JP2007525838A - ドープ済みおよび未ドープの歪み半導体の形成方法およびガスクラスタイオン照射による半導体薄膜の形成方法 - Google Patents

ドープ済みおよび未ドープの歪み半導体の形成方法およびガスクラスタイオン照射による半導体薄膜の形成方法 Download PDF

Info

Publication number
JP2007525838A
JP2007525838A JP2006553280A JP2006553280A JP2007525838A JP 2007525838 A JP2007525838 A JP 2007525838A JP 2006553280 A JP2006553280 A JP 2006553280A JP 2006553280 A JP2006553280 A JP 2006553280A JP 2007525838 A JP2007525838 A JP 2007525838A
Authority
JP
Japan
Prior art keywords
semiconductor
substrate
gas
thin film
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006553280A
Other languages
English (en)
Inventor
ボーランド,ジョン,オー.
ハウタラ、ジョン,ジェイ.
スキナー、ウェスレー,ジェイ.
タバト,マーティン,ディー.
Original Assignee
エピオン コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エピオン コーポレーション filed Critical エピオン コーポレーション
Publication of JP2007525838A publication Critical patent/JP2007525838A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26566Bombardment with radiation with high-energy radiation producing ion implantation of a cluster, e.g. using a gas cluster ion beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/2658Bombardment with radiation with high-energy radiation producing ion implantation of a molecular ion, e.g. decaborane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0812Ionized cluster beam [ICB] sources

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

歪み誘導原子を含む加速したガスクラスタを用いて、一つ以上の基板面を照射し、半導体基板内にこのような原子を全体的または局所的またはその両方に導入し、さらにドーパント原子やCを選択的に導入する方法および装置が記述されている。半導体基板や誘電体基板内に導入したり、その上に堆積させた半導体薄膜を形成する処理も記述されている。このような薄膜も、同様にドープしたり歪ませたりできる。

Description

この発明は、一般に半導体基板内の局所的に歪んだ領域、および半導体または他の基板上の半導体材料のドープ済みまたは未ドープの薄膜の形成に関し、より詳細には、高エネルギガスクラスタイオン照射による形成に関する。
例えば、シリコン、ゲルマニウム、ガリウムヒ素および他の半導体等の半導体材料の特性は、電子機器、通信、電気光学、およびナノ技術の分野で有用な非常に様々な素子の形成に利用されている。半導体電子機器の分野では、歪みシリコンを利用することによる素子の形成がより高いキャリア移動度をもたらし、従って、高速動作、高電流駆動性能、および低電力損失を含む優れた素子性能が得られる。
適切な歪みシリコンを製造するために、いくつかの方式が適用されている。これらには、不整合結晶格子基板上にシリコン薄膜を形成すること、格子内により大きな、または小さな原子を導入すること、および隣接する領域内の歪みによって、シリコン領域に張力または圧縮力を機械的に加えることが含まれる。一つの特に有効な方法は、シリコン格子にゲルマニウム原子を導入することである。ゲルマニウム原子はシリコンより大きく、主にシリコン格子の歪みをもたらす。数原子%から数十原子%程度のゲルマニウム濃度が、このようなシリコン−ゲルマニウム歪み半導体の形成に有用であることがしばしば見出されている。
半導体素子製造用の歪みシリコン材料は、シリコン基板上への全面的Si/SiGeエピタキシ、または絶縁体上歪みシリコン(sSOI)材料製造用の絶縁基板上の歪みシリコン層の全面的転写によって形成されている。半導体または絶縁基板(一般に酸化シリコン)上に全面的に歪みシリコンを製造するための従来の方法(エピタキシ等)は、低スループット、高温、ウェハ当たりの不要な高コストをもたらす技術を含んでいる。
全面的技術に加えて、局所的に歪み半導体領域を製造するための選択的化学気相成長等の局所的処理を用いることによって、歪みシリコンの利点を享受する半導体素子が最近開発されている。PMOS素子およびNMOS素子は、素子の歪みシリコンチャネル内に異なる歪みを備えることから恩恵を受け、望ましくは素子内または素子から素子の局所的領域の歪みの量および種類(圧縮または張力)を制御できるので、局所的歪み技術は部分的には有用である。このような局所的歪み技術も、いくつかの用途では欠点となる高処理温度を実施および一般に利用するため高価である。
ゲルマニウムを含む材料の原子イオンまたは分子イオンを用いる既存のイオン注入は、歪みを生成するためにシリコンにゲルマニウムを導入する効率的な方法とは証明されていない。有効な歪みを製造するには、シリコン内に少なくとも数原子%のゲルマニウムという高濃度が必要とされ、既存のイオン注入ではこのような高照射を必要とするため、既存のイオン注入装置では経済的に現実的ではない。
いくつかの半導体素子の場合、非常に高いドープ濃度で、例えば、ホウ素で半導体材料をドープすることが望ましい。一般に、シリコン内のドーパントの固体溶解限度は、有効なドーピングの上限となる。過去の研究では、シリコン内のホウ素の固体溶解限度は、シリコンにゲルマニウム原子を導入することによって増大できることを示している。
表面をエッチング、洗浄、および滑らかにするためにガスクラスタイオンビーム(GCIB)を用いることは、従来から知られている(例えば、Deguchiなどの米国特許第5,814,194号参照)。GCIBは、気化させた炭化材料からの薄膜堆積を支援するためにも用いられる(例えば、Yamadaなどの米国特許第6,416,820号参照)。用語はここで用いられる際、ガスクラスタは、標準温度および圧力条件下で気体である材料のナノサイズの集合体である。このようなクラスタは、数個から数千個の分子の集合体を有することも、より緩やかに結合して、クラスタを構成することもできる。クラスタは、電子ボンバードまたは他の手段によってイオン化し、エネルギを制御した指向性ビームを形成できる。このようなイオンは各々一般に、静電荷qeを保持している(ここで、eは電子電荷の大きさであり、qはクラスタイオンの電荷の状態を表す1以上の整数である)。より大きなサイズのクラスタは、クラスタイオン毎にかなりのエネルギを保持しながら、分子毎には適度なエネルギしか有していないため、最も有用であることが多い。クラスタは衝突で分解し、個々の分子は全クラスタエネルギのわずかな部分しか保持しなくなる。従って、大きなクラスタの衝突の影響はかなり大きいが、非常に浅い表面領域に限定される。
このようなGCIBを生成し加速するための装置は、前述の特許第5,814,194号に記載されている。現在入手可能なイオンクラスタ源は、最大数千までの広範囲のサイズ分布Nを備えたクラスタイオンを形成する(ここで、Nは各クラスタ内の分子の数であり、アルゴン等の単原子ガスの場合、単原子ガスの原子はここでは原子または分子と呼ばれることもあり、このような単原子ガスのイオン化した原子は、イオン化原子、分子イオン、または単にモノマイオンと呼ばれることもある)。
従って、この発明の目的は、高エネルギクラスタイオン照射によって、ゲルマニウムまたは他の歪み誘導原子を半導体基板内に全体的、局所的またはその両方に導入することである。
この発明の他の目的は、高エネルギクラスタイオン照射によって、半導体または誘電体基板の表面に(内部に導入および上部に堆積させた)半導体薄膜または歪み半導体薄膜を形成することである。
この発明の別の目的は、高エネルギクラスタイオン照射によって、半導体基板内にゲルマニウムまたは他の歪み誘導原子およびドーパント原子を全体的、局所的またはその両方に導入することである。
この発明のさらに別の目的は、高エネルギクラスタイオン照射によって、半導体または誘電体基板内に導入または上部に堆積させたドープ済み半導体薄膜または歪み半導体薄膜を形成することである。
この発明の以上の目的、さらに別の目的と利点は、これ以降に説明する発明の実施例によって実現される。
図1は、この発明に従ってGCIBを生成する処理装置100の一般的な構成の基本要素の概略図である。装置100は、次のように説明できる。真空容器102は、ソースチャンバ104、イオン化/加速チャンバ106、および処理チャンバ108という三つの繋がったチャンバに分割されている。三つのチャンバは、真空ポンプ系146a、146b、146cによって各々適切な動作圧力まで排気する。ガス蓄積シリンダ111内に蓄積した凝縮可能なソースガス112(例えば、アルゴンまたはN2)は加圧し、ガス計測バルブ113とガス供給チューブ114を介して滞留チャンバ116内に収容し、適切な形状のノズル110を介して実質的に低圧の真空内に放出する。その結果、超音速ガスジェット118が得られる。ジェット内の膨張によって冷却され、ガスジェット118の一部はクラスタに凝縮し、各クラスタは数個から数千個の弱く結びついた原子または分子からなり、平均サイズは約100〜30,000分子の間である。ガススキム開口部120は、クラスタジェットに凝縮していないガス分子をクラスタジェットから部分的に分離し、このような高圧が問題となる下流領域(例えば、イオン化器122、高電圧電極126、および処理チャンバ108)の圧力を最小にする。適切に凝縮可能なソースガス122は、アルゴン、窒素、二酸化炭素、酸素、および他のガスを含むが、必ずしもそれらに限定されない。
ガスクラスタを含む超音速ガスジェット118を形成した後、クラスタはイオン化器122内でイオン化される。イオン化器122は一般に電子衝突イオン化器であり、一つ以上の白熱フィラメント124から熱電子を生成し、電子を加速誘導し、イオン化器122を通過するガスジェット118内のガスクラスタに衝突させる。電子衝突はクラスタから電子を放出させ、クラスタの一部を正にイオン化させる。一組の適切にバイアスした高電圧電極126はイオン化器からクラスタイオンを抽出し、ビームを形成し、それから所望のエネルギ(一般に、1〜70keV)に加速させ、それらを集束し、GCIB128を形成する。フィラメント電源136はフィラメント電圧Vfを提供し、イオン化器のフィラメント124を加熱する。アノード電源134はアノード電圧VAを提供し、フィラメント124から放出した熱電子を加速し、ガスジェット118を含むクラスタを照射し、イオンを生成する。抽出電源138は抽出電圧VEを提供し、高電圧電極をバイアスし、イオン化器122のイオン化領域からイオンを抽出し、GCIB128を形成する。加速器電源140は加速電圧VACCを提供し、イオン化器122に対して高電圧電極をバイアスし、全GCIB加速をVACCと等しくする。一つ以上のレンズ電源(例えば、142と144が示されている)を設けて、集束電圧(例えば、VL1とVL2)を備えた高電圧電極をバイアスし、GCIB128を集束することもできる。
GCIB処理で処理される半導体ウェハまたは他の工作物であってもよい工作物152は、工作物保持部150上に保持し、GCIB128の経路内に配置する。多くの用途では空間的に均一な結果を備えた大きな工作物を処理することが想定されるので、走査系によって、大きな領域全体でGCIB128を均一に走査し、空間的に均一な結果を得ることが望ましい。二対の直角に配置した静電走査板130と132を用いて、所望の処理領域全体でラスタまたは他の走査パターンを形成する。ビーム走査を行う際、GCIB128は走査型GCIB148に変換し、工作物152の全表面を走査する。
図2は、従来技術の機械的走査型GCIB処理装置200の基本要素の概略図であり、静止したビームを備え、工作物152を機械的に走査し、さらにビーム測定用の既存のファラデカップと、既存の熱イオン中和器を備えている。GCIBの形成は図1に示したものと同様であるが、ただし、ガス蓄積シリンダ221内に蓄積した選択的第二ソースガス222(一般にソースガス112とは異なる)を別に提供し、ガス測定バルブ223を備え、ガス供給チューブ114を介して滞留チャンバ116に接続している。図示されてはいないが、当業者には明らかなように、さらにガス蓄積シリンダ、配管およびバルブを追加することによって、三つ以上のソースガスを容易に構成することもできる。このマルチガス構成は、二つの異なるソースガス112と222の間で制御しながら選択し、ガスクラスタの形成で使用する二つ(またはそれ以上)のソースガスの混合物を制御しながら形成できる。さらに当然のことながら、ソースガス112と222はそれら自体、例えば、アルゴンと1%のジボラン、またはアルゴンと5%のゲルマン等のガス混合物であってもよい。さらに、図2の機械的走査型GCIB処理装置において、GCIB128は静止型であり(GCIB処理装置100のように静電的に走査されない)、GCIB128を介して工作物152を機械的に走査し、工作物152の表面上でGCIB128の効果を分散させる。
X走査駆動部202は、X走査移動208の方向(紙面と直交する方向)で工作物保持部150に直線的な移動を提供する。Y走査駆動部204は、Y走査移動210の方向で工作物保持部150に直線的な移動を提供し、Y走査移動210はX走査移動208と一般に直交している。X走査およびY走査移動の組合せは、GCIB128を介してラスタ状の走査移動で、工作物保持部150によって保持した工作物152を動かし、GCIB128で工作物152の表面を均一に照射し、工作物152を均一に処理する。工作物保持部150は、GCIB128の軸に対して一定の角度で工作物152を配置し、GCIB128が工作物152の表面に対して一定のビーム入射角206を有するようにする。ビーム入射角206は90°または他の何らかの角度であってもよいが、一般に90°または90°に非常に近い角度である。Y走査中、工作物保持部150に保持した工作物152は、各々指示部152Aと150Aで示した別の位置「A」に示した位置から移動する。なお、二つの位置の間を移動中、工作物152はGCIB128を介して走査され、両極端の位置では、GCIB128の経路から完全に外に移動される(オーバスキャン)。図2には明示的には示されていないが、同様の走査およびオーバスキャンは、(一般に)直交するX走査移動208方向(紙面と直交する方向)でも行われる。
ビーム電流センサ218は、GCIB128の経路内の工作物保持部150の向こう側に配置し、GCIB128の経路外に工作物保持部150が走査されたとき、GCIB128のサンプルを捕捉する。ビーム電流センサ218は一般に、ビーム入射孔を除いて閉じたファラデカップ等であり、電気絶縁取り付け部212を備えた真空容器102の壁に固定する。
制御部220は、マイクロコンピュータベースの制御部であってもよく、電気ケーブル216を介して、X走査駆動部202とY走査駆動部204に接続し、X走査駆動部202とY走査駆動部204を制御し、GCIB128の内外に工作物152を配置し、GCIB128に対して工作物152を均一に走査し、GCIB128による工作物152の均一な処理を実現する。制御部220は、リード214を介して、ビーム電流センサ218で集めたサンプルビーム電流を受け取り、それによってGCIBを監視し、所望の照射が与えられた際、GCIB128から工作物152を取り除くことによって、工作物152が受け取るGCIB照射量を制御する。
固体ターゲット表面上に高エネルギガスクラスタが衝突する際、貫通深さは個々の構成原子の低いエネルギに制限され、ガスクラスタイオン衝突中に発生する過渡的熱効果に原理的に依存するので、ターゲット表面内へのクラスタ原子の貫通は一般に非常に浅い。ガスクラスタは衝突で分離し、個々のガス原子は自由に跳ね返り、ターゲット表面から逃げることもある。個々のガス原子が逃げることによって持ち去られるエネルギ以外は、衝突前の高エネルギクラスタの全エネルギは、ターゲット表面上の衝突領域に堆積される。このため、イオンクラスタは、様々な表面改質処理に有効であり、既存のイオンビーム処理の特徴であるより深い表面下を損傷させる傾向はない。ターゲット衝突領域の寸法は、クラスタのエネルギに依存するが、衝突するクラスタの断面寸法とほぼ同程度であり、例えば、1000原子からなるクラスタの直径は約30Åと小さい。ターゲット上の小さな衝突領域内にクラスタによって運ばれる全エネルギの大部分が堆積するので、衝突場所のターゲット材料内に強い熱的過渡現象が生じる。エネルギがターゲット内に深く伝導することによって衝突領域から失われると、熱的過渡現象は急速に散逸する。熱的過渡現象の持続時間はターゲット材料の伝導性によって決定されるが、一般に10-6秒未満である。
クラスタ衝突場所の近傍では、一定の体積のターゲット表面が、数百から数千°Kの温度に瞬間的に到達できる。一例として、全部で10keVのエネルギを伝えるクラスタの衝突は、シリコン表面の約100Å下まで広がる非常に撹乱されるほぼ半球の領域全体で、約2000°Kの瞬間的温度上昇を生成できると見積もられる。
高エネルギクラスタ衝突場所の下のターゲット体積内の過渡的温度上昇の開始後、影響された領域は急速に冷却する。クラスタ成分の一部はこの過程で逃げ去り、他の部分は後に残り、表面に組み込まれる。元の表面材料の一部が、スパッタ等の効果によって除去されることもある。一般に、クラスタのより揮発性および不活性の成分はより逃げやすく、揮発性が低くより化学反応性が高い成分は表面に組み込まれやすい。実際の処理はより複雑だと思われるが、クラスタ衝突場所と周囲の影響された領域を「溶融領域」と考えると便利であり、そこでクラスタ原子は基板面と短時間だけ相互作用および混合し、クラスタ材料は表面から逃げるか、または影響された領域の深さまで表面内に導入される。「導入」および「導入している」という用語は、ここではこの処理を指し、イオンの「注入」または「注入している」という非常に異なる結果を生み出す非常に異なる処理とそれを区別するために用いられる。既存のイオン注入とは異なり、GCIB導入は処理される基板内にかなりの量の電力をもたらさず、従って、低温(つまり、室温)処理として行うことができ、基板を有意に加熱することがない。高エネルギクラスタイオン内の例えば、アルゴンやキセノン等の揮発性で非反応性の希ガスは、影響された領域から非常に高い確率で逃げ去り、例えば、ホウ素、ゲルマニウム、およびシリコン等の揮発性が低く、化学結合をより形成しやすい材料は影響された領域内により残りやすく、基板の表面内に組み込まれる。
例えば、アルゴンやキセノン等であるが、それらに限定されない不活性な希ガスを、例えば、ゲルマニウムまたはシリコン等の半導体を構成する元素を含むガスや、例えば、ホウ素、リンおよびヒ素等の半導体材料のドーパントとして機能する元素を含むガスと混合し、所定の異なる元素を含む化合物ガスクラスタを構成できる。ガスクラスタイオンビーム生成用のソースガスとして適切なソースガス混合物を用いることによって、またはガスクラスタイオン生成源内に二つ以上のガス(またはガス混合物)を供給し、生成源内でそれらを混合可能にすることによって、これ以降に説明するように、GCIB処理装置を用いてこのようなガスクラスタを形成できる。例えば、ゲルマン(GeH4)または四フッ化ゲルマニウム(GeF4)等のゲルマニウム含有ガスを用いて、ガスクラスタ内にゲルマニウムを組み込むことができる。例えば、シラン(SiH4)や四フッ化シリコン(SiF4)等のシリコン含有ガスを用いて、ガスクラスタ内にシリコンを組み込むことができる。例えば、ジボラン(B26)、三フッ化ホウ素(BF3)、フォスフィン(PH3)、五フッ化リン(PF5)、アルシン(AsH3)、五フッ化ヒ素(AsF5)等のドーパント含有ガスを用いて、ガスクラスタ内にドーパント原子を組み込むことができる。この発明の一実施例では、例えば、アルゴンおよびゲルマンを混合し、ゲルマニウムを導入するために、クラスタ形成用ソースガスを構成できる。別の例として、アルゴン、ゲルマン、およびジボランを混合し、ゲルマニウムとホウ素を導入するために、ゲルマニウムとホウ素を含むクラスタ形成用ソースガスを構成できる。さらに別の例として、アルゴン、シラン、およびゲルマンを混合し、基板上にシリコン−ゲルマニウム薄膜を形成するために、ホウ素とシリコンの両方を含むクラスタ形成用ソースガスを構成できる。
いくつかの半導体製品の場合、半導体表面へのドーパントの導入または薄膜形成の重要な要件は、ドーパントが導入される最大の深さ、または形成される薄膜の最大の厚さがむしろ浅く、約数百Å以下であることである。ここで説明するようなGCIBは、浅い薄膜の形成および処理に特に適している。クラスタは一般に数千個の原子からなるので、ガスクラスタイオンを数十keVのエネルギまで加速しても、個々の原子はほとんどエネルギを持たず、既存のイオン注入および他のモノマイオン処理で発生するような大きな深さまで照射面を弾道的に貫通させない。ガスクラスタのエネルギを制御することによって、高エネルギガスクラスタ衝突が影響する深さを制御でき、このような制御によって、100Å以下の薄膜を形成したり処理できる。さらに、当然のことながら、GCIBは照射する面内にクラスタ成分を導入する際に非常に有効である。既存のイオンビームは、一般にイオン当たり一個、またはせいぜい数個の原子を注入する。ここで説明するGCIBの効率は、ずっと高い。一例として、アルゴン内に5%のゲルマンの混合物から形成したクラスタからなるGCIBは、一般に照射面にガスクラスタイオン当たり100〜2000個のゲルマニウム原子を組込み、正確な数はノズル流速を含むビームパラメータに依存し制御性および再現性がある。導入された薄膜はアモルファスまたは多結晶になる傾向があるが、急速アニールまたは炉内アニール、好ましくは非拡散または低拡散アニール等の熱アニールステップを加えることによって単結晶薄膜に変換できる。
図3は、希ガスと他のガス分子の混合物を含むガスクラスタイオン306を衝突させた半導体ウェハ302の界面領域300の図である。図は、等倍率では描かれていない。半導体ウェハ302は表面304を有し、例えば、単結晶材料からなり、集積回路または半導体素子を製造するためのいくつかの処理段階のいずれであってもよい。軌跡308を備えたガスクラスタイオン306は、半導体ウェハ302の衝突表面304に示され、そこでガスクラスタイオン衝突領域310を形成する。この発明によると、半導体やドーパント原子種を含むクラスタとなるために、ガスクラスタイオン306を形成する。例えば、クラスタは、アルゴン等の希ガスに加えて、ジボラン、ゲルマン、または他の粒子を含むことができる。
図4は、図3の半導体ウェハ302の一部の界面領域320をさらに詳しく示す拡大図である。ガスクラスタイオン306は少なくとも二つのガスの複数の分子を有し、前記ガスは少なくとも希ガスと、半導体またはドーパント原子を備えたガスを含んでいる。ガスクラスタイオン306は希ガス原子(322で示した)を有し、さらに少なくとも第二粒子のガス分子324を有し、ガス分子324は例えば、ゲルマン等の半導体材料含有ガス分子である。ガスクラスタイオン306は、選択的に他の粒子のガスの一つ以上の種類の分子(要素332と334で示した)を有し、それらは半導体材料含有ガス分子(例えば、シラン)であっても、ドーパント含有ガス分子(例えば、ジボラン)であってもよい。従って、クラスタ306は、少なくとも希ガス部分と、少なくとも一つの半導体材料含有ガス、および選択的に一つ以上の別の半導体材料含有ガス、またはドーパント含有ガスのわずかな部分からなる。このようなガスクラスタイオン306は、例えば、図2に示したとおりの、または同様のGCIB処理装置200内で形成できる。ガスクラスタ内にガス混合物を有することが望ましい場合、所望の配合で事前に混合したガス混合物を単一のガス蓄積シリンダ111(図2)内に提供することもでき、またガス蓄積シリンダ111と221(図2)内に別の異なるソースガスまたはソースガス混合物112と222を提供し、ガス計測バルブ113と223(図2)を適切に調整することによって、滞留チャンバ116(図2)へ流れる際、所望の割合で混合することもでき、ガス計測バルブ113と223は好ましくは質量流量制御バルブである。従って、二つ以上のガスを制御しながら混合し、ガスクラスタイオンビームを生成できる。
再び図4を参照すると、ガスクラスタイオン306は、希ガス原子322と、半導体材料含有ガス分子(324によって示した)、および(選択的に)他の半導体材料含有分子またはドーパント含有分子(332と334によって示した)を有するように示されている(例であって、限定するものではない)。当然のことながら、希ガス、ドーパントおよび半導体材料含有ガス分子の広範囲の混合がこの発明では有用であり、この発明の処理に用いられるクラスタは、非常に高濃度の半導体材料含有ガス分子やドーパントガス分子と混合した希ガスから形成することも、それとは逆に希ガス分子に対する半導体材料含有ガスやドーパントガス分子の比率を非常に小さくして、一部または多くのガスクラスタイオンが単一の非希ガス分子さえ含まないようにもできるが、ガスクラスタイオンビームのガスクラスタイオンの少なくとも一部は、半導体材料含有ガスやドーパントガスの一つ以上の分子を有する。一般に、一つ以上の半導体材料含有ガスの濃度は、ガスクラスタイオンの数分子%の範囲であるが、1〜99分子%有することも、選択的または代替的に同様の割合の炭素材料含有ガスを有することもできるが、任意のドーパント含有ガス分子は、例えば、約0.01〜10分子%等、ガスクラスタイオンより低い分子濃度からなる。
ガスクラスタイオン衝突領域310は、境界326を有する。ガスクラスタイオン衝突領域310の体積、従ってその半導体表面の貫通深さは、所定の制御されたエネルギのガスクラスタイオン306に依存する。高エネルギのガスクラスタイオン306が表面304に衝突すると、ガスクラスタイオン306は分解し、分解したクラスタからの個々の半導体およびドーパント分子は自由になる。不活性ガス分子は一般に跳ね返り、半導体ウェハ302の表面304から逃げる。半導体分子やドーパント分子の一部を含むいくつかの分子は、表面に導入される。逃げた個々のガス原子によって持ち去られた小さなエネルギ以外、高エネルギガスクラスタイオン306の全エネルギは、ガスクラスタイオン衝突領域310内に堆積される。ガスクラスタイオン衝突領域310の寸法は、クラスタのエネルギに依存するが小さく、所定のガスクラスタイオンエネルギに依存し、直径およそ数十から数百Å程度である。ガスクラスタイオン306によって運ばれる全エネルギの大部分が小さなガスクラスタイオン衝突領域310内に堆積されるので、ガスクラスタイオン衝突領域310の材料内に強い熱的過渡現象が発生する。ガスクラスタイオン衝突領域310内に堆積される熱は、方向328の伝導によって周囲の半導体材料内により深く散逸する。熱的過渡現象の持続時間は周囲材料の熱伝導性によって決定されるが、一般に10-6秒未満である。
ガスクラスタイオン衝突領域310では、材料は瞬間的に、数百から数千°Kの温度に到達する。さらに、局所的な領域の張力または圧縮歪み半導体の製造は、基板の近傍または隣接領域内に誘導歪みを生成するために生産的に用いられることが、発明者によって認められた。誘導歪みは、関連する領域の相対的形状に依存して張力であっても圧縮であってもよい。一例として、10keVの全エネルギを運ぶガスクラスタイオン306の衝突は、表面304下の約100Åまで広がるガスクラスタイオン衝突領域310全体で、約2000°Kの瞬間的温度上昇を生成できると見積もられる。特定の理論に束縛されることなく、熱的過渡現象中、熱撹乱は十分高いので、ガスクラスタイオン衝突領域310内の材料を溶融できる。ガスクラスタイオン衝突領域310が方向328の熱伝導によって冷却すると、衝突したクラスタの半導体材料やドーパント材料の一部はクラスタイオン衝突領域310内に導入され、冷却した表面に組み込まれる。
図5は、半導体ウェハ302の一部の界面領域340を示しており、この発明によるガスクラスタイオンが衝突した領域内への半導体原子やドーパント原子の導入を示している。図4で説明したガスクラスタイオン衝突事象後、熱的過渡現象が散逸する際、導入領域342が図4のガスクラスタイオン衝突領域310に取って代わる。導入領域342は、半導体ウェハ302の表面304下の深さ344まで広がる。
図6は、半導体ウェハ302の一部の界面領域360を示しており、この発明によるガスクラスタイオンビーム処理の完了によって形成された導入薄膜362を示している。連続的なガスクラスタイオン照射によって、導入領域342(図5)と同様の導入領域を形成、重ね合わせ、最終的に半導体ウェハ302の表面304の下の深さ364まで広がる導入薄膜362を形成する。
図7は、希ガスと他のガス分子の混合物を含むガスクラスタイオン306を衝突させた半導体ウェハ302の一部の界面領域400を示している。図は、等倍率では描かれていない。半導体ウェハ302は表面304を有し、一般に単結晶材料であり、集積回路または半導体素子を製造するためのいくつかの処理段階のいずれであってもよい。半導体ウェハ302の表面304の一部はマスク402でカバーし、マスク402は高エネルギクラスタによる照射から表面304の一部をマスクする。軌跡308を備えたガスクラスタイオン306は、非マスク領域の半導体ウェハ302の衝突表面304に示され、そこにガスクラスタイオン衝突領域310を形成する。マスク402に衝突するクラスタは、マスクによって妨げられ、半導体ウェハ302の表面304に影響を与えない。マスク402は、二酸化シリコン等のハードマスクであっても、フォトレジスト材料等のソフトマスクであってもよい。
図8は、半導体ウェハ302の一部の界面領域420を示し、この発明に従って、図7に示したマスクしたウェハのガスクラスタイオンビーム処理の完了によって形成した導入薄膜422を示している。連続的なガスクラスタイオン照射によって、導入領域(図5の342)と同様の導入領域を形成し、重ね合わせ、最終的にマスク402から露出した表面領域のみに導入薄膜422を形成する。
図6と8は、半導体基板上への処理薄膜(362と422)の形成を示している。歪みシリコンおよびシリコン/ゲルマニウム薄膜が形成される。発生する処理量は、クラスタイオンエネルギとクラスタイオン照射量の両方の関数である。ガスクラスタイオンエネルギまたはガスクラスタイオン照射量の一方を増大させると、形成される薄膜の厚さが増大する。低エネルギ照射量製品では、ここで「導入」と呼ばれる処理が発生する(上記のように、ガスクラスタ原子内に1〜99分子%の量が存在可能な半導体原子や、ガスクラスタイオン内に0.01〜10分子%の量が存在可能なドーパント原子は、各々図6と8の照射面362と422の浅い表面下の領域で混合される)。ガスクラスタイオンエネルギや照射量を増大させると、「導入」から薄膜堆積や成長に移行し、ガスクラスタイオンビーム内の半導体材料やドーパント材料は、照射する基板上に薄膜を成長または堆積させる。形成された薄膜は、クラスタ内にドーパント粒子が組み込まれているかどうかに応じてドープ済みであっても、未ドープであってもよい。いくつかの有用な処理の所定の例は、これ以降にさらに詳しく与えられる。
実験結果
図9は、発明の所定の用途によって形成した導入薄膜の二次イオン質量分析(SIMS)測定の結果を示すグラフである。この例では(サンプル141−4として識別)、図2に示したものと同様のガスクラスタイオンビーム処理システムを用いて、シリコン半導体ウェハの表面を処理した。ガスクラスタ形成用のソースガスとして、アルゴン内に5%のゲルマン(GeH4)の混合物を用いた。イオン化したガスクラスタイオンビームは5kVまで加速し、シリコンウェハ上に1cm2当たり1×1014個のガスクラスタイオンの照射量で照射した。SIMS解析では、ゲルマニウムイオンを用いて、約200Åの深さの薄膜が導入されていることが確認された。SIMSの濃度軸は正確には校正されていないが、表面X線光電子分光分析(XPS)測定では、およそ20原子%のゲルマニウム濃度が実現され、処理パラメータを変えることによって、数原子から少なくとも40原子%のゲルマニウム濃度が実現できることが確認された。この範囲内のゲルマニウム濃度は、キャリア移動度を改善するためのシリコン内歪み形成に有用である。
図10は、発明の所定の用途によって形成した導入薄膜のSIMS測定の結果を示すグラフである。この例(144−2として識別)では、図2で示したものと同様のガスクラスタイオンビーム処理システムを用いて、シリコン半導体ウェハの表面を処理した。ガスクラスタ形成用のソースガスの一つとして、アルゴン内に5%のゲルマン(GeH4)の混合物を用い、ガスクラスタ形成用の第二ソースガスとして、1%のジボラン(B26)を用いた。二つのソースガスは滞留チャンバ内に流す際に混合し、ゲルマン混合物は速度300sccmで供給し、ジボラン混合物は速度75sccmで供給した。イオン化したガスクラスタイオンビームは5kVまで加速し、シリコンウェハ上に1cm2当たり1×1015個のガスクラスタイオンの照射量で照射した。SIMS解析では、ゲルマニウムイオンを導入し、同時にシリコン/ゲルマニウム層をドープするためにホウ素イオンを導入した表面が形成されていることが確認された。SIMSの濃度軸は正確には校正されていないが、表面X線光電子分光分析(XPS)測定では、およそ20原子%のゲルマニウム濃度が実現され、処理パラメータを変えることによって、数原子から少なくとも40原子%のゲルマニウム濃度が実現できることが確認された。この範囲内のゲルマニウム濃度は、キャリア移動度を改善するためのシリコン内歪み形成に有用である。なお、ホウ素のドーピング深さは約100Åであり非常に浅く、浅い接合の形成に適している。
図11は、発明の所定の用途によって形成した導入薄膜のSIMS測定の結果を示すグラフである。この例では(144−3として識別)、図2で示したものと同様のガスクラスタイオンビーム処理システムを用いて、シリコン半導体ウェハの表面を処理した。ガスクラスタ形成用のソースガスの一つとして、アルゴン内に5%のゲルマン(GeH4)の混合物を用い、ガスクラスタ形成用の第二ソースガスとして、1%のジボラン(B26)を用いた。二つのソースガスは滞留チャンバ内に流す際に混合し、ゲルマン混合物は速度30sccmで供給し、ジボラン混合物は速度300sccmで供給した。イオン化したガスクラスタイオンビームは30kVまで加速し、シリコンウェハ上に1cm2当たり1×1015個のガスクラスタイオンの照射量で照射した。SIMS解析では、ゲルマニウムイオンを導入し、同時にシリコン/ゲルマニウム層をドープするためにホウ素イオンを導入した表面が形成されていることが確認された。SIMS解析ではさらに、加速電位の増大によって、図10のサンプル144−2の場合に比べて導入薄膜の深さが増大することもわかった。
図12は、この発明の所定の用途によって形成した二つの薄膜のSIMS測定の結果を示すグラフである。これらの例では、図9で既に示したサンプル(141−4として識別)を同様に処理したサンプル(142−1として識別)と比較する。図2に示したものと同様のガスクラスタイオンビーム処理システムを用いて、両方のシリコン半導体ウェハの表面を処理する。両方のサンプルでは、ガスクラスタ形成用のソースガスとして、アルゴン内に5%のゲルマン(GeH4)混合物を用いた。両方の場合において、イオン化したガスクラスタイオンビームは5kVまで加速し、サンプル141−4の場合、シリコンウェハ上に1cm2当たり1×1014個のガスクラスタイオンの照射量で照射し、サンプル142−1の場合、シリコンウェハ上に1cm2当たり1×1015個のガスクラスタイオンの照射量で照射した。サンプル141−4の場合、SIMS解析では、ゲルマニウムイオンを用いて、約200Åの深さの薄膜が導入されることがわかった。より高照射量のサンプル142−1の場合、SIMS解析では、ゲルマニウムを導入したシリコンが約200Åで、さらにゲルマニウム導入シリコン層上に約500Åのゲルマニウム薄膜が堆積または成長していることがわかった。SIMSの濃度軸は正確には校正されてはいないが、表面XPS測定では、サンプル141−4のシリコン内にゲルマニウムが導入され、サンプル142−1では純粋なゲルマニウム表面薄膜が確認された。低照射量の場合、歪みシリコン層の形成に適したゲルマニウム導入シリコン層が形成され、高照射量の場合、シリコン/ゲルマニウム界面領域を備えたシリコン基板上に、ゲルマニウム薄膜が堆積または成長していた。
図13は、発明の所定の用途によって堆積または成長させた三つのゲルマニウム薄膜のSIMS測定結果を示すグラフである。これらの例では、三つのサンプル(サンプル141−1、141−2、および141−3として識別)を比較する。図2に示したものと同様のガスクラスタイオンビーム処理システムを用いて、三つのシリコン半導体ウェハサンプルの全ての表面を処理した。三つのサンプル全てに対して、ガスクラスタ形成用のソースガスとして、アルゴン内に5%のゲルマン(GeH4)の混合物を用いた。各々の場合、イオン化したガスクラスタイオンビームは30kVまで加速し、サンプル141−1の場合、シリコンウェハ上に1cm2当たり1×1014個のガスクラスタイオンの照射量で照射し、サンプル141−2の場合、シリコンウェハ上に1cm2当たり1×1015個のガスクラスタイオンの照射量で照射し、サンプル141−3の場合、シリコンウェハ上に1cm2当たり1×1016個のガスクラスタイオンの照射量で照射した。サンプル141−1の場合、SIMS解析では、シリコン基板上に約600Åのゲルマニウム薄膜が堆積または成長していることがわかった。サンプル141−2の場合、SIMS解析では、シリコン基板上に約1200Åのゲルマニウム薄膜が堆積または成長していることがわかった。サンプル141−3の場合、SIMS解析では、シリコン基板上に約11000Å以上のゲルマニウム薄膜が堆積または成長していることがわかった。SIMSの濃度軸は正確には校正されてはいないが、表面XPS測定では、純粋なゲルマニウム薄膜の成長または堆積が確認された。図13のサンプル141−1と、図9および12のサンプル141−4を比較すると、より高い加速電位の30kVでサンプル141−1を用いることで、サンプル141−4で発生したようにシリコン内にゲルマニウムを導入するのではなく、ゲルマニウム薄膜の堆積または成長が得られることがわかった。なお、図12の低エネルギ、高照射量のサンプル142−1(5kV、照射量1×1015)と、高エネルギ、低照射量のサンプル141−1(30kV、照射量1×1014)も、二つのシリコン基板上に同様の厚さのゲルマニウム薄膜を堆積または成長させた。
図14は、ソースガス混合物から形成したGCIBの組成のノズル流速パラメータ依存性を示すグラフである。この場合、ソースガス混合物はアルゴン内に5%のGeH4である。グラフに示した測定中、図3に示したものと同様のGCIB処理装置をノズル110の流速を徐々に高くして動作させた(滞留チャンバ116の圧力を徐々に高くすることに対応する)。処理チャンバ108内のガスを解析するために、残留ガス分析器(RGA)を動作させた(GCIB128が工作物152またはビーム電流センサ218に衝突する際に主に分離物を生成し、ガスクラスタイオンの組成を示す)。GeおよびArとラベル付けした軌跡は各々、処理チャンバ108内のゲルマンとアルゴンガスの分圧を表している。階段状の軌跡は、ノズル110内のソースガスの流速(単位:sccm)を示している。ゲルマンは低速で凝集するので、低速ではクラスタイオンビームはほぼ全てのゲルマンを有する。高速では、ガスクラスタイオンビームはアルゴン分圧を次第に増大させ、元のガス混合物の成分に近づき始める。なお、混合物内の成分ガスの各々に対して、凝集の顕著な始まりが存在する。従って、ガス混合物から化合物クラスタを形成する場合、両方の成分がそれらの凝集を開始する流速より、用いられるノズル流速が高くなるようにすることが重要である。再現可能な処理結果を得るには、処理間でガス混合物の割合だけでなくノズル流速も再現可能にして、ガスクラスタイオン混合物の組成の再現可能性を確保することも重要である。
上記のように、ゲルマニウム薄膜の堆積または成長能力を提供することに加えて、この発明は、ゲルマニウムとシリコンの両方を含むクラスタを用いることによって、シリコン−ゲルマニウム薄膜を堆積または成長させるために用いることもできる。例えば、アルゴン内に5%のゲルマンの第一ソースガスと、アルゴン内に5%のシランの第二ソースガスを用い、クラスタビーム源に供給する際、所望の割合の流速で二つのガスを混合することによって、発明の用途によって、シリコン、絶縁体上シリコン、二酸化シリコン、または他の誘電体を含む様々な基板上に、制御可能な割合のシリコン−ゲルマニウム薄膜を成長させる。堆積や成長用の基板は、単結晶であっても非結晶であってもよい。ガスクラスタイオンを形成するために用いるガス混合物にドーパント粒子を追加することによって、堆積や成長させた半導体薄膜もドープされる。堆積または成長させた半導体薄膜はアモルファスまたは多結晶になる傾向があるが、急速アニールまたは炉内アニール、好ましくは非拡散または低拡散アニール等の熱アニールステップを加えることによって、単結晶薄膜に変換できる。
ソースガスとして炭素含有ガス、例えばメタンをアルゴンと混合することによって、炭素含有クラスタを形成できる。炭素含有クラスタは、ゲルマニウムを用いて実現したように、歪みシリコンを形成するためにシリコン内に導入できる。しかし、炭素原子はシリコン原子より小さいので、得られる歪みは、ゲルマニウム誘導歪みの場合の圧縮ではなく張力である。これは、局所的導入を生成するためのマスクステップの使用と組み合わせて、ある領域のシリコンにゲルマニウムを導入し、他の領域のシリコンに炭素を導入でき、従って単一のウェハ内に圧縮と張力の両方の領域を容易に生成する柔軟性を提供できる。
図6と8は、半導体基板の表面の全体的および局所的処理を(各々)示しており、それはガスクラスタイオンビーム処理を半導体基板表面全体で行うか、マスク開口部を介してのみ行うかに依存する。上記の議論では半導体ウェハ302をしばしばシリコンウェハと呼んでいたが、当然のことながら、この発明の処理はバルクのシリコンへの適用には限定されず、絶縁体上シリコン薄膜に適用することもできる。この発明を用いて表面上に半導体薄膜を堆積または成長させる際、当然のことながら、この発明はシリコンまたは絶縁体上シリコン基板のみの上に薄膜を堆積または成長させることには限定されず、二酸化シリコン層や他の誘電体層上にこのような薄膜を堆積または成長させることもでき、基板は単結晶、多結晶、またはアモルファスであってもよい。
この発明は様々な実施例について説明してきたが、当然のことながら、この発明はその精神の範囲の別のおよび他の様々な実施例を実現することもできる。
その他の目的および別の目的と共に、この発明をさらに理解するために、添付の図面と詳細な説明を参照する。
静電気走査ビームを用いる従来技術のGCIB処理装置の基本要素を示す概略図である。 静止したビームを用い、工作物を機械的に走査し、混合ソースガスの提供を含む従来技術のGCIB処理装置の基本要素を示す概略図である。 ガスクラスタイオン照射を受け取る半導体ウェハの一部の概略図である。 図3の半導体ウェハの一部を拡大した概略図であり、ガス混合物クラスタイオンを含む別の詳細を示している。 半導体ウェハの一部の概略図であり、この発明によるクラスタ衝突で影響される領域の表面改質を示している。 半導体ウェハの一部の概略図であり、この発明による表面薄膜を形成する多くのガスクラスタイオンによって影響を受けた表面領域の改質を示している。 半導体ウェハの一部の概略図であり、ガスクラスタイオンによって照射中の処理のマスク制御による局所化を示している。 ガスクラスタイオン照射中の処理のマスク制御による局所化後の半導体ウェハの一部の概略図であり、ガスクラスタイオンビーム処理によって形成した局所的表面薄膜を備えている。 シリコン基板上のゲルマニウム導入表面薄膜のSIMS測定を示すグラフであり、前記薄膜はこの発明によるガスクラスタイオン処理によって形成されている。 シリコン基板上のゲルマニウムおよびホウ素導入表面薄膜のSIMS測定を示すグラフであり、前記薄膜はこの発明の一実施例によるガスクラスタイオン処理によって形成されている。 シリコン基板上のゲルマニウムおよびホウ素導入表面薄膜のSIMS測定を示すグラフであり、前記薄膜はこの発明の一実施例によるガスクラスタイオン処理によって形成されている。 二つの異なる処理条件下で、シリコン半導体表面のゲルマニウム含有ガスクラスタイオンビーム処理のSIMS測定を比較するグラフであり、一方はシリコン内にゲルマニウムを導入した結果であり、もう一方はシリコン表面上にゲルマニウム薄膜を形成した結果であり、どちらもこの発明の実施例に従っている。 異なるガスクラスタイオンビーム処理条件下で、シリコン基板上に形成したゲルマニウム薄膜のSIMS測定を比較するグラフであり、全てこの発明の実施例に従っている。 混合ソースガスから形成したGCIBの組成がノズル流速パラメータにどのように依存するかを示すグラフである。

Claims (48)

  1. 半導体基板内に一つ以上の歪み領域を形成する方法であって、
    表面を備えた半導体基板を保持するための基板保持部の周りに減圧環境を維持し、
    前記減圧環境内に半導体基板をしっかりと保持し、
    少なくとも一つの歪み誘導原子種を含む高圧ガス混合物から、前記減圧環境にガスクラスタイオンビームを提供し、
    ガスクラスタイオンビームを加速し、
    加速したガスクラスタイオンビームを半導体基板の表面の一つ以上の部分に照射し、基板内に一つ以上の歪み半導体領域を形成する方法。
  2. 提供するステップがさらに、高圧ガス混合物を膨張ノズルに送り、
    膨張ノズルを介して、高圧ガス混合物を減圧環境内に流し、ガスクラスタを含むジェットを形成し、ガスクラスタの少なくとも一部をイオン化し、ガスクラスタイオンビームを形成するステップを有する請求項1記載の方法。
  3. ガス混合物がさらに希ガスを有し、
    歪み誘導原子種が、半導体原子種とCからなるグループから選択した少なくとも一つの粒子を有する請求項1記載の方法。
  4. ガス混合物が、SiとGeからなるグループから選択した少なくとも一つの原子種を有する請求項1記載の方法。
  5. ガス混合物が、P、BおよびAsからなるグループから選択した少なくとも一つのドーパント原子種を有する請求項1記載の方法。
  6. 形成された歪み領域が、約5〜40原子%の濃度の歪み誘導原子種を有する請求項1記載の方法。
  7. ガス混合物がドーパント原子種を含むガスを有し、ガス混合物内に存在する前記ガスの量が約0.01〜10分子量%である請求項1記載の方法。
  8. 希ガスがArまたはXeを有し、
    ガス混合物がさらに、GeH4、GeF4、SiH4、SiF4、BF3、B26、PH3、PF5、AsH3、およびAsF5からなるグループから選択した一つ以上のガスを有する請求項3記載の方法。
  9. さらに、半導体基板の表面上にマスクを設け、照射する半導体基板の表面を一部を制御するステップを有する請求項1記載の方法。
  10. 一つ以上の歪み半導体領域の少なくとも一つが、半導体基板の一つ以上の隣接する非照射領域内に歪みを誘導する請求項9記載の方法。
  11. 一つ以上の歪み半導体領域の少なくとも一つが、ドープした歪み半導体領域である請求項1記載の方法。
  12. 半導体基板が、単結晶、多結晶、またはアモルファス半導体である請求項1記載の方法。
  13. 半導体基板が、基本的にシリコンである請求項1記載の方法。
  14. さらに、一つ以上の歪み半導体領域をアニールするステップを有する請求項1記載の方法。
  15. さらに、高圧ガス混合物を制御して流すステップを有し、ガスクラスタ内のガス混合物成分の凝集を制御する請求項2記載の方法。
  16. ガスクラスタイオンビームのガスクラスタを、1〜70kVの加速電圧で加速する請求項1記載の方法。
  17. 基板の表面に半導体薄膜を形成する方法であって、
    表面を備えた基板を保持するための基板保持部の周りに減圧環境を維持し、
    前記減圧環境内に基板をしっかりと保持し、
    少なくとも一つの半導体原子種を含む高圧ガス混合物から、前記減圧環境にガスクラスタイオンビームを提供し、
    ガスクラスタイオンビームを加速し、
    加速したガスクラスタイオンビームを基板の表面の少なくとも一部の上に照射し、半導体薄膜を形成する方法。
  18. 提供するステップがさらに、
    高圧ガス混合物を膨張ノズルに送り、
    膨張ノズルを介して高圧ガス混合物を減圧環境内に流し、ガスクラスタを含むジェットを形成し、ガスクラスタの少なくとも一部をイオン化し、ガスクラスタイオンビームを形成するステップを有する請求項17記載の方法。
  19. ガス混合物が、さらに希ガスを有する請求項17記載の方法。
  20. SiとGeからなる元素のグループから少なくとも一つの半導体原子種を選択した請求項17記載の方法。
  21. 形成された薄膜が、約5〜40原子%の濃度の少なくとも一つの半導体原子種を有する請求項17記載の方法。
  22. ガス混合物がさらに、P、BおよびAsからなるグループから選択した少なくとも一つのドーパント原子種を有する請求項17記載の方法。
  23. ガス混合物が少なくとも1つのドーパント原子種を含むガスを有し、ガス混合物内に存在する前記ガスの量が約0.01〜10分子量%である請求項17記載の方法。
  24. ガス混合物がさらに、Cを有する請求項17記載の方法。
  25. 形成される薄膜内のCの濃度が、約5〜40原子%である請求項24記載の方法。
  26. 希ガスがArまたはXeを有し、
    ガス混合物がさらに、GeH4、GeF4、SiH4、SiF4、BF3、B26、PH3、PF5、AsH3、およびAsF5からなるグループから選択した一つ以上のガスを有する請求項17記載の方法。
  27. さらに、基板の表面上にマスクを設け、加速したガスクラスタイオンビームで照射する基板の表面の一部を制御するステップを有する請求項17記載の方法。
  28. 半導体薄膜が、ドープした半導体薄膜である請求項17記載の方法。
  29. 基板が、半導体、誘電体材料、または絶縁体上シリコン材料からなる請求項17記載の方法。
  30. 基板が、単結晶、多結晶、またはアモルファスである請求項17記載の方法。
  31. 半導体薄膜が、炭化シリコンを有する請求項17記載の方法。
  32. 基板が第一半導体材料からなり、
    半導体薄膜が第二半導体材料からなり、
    第一半導体材料と第二半導体材料の間の界面が傾斜組成物からなる請求項17記載の方法。
  33. 第一半導体材料がシリコンであり、
    第二半導体材料がゲルマニウムであり、
    シリコンとゲルマニウムの間の界面が傾斜シリコン/ゲルマニウムである請求項32記載の方法。
  34. さらに、半導体薄膜をアニールするステップを有する請求項17記載の方法。
  35. さらに、高圧ガス混合物を制御して流すステップを有し、ガスクラスタ内のガス混合物成分の凝集を制御する請求項18記載の方法。
  36. 基板表面で半導体薄膜内に一つ以上の歪み半導体領域を形成する方法であって、
    請求項17記載の方法によって基板表面に半導体薄膜を形成し、
    請求項1記載の方法によって半導体薄膜内に一つ以上の歪み半導体領域を形成するステップを有する方法。
  37. ガスクラスタイオンビームのガスクラスタを、1〜70kVの加速電圧で加速する請求項17記載の方法。
  38. 請求項1記載の方法の加速したガスクラスタイオンビームを用いて、基板の一つ以上の部分を照射することによって形成した一つ以上の歪み領域を有する半導体基板。
  39. 一つ以上の歪み領域が、半導体原子種、ドーパント原子種、およびCからなるグループから選択した少なくとも一つの原子種をその内部に有する請求項38記載の基板。
  40. 半導体基板が、単結晶、多結晶、またはアモルファス半導体である請求項38記載の基板。
  41. 半導体基板が、基本的にシリコンである請求項38記載の基板。
  42. 請求項17記載の方法の加速したガスクラスタイオンビームを用いて、基板の表面を照射することによって形成した基板の表面に半導体薄膜を有する基板。
  43. 半導体薄膜が、半導体原子種、ドーパント原子種、およびCからなるグループから選択した少なくとも一つの原子種を有する請求項42記載の基板。
  44. 基板が、半導体、誘電体材料、または絶縁体上シリコン材料からなる請求項42記載の基板。
  45. 基板が、単結晶、多結晶、またはアモルファスである請求項42記載の基板。
  46. 半導体薄膜が、炭化シリコンを有する請求項42記載の基板。
  47. 基板が第一半導体材料からなり、
    半導体薄膜が第二半導体材料からなり、
    第一半導体材料と第二半導体材料の界面が傾斜組成物からなる請求項42記載の基板。
  48. 第一半導体材料がシリコンであり、
    第二半導体材料がゲルマニウムであり、
    シリコンとゲルマニウムの間の界面が傾斜シリコン/ゲルマニウムである請求項42記載の基板。
JP2006553280A 2004-02-14 2005-02-14 ドープ済みおよび未ドープの歪み半導体の形成方法およびガスクラスタイオン照射による半導体薄膜の形成方法 Withdrawn JP2007525838A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US54451604P 2004-02-14 2004-02-14
US62191104P 2004-10-25 2004-10-25
PCT/US2005/004440 WO2005079318A2 (en) 2004-02-14 2005-02-14 Methods of forming doped and un-doped strained semiconductor and semiconductor films by gas-cluster ion irradiation

Publications (1)

Publication Number Publication Date
JP2007525838A true JP2007525838A (ja) 2007-09-06

Family

ID=34890469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006553280A Withdrawn JP2007525838A (ja) 2004-02-14 2005-02-14 ドープ済みおよび未ドープの歪み半導体の形成方法およびガスクラスタイオン照射による半導体薄膜の形成方法

Country Status (4)

Country Link
US (1) US7259036B2 (ja)
EP (1) EP1723667A4 (ja)
JP (1) JP2007525838A (ja)
WO (1) WO2005079318A2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009518869A (ja) * 2005-12-09 2009-05-07 セムイクウィップ・インコーポレーテッド 炭素クラスターの注入により半導体デバイスを製造するためのシステムおよび方法
JP2012503886A (ja) * 2008-09-25 2012-02-09 アプライド マテリアルズ インコーポレイテッド オクタデカボラン自己アモルファス化注入種を使用する無欠陥接合形成
JP2012505550A (ja) * 2008-10-08 2012-03-01 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド 分子イオンのイオン注入技術
JP2014099481A (ja) * 2012-11-13 2014-05-29 Sumco Corp エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910854A (en) 1993-02-26 1999-06-08 Donnelly Corporation Electrochromic polymeric solid films, manufacturing electrochromic devices using such solid films, and processes for making such solid films and devices
US5668663A (en) 1994-05-05 1997-09-16 Donnelly Corporation Electrochromic mirrors and devices
US8294975B2 (en) 1997-08-25 2012-10-23 Donnelly Corporation Automotive rearview mirror assembly
US6172613B1 (en) 1998-02-18 2001-01-09 Donnelly Corporation Rearview mirror assembly incorporating vehicle information display
US6326613B1 (en) 1998-01-07 2001-12-04 Donnelly Corporation Vehicle interior mirror assembly adapted for containing a rain sensor
US6124886A (en) 1997-08-25 2000-09-26 Donnelly Corporation Modular rearview mirror assembly
US8288711B2 (en) 1998-01-07 2012-10-16 Donnelly Corporation Interior rearview mirror system with forwardly-viewing camera and a control
US6445287B1 (en) 2000-02-28 2002-09-03 Donnelly Corporation Tire inflation assistance monitoring system
US6693517B2 (en) 2000-04-21 2004-02-17 Donnelly Corporation Vehicle mirror assembly communicating wirelessly with vehicle accessories and occupants
US6329925B1 (en) 1999-11-24 2001-12-11 Donnelly Corporation Rearview mirror assembly with added feature modular display
US6477464B2 (en) 2000-03-09 2002-11-05 Donnelly Corporation Complete mirror-based global-positioning system (GPS) navigation solution
AU2001243285A1 (en) 2000-03-02 2001-09-12 Donnelly Corporation Video mirror systems incorporating an accessory module
US7004593B2 (en) 2002-06-06 2006-02-28 Donnelly Corporation Interior rearview mirror system with compass
US7167796B2 (en) 2000-03-09 2007-01-23 Donnelly Corporation Vehicle navigation system for use with a telematics system
US7370983B2 (en) 2000-03-02 2008-05-13 Donnelly Corporation Interior mirror assembly with display
US7255451B2 (en) 2002-09-20 2007-08-14 Donnelly Corporation Electro-optic mirror cell
US7581859B2 (en) 2005-09-14 2009-09-01 Donnelly Corp. Display device for exterior rearview mirror
ES2287266T3 (es) 2001-01-23 2007-12-16 Donnelly Corporation Sistema de iluminacion de vehiculos mejorado.
US6918674B2 (en) 2002-05-03 2005-07-19 Donnelly Corporation Vehicle rearview mirror system
US7329013B2 (en) 2002-06-06 2008-02-12 Donnelly Corporation Interior rearview mirror system with compass
US7274501B2 (en) 2002-09-20 2007-09-25 Donnelly Corporation Mirror reflective element assembly
US7310177B2 (en) 2002-09-20 2007-12-18 Donnelly Corporation Electro-optic reflective element assembly
US7410890B2 (en) * 2002-12-12 2008-08-12 Tel Epion Inc. Formation of doped regions and/or ultra-shallow junctions in semiconductor materials by gas-cluster ion irradiation
US7446924B2 (en) 2003-10-02 2008-11-04 Donnelly Corporation Mirror reflective element assembly including electronic component
US7308341B2 (en) 2003-10-14 2007-12-11 Donnelly Corporation Vehicle communication system
TWI225272B (en) * 2003-11-04 2004-12-11 Promos Technologies Inc Method of controlling implanting dosage and method of controlling pressure compensate factor in-situ
EP1787321A4 (en) * 2004-12-03 2008-12-03 Tel Epion Inc TRAINING OF ULTRASONIC TRANSITIONS THROUGH GASCLUSTER ION RADIATION
US7626749B2 (en) 2005-05-16 2009-12-01 Donnelly Corporation Vehicle mirror assembly with indicia at reflective element
US20060292762A1 (en) * 2005-06-22 2006-12-28 Epion Corporation Replacement gate field effect transistor with germanium or SiGe channel and manufacturing method for same using gas-cluster ion irradiation
KR101297964B1 (ko) * 2005-08-30 2013-08-19 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 대안적인 불화 붕소 전구체를 이용한 붕소 이온 주입 방법, 및 주입을 위한 대형 수소화붕소의 형성 방법
EP1949666B1 (en) 2005-11-01 2013-07-17 Magna Mirrors of America, Inc. Interior rearview mirror with display
US8900980B2 (en) 2006-01-20 2014-12-02 Taiwan Semiconductor Manufacturing Company, Ltd. Defect-free SiGe source/drain formation by epitaxy-free process
US8835880B2 (en) * 2006-10-31 2014-09-16 Fei Company Charged particle-beam processing using a cluster source
US7642150B2 (en) * 2006-11-08 2010-01-05 Varian Semiconductor Equipment Associates, Inc. Techniques for forming shallow junctions
US20080105828A1 (en) * 2006-11-08 2008-05-08 Varian Semiconductor Equipment Associates, Inc. Techniques for removing molecular fragments from an ion implanter
US7622722B2 (en) * 2006-11-08 2009-11-24 Varian Semiconductor Equipment Associates, Inc. Ion implantation device with a dual pumping mode and method thereof
US7919402B2 (en) * 2006-12-06 2011-04-05 Semequip, Inc. Cluster ion implantation for defect engineering
US7807074B2 (en) * 2006-12-12 2010-10-05 Honeywell International Inc. Gaseous dielectrics with low global warming potentials
US7586109B2 (en) * 2007-01-25 2009-09-08 Varian Semiconductor Equipment Associates, Inc. Technique for improving the performance and extending the lifetime of an ion source with gas dilution
US7655931B2 (en) * 2007-03-29 2010-02-02 Varian Semiconductor Equipment Associates, Inc. Techniques for improving the performance and extending the lifetime of an ion source with gas mixing
US7566888B2 (en) * 2007-05-23 2009-07-28 Tel Epion Inc. Method and system for treating an interior surface of a workpiece using a charged particle beam
US20090032725A1 (en) * 2007-07-30 2009-02-05 Tokyo Electron Limited Apparatus and methods for treating a workpiece using a gas cluster ion beam
US8192805B2 (en) * 2007-09-27 2012-06-05 Tel Epion Inc. Method to improve electrical leakage performance and to minimize electromigration in semiconductor devices
US7981483B2 (en) * 2007-09-27 2011-07-19 Tel Epion Inc. Method to improve electrical leakage performance and to minimize electromigration in semiconductor devices
US8372489B2 (en) * 2007-09-28 2013-02-12 Tel Epion Inc. Method for directional deposition using a gas cluster ion beam
US7754588B2 (en) * 2007-09-28 2010-07-13 Tel Epion Inc. Method to improve a copper/dielectric interface in semiconductor devices
US7794798B2 (en) * 2007-09-29 2010-09-14 Tel Epion Inc. Method for depositing films using gas cluster ion beam processing
US7825389B2 (en) * 2007-12-04 2010-11-02 Tel Epion Inc. Method and apparatus for controlling a gas cluster ion beam formed from a gas mixture
US7883999B2 (en) * 2008-01-25 2011-02-08 Tel Epion Inc. Method for increasing the penetration depth of material infusion in a substrate using a gas cluster ion beam
US20090233004A1 (en) * 2008-03-17 2009-09-17 Tel Epion Inc. Method and system for depositing silicon carbide film using a gas cluster ion beam
US8154418B2 (en) 2008-03-31 2012-04-10 Magna Mirrors Of America, Inc. Interior rearview mirror system
US7905199B2 (en) * 2008-06-24 2011-03-15 Tel Epion Inc. Method and system for directional growth using a gas cluster ion beam
US9103031B2 (en) * 2008-06-24 2015-08-11 Tel Epion Inc. Method and system for growing a thin film using a gas cluster ion beam
US8202435B2 (en) * 2008-08-01 2012-06-19 Tel Epion Inc. Method for selectively etching areas of a substrate using a gas cluster ion beam
US8313663B2 (en) * 2008-09-24 2012-11-20 Tel Epion Inc. Surface profile adjustment using gas cluster ion beam processing
US8981322B2 (en) * 2009-02-04 2015-03-17 Tel Epion Inc. Multiple nozzle gas cluster ion beam system
US20100200774A1 (en) * 2009-02-09 2010-08-12 Tel Epion Inc. Multi-sequence film deposition and growth using gas cluster ion beam processing
US20110084214A1 (en) * 2009-10-08 2011-04-14 Tel Epion Inc. Gas cluster ion beam processing method for preparing an isolation layer in non-planar gate structures
US8048788B2 (en) * 2009-10-08 2011-11-01 Tel Epion Inc. Method for treating non-planar structures using gas cluster ion beam processing
US8237136B2 (en) * 2009-10-08 2012-08-07 Tel Epion Inc. Method and system for tilting a substrate during gas cluster ion beam processing
US8598022B2 (en) 2009-10-27 2013-12-03 Advanced Technology Materials, Inc. Isotopically-enriched boron-containing compounds, and methods of making and using same
US8338806B2 (en) 2010-05-05 2012-12-25 Tel Epion Inc. Gas cluster ion beam system with rapid gas switching apparatus
JP5776669B2 (ja) 2012-11-13 2015-09-09 株式会社Sumco エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法
JP5776670B2 (ja) 2012-11-13 2015-09-09 株式会社Sumco エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法
US20150017788A1 (en) * 2013-07-11 2015-01-15 Bae Systems Information And Electronic Systems Integration Inc. Method for making silicon-germanium absorbers for thermal sensors
JP6056772B2 (ja) 2014-01-07 2017-01-11 株式会社Sumco エピタキシャルウェーハの製造方法およびエピタキシャルウェーハ
US9540725B2 (en) 2014-05-14 2017-01-10 Tel Epion Inc. Method and apparatus for beam deflection in a gas cluster ion beam system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3352842B2 (ja) * 1994-09-06 2002-12-03 科学技術振興事業団 ガスクラスターイオンビームによる薄膜形成方法
US6251835B1 (en) * 1997-05-08 2001-06-26 Epion Corporation Surface planarization of high temperature superconductors
US5907780A (en) * 1998-06-17 1999-05-25 Advanced Micro Devices, Inc. Incorporating silicon atoms into a metal oxide gate dielectric using gas cluster ion beam implantation
WO2002006556A1 (en) * 2000-07-14 2002-01-24 Epion Corporation Gcib size diagnostics and workpiece processing
WO2002006557A1 (en) * 2000-07-14 2002-01-24 Epion Corporation Gcib size diagnostics and workpiece processing
US6309715B1 (en) * 2000-08-02 2001-10-30 International Flavors & Fragrances Inc. Decorative materials encased in a polymer with fragrance releasing characteristics
KR100445105B1 (ko) * 2001-10-25 2004-08-21 주식회사 다산 씨.앤드.아이 가스 클러스터 이온빔을 이용한 아이.티.오 박막 표면처리시스템 및 그 방법
US6806151B2 (en) * 2001-12-14 2004-10-19 Texas Instruments Incorporated Methods and apparatus for inducing stress in a semiconductor device
US6638802B1 (en) * 2002-06-20 2003-10-28 Intel Corporation Forming strained source drain junction field effect transistors
US20040002202A1 (en) * 2002-06-26 2004-01-01 Horsky Thomas Neil Method of manufacturing CMOS devices by the implantation of N- and P-type cluster ions
EP1584104A4 (en) 2002-12-12 2010-05-26 Tel Epion Inc RE-CRYSTALLIZATION OF A SEMICONDUCTIVE SURFACE FILM AND SEMICONDUCTOR DOTING BY MEANS OF ENERGETIC CLUSTER RADIATION
US6963078B2 (en) * 2003-03-15 2005-11-08 International Business Machines Corporation Dual strain-state SiGe layers for microelectronics

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009518869A (ja) * 2005-12-09 2009-05-07 セムイクウィップ・インコーポレーテッド 炭素クラスターの注入により半導体デバイスを製造するためのシステムおよび方法
JP2012503886A (ja) * 2008-09-25 2012-02-09 アプライド マテリアルズ インコーポレイテッド オクタデカボラン自己アモルファス化注入種を使用する無欠陥接合形成
JP2012505550A (ja) * 2008-10-08 2012-03-01 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド 分子イオンのイオン注入技術
JP2014099481A (ja) * 2012-11-13 2014-05-29 Sumco Corp エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法

Also Published As

Publication number Publication date
EP1723667A2 (en) 2006-11-22
US20050181621A1 (en) 2005-08-18
EP1723667A4 (en) 2009-09-09
WO2005079318A2 (en) 2005-09-01
WO2005079318A3 (en) 2006-10-05
US7259036B2 (en) 2007-08-21

Similar Documents

Publication Publication Date Title
JP2007525838A (ja) ドープ済みおよび未ドープの歪み半導体の形成方法およびガスクラスタイオン照射による半導体薄膜の形成方法
US7396745B2 (en) Formation of ultra-shallow junctions by gas-cluster ion irradiation
US7410890B2 (en) Formation of doped regions and/or ultra-shallow junctions in semiconductor materials by gas-cluster ion irradiation
JP2008547229A (ja) 置換ゲート電界効果トランジスタ、及びその製造方法
TWI424477B (zh) 藉由植入碳團簇之半導體裝置之製造系統及方法
TWI404128B (zh) 離子植入裝置及由碳硼烷聚集物離子衍生之離子植入的半導體製造方法
US6111260A (en) Method and apparatus for in situ anneal during ion implant
US7994487B2 (en) Control of particles on semiconductor wafers when implanting boron hydrides
JP4749713B2 (ja) 水素化ホウ素クラスターイオンの注入によるイオン注入方法及び半導体製造方法
US20070178678A1 (en) Methods of implanting ions and ion sources used for same
US20070178679A1 (en) Methods of implanting ions and ion sources used for same
US20090032725A1 (en) Apparatus and methods for treating a workpiece using a gas cluster ion beam
WO2004053945A2 (en) Re-crystallization of semiconductor surface film and doping of semiconductor by energetic cluster irradiation
US8003957B2 (en) Ethane implantation with a dilution gas
US6191012B1 (en) Method for forming a shallow junction in a semiconductor device using antimony dimer
JP2006221941A (ja) イオン注入装置およびイオン注入方法
Current et al. MOLECULAR AND CLUSTER ION BEAMS: DOPING AND DEPOSITION WITH “MASSIVE” IONS
US20050048679A1 (en) Technique for adjusting a penetration depth during the implantation of ions into a semiconductor region
Song et al. Electrical Properties of Ultra Shallow p Junction on n type Si Wafer Using Decaborane Ion Implantation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101102