. 各信号再生回路は、前記軟判定値に対して硬判定を実行することで硬判定ビットを取得し、前記硬判定ビットから前記除去信号を生成し、次段となる信号検出段へと提供されることになっている前記入力信号から前記除去信号を減算するよう構成されている、請求項44に記載の受信機回路。
  47. 前記受信機回路は、各信号検出段において前記除去信号を生成するために使用される前記硬判定ビットとは無関係に、各信号検出段からの前記検出ビットについて復号ビットを取得するために、各信号検出段からの前記軟判定値を復号するよう構成されている、請求項46に記載の受信機回路。
  48. 前記入力信号は、前記受信された合成通信信号から導出された信号サンプルを含み、
    各信号検出段は、
    前記阻害相関に基づいてRAKE合成される異なる逆拡散値のストリームへ、前記入力信号を逆拡散することによって、前記RAKE合成回路によって操作される前記逆拡散値を提供するよう構成された逆拡散回路を含む、請求項34に記載の受信機回路。
  49. 各信号検出段の前記信号再生回路は、
    前記信号検出段によって検出された前記注目信号に基づいて再度拡散された再拡散値を生成することによって除去信号を生成し、
    次段となる信号検出段へと提供されることになっている前記入力信号から前記除去信号を減算するよう構成されている、請求項48に記載の受信機回路。
  50. 各信号再生回路は、前記入力信号のRAKE合成された前記逆拡散値から検出されたビットに基づいて、前記再拡散値を生成する、請求項49に記載の受信機回路。
  51. 各信号再生回路は、前記入力信号についてのRAKE合成された逆拡散値から検出されたビットに基づいて前記再拡散値を生成するよう構成されている、請求項49に記載の受信機回路。
  52. 各信号再生回路は、前記注目信号に対応するチャネル推定値にしたがって前記再拡散値を生成するよう構成されている、請求項49に記載の受信機回路。
  53. 前記入力信号は、前記受信された合成通信信号から導出された逆拡散値についての異なるストリームを含み、
    各信号検出段は、次段となる信号検出段用に決定された前記阻害相関に基づいて、前記入力信号と前記異なるストリームとをRAKE合成することによって、前記注目信号を検出するよう構成されている、請求項34に記載の受信機回路。
  54. 各信号再生回路は、該信号再生回路を含む前記信号検出段によって検出された前記注目信号に対応する再生された逆拡散値として除去信号を生成し、次段となる信号検出段へと提供されることになっている前記入力信号から前記除去信号を減算するよう構成されている、請求項53に記載の受信機回路。
  55. 各信号検出段は、注目信号を検出するための共同検出を実行するよう構成されている、請求項34に記載の受信機回路。
  56. 各信号検出段の前記RAKE合成回路は、阻害相関推定器を含み、
    前記阻害相関検出器は、前記入力信号の逆拡散値について決定された前記阻害相関に基づいて、1つ以上の阻害相関行列を算出するように構成されており、
    前記RAKE合成回路は、前記1つ以上の阻害相関行列に基づいて前記RAKE合成重みを生成するよう構成されている、請求項34に記載の受信機回路。
  57. 前記阻害相関推定器は、パイロット相関行列に基づいて1つ以上の阻害相関行列を算出するよう構成されている、請求項56に記載の受信機回路。
  58. 前記阻害相関推定器は、前記受信された合成通信信号に含まれる複数の注目信号間における符号再利用干渉を計上するために、前記パイロット相関行列と符号再利用行列とを合成することによって、前記1つ以上の阻害相関行列を算出するよう構成されている、請求項57に記載の受信機回路。
  59. 前記阻害相関推定器は、除去された干渉を計上するために、前記パイロット相関行列と干渉行列とを合成することによって、前記1つ以上の阻害相関行列を算出するよう構成されている、請求項57に記載の受信機回路。
  60. 各信号検出段は、阻害相関推定器を含むか又は阻害相関推定器に関与しており、
    前記阻害相関推定器は、前記注目信号に関連して受信された前記パイロット信号に基づいて、前記信号検出段用の前記阻害相関を算出するよう構成されている、請求項34に記載の受信機回路。
  61. 前記阻害相関推定器は、
    少なくとも第1の動作モードで動作している間に、
    前記注目信号に関連して受信された前記パイロット信号に基づいて、第1段となる信号検出段用の阻害相関行列を算出するように構成されており、
    後続の各信号検出段用の相互相関は、該後続の信号検出段による連続的な干渉除去の仮定的効果に基づいて算出される追加の相互相関行列を導出することに基づいて算出される、請求項60に記載の受信機回路。
  62. 前記受信機回路は、該受信機回路を有する受信機によって無線通信ネットワークへ報告するための、該信号検出段用の対応する前記阻害相関行列に基づいて該信号検出段用の信号品質測定値を算出する、請求項61に記載の受信機回路。
  63. 前記第1の動作モードは、非選択ユーザモードを含み、前記非選択ユーザモードでは、前記受信機回路を有する受信機が、ネットワークからのトラフィックをアクティブに受信するようには選択されておらず、
    第2の動作モードは、アクディブモードを含み、前記アクディブモードでは、前記受信機が前記トラフィックをアクティブに受信するように選択されている、
    請求項62に記載の受信機回路。
  64. 前記受信機回路は、前記第2の動作モードで動作している期間では、前記阻害相関推定器が、次段となる信号検出段へ提供されることになっている前記入力信号に関連して測定された阻害相関に基づいて阻害相関を推定する、請求項63に記載の受信機回路。
  65. 受信された合成信号に含まれる2つ以上の注目信号を検出する受信機回路であって、
    注目信号をそれぞれ検出する連続した複数の信号検出段を含み、
    各信号検出段は、前記信号検出段に入力される入力信号の逆拡散値を、該逆拡散値について推定されたその信号検出段に固有の阻害相関にしたがってRAKE合成することによって、前記2つ以上の注目信号のうち、特定の注目信号を検出するように構成されており、
    最終段となる信号検出段以外の各信号検出段は、信号再生回路を含み、
    前記信号再生回路は、前記信号検出段によって検出された前記注目信号に基づいて除去信号を再生し、さらに、前記連続した複数の信号検出段において次段となる信号検出段へ提供されることになっている前記入力信号から前記除去信号を除去するように構成されている、
    受信機回路。
  66. 各信号検出段に含まれる信号検出回路は、
    合成重みにしたがって前記入力信号に係る複数の逆拡散値を合成するRAKE合成器と、
    前記逆拡散値について阻害相関の推定値を生成する阻害相関推定器と、
    前記阻害相関の推定値に基づいて前記合成重みを生成する合成重み生成回路と、
    前記RAKE合成器からの合成信号を復調することによって、軟判定値を生成する復調器と
    を含む、請求項65に記載の受信機回路。
  67. 各信号検出段の前記阻害相関推定器は、前段に位置する何れかの信号検出段によって検出された前記注目信号の除去を反映した、その信号検出段に固有の阻害相関の推定値を生成する、請求項66に記載の受信機回路。
  68. 各信号検出段の前記信号検出回路は、その信号検出段によって検出された前記注目信号として出力される、前記軟判定値から復号された復号ビットを生成する復号器をさらに含む、請求項66に記載の受信機回路。
  69. 最終段以外の各信号検出段に含まれる前記信号再生回路は、
    その信号検出段において検出された前記注目信号に対応するサンプル値を再生することに基づいて、除去信号を生成する信号再生器と、
    次段となる信号検出段へ提供されることになっている前記入力信号から前記除去信号を除去するように構成された加算回路と
    をさらに含む、請求項66に記載の受信機回路。
  70. 前記入力信号は、前記受信された合成信号のサンプルに対応する逆拡散値を含み、
    前記信号再生回路によって出力される前記サンプル値は、前記受信された合成信号の逆拡散処理から生じた符号相互相関を計上するために、その信号検出段によって検出された前記注目信号を逆拡散してなる逆拡散サンプル値を含む、請求項69に記載の受信機回路。
  71. 前記入力信号は、前記受信された合成信号のサンプルを含み、
    前記信号再生回路によって出力される前記サンプル値は、前記注目信号について決定されたチャネル効果を計上するために、その信号検出段によって検出された前記注目信号の逆拡散されたサンプル値を含む、請求項69に記載の受信機回路。
JP2007501744A 2004-03-05 2005-01-21 汎用rake受信機アーキテクチャにおける連続的な干渉の除去 Pending JP2007535835A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/795,101 US7339980B2 (en) 2004-03-05 2004-03-05 Successive interference cancellation in a generalized RAKE receiver architecture
PCT/SE2005/000061 WO2005086369A1 (en) 2004-03-05 2005-01-21 Successive interference cancellation in a generalized rake receiver architecture

Publications (1)

Publication Number Publication Date
JP2007535835A true JP2007535835A (ja) 2007-12-06

Family

ID=34912433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007501744A Pending JP2007535835A (ja) 2004-03-05 2005-01-21 汎用rake受信機アーキテクチャにおける連続的な干渉の除去

Country Status (5)

Country Link
US (1) US7339980B2 (ja)
EP (1) EP1726101A1 (ja)
JP (1) JP2007535835A (ja)
CN (1) CN1954511B (ja)
WO (1) WO2005086369A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011519525A (ja) * 2008-04-15 2011-07-07 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 共分散ルート処理を伴う逐次干渉除去のための方法及び装置
JP2013240102A (ja) * 2008-06-17 2013-11-28 Telefon Ab L M Ericsson ソフトパイロットシンボルを用いる無線信号を処理するための受信機および方法

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6680928B1 (en) * 1997-07-22 2004-01-20 Ericsson Inc. Communications system and method for multi-carrier orthogonal coding
US7952511B1 (en) 1999-04-07 2011-05-31 Geer James L Method and apparatus for the detection of objects using electromagnetic wave attenuation patterns
US9270410B2 (en) * 2002-04-22 2016-02-23 Texas Instruments Incorporated MIMO PGRC system and method
US7808937B2 (en) * 2005-04-07 2010-10-05 Rambus, Inc. Variable interference cancellation technology for CDMA systems
US8761321B2 (en) 2005-04-07 2014-06-24 Iii Holdings 1, Llc Optimal feedback weighting for soft-decision cancellers
US8179946B2 (en) 2003-09-23 2012-05-15 Rambus Inc. Systems and methods for control of advanced receivers
US7715508B2 (en) 2005-11-15 2010-05-11 Tensorcomm, Incorporated Iterative interference cancellation using mixed feedback weights and stabilizing step sizes
US8249518B2 (en) * 2003-12-29 2012-08-21 Telefonaktiebolaget Lm Ericsson (Publ) Network controlled feedback for MIMO systems
US8045638B2 (en) * 2004-03-05 2011-10-25 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for impairment correlation estimation in a wireless communication receiver
US7668227B2 (en) * 2004-03-05 2010-02-23 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for reducing interference in spread spectrum signals using spreading code cross-correlations
US7536158B2 (en) * 2004-03-29 2009-05-19 Telefonaktiebolaget Lm Ericsson (Publ) Impairment correlation estimation in a spread spectrum system
US7606319B2 (en) * 2004-07-15 2009-10-20 Nokia Corporation Method and detector for a novel channel quality indicator for space-time encoded MIMO spread spectrum systems in frequency selective channels
US8457152B2 (en) * 2004-07-16 2013-06-04 Qualcomm Incorporated Multiple modulation schemes in single rate layering wireless communication systems
US7359470B2 (en) * 2004-09-10 2008-04-15 Mitsubishi Electric Research Laboratories, Inc Minimizing feedback rate for channel state information in MIMO systems
US7586886B2 (en) * 2004-10-06 2009-09-08 Broadcom Corporation Method and system for single weight antenna system for HSDPA
KR100696208B1 (ko) * 2004-12-08 2007-03-20 한국전자통신연구원 다중 안테나 송수신 시스템의 제어 방법, 송신기 및 수신기
US8780957B2 (en) * 2005-01-14 2014-07-15 Qualcomm Incorporated Optimal weights for MMSE space-time equalizer of multicode CDMA system
RU2402885C2 (ru) * 2005-03-10 2010-10-27 Квэлкомм Инкорпорейтед Классификация контента для обработки мультимедийных данных
GB2424542B (en) * 2005-03-22 2008-12-24 Motorola Inc Apparatus and method for optimising a spread spectrum cellular communication system
US7991088B2 (en) * 2005-11-15 2011-08-02 Tommy Guess Iterative interference cancellation using mixed feedback weights and stabilizing step sizes
US7826516B2 (en) 2005-11-15 2010-11-02 Rambus Inc. Iterative interference canceller for wireless multiple-access systems with multiple receive antennas
US7515876B2 (en) * 2005-05-03 2009-04-07 Agere Systems Inc. Rake receiver with time-shared fingers
KR101124932B1 (ko) 2005-05-30 2012-03-28 삼성전자주식회사 어레이 안테나를 이용하는 이동 통신 시스템에서의 데이터송/수신 장치 및 방법
US9071344B2 (en) 2005-08-22 2015-06-30 Qualcomm Incorporated Reverse link interference cancellation
US8611305B2 (en) 2005-08-22 2013-12-17 Qualcomm Incorporated Interference cancellation for wireless communications
US8223904B2 (en) * 2005-08-22 2012-07-17 Qualcomm Incorporated Multiple hypothesis decoding
US8879635B2 (en) 2005-09-27 2014-11-04 Qualcomm Incorporated Methods and device for data alignment with time domain boundary
US7852902B2 (en) * 2005-09-30 2010-12-14 Telefonaktiebolaget L M Ericsson (Publ) Method of and apparatus for multi-path signal component combining
US8948260B2 (en) 2005-10-17 2015-02-03 Qualcomm Incorporated Adaptive GOP structure in video streaming
US8654848B2 (en) 2005-10-17 2014-02-18 Qualcomm Incorporated Method and apparatus for shot detection in video streaming
US20070206117A1 (en) * 2005-10-17 2007-09-06 Qualcomm Incorporated Motion and apparatus for spatio-temporal deinterlacing aided by motion compensation for field-based video
US20070171280A1 (en) * 2005-10-24 2007-07-26 Qualcomm Incorporated Inverse telecine algorithm based on state machine
US20070110135A1 (en) 2005-11-15 2007-05-17 Tommy Guess Iterative interference cancellation for MIMO-OFDM receivers
US7623602B2 (en) * 2005-11-15 2009-11-24 Tensorcomm, Inc. Iterative interference canceller for wireless multiple-access systems employing closed loop transmit diversity
US9131164B2 (en) 2006-04-04 2015-09-08 Qualcomm Incorporated Preprocessor method and apparatus
US7936847B2 (en) * 2006-04-11 2011-05-03 The Mitre Corporation Removal of matched waveform interference
US7634235B2 (en) * 2006-05-30 2009-12-15 Broadcom Corporation Method and apparatus to improve closed loop transmit diversity modes performance via interference suppression in a WCDMA network equipped with a rake receiver
US7933314B2 (en) * 2006-06-22 2011-04-26 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for communication receiver despreading resource management
US8050697B2 (en) * 2006-08-22 2011-11-01 Nortel Networks Limited Multi-antenna scheduling system and method
US8094699B2 (en) * 2006-09-14 2012-01-10 American University In Cairo Methods and systems for demodulating a multiuser signal using channel decoders for a multiple-access communication system
US8619742B2 (en) 2006-10-31 2013-12-31 Telefonaktiebolaget L M Ericsson (Publ) System and method for coding WCDMA MIMO CQI reports
ES2774150T3 (es) * 2006-11-06 2020-07-17 Qualcomm Inc Detección MIMO con cancelación de interferencia de componentes de señal temporizadas
US7991041B2 (en) * 2006-11-15 2011-08-02 Qualcomm, Incorporated Iterative detection and cancellation for wireless communication
US8781043B2 (en) * 2006-11-15 2014-07-15 Qualcomm Incorporated Successive equalization and cancellation and successive mini multi-user detection for wireless communication
US7933345B2 (en) * 2006-12-20 2011-04-26 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for determining combining weights for MIMO receivers
US8761079B2 (en) * 2007-01-30 2014-06-24 Motorola Mobility Llc Method and apparatus for selecting appropriate coding scheme and transmission rate for transmitting a frame across a communication network
US8295329B2 (en) * 2007-04-24 2012-10-23 Telefonaktiebolaget Lm Ericsson (Publ) Efficient computation of soft scaling factors for linear multi-user detector
US7738535B2 (en) * 2007-05-22 2010-06-15 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for removing pilot channel amplitude dependencies from RAKE receiver output
US8098715B2 (en) * 2007-06-08 2012-01-17 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for estimating impairment covariance matrices using unoccupied spreading codes
US7822101B2 (en) * 2007-06-25 2010-10-26 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for interference suppression in a wireless communication receiver
US7929625B2 (en) * 2007-09-20 2011-04-19 Telefonaktiebolaget Lm Ericsson (Publ) Quality of service based antenna mapping for multiple-input multiple-output communication systems
WO2009045734A2 (en) * 2007-10-01 2009-04-09 Lucent Technologies, Inc. Multiplexing pucch information
WO2009058059A1 (en) * 2007-10-31 2009-05-07 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement relating to communications network
US20090213910A1 (en) * 2008-02-25 2009-08-27 Grant Stephen J Code Power Estimation for MIMO Signals
US7983353B2 (en) * 2008-02-25 2011-07-19 Telefonaktiebolaget Lm Ericsson (Publ) Code power estimation for MIMO signals
US8781011B2 (en) * 2008-02-25 2014-07-15 Telefonaktiebolaget Lm Ericsson (Publ) Receiver parametric covariance estimation for precoded MIMO transmissions
US8045600B2 (en) * 2008-04-29 2011-10-25 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for compensating for processing timing misalignment in a communication receiver
US8995417B2 (en) 2008-06-09 2015-03-31 Qualcomm Incorporated Increasing capacity in wireless communication
US20090323777A1 (en) * 2008-06-26 2009-12-31 Yi-Pin Eric Wang Methods and Apparatus for Sharing Signal Correlation Data in a Receiver
US9277487B2 (en) * 2008-08-01 2016-03-01 Qualcomm Incorporated Cell detection with interference cancellation
US9237515B2 (en) * 2008-08-01 2016-01-12 Qualcomm Incorporated Successive detection and cancellation for cell pilot detection
US8144749B2 (en) * 2008-08-27 2012-03-27 Telefonaktiebolaget L M Ericsson Nonparametric MIMO G-Rake receiver
US8411780B2 (en) * 2009-02-24 2013-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Estimating the ratio of traffic channel power to pilot power in a MIMO wireless communication system
EP2234315B1 (en) * 2009-03-27 2018-02-14 Sony Corporation Division of bit streams to produce spatial paths for multicarrier transmission
US9160577B2 (en) 2009-04-30 2015-10-13 Qualcomm Incorporated Hybrid SAIC receiver
US8406354B2 (en) * 2009-07-01 2013-03-26 Telefonaktiebolaget L M Ericsson (Publ) Interference cancellation in a multi-user receiver
US8498324B2 (en) * 2009-10-23 2013-07-30 Broadcom Corporation Method and system for interference suppression between multipath signals utilizing a programmable interface suppression module
US8509287B2 (en) 2009-10-23 2013-08-13 Broadcom Corporation Method and system for diversity processing utilizing a programmable interface suppression module
US8498321B2 (en) * 2009-09-15 2013-07-30 Broadcom Corporation Method and system for optimizing programmable interference suppression
US8457254B2 (en) * 2009-08-27 2013-06-04 Telefonaktiebolaget L M Ericsson (Publ) Equalization and residual self-interference suppression using serial localization with indecision
WO2011063568A1 (en) 2009-11-27 2011-06-03 Qualcomm Incorporated Increasing capacity in wireless communications
US9673837B2 (en) 2009-11-27 2017-06-06 Qualcomm Incorporated Increasing capacity in wireless communications
CN102668611A (zh) 2009-11-27 2012-09-12 高通股份有限公司 用于非正交信道集的干扰消除
US8290091B2 (en) * 2009-12-01 2012-10-16 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for detecting a plurality of symbol blocks using a decoder
CN102792653A (zh) * 2009-12-08 2012-11-21 开普敦大学 用于提高动态频谱访问多载波***中的信道估计性能的方法
WO2011082484A1 (en) * 2010-01-06 2011-07-14 Ems Technologies Canada, Ltd. Active interference cancellation system and method
US8396168B2 (en) * 2010-04-15 2013-03-12 Telefonaktiebolaget L M Ericsson (Publ) Channel estimation for equalizer using serial localization with indecision
KR20130001013A (ko) * 2011-06-24 2013-01-03 삼성전자주식회사 통신 시스템의 데이터 송수신 방법 및 장치
EP2761766A4 (en) * 2011-09-28 2015-07-15 Ericsson Telefon Ab L M UPDATE OF DISTURBANCES AND EQUIVALENT WEIGHTS DURING A RECEPTION WITH REPEATED TURBOINE REFERENCE SUPPRESSION
US8761323B2 (en) 2011-09-28 2014-06-24 Telefonaktiebolaget Lm Ericsson (Publ) Impairment covariance and combining weight updates during iterative turbo interference cancellation reception
US8787426B2 (en) * 2011-09-28 2014-07-22 Telefonaktiebolaget Lm Ericsson (Publ) Finger placement in multi-stage interference cancellation
US8705639B2 (en) * 2011-10-19 2014-04-22 Comcast Cable Communications, Llc Signal monitoring platform
US8855172B2 (en) * 2011-12-09 2014-10-07 Telefonaktiebolaget Lm Ericsson (Publ) Non-redundant equalization
IL234729B (en) 2013-09-20 2021-02-28 Asml Netherlands Bv A light source operated by a laser and a method using a mode mixer
US9596055B2 (en) 2014-07-15 2017-03-14 The American University In Cairo Methods, systems, and computer readable media for simplified computation of squares and sums of squares of code cross-correlation metrics for signal processing
WO2017014591A1 (en) * 2015-07-23 2017-01-26 Samsung Electronics Co., Ltd. Transmitting apparatus, receiving apparatus, and control methods thereof
CN105610561B (zh) * 2016-01-29 2019-02-01 中国科学院计算技术研究所 一种大规模多输入多输出***中导频序列的分配方法
US9847802B1 (en) * 2016-08-16 2017-12-19 Xilinx, Inc. Reconfiguration of single-band transmit and receive paths to multi-band transmit and receive paths in an integrated circuit
EP3337070B1 (en) * 2016-12-16 2019-10-23 Nxp B.V. Demodulation and decoding
CN107070581B (zh) * 2016-12-29 2019-10-25 上海华为技术有限公司 一种干扰消除方法以及基站
US10050663B1 (en) * 2017-06-21 2018-08-14 Lg Electronics Inc. Method and apparatus for canceling self-interference in wireless communication system
CN111713027B (zh) * 2018-02-12 2022-05-27 中兴通讯股份有限公司 使用多个天线的信号传输与接收

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001071927A2 (en) * 2000-03-21 2001-09-27 Telcordia Technologies, Inc. Combined adaptive spatio-temporal processing and multi-user detection for cdma wireless systems
JP2002527927A (ja) * 1998-10-02 2002-08-27 エリクソン インコーポレイテッド Rake受信機の混信除去方法およびその装置
JP2003503879A (ja) * 1999-06-25 2003-01-28 エリクソン インコーポレイテッド スペクトル拡散信号特性の知識から得られる重み係数を使用するrake組合わせ方法と装置
EP1392017A1 (en) * 2002-08-21 2004-02-25 Lucent Technologies Inc. A MIMO radio telecommunication system using multilevel-coded modulation operative by iterative determination of soft estimates, and a corresponding method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5894473A (en) * 1996-02-29 1999-04-13 Ericsson Inc. Multiple access communications system and method using code and time division
US5787130A (en) * 1996-12-10 1998-07-28 Motorola Inc. Method and apparatus for canceling interference in a spread-spectrum communication system
US6801565B1 (en) 1999-06-25 2004-10-05 Ericsson Inc. Multi-stage rake combining methods and apparatus
US7301993B2 (en) * 2002-09-13 2007-11-27 Broadcom Corporation Channel estimation in a spread spectrum receiver

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002527927A (ja) * 1998-10-02 2002-08-27 エリクソン インコーポレイテッド Rake受信機の混信除去方法およびその装置
JP2003503879A (ja) * 1999-06-25 2003-01-28 エリクソン インコーポレイテッド スペクトル拡散信号特性の知識から得られる重み係数を使用するrake組合わせ方法と装置
WO2001071927A2 (en) * 2000-03-21 2001-09-27 Telcordia Technologies, Inc. Combined adaptive spatio-temporal processing and multi-user detection for cdma wireless systems
EP1392017A1 (en) * 2002-08-21 2004-02-25 Lucent Technologies Inc. A MIMO radio telecommunication system using multilevel-coded modulation operative by iterative determination of soft estimates, and a corresponding method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011519525A (ja) * 2008-04-15 2011-07-07 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 共分散ルート処理を伴う逐次干渉除去のための方法及び装置
JP2013240102A (ja) * 2008-06-17 2013-11-28 Telefon Ab L M Ericsson ソフトパイロットシンボルを用いる無線信号を処理するための受信機および方法

Also Published As

Publication number Publication date
WO2005086369A1 (en) 2005-09-15
EP1726101A1 (en) 2006-11-29
CN1954511B (zh) 2013-05-29
US7339980B2 (en) 2008-03-04
US20050195889A1 (en) 2005-09-08
CN1954511A (zh) 2007-04-25

Similar Documents

Publication Publication Date Title
JP2007535835A (ja) 汎用rake受信機アーキテクチャにおける連続的な干渉の除去
KR100461547B1 (ko) 디에스/시디엠에이 미모 안테나 시스템에서 보다 나은수신 다이버시티 이득을 얻기 위한 전송 시스템
US7668227B2 (en) Method and apparatus for reducing interference in spread spectrum signals using spreading code cross-correlations
JP4018637B2 (ja) 受信機処理システム
US7433659B2 (en) Iterative multi-stage detection technique for a diversity receiver having multiple antenna elements
EP1774670B1 (en) Use of adaptive filters in cdma wireless systems employing pilot signals
AU760066B2 (en) Method and apparatus for interference cancellation in a rake receiver
US6529545B2 (en) Rake receiver
JP4322918B2 (ja) 受信装置、受信方法、および無線通信システム
US8290024B2 (en) Methods and apparatus to facilitate improved code division multiple access receivers
US7324583B2 (en) Chip-level or symbol-level equalizer structure for multiple transmit and receiver antenna configurations
US7218692B2 (en) Multi-path interference cancellation for transmit diversity
EP1678841A1 (en) A unified mmse equalization and multi-user detection approach for use in a cdma system
JP5059752B2 (ja) 無線通信受信機における障害相関評価方法及び装置
WO2002003561A1 (en) Receiver and method of receiving a cdma signal in presence of interferers with unknown spreading factors
KR100789355B1 (ko) 수신장치, 수신방법, 및 무선 통신 시스템
US7075972B2 (en) Intra-cell interference cancellation in a W-CDMA communications network
JP2008544603A (ja) 拡散符号の相互相関を用いたスペクトラム拡散信号における干渉の低減方法及び装置
Leus et al. Multi-User Detection in Frequency-Selective Fading Channels
Mouhouche et al. On the effect of power and channel estimation in equalized blind PIC for downlink multirate CDMA communications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110516