JP2007523013A - Transport container for cooling and holding frozen materials - Google Patents

Transport container for cooling and holding frozen materials Download PDF

Info

Publication number
JP2007523013A
JP2007523013A JP2006548225A JP2006548225A JP2007523013A JP 2007523013 A JP2007523013 A JP 2007523013A JP 2006548225 A JP2006548225 A JP 2006548225A JP 2006548225 A JP2006548225 A JP 2006548225A JP 2007523013 A JP2007523013 A JP 2007523013A
Authority
JP
Japan
Prior art keywords
coolant
transport container
container according
chamber
transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006548225A
Other languages
Japanese (ja)
Other versions
JP4680935B2 (en
Inventor
ジクスト、ベルンハルト
ジクスト、シュテファン
Original Assignee
ジクスト、ベルンハルト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジクスト、ベルンハルト filed Critical ジクスト、ベルンハルト
Publication of JP2007523013A publication Critical patent/JP2007523013A/en
Application granted granted Critical
Publication of JP4680935B2 publication Critical patent/JP4680935B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/02Devices using other cold materials; Devices using cold-storage bodies using ice, e.g. ice-boxes
    • F25D3/06Movable containers
    • F25D3/08Movable containers portable, i.e. adapted to be carried personally
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0236Mechanical aspects
    • A01N1/0263Non-refrigerated containers specially adapted for transporting or storing living parts whilst preserving, e.g. cool boxes, blood bags or "straws" for cryopreservation
    • A01N1/0273Transport containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/04Heat insulating devices, e.g. jackets for flasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/06Test-tube stands; Test-tube holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • F25D2303/083Devices using cold storage material, i.e. ice or other freezable liquid using cold storage material disposed in closed wall forming part of a container for products to be cooled
    • F25D2303/0831Devices using cold storage material, i.e. ice or other freezable liquid using cold storage material disposed in closed wall forming part of a container for products to be cooled the liquid is disposed in the space between the walls of the container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • F25D2303/085Compositions of cold storage materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • F25D2331/804Boxes

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Dentistry (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Packages (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

冷凍材料、特に生物組織の標本を輸送するための輸送容器が開示される。前記輸送容器は、ジャケット形状の断熱材(超断熱材)と、充填冷却剤(47')を含む少なくとも1つの冷却剤チャンバ(47)を備えた取り外し可能な内部容器(44)と、冷却剤チャンバ(47)の内側に配置される少なくとも1つの冷却チャンバ(46)とを有する。冷却剤、例えば、約−39℃の融点を有する水銀は、冷却剤チャンバ(47)に恒久的にかつ密封して封入され、発送前に、例えば液体窒素による冷凍過程において冷凍凝固される。冷却チャンバ(46)、従って標本は、輸送中、冷却剤又は水銀が緩慢に融解する間、前記温度レベルに保持される。  A transport container for transporting frozen material, particularly biological tissue specimens, is disclosed. The transport container comprises a jacket-shaped insulation (super insulation), a removable inner container (44) with at least one coolant chamber (47) containing a filled coolant (47 '), a coolant And at least one cooling chamber (46) disposed inside the chamber (47). A coolant, such as mercury having a melting point of about −39 ° C., is permanently and hermetically sealed in the coolant chamber (47) and is frozen and solidified prior to shipping, for example, in a refrigeration process with liquid nitrogen. The cooling chamber (46), and thus the specimen, is held at the temperature level during the transport while the coolant or mercury slowly melts.

Description

本発明は、冷凍材料、特に冷凍された生物組織の標本又は培養細胞の冷却保持用輸送容器に関するものであり、断熱チャンバを取り囲む断熱材と、断熱チャンバ内に取り外し可能に配置されかつチャンバ内に冷凍材料を受け入れる内部容器と、相転移によって冷熱を発生する冷却剤とを含む輸送容器に関する。   The present invention relates to a cryocontainer, particularly a transport container for cooling and holding frozen biological tissue specimens or cultured cells, a heat insulating material surrounding the heat insulating chamber, a removably disposed heat insulating chamber, and the chamber. The present invention relates to a transport container including an inner container that receives a frozen material and a coolant that generates cold heat by phase transition.

古くから知られる材料の冷却保持方法は、材料を断熱容器の中に入れて、これによって材料が熱に曝露されるのを防ぐ方式である。しかし、特に輸送容器の場合には断熱材の壁面厚さに制限があり、従って断熱効果が限定される。このため、特に、比較的長い貯蔵又は輸送時間の場合、毀損的な温度上昇あるいは場合によっては冷凍材料の融解を回避するには、侵入する熱を対応する冷熱の生成によって確実に相殺する以外に選択肢はない。   A method of cooling and holding a material that has been known for a long time is a method in which a material is placed in an insulated container, thereby preventing the material from being exposed to heat. However, especially in the case of a transport container, the wall thickness of the heat insulating material is limited, and therefore the heat insulating effect is limited. For this reason, especially in the case of relatively long storage or transport times, in order to avoid detrimental temperature rises or in some cases melting of the frozen material, in addition to ensuring that the ingress heat is offset by the corresponding cold generation. There is no choice.

低温の冷却剤によって、流入する熱を相殺するのに必要な冷熱を供給する方式が知られている。この冷却剤は、寸法を相応に大きくした輸送容器の断熱チャンバ内に材料と共に入れられる。この方式においては、循環しなければならない媒体を含む冷却装置の経費は必要でない。冷却剤の固体→液体転移(融解熱)、液体→気体転移(蒸発熱)、あるいは固体→気体転移(昇華熱)の相転移を利用することによって、相転移の期間中の一定温度を達成することができるが、この期間は使用する冷却剤の量によって定まる。   There is known a system for supplying cold heat necessary for canceling inflowing heat using a low-temperature coolant. This coolant is placed with the material in an insulated chamber of the shipping container of correspondingly larger dimensions. In this manner, there is no need for the cost of a refrigeration system that includes media that must be circulated. Achieve constant temperature during the phase transition by utilizing the solid-to-liquid transition (heat of fusion), liquid-> gas transition (heat of evaporation), or solid-> gas transition (heat of sublimation) of the coolant This period can depend on the amount of coolant used.

輸送容器に用いられるこのような冷却剤の周知の例は、氷(水)、ドライアイス(二酸化炭素)及び液体窒素である。氷が、冷凍材料の冷却保持用に用いるには0℃という高すぎる融点を有しているのに対して、固体二酸化炭素の昇華温度及び液体窒素の沸騰温度は通例の冷凍材料の温度より遥かに低いので、冷凍材料の過度の冷却を避けるために、冷却剤と材料との間に断熱壁を設ける等の付加的な手段を講じて適正な温度管理を行わなければならない。しかし、この場合、特に、それぞれ気体相への相転移が生起するという事実があるので、比較的大容積の気体が生成し、それを外部に排出しなければならない。限られた空間ではこの点が問題となり、例えば、この輸送容器の航空機による輸送を一層難しくする。   Well known examples of such coolants used in transport containers are ice (water), dry ice (carbon dioxide) and liquid nitrogen. Ice has a melting point that is too high, 0 ° C. to be used for refrigeration of the frozen material, whereas the sublimation temperature of solid carbon dioxide and the boiling temperature of liquid nitrogen are much higher than the temperatures of conventional frozen materials. Therefore, in order to avoid excessive cooling of the frozen material, additional temperature measures must be taken such as providing a heat insulating wall between the coolant and the material. However, in this case, in particular, there is a fact that a phase transition to the gas phase occurs, so that a relatively large volume of gas must be generated and discharged to the outside. This is a problem in confined spaces, for example, making it more difficult to transport this transport container by aircraft.

本発明は、比較的小型で軽量であり、従って取り扱い易い輸送容器であって、気体がそれから放散されることなく、かつ、材料の過度の冷却を防止する手段を必要とすることなく、所定の輸送期間の間、冷凍材料を確実に所期の冷却温度に簡単な方法で保持する輸送容器を提供するという目的に基づいている。   The present invention is a transport container that is relatively small and lightweight, and therefore easy to handle, without any gas being released from it and without requiring means to prevent excessive cooling of the material. It is based on the object of providing a transport container that ensures that the frozen material is kept at the desired cooling temperature in a simple manner during the transport period.

本発明によれば、この目的は、材料用の少なくとも1つの冷却チャンバと、冷却チャンバから分離された少なくとも1つの冷却剤チャンバで冷却剤を含み恒久的に密封シールされる冷却剤チャンバとを設けること、温度範囲−15℃〜−100℃において固体/液体間相転移する冷却剤を設けること、及び、断熱材が、≦0.01W/mKの熱伝導率λを有する超断熱材であることによって実現される。   According to the present invention, this object provides at least one cooling chamber for the material and a coolant chamber that contains the coolant and is permanently hermetically sealed in at least one coolant chamber separated from the cooling chamber. Providing a coolant that undergoes a solid / liquid phase transition in the temperature range of −15 ° C. to −100 ° C., and that the heat insulating material is a super heat insulating material having a thermal conductivity λ of ≦ 0.01 W / mK. It is realized by.

相転移温度が好ましい−30℃〜−85℃の間にある水銀又は有機物質又は混合物質が冷却剤として考慮の対象になる。凝固した水銀の融点は約−39℃(大気圧において)である。この温度は、例えば、医学的状態(癌)診断のための蛋白質及びRNA分析用として送付される組織の標本又は培養細胞等の生物学的材料の冷却保持用として非常に適しており、過度の冷却による毀損を防止する。さらなる利点は、この冷却剤を用いた場合、気体も蒸気も発生せず、相転移の間に容積が事実上変化しない点にある。   Mercury or organic substances or mixed substances whose phase transition temperature is preferably between -30 ° C. and -85 ° C. are considered as coolants. The melting point of the solidified mercury is about −39 ° C. (at atmospheric pressure). This temperature is very suitable, for example, for cryopreservation of biological materials such as tissue specimens or cultured cells sent for protein and RNA analysis for medical conditions (cancer) diagnosis. Prevent damage due to cooling. A further advantage is that with this coolant, no gas or vapor is generated and the volume does not change substantially during the phase transition.

本発明による輸送容器の場合、冷却剤は、冷却剤チャンバのハウジング内又は内部容器内に触れられることなく残存したままである。輸送後に液体に戻された(使用済みの)水銀は、取り外し可能な冷却剤容器又は内部容器を例えば液体窒素に浸漬して冷凍することによる液体→固体の相転移によって、新しい冷却保持輸送操作用として再生することができる。   In the case of the transport container according to the invention, the coolant remains untouched in the housing of the coolant chamber or in the inner container. Mercury returned (used) to liquid after transport can be used for new cooled holding transport operations by a liquid-to-solid phase transition, for example by immersing a removable coolant container or inner container in liquid nitrogen and freezing. Can be played as.

本発明による輸送容器の好適な改良形態及び発展形態が従属請求項に提示される。また、これらは、輸送容器の特に簡単な製造及び取り扱いと、対応すべき輸送距離従って冷却時間に対する冷却能力の適応とに関するものである。   Preferred refinements and developments of the transport container according to the invention are presented in the dependent claims. They also relate to the particularly simple manufacture and handling of the transport container and the adaptation of the cooling capacity to the transport distance to be accommodated and thus to the cooling time.

以下、概略図に基づいて、本発明による輸送容器の実施例を詳細に説明する。   Hereinafter, based on the schematic, the Example of the transport container by this invention is described in detail.

図1及び2による輸送容器1は、円筒状に形成されており、同様に円筒状の内部容器2と、2つの同じく円筒状の付加的容器3、4とを同軸配置で含んでいる。この2つの付加的容器は、断熱チャンバ5内で内部容器2の上端と下端に配置される。断熱チャンバ5は、厚壁のカップ形状の断熱材6によって構成され、上端7の内側が段付き構造になっており、断熱チャンバ5を閉止するカバーの形の、対応する段付き構造の厚壁断熱閉止部材8を受け入れている。断熱材6は硬質の防護筒9によって被包されている。この防護筒9の両端にはそれぞれ外ねじが設けられ、ねじ付きカバー11及び12の対応する係合ねじ端部10と固くねじ止めされている。   The transport container 1 according to FIGS. 1 and 2 is formed in a cylindrical shape and likewise comprises a cylindrical inner container 2 and two similarly cylindrical additional containers 3, 4 in a coaxial arrangement. The two additional containers are arranged at the upper and lower ends of the inner container 2 in the heat insulating chamber 5. The heat insulating chamber 5 is constituted by a thick-walled cup-shaped heat insulating material 6, and the inner side of the upper end 7 has a stepped structure, and a corresponding thick wall having a stepped structure in the form of a cover for closing the heat insulating chamber 5. A heat insulating closing member 8 is received. The heat insulating material 6 is encapsulated by a hard protective cylinder 9. External screws are provided at both ends of the protective cylinder 9 and are firmly screwed to the corresponding engagement screw ends 10 of the threaded covers 11 and 12.

断熱材6及び断熱閉止部材8は、きわめて低い熱伝導率λ、例えば0.002W/mKの熱伝導率を有する高品質の断熱材料から構成する。周知のこの断熱材料は、その卓越した断熱効果のために超断熱材とも呼称される。   The heat insulating material 6 and the heat insulating closing member 8 are made of a high quality heat insulating material having a very low thermal conductivity λ, for example, a thermal conductivity of 0.002 W / mK. This well-known thermal insulation material is also referred to as a super insulation due to its excellent thermal insulation effect.

内部容器2は図3に示される。それは、中空ハウジング又はカップ部分13と、それとねじ結合することができるねじ付きカバー14とを含む。カップ部分13には、同じくカップ形状の冷却剤チャンバ15と、中央の冷却チャンバ16とが形成され、この冷却チャンバ16がねじ付きカバー14によって閉止される。冷却チャンバ16が、冷却保持して輸送するべき材料17を受け入れる。図示の例では、この材料は、上端を閉止部品19で閉止された標本容器18の中の標本である。冷却剤チャンバ15には冷却剤15'(例えば水銀)を充填し、固体状態になるまで深冷する。冷却剤15'を注入し得るようにするため、カップ部分13の中央底部に、六角ソケットのねじストッパ21をねじ込むためのねじを有する充填開口20が設けられる。ねじストッパ21は、それをねじ込んだ時に、カップ部分13の底面の外側に窪み22が生じるような寸法のものとし、窪み22が生じるようにねじ込む。この底面の窪み22には、充填開口20を溶接して閉止する際に形成される溶接ビード23が溶着される。その結果、冷却剤チャンバ15は恒久的に密封シールされ、冷却剤15'の漏出を懸念する必要は全くない。   The inner container 2 is shown in FIG. It includes a hollow housing or cup portion 13 and a threaded cover 14 that can be screwed together. A cup-shaped coolant chamber 15 and a central cooling chamber 16 are formed in the cup portion 13, and the cooling chamber 16 is closed by a threaded cover 14. A cooling chamber 16 receives the material 17 to be kept cold and transported. In the example shown, this material is a specimen in a specimen container 18 whose upper end is closed by a closing part 19. The coolant chamber 15 is filled with a coolant 15 '(for example, mercury) and is cooled deeply until it becomes a solid state. In order to be able to inject the coolant 15 ′, a filling opening 20 with a screw for screwing the screw stopper 21 of the hex socket is provided in the central bottom of the cup part 13. The screw stopper 21 has a size such that when the screw stopper 21 is screwed, a recess 22 is formed outside the bottom surface of the cup portion 13 and is screwed so that the recess 22 is generated. A weld bead 23 formed when the filling opening 20 is welded and closed is welded to the recess 22 on the bottom surface. As a result, the coolant chamber 15 is permanently sealed and there is no need to worry about leakage of the coolant 15 '.

カップ部分13及びねじ付きカバー14は、圧縮負荷及び衝撃負荷を変形することなく吸収し得るように、及び、航空機の墜落等の極端な場合にも損傷や冷却剤(水銀)の漏出が確実に生じないようにするため、高強度の材料から製造される。内部容器2に適した材料は、例えば高級鋼、チタン又はチタン合金(TiAl5Sn2)であるが、これらは、高い強度を有するだけでなく、輸送重量を低減するための相対的な軽量性をも備えている。水銀よりも毒性が低い冷却剤の場合は、アルミニウム又は耐低温性プラスチック等の他の材料も考慮の対象になる。   The cup portion 13 and the threaded cover 14 can absorb the compression load and the impact load without deformation, and damage or leakage of the coolant (mercury) is ensured even in an extreme case such as an aircraft crash. Manufactured from high-strength material to prevent it from occurring. Suitable materials for the inner container 2 are, for example, high-grade steel, titanium or titanium alloys (TiAl5Sn2), which not only have high strength, but also have a relative lightness to reduce transport weight. ing. For coolants that are less toxic than mercury, other materials such as aluminum or low temperature resistant plastics are also considered.

図4によれば、付加的な容器3及び4も同様に中空円筒状に形成される。これは、冷却剤チャンバ24を有するが、冷却チャンバは備えていない。冷却剤チャンバ24には同様に冷却剤24'を充填する。図3の場合と同様に、付加的な容器3、4の中央底部には、それぞれ、充填開口25、ねじストッパ26を装備し、かつ溶接ビード27を溶着する。付加的容器3、4は、同様に上記の材料から製造することができる。   According to FIG. 4, the additional containers 3 and 4 are likewise formed in a hollow cylindrical shape. This has a coolant chamber 24 but no cooling chamber. The coolant chamber 24 is similarly filled with a coolant 24 '. As in the case of FIG. 3, a filling opening 25 and a screw stopper 26 are provided at the center bottom of the additional containers 3 and 4, respectively, and a weld bead 27 is welded. The additional containers 3, 4 can likewise be manufactured from the above materials.

図5は、付加的容器3、4の寸法の円筒状断熱ストッパ28を示す。この断熱ストッパ28は、輸送距離又は輸送時間が相応に短い場合に、内部容器2内の冷却剤15'によって材料17が輸送中十分に冷却保持されるならば、付加的容器3、4に代えて冷却チャンバ16の中に挿入することができる。   FIG. 5 shows a cylindrical insulating stopper 28 with the dimensions of the additional containers 3, 4. This insulating stopper 28 replaces the additional containers 3 and 4 if the material 17 is sufficiently cooled and held during transport by the coolant 15 'in the inner container 2 when the transport distance or transport time is reasonably short. Can be inserted into the cooling chamber 16.

図6は、内部容器2の代わりに用いることができる内部容器30を示す。内部容器30は円筒状に形成され、その中心に円筒状の冷却チャンバ31を有する。この冷却チャンバ31は、内部容器30の上面から延びており、壁面の距離を置いて環状の冷却剤チャンバ32によって取り囲まれている。この冷却剤チャンバ32は、内部容器30の上端面及び下端面から壁面の距離を置いた範囲で止まっている。この場合も、冷却剤チャンバ32には冷却剤32'を充填する。冷却剤を注入するため、内部容器30の上端面に、冷却剤チャンバ32の方に向かって円錐状に僅かにテーパした充填開口33を形成する。この詳細が図8に示されている。冷却剤32'注入後、充填開口33を、同じく高級鋼又はチタン製のストッパ34によって閉止する。ストッパ34の上部で、充填開口33を溶接ビード35によって溶接閉止する。   FIG. 6 shows an inner container 30 that can be used in place of the inner container 2. The inner container 30 is formed in a cylindrical shape, and has a cylindrical cooling chamber 31 in the center thereof. The cooling chamber 31 extends from the upper surface of the inner container 30 and is surrounded by an annular coolant chamber 32 at a distance from the wall surface. The coolant chamber 32 is stopped within a range where the distance from the upper end surface and the lower end surface of the inner container 30 is set to the wall surface. Again, coolant chamber 32 is filled with coolant 32 '. In order to inject the coolant, a filling opening 33 slightly tapered in a conical shape toward the coolant chamber 32 is formed in the upper end surface of the inner container 30. This detail is shown in FIG. After injecting the coolant 32 ′, the filling opening 33 is closed by a stopper 34 made of high-grade steel or titanium. The filling opening 33 is welded closed by a weld bead 35 above the stopper 34.

円錐状のストッパ34は、固定する前に強く過冷却して収縮させることによって、プレス嵌めとして適切に固定することができる。場合によっては、例えば銅等のアマルガム形成金属の円環状のシール材36を同時に装着することもできる。この方式はアマルガム(Hg−Cu合金)の形成を伴い、溶接ビード37による溶接閉止を省略することも可能になる。   The conical stopper 34 can be appropriately fixed as a press fit by being strongly subcooled and contracted before being fixed. In some cases, for example, an annular sealing material 36 made of an amalgam-forming metal such as copper can be attached at the same time. This method is accompanied by the formation of amalgam (Hg—Cu alloy), and it is possible to omit the welding closure by the weld bead 37.

図9は、同様に高級鋼又はチタン製とすることができる付加的容器37を示す。   FIG. 9 shows an additional container 37 which can also be made of high grade steel or titanium.

この付加的容器37も、冷却剤38'が充填される冷却剤チャンバ38を有しており、充填及び閉止操作用として図4又は図8に相当する形態が設けられる(図9には示されていない)。   This additional container 37 also has a coolant chamber 38 filled with a coolant 38 'and is provided with a configuration corresponding to FIG. 4 or FIG. 8 for filling and closing operations (shown in FIG. 9). Not)

付加的容器37は、その上面の中心に短いねじ付き突起39を備えており、このねじ付き突起39を、内部容器30の下面の中心の内ねじ付き窪み孔40にねじ込む。このため、付加的容器37を内部容器30と固く連結することができ、それによって容器30及び37間が密着して、良好な熱伝達を確保することができる。   The additional container 37 is provided with a short threaded protrusion 39 in the center of its upper surface, and this threaded protrusion 39 is screwed into the inner threaded recess hole 40 in the center of the lower surface of the inner container 30. For this reason, the additional container 37 can be firmly connected to the inner container 30, whereby the containers 30 and 37 are in close contact with each other, and good heat transfer can be ensured.

さらに別の付加的容器37を、同様の方法で内部容器30の上部に連結することができる。冷却チャンバ31の上端面の内ねじ41がこの目的に用いられる。この内ねじ41は、冷却チャンバ31を閉止するねじストッパ42を六角のソケットレンチによってねじ込んだ後、さらに付加的容器37のねじ付き突起39をも内ねじ40の上端部の中にねじ込むことができるような軸方向の長さを有するものとする。   Yet another additional container 37 can be connected to the top of the inner container 30 in a similar manner. The internal thread 41 on the upper end surface of the cooling chamber 31 is used for this purpose. The internal thread 41 can be further threaded into the upper end of the internal thread 40 by screwing a screw stopper 42 that closes the cooling chamber 31 with a hexagon socket wrench, and further threaded protrusions 39 of the additional container 37. It is assumed to have such an axial length.

図10は、高級鋼又はチタンの円筒状ブロック45を含む別の内部容器44を示す。この円筒状ブロック45には、上端面から延びる複数の穿孔が機械加工されている。図11に従って詳しく見ると、円筒に軸に沿って中心の穿孔が設けられ、その中心穿孔は同軸の穿孔の内側のリングに取り囲まれており、その内側のリングはさらに同軸の穿孔の外側のリングに囲繞されている。中心穿孔及び内側のリングの穿孔は冷却チャンバ46を形成し、従って、図3の標本容器18を全部で7個収納することができる。外側のリングの12個の穿孔は、それぞれ充填冷却剤47'を含む冷却剤チャンバ47を形成する。その上端においては、ねじ込みするか、あるいは、熱収縮によって挿入しプレス嵌めで保持することができるストッパ48によって、冷却剤チャンバ47を閉止する。   FIG. 10 shows another inner container 44 containing a cylindrical block 45 of high grade steel or titanium. The cylindrical block 45 is machined with a plurality of perforations extending from the upper end surface. Looking in detail according to FIG. 11, the cylinder is provided with a central bore along the axis, the central bore being surrounded by an inner ring of the coaxial bore, the inner ring being further the outer ring of the coaxial bore. It is surrounded by. The central perforation and the inner ring perforations form a cooling chamber 46 and thus can accommodate a total of seven specimen containers 18 of FIG. The twelve perforations in the outer ring form a coolant chamber 47 that each contains a filled coolant 47 '. At its upper end, the coolant chamber 47 is closed by a stopper 48 that can be screwed or inserted by heat shrinkage and held in a press fit.

冷却剤47'の漏出に対する追加的な安全対策が、リング状のカバー49を設けることによって実現される。このリング状のカバー49は、冷却剤チャンバ46の外側のリングを覆うものであり、図10に示すように、円筒状ブロック45に固く溶接される。   An additional safety measure against leakage of the coolant 47 ′ is realized by providing a ring-shaped cover 49. This ring-shaped cover 49 covers the ring outside the coolant chamber 46 and is firmly welded to the cylindrical block 45 as shown in FIG.

リング状のカバー49は内ねじ50を備えており、その中に、ディスク形状のねじ付きストッパ51がその外ねじ52によってねじ込まれ、最終的に上面においてリング状カバー49と同一面を形成する。冷却チャンバ46の終端部を形成するねじ付きストッパ51は、その上面側に、直径上に対置される2対の窪み孔53を有している。この窪み孔53は、ねじ込み又は取り外し時に、ピンレンチを差し込むためのものであり、互いに90°ずれている。リング状カバー49は、直径上に対置される2つの溝54を備えており、この2つの溝54が、ねじ付きストッパ51に高いねじ込み力を掛け得るようにするためのレンチ装着用の2つの平行な面を形成する。   The ring-shaped cover 49 is provided with an inner screw 50, in which a disk-shaped threaded stopper 51 is screwed by the outer screw 52, and finally forms the same surface as the ring-shaped cover 49 on the upper surface. The threaded stopper 51 that forms the end portion of the cooling chamber 46 has two pairs of recessed holes 53 that are opposed to each other on the diameter. The recessed holes 53 are for inserting a pin wrench when screwed or removed, and are offset from each other by 90 °. The ring-shaped cover 49 is provided with two grooves 54 opposed to each other on the diameter, and the two grooves 54 are used for attaching a wrench so that a high screwing force can be applied to the threaded stopper 51. Form parallel surfaces.

図12によれば、円筒状ブロック56の形の付加的容器55も設けられる。これは、円筒状ブロック45と同様に、穿孔の外側のリングと内側のリングとを有しているが、中心穿孔を備えていない。この場合、2つの穿孔リング共、充填冷却剤57'を受け入れる冷却剤チャンバ57を形成する。冷却剤チャンバ57は、それぞれその上端においてストッパ58によって閉止される。このストッパ58は、図10のストッパ48と同様に、ねじ込みするか、あるいは、低温収縮によってプレス嵌めで固定することができる。   According to FIG. 12, an additional container 55 in the form of a cylindrical block 56 is also provided. Like the cylindrical block 45, it has an outer ring and an inner ring of perforations, but no central perforations. In this case, the two perforated rings together form a coolant chamber 57 that receives the filled coolant 57 '. The coolant chamber 57 is closed by a stopper 58 at its upper end. This stopper 58 can be screwed or fixed by press fitting by low temperature shrinkage, like the stopper 48 of FIG.

円筒状ブロック56の上面の中心には、図10の内部容器44に連結するためのねじ付き突起59が設けられる。このため、円筒状ブロック45は、その底面の中心にねじ付き窪み孔60を備えている。ねじ付きストッパ51の上面の中心には、同等のねじ付き窪み孔61が設けられるので、図12の付加的容器55を、内部容器44の両端に連結することができる。   At the center of the upper surface of the cylindrical block 56, a threaded protrusion 59 for connecting to the inner container 44 of FIG. For this reason, the cylindrical block 45 is provided with a threaded recess hole 60 at the center of its bottom surface. An equivalent threaded recess 61 is provided in the center of the upper surface of the threaded stopper 51, so that the additional container 55 of FIG. 12 can be connected to both ends of the inner container 44.

図13は、円錐状充填開口33閉止用の別の異なる円錐状ストッパ62を、まだ挿入前の状態において、図8に相当する拡大図で示している。ストッパ62は、円錐状ストッパ62を回転して充填開口33の中に摺り合わせするのに用いられる軸形状の付加部品63を有している。ストッパ62のこの嵌め合わせ完了後、ストッパ62に対して、図14に示すように、アマルガム形成金属の電解被膜64を被覆する。   FIG. 13 shows another different conical stopper 62 for closing the conical filling opening 33 in an enlarged view corresponding to FIG. The stopper 62 has a shaft-shaped additional part 63 that is used to rotate and slide the conical stopper 62 into the filling opening 33. After completion of the fitting of the stopper 62, the stopper 62 is coated with an amalgam-forming metal electrolytic film 64 as shown in FIG.

被膜64を被覆したストッパ62を、続いて、好適には熱収縮を用いて充填開口33の中に固定すると、それが充填開口33の中にプレス嵌めによって保持される。この固定方式として、2つの変形形態を、好みによって考慮の対象にすることができる。すなわち、図15によれば、ストッパ62は、選定された寸法に対応して、皿穴への埋め込みの形で充填開口33の中に配置され、その上に溶接ビード65によって補足的な溶接閉止が行われる。仕上げ段階において、ストッパ62及び盛り上がった溶接ビード65は、平滑な機械仕上げ面66に仕上げられ、最終的には、図16に示すように、冷却剤チャンバ32を有するハウジング又は内部容器30の表面68と同一面になる。   When the stopper 62 coated with the coating 64 is subsequently fixed in the filling opening 33, preferably using heat shrinkage, it is held in the filling opening 33 by a press fit. As this fixing method, two variants can be taken into account according to preference. That is, according to FIG. 15, the stopper 62 is arranged in the filling opening 33 in the form of a countersink corresponding to the selected dimension, on which a supplementary weld closure is provided by a weld bead 65. Is done. In the finishing stage, the stopper 62 and the raised weld bead 65 are finished to a smooth machine finish surface 66 and ultimately a surface 68 of the housing or inner container 30 having the coolant chamber 32 as shown in FIG. It becomes the same plane.

図17の代替方式によれば、ストッパ62が充填開口33を完全に一杯に塞いでいる。この場合、ストッパ62の突き出た部分、及び特に軸形状の全付加部品63は、図18のように、冷却剤チャンバ32を収納するハウジング又は内部容器30の表面68と最終的に同一面となる機械仕上げ面67に達するまで取り除かれる。   According to the alternative system of FIG. 17, the stopper 62 completely fills the filling opening 33. In this case, the protruding portion of the stopper 62 and particularly all the additional parts 63 having an axial shape are finally flush with the surface 68 of the housing or the inner container 30 that houses the coolant chamber 32 as shown in FIG. It is removed until the machine finish surface 67 is reached.

図19による内部容器70は、図3に示す内部容器2と大部分一致している。円筒状のU字形内部容器70は、冷却剤71'が充填される冷却剤チャンバ71を有している。内壁72及び外壁73が、冷却剤71'を充填されかつ上記の方法で密封シールされた冷却剤チャンバ71の境界を定めるが、これは図19には示されていない。内壁72は、標本受け入れ用の冷却チャンバ74を取り囲んでいる。同様に超断熱材として構成される内部断熱材75が、冷却剤チャンバ71を囲繞している。この内部断熱材75を、ほぼ円筒状の壁面76が取り囲んでいる。冷却チャンバ74の上端部は、同様にカバー77によって閉止される。このカバー77は、断面表示されていないが、内壁72の上端にねじ込みされるストッパと、断熱効果を有するカバープレートとを備えている。内部容器70は、輸送時間及び保存時間が短いために冷却能力の増大が必要とされない場合には、上記に述べた形態において既に使用することが可能である。   The inner container 70 according to FIG. 19 largely coincides with the inner container 2 shown in FIG. The cylindrical U-shaped inner container 70 has a coolant chamber 71 filled with a coolant 71 ′. Inner wall 72 and outer wall 73 delimit coolant chamber 71 filled with coolant 71 'and hermetically sealed in the manner described above, which is not shown in FIG. The inner wall 72 surrounds a cooling chamber 74 for receiving specimens. Similarly, an internal heat insulating material 75 configured as a super heat insulating material surrounds the coolant chamber 71. The internal heat insulating material 75 is surrounded by a substantially cylindrical wall surface 76. Similarly, the upper end of the cooling chamber 74 is closed by a cover 77. The cover 77 is not shown in cross section, but includes a stopper screwed into the upper end of the inner wall 72 and a cover plate having a heat insulating effect. The inner container 70 can be used in the above-described form when the increase in cooling capacity is not required due to the short transportation time and storage time.

内部容器70の特別な特徴は、それが、壁面76を取り囲みかつ冷却剤78'を含むジャケットチャンバ78を備えている点にある。この冷却剤78'は、冷却剤71'に比べてより高い温度で融解し、0℃〜−15℃の融点を有するものであり、ジャケット壁面79がそれを囲繞している。容器の外壁81を含む断熱ジャケット80がジャケットチャンバ78を取り囲む。同じく超断熱材として構成される断熱ジャケット80は、2つの部分から形成され、カップ形状の底部ジャケット部分82と、逆カップ形状のカバージャケット部分83とを含んでおり、カバー77、従って冷却チャンバ74を取り扱うために、カバージャケット部分83を取り外すことができる。図19に示す使用位置(輸送位置)においては、底部ジャケット部分82とカバージャケット部分83とが、その端面において互いに当接している。この場合、分割面の領域において、底部ジャケット部分82には狭い内側の段付きリング84が設けられ、上部のジャケット部分2には狭い外側の段付きリング85が設けられ、それが、内側の段付きリング84の上に係合している。これによって、分割面の領域において、熱の侵入が増大することが避けられる。   A special feature of the inner vessel 70 is that it comprises a jacket chamber 78 that surrounds the wall 76 and includes a coolant 78 ′. This coolant 78 ′ melts at a higher temperature than the coolant 71 ′ and has a melting point of 0 ° C. to −15 ° C., and a jacket wall surface 79 surrounds it. An insulating jacket 80 including the outer wall 81 of the container surrounds the jacket chamber 78. A thermal insulation jacket 80, also configured as a super-insulation, is formed from two parts and includes a cup-shaped bottom jacket part 82 and an inverted cup-shaped cover jacket part 83, a cover 77 and thus a cooling chamber 74. Cover jacket portion 83 can be removed. In the use position (transport position) shown in FIG. 19, the bottom jacket portion 82 and the cover jacket portion 83 are in contact with each other at their end surfaces. In this case, in the area of the dividing surface, the bottom jacket part 82 is provided with a narrow inner stepped ring 84 and the upper jacket part 2 is provided with a narrow outer stepped ring 85, which is the inner step. It engages on a ring 84. This avoids an increase in heat penetration in the area of the dividing plane.

図19により想定される、2つの異なる冷却剤71'及び78'を用いると、一般的に多少とも毒性があり従って危険である冷却剤71'の所要量を低減することができ、その代わりに、0℃〜15℃という若干高い温度範囲で融解/凝固する毒性の低い、あるいは毒性のない冷却剤(例えば水又はブライン)を使用し得るという利点が得られる。   The use of two different coolants 71 'and 78' envisioned by FIG. 19 can reduce the amount of coolant 71 'that is generally more or less toxic and therefore dangerous, instead The advantage is that a less toxic or non-toxic coolant (eg water or brine) that melts / solidifies in a slightly higher temperature range of 0 ° C. to 15 ° C. can be used.

輸送容器1は、例えば、1つ以上の冷凍された組織の標本を、それぞれ冷凍用の定置式冷却装置が設置されている1つの地点から別の地点に輸送するのに用いられる。従って、輸送操作は、冷却チェーンにおける中間リンクである。輸送は、例えばクーリエサービスによって行うことができるが、このサービスは、世界の遠隔地に対しても1日、2日又は3日という比較的短時間での輸送を保証している。さらに詳しく説明すると、ここで、以下のような手順に従う。   The transport container 1 is used, for example, to transport one or more frozen tissue specimens from one point to another point where a frozen stationary cooling device is installed. Thus, the transport operation is an intermediate link in the cooling chain. The transportation can be performed by, for example, a courier service, which guarantees transportation in a relatively short time of 1, 2, or 3 days even to remote locations around the world. More specifically, the following procedure is followed.

発送者は、最初に、内部容器2、30、44、70及び付加的容器3、4、37、55を、充填冷却剤15'、24'、32'、38'、47'、57'、71'、78'が完全に凝固するまで液体窒素で冷凍する。続いて、標本容器18内に入れられた標本17を冷却チャンバ16、31、46、74の中に挿入し、これをねじ付きカバー14、77あるいはねじ付きストッパ42、51で閉止する。次に、内部容器2、30、44、70、及び状況によって付加的容器3、4;37、55を断熱材6の中に収納する。内部容器30、44の場合には、例えば長い輸送距離で冷却能力を増大する必要がある場合、最初に、付加的容器37、55を内部容器30、44に固くねじ止めする。この後、断熱カバー8を載せ、ねじ付きカバー11を固くねじ止めして、極力遅滞なく輸送容器1を発送する。   The shipper first adds the inner container 2, 30, 44, 70 and the additional container 3, 4, 37, 55 to the filled coolant 15 ', 24', 32 ', 38', 47 ', 57', Freeze with liquid nitrogen until 71 ', 78' is completely solidified. Subsequently, the specimen 17 placed in the specimen container 18 is inserted into the cooling chambers 16, 31, 46 and 74, and is closed by the threaded covers 14 and 77 or the threaded stoppers 42 and 51. Next, the inner containers 2, 30, 44, 70 and, depending on the situation, the additional containers 3, 4; 37, 55 are accommodated in the insulation 6. In the case of the inner containers 30, 44, for example, if it is necessary to increase the cooling capacity at long transport distances, first the additional containers 37, 55 are firmly screwed to the inner containers 30, 44. Thereafter, the heat insulating cover 8 is placed, the screwed cover 11 is firmly screwed, and the transport container 1 is shipped without delay as much as possible.

受取人は、逆の手順で、輸送容器1を開放し、標本17を含む標本容器18を取り出す。断熱材6の断熱チャンバ5内の温度、あるいは冷却チャンバ16、31、46、74内の温度は、例えば冷却剤の融点に相当する約−40℃でなければならないが、この温度は、受取人が、輸送容器1を開放する際に適切に測定する。もしこの温度でなければ、輸送時間が大幅に超過したために、充填冷却剤15'、24'、32'、38'、47'、57'、71'、78'の冷却能力が十分でなかったことになり、標本17は多分毀損されている可能性があるので、その場合は排除しなければならないことが結論付けられる。   The recipient opens the transport container 1 and removes the specimen container 18 including the specimen 17 in the reverse procedure. The temperature of the insulation 6 in the insulation chamber 5 or in the cooling chambers 16, 31, 46, 74 must be, for example, about −40 ° C., which corresponds to the melting point of the coolant, However, it is measured appropriately when the transport container 1 is opened. If it was not this temperature, the cooling time of the filling coolants 15 ′, 24 ′, 32 ′, 38 ′, 47 ′, 57 ′, 71 ′, 78 ′ was not sufficient because the transportation time was greatly exceeded. In conclusion, it can be concluded that the specimen 17 is possibly damaged and in that case it must be eliminated.

上記の仕様に従って5cm厚さの超断熱材で装備された輸送容器1は、例えば、外径24cm、長さ24cmであり、従って取り扱い易く、クーリエサービスによる輸送に理想的に適している。   The transport container 1 equipped with a super-insulating material having a thickness of 5 cm in accordance with the above specifications has, for example, an outer diameter of 24 cm and a length of 24 cm, and is therefore easy to handle and ideally suited for transport by a courier service.

重要な部品を含む輸送容器の垂直断面を示す。2 shows a vertical section of a shipping container containing important parts. 輸送容器の線II−IIに沿った水平断面を示す。2 shows a horizontal section along the line II-II of the transport container. 図1の内部容器の垂直断面を拡大して示す。Fig. 2 shows an enlarged vertical section of the inner container of Fig. 1. 図1の2つの付加的な容器の1つの同様の垂直断面を拡大して示す。Figure 2 shows an enlarged similar vertical section of one of the two additional containers of Figure 1; 付加的な容器の交換用として想定される対応寸法の断熱ストッパの側面を示す。The side of the heat insulation stopper of the corresponding dimension assumed for exchange of an additional container is shown. 変形された内部容器を図3と同じ図で示す。The deformed inner container is shown in the same view as FIG. 図6の線VII−VIIに沿った断面を示す。Fig. 7 shows a section along the line VII-VII in Fig. 6; 図6の閉止された充填開口を含む詳細の拡大図を示す。FIG. 7 shows an enlarged detail of the details including the closed filling opening of FIG. 6. 図4に比べて変形された付加的容器を示す。Fig. 5 shows an additional container which is modified compared to Fig. 4; 図3及び6と類似の形態を有する内部容器を示す。7 shows an inner container having a configuration similar to that of FIGS. 図10の線XI−XIに沿った水平断面を示す。11 shows a horizontal section along the line XI-XI in FIG. 図4及び9と類似の形態を有する付加的容器を示す。FIG. 10 shows an additional container having a configuration similar to that of FIGS. 図8に類似の図における研摩座−ストッパを示す。FIG. 9 shows an abrasive seat-stopper in a similar view to FIG. 被膜処理後の図13のストッパを示す。FIG. 14 shows the stopper of FIG. 13 after coating. 充填開口内に固定し外側を溶接したストッパを示す。The stopper fixed inside the filling opening and welded outside is shown. 仕上げ加工完了後の図15の構成を示す。FIG. 16 shows the configuration of FIG. 15 after finishing. 充填開口内に固定して溶接しないストッパを示す。The stopper fixed in a filling opening and not welded is shown. 仕上げ加工完了後の図17の構成を示す。FIG. 18 shows the configuration of FIG. 17 after finishing. より高温度で融解する冷却剤による付加的なジャケット冷却を備えた内部容器の軸方向の断面を示す。Figure 3 shows an axial cross section of an inner vessel with additional jacket cooling with a coolant that melts at a higher temperature.

Claims (33)

冷凍材料(17)、特に冷凍された生物組織の標本又は培養細胞の冷却保持用輸送容器であり、断熱チャンバ(5)を取り囲む断熱材(6)と、前記断熱チャンバ(5)内に取り外し可能に配置されかつチャンバ(15、16;31、32;46、47、74)内に前記冷凍材料(17)を受け入れる内部容器(2、30、44、70)と、相転移によって冷熱を発生する冷却剤(15'、32'、47'、71')とを含む輸送容器において、
前記材料(17)用の少なくとも1つの冷却チャンバ(16、31、46、74)と、前記冷却チャンバ(16、31、46、74)から分離され、前記冷却剤を含み、かつ恒久的に密封シールされた少なくとも1つの冷却剤チャンバ(15、32、47、71)とが設けられること、温度範囲−15℃〜−100℃において固体/液体間相転移する冷却剤(15'、32'、47'、71')が設けられること、及び、前記断熱材(6)は、≦0.01W/mKの熱伝導率λを有する超断熱材であることを特徴とする輸送容器。
Frozen material (17), in particular a cryocontainer transport container for frozen biological tissue specimens or cultured cells, which can be removed into the heat insulation chamber (5) and the heat insulation material (6) surrounding the heat insulation chamber (5) And an internal vessel (2, 30, 44, 70) that receives the frozen material (17) in the chamber (15, 16; 31, 32; 46, 47, 74) and generates cold by phase transition In a transport container comprising a coolant (15 ′, 32 ′, 47 ′, 71 ′),
At least one cooling chamber (16, 31, 46, 74) for the material (17), separated from the cooling chamber (16, 31, 46, 74), containing the coolant and permanently sealed A sealed at least one coolant chamber (15, 32, 47, 71) and a solid / liquid phase transition coolant (15 ', 32', 47 ′, 71 ′) and the heat insulating material (6) is a super heat insulating material having a thermal conductivity λ of ≦ 0.01 W / mK.
前記輸送容器が、温度範囲0〜−15℃において固体/液体間相転移する冷却剤(78')を含むジャケットチャンバ(77)を有する冷却ジャケット(77、80)によって囲繞され、さらに、≦0.01W/mKの熱伝導率λを有する超断熱材を含む断熱ジャケット(80)によって外部から遮蔽されていることを特徴とする請求項1に記載の輸送容器。   The transport container is surrounded by a cooling jacket (77, 80) having a jacket chamber (77) containing a coolant (78 ′) that undergoes a solid / liquid phase transition in a temperature range of 0-15 ° C., and ≦ 0 The transport container according to claim 1, wherein the transport container is shielded from the outside by a heat insulating jacket (80) including a super heat insulating material having a thermal conductivity λ of 0.01 W / mK. 前記冷却剤チャンバ(15、32、47、71)が、前記冷却チャンバ(16、31、46、74)と同様に前記内部容器(2、30、44、70)の中に形成されることを特徴とする請求項1又は2に記載の輸送容器。   The coolant chamber (15, 32, 47, 71) is formed in the inner container (2, 30, 44, 70) in the same manner as the cooling chamber (16, 31, 46, 74). The transport container according to claim 1 or 2, characterized in that 冷却剤チャンバ(24、38、57)を備えた少なくとも1つの付加的な冷却剤容器(3、4;37、55)が前記断熱チャンバ(5)内への配置用として設けられ、この付加的容器は、同様に、冷却剤(24'、38'、57')注入後に恒久的に密封シールされる充填開口(25、33)を有することを特徴とする請求項1〜3のいずれか1項に記載の輸送容器。   At least one additional coolant container (3, 4; 37, 55) with a coolant chamber (24, 38, 57) is provided for placement in the insulated chamber (5). 4. The container according to claim 1, further comprising a filling opening (25, 33) that is permanently hermetically sealed after the coolant (24 ′, 38 ′, 57 ′) is injected. The transport container according to item. 前記内部容器(2、30、44、70)及び/又は前記付加的容器(3、4、37、55)が、高級鋼、チタン又はチタン合金製であるか、あるいは、アルミニウム製であるか、あるいは、耐低温性のプラスチック製であることを特徴とする請求項1〜4のいずれか1項に記載の輸送容器。   Whether the inner container (2, 30, 44, 70) and / or the additional container (3, 4, 37, 55) is made of high-grade steel, titanium or a titanium alloy, or made of aluminum, Alternatively, the transport container according to any one of claims 1 to 4, wherein the transport container is made of low temperature resistant plastic. 前記冷却剤(15'、32'、47')用の充填開口(20、25、33)が溶接によって閉止されることを特徴とする請求項1〜5のいずれか1項に記載の輸送容器。   6. Transport container according to any one of the preceding claims, characterized in that the filling openings (20, 25, 33) for the coolant (15 ', 32', 47 ') are closed by welding. . 前記冷却剤(15'、32'、47')用の充填開口(33)がストッパ(21、34、48、58、62)によって閉止されることを特徴とする請求項1〜6のいずれか1項に記載の輸送容器。   7. The filling opening (33) for the coolant (15 ', 32', 47 ') is closed by a stopper (21, 34, 48, 58, 62). The transport container according to item 1. 前記ストッパ(34、48、58、62)が、熱収縮を用いてプレス嵌めで固定されることを特徴とする請求項7に記載の輸送容器。   8. Transport container according to claim 7, characterized in that the stopper (34, 48, 58, 62) is fixed by press fit using heat shrinkage. 前記充填開口(20、25)が内側においてねじストッパ(21)によって閉止され、外側において溶接によって閉止されることを特徴とする請求項7又は8に記載の輸送容器。   9. Transport container according to claim 7 or 8, characterized in that the filling opening (20, 25) is closed on the inside by a screw stopper (21) and on the outside by welding. 前記充填開口(33)が円錐状のテーパ形状を有しており、円錐状のストッパ(34、62)によって閉止されることを特徴とする請求項7〜9のいずれか1項に記載の輸送容器。   10. Transport according to any one of claims 7 to 9, characterized in that the filling opening (33) has a conical taper shape and is closed by a conical stopper (34, 62). container. 前記ストッパ(34、62)を、銅、銀又は金等のアマルガム形成金属のシール材(36)で被覆することを特徴とする請求項7〜10のいずれか1項に記載の輸送容器。   The transport container according to any one of claims 7 to 10, wherein the stopper (34, 62) is covered with a sealing material (36) of an amalgam-forming metal such as copper, silver or gold. 前記シール材(36)を、前記ストッパ(34、62)及び/又はそのストッパの座面に対する電解被膜として付着させることを特徴とする請求項11に記載の輸送容器。   The transport container according to claim 11, wherein the sealing material (36) is attached as an electrolytic coating on the stopper (34, 62) and / or a seating surface of the stopper. 回転用の付加部品(63)を備えたストッパ(62)が設けられ、このストッパ(62)が回転によって前記円錐状の充填開口(33)の中に摺り合わされることを特徴とする請求項10〜12のいずれか1項に記載の輸送容器。   11. A stopper (62) with an additional part (63) for rotation is provided, the stopper (62) being slid into the conical filling opening (33) by rotation. The transport container according to any one of -12. 前記充填開口(33)の閉止部材(62、63)の外側部分が、最終的に前記冷却剤チャンバ(15、32、47)のハウジング(13、30、45)の表面(68)と同一面になる機械仕上げ面(66、67)まで取り除かれることを特徴とする請求項6〜13のいずれか1項に記載の輸送容器。   The outer part of the closing member (62, 63) of the filling opening (33) is finally flush with the surface (68) of the housing (13, 30, 45) of the coolant chamber (15, 32, 47). 14. A transport container according to any one of claims 6 to 13, characterized in that it is removed up to a machine finish surface (66, 67). 前記内部容器(2、30)が、内壁と、外壁と、一方の端部の底板と、もう一方の端部の環状壁とを含む二重壁の中空円筒を有しており、その場合、前記冷却剤チャンバ(15、32)が、間隔を置いて離れている前記円筒の壁体と前記環状壁と前記底板との間に形成され、前記冷却チャンバ(18、31)は中心に配置されて、前記内壁と前記底板とによって境界が定められることを特徴とする請求項1〜14のいずれか1項に記載の輸送容器。   The inner container (2, 30) has a double-walled hollow cylinder including an inner wall, an outer wall, a bottom plate at one end, and an annular wall at the other end; The coolant chamber (15, 32) is formed between the cylindrical wall, the annular wall and the bottom plate spaced apart, and the cooling chamber (18, 31) is centrally disposed. The transport container according to any one of claims 1 to 14, wherein a boundary is defined by the inner wall and the bottom plate. 前記内部容器(2)の底板も二重壁の形態になっており、前記冷却剤チャンバ(15)がカップの形に形成されることを特徴とする請求項15に記載の輸送容器。   16. Transport container according to claim 15, characterized in that the bottom plate of the inner container (2) is also in the form of a double wall and the coolant chamber (15) is formed in the shape of a cup. 前記冷却剤(15')用の前記恒久的にシールされる充填開口(20)が、前記内部容器(2)の底面の中心に設けられることを特徴とする請求項15又は16に記載の輸送容器。   17. Transport according to claim 15 or 16, characterized in that the permanently sealed filling opening (20) for the coolant (15 ') is provided in the center of the bottom surface of the inner container (2). container. いくつかの冷却剤チャンバ(47)が、円筒状ブロック(45)の中に、個別の軸方向の穿孔の形で設けられることを特徴とする請求項1〜14のいずれか1項に記載の輸送容器。   15. The coolant chamber (47) according to any one of the preceding claims, characterized in that several coolant chambers (47) are provided in the cylindrical block (45) in the form of individual axial perforations. Shipping container. 前記冷却剤チャンバ(47)が、少なくとも1つの冷却チャンバ(46)の周りのリングの形に配置され、この少なくとも1つの冷却チャンバ(46)は、同様に、前記内部容器(64)を形成する円筒状ブロック(45)内の軸方向の穿孔として構成されることを特徴とする請求項18に記載の輸送容器。   The coolant chamber (47) is arranged in the form of a ring around at least one cooling chamber (46), which also forms the inner container (64). 19. Transport container according to claim 18, characterized in that it is configured as an axial perforation in a cylindrical block (45). 前記内部容器(2、30、44)の内壁が、前記冷却チャンバ(16、31、46)を閉止するねじ付きカバー(14)又はねじ付きストッパ(42、51)用のねじを有していることを特徴とする請求項1〜19のいずれか1項に記載の輸送容器。   The inner wall of the inner container (2, 30, 44) has a screw for a threaded cover (14) or a threaded stopper (42, 51) for closing the cooling chamber (16, 31, 46). The transport container according to any one of claims 1 to 19, wherein 前記冷却チャンバ(16、31、46)が、標本容器(18)を受け入れ、かつ、前記標本容器(18)の上部側及び/又は下部側にそれぞれ付加的容器(3、4、37、55)を受け入れるのに適応した長さを有することを特徴とする請求項1〜20のいずれか1項に記載の輸送容器。   The cooling chamber (16, 31, 46) receives a specimen container (18) and additional containers (3, 4, 37, 55) on the upper side and / or the lower side of the specimen container (18), respectively. 21. A transport container according to any one of claims 1 to 20, characterized in that it has a length adapted to receive. 前記付加的容器(37、55)を、その端面において前記内部容器(30、44)と固く密着させるためにねじ止めすることが可能であり、そのために、前記付加的容器(37、55)は、その中心にねじ付き突起(39、59)を備えており、前記内部容器(30、44)は、対応するねじ付き窪み孔(40、41、60、61)をその端面に備えていることを特徴とする請求項21に記載の輸送容器。   The additional container (37, 55) can be screwed to tightly adhere to the inner container (30, 44) at its end face, so that the additional container (37, 55) The inner container (30, 44) is provided with a corresponding threaded recess (40, 41, 60, 61) on its end face. The transport container according to claim 21. 前記付加的容器(3、4、37、55)と交換することができる断熱ストッパ(28)が設けられることを特徴とする請求項21又は22に記載の輸送容器。   23. Transport container according to claim 21 or 22, characterized in that a heat insulating stopper (28) is provided which can be exchanged for the additional container (3, 4, 37, 55). 前記断熱材(6)が、その中心に断熱チャンバ(5)を有するカップの形に形成され、その断熱チャンバ(5)は、前記内部容器(2、30、44)に適合し、断熱閉止部材(8)によって閉止することができることを特徴とする請求項1〜23のいずれか1項に記載の輸送容器。   The heat insulating material (6) is formed in the shape of a cup having a heat insulating chamber (5) at its center, and the heat insulating chamber (5) is adapted to the inner container (2, 30, 44), and is a heat insulating closing member. The transport container according to claim 1, wherein the transport container can be closed by (8). 前記断熱材(6)が硬質の防護筒(9)によって被包され、この防護筒(9)の端部はそれぞれねじ付きカバー(11、12)によって閉止されることを特徴とする請求項1〜24のいずれか1項に記載の輸送容器。   The said heat insulating material (6) is encapsulated by a hard protective cylinder (9), and ends of the protective cylinder (9) are closed by screwed covers (11, 12), respectively. The transport container according to any one of -24. ≦−30℃の温度において融解/凝固する冷却剤(15'、32'、47'、71')が設けられることを特徴とする請求項1〜25のいずれか1項に記載の輸送容器。   26. A transport container according to any one of the preceding claims, characterized in that a coolant (15 ', 32', 47 ', 71') is provided which melts / solidifies at a temperature of ≤-30 ° C. ≧−85℃の温度において融解/凝固する冷却剤(15'、32'、47'、71')が設けられることを特徴とする請求項1〜26のいずれか1項に記載の輸送容器。   27. Transport container according to any one of the preceding claims, characterized in that a coolant (15 ', 32', 47 ', 71') is provided which melts / solidifies at a temperature of ≧ -85 ° C. 前記冷却剤(15'、32'、47'、71')が水銀であることを特徴とする請求項1〜27のいずれか1項に記載の輸送容器。   The transport container according to any one of claims 1 to 27, wherein the coolant (15 ', 32', 47 ', 71') is mercury. 前記冷却剤(15'、32'、47'、71')が、例えば、オクタン、1−ヘキサノール、2−ヘキサノン、ヘキサナール、ピリジン、1,2,4−トリメチルベンゼン、1,3,5−トリメチルベンゼン、クロロベンゼン等の有機物質、あるいは有機物質の混合物であることを特徴とする請求項1〜27のいずれか1項に記載の輸送容器。   The coolant (15 ′, 32 ′, 47 ′, 71 ′) is, for example, octane, 1-hexanol, 2-hexanone, hexanal, pyridine, 1,2,4-trimethylbenzene, 1,3,5-trimethyl. The transport container according to any one of claims 1 to 27, which is an organic substance such as benzene or chlorobenzene, or a mixture of organic substances. 前記冷却剤(15'、32'、47'、71')が、混合成分として水をさらに含むことを特徴とする請求項29に記載の輸送容器。   30. A transport container according to claim 29, wherein the coolant (15 ', 32', 47 ', 71') further comprises water as a mixing component. 前記冷却剤(15'、32'、47'、71')が、ジエチレングリコールと水との混合物であることを特徴とする請求項30に記載の輸送容器。   31. A transport container according to claim 30, wherein the coolant (15 ', 32', 47 ', 71') is a mixture of diethylene glycol and water. 前記冷却剤(15'、32'、47')の融解熱が少なくとも50J/mlであることを特徴とする請求項1〜31のいずれか1項に記載の輸送容器。   The transport container according to any one of claims 1 to 31, wherein the heat of fusion of the coolant (15 ', 32', 47 ') is at least 50 J / ml. 前記想定された超断熱材が、≦0.005W/mK、好ましくは0.002W/mKの熱伝導率λを有することを特徴とする請求項1〜32のいずれか1項に記載の輸送容器。   The transport container according to any one of claims 1 to 32, wherein the assumed super-insulating material has a thermal conductivity λ of ≦ 0.005 W / mK, preferably 0.002 W / mK. .
JP2006548225A 2004-01-08 2005-01-07 Transport container for cooling and holding frozen materials Expired - Fee Related JP4680935B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004001351 2004-01-08
DE102004032840 2004-07-06
PCT/EP2005/000086 WO2005066559A2 (en) 2004-01-08 2005-01-07 Transport container for keeping frozen material chilled

Publications (2)

Publication Number Publication Date
JP2007523013A true JP2007523013A (en) 2007-08-16
JP4680935B2 JP4680935B2 (en) 2011-05-11

Family

ID=34751375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006548225A Expired - Fee Related JP4680935B2 (en) 2004-01-08 2005-01-07 Transport container for cooling and holding frozen materials

Country Status (6)

Country Link
US (1) US20070210090A1 (en)
EP (1) EP1704374A2 (en)
JP (1) JP4680935B2 (en)
CN (1) CN100594347C (en)
DE (1) DE112005000154A5 (en)
WO (1) WO2005066559A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009545157A (en) * 2006-07-28 2009-12-17 マッパー・リソグラフィー・アイピー・ビー.ブイ. Lithography system, method of heat dissipation, and frame
JP2010525996A (en) * 2007-05-04 2010-07-29 エントロピー ソリューションズ、インコーポレイテッド Packaging with phase change material and use during transportation of temperature sensitive packages
JP2017035080A (en) * 2015-08-11 2017-02-16 株式会社ジェイ・エム・エス Container for cell conveyance
WO2022139119A1 (en) * 2020-12-23 2022-06-30 천성태 Specimen ampoule storing apparatus

Families Citing this family (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006032435A1 (en) 2006-07-13 2008-01-17 Sixt, Bernhard, Dr. Transport container for keeping refrigerated frozen goods
US8211516B2 (en) 2008-05-13 2012-07-03 Tokitae Llc Multi-layer insulation composite material including bandgap material, storage container using same, and related methods
US8887944B2 (en) 2007-12-11 2014-11-18 Tokitae Llc Temperature-stabilized storage systems configured for storage and stabilization of modular units
US9205969B2 (en) * 2007-12-11 2015-12-08 Tokitae Llc Temperature-stabilized storage systems
US8215835B2 (en) 2007-12-11 2012-07-10 Tokitae Llc Temperature-stabilized medicinal storage systems
US8485387B2 (en) 2008-05-13 2013-07-16 Tokitae Llc Storage container including multi-layer insulation composite material having bandgap material
US9139351B2 (en) 2007-12-11 2015-09-22 Tokitae Llc Temperature-stabilized storage systems with flexible connectors
US20090145912A1 (en) * 2007-12-11 2009-06-11 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Temperature-stabilized storage containers
US9140476B2 (en) 2007-12-11 2015-09-22 Tokitae Llc Temperature-controlled storage systems
US9174791B2 (en) 2007-12-11 2015-11-03 Tokitae Llc Temperature-stabilized storage systems
WO2009143364A1 (en) * 2008-05-21 2009-11-26 Winterlab Limited Apparatus and method for using a brine solution to freeze biopsy material
US9372016B2 (en) 2013-05-31 2016-06-21 Tokitae Llc Temperature-stabilized storage systems with regulated cooling
US9447995B2 (en) 2010-02-08 2016-09-20 Tokitac LLC Temperature-stabilized storage systems with integral regulated cooling
DE102010028769A1 (en) 2010-05-07 2011-11-10 Pvt Probenverteiltechnik Gmbh System for transporting containers between different stations and container carriers
CN101849535B (en) * 2010-05-24 2013-04-17 中国水产科学研究院黄海水产研究所 Portable fish sperm frozen cooling device
EP2583078A4 (en) * 2010-06-18 2015-12-23 Biocision Llc Specimen freezing rate regulator device
US8439221B2 (en) 2010-11-15 2013-05-14 Troy M. Davis Beverage container with chill sleeve
CN102246743B (en) * 2011-04-20 2013-07-10 中国人民解放军第三军医大学 Biological tissue cryopreservation device
EP2589968A1 (en) 2011-11-04 2013-05-08 Roche Diagnostics GmbH Laboratory sample distribution system, laboratory system and method of operating
EP2589967A1 (en) 2011-11-04 2013-05-08 Roche Diagnostics GmbH Laboratory sample distribution system and corresponding method of operation
EP2589966A1 (en) 2011-11-04 2013-05-08 Roche Diagnostics GmbH Laboratory sample distribution system and corresponding method of operation
CN103112661A (en) * 2012-12-11 2013-05-22 樊荣 Portable refrigerating barrel
CN103190393B (en) * 2013-04-09 2015-05-13 上海安久生物科技有限公司 Biological sample vitrification carrier and application thereof
US9877894B2 (en) 2013-05-16 2018-01-30 Sandy Wengreen Storage systems and methods for medicines
US9151531B2 (en) * 2013-05-16 2015-10-06 Sandy Wengreen Storage systems and methods for medicines
US20160262979A1 (en) * 2013-05-16 2016-09-15 Sandy Wengreen Storage systems and methods for medicines
US10588820B2 (en) 2013-05-16 2020-03-17 Sandy Wengreen Storage systems and methods for medicines
US9913777B2 (en) 2013-05-16 2018-03-13 Sandy Wengreen Storage systems and methods for medicines
US9707156B2 (en) 2013-05-16 2017-07-18 Sandy Wengreen Storage systems and methods for medicines
US9844782B2 (en) * 2013-06-21 2017-12-19 Coldblock Technologies Inc. Systems and methods for preparing samples for chemical analysis using a cooled digestion zone
CN103548815B (en) * 2013-11-18 2015-06-10 王意 Programmed cell freezing box with direct-in liquid nitrogen
DE102014202843B3 (en) 2014-02-17 2014-11-06 Roche Pvt Gmbh Transport device, sample distribution system and laboratory automation system
DE102014202838B3 (en) 2014-02-17 2014-11-06 Roche Pvt Gmbh Transport device, sample distribution system and laboratory automation system
CN103848101A (en) * 2014-03-14 2014-06-11 杜海兵 Medicine cold chain box
EP2927167B1 (en) 2014-03-31 2018-04-18 F. Hoffmann-La Roche AG Dispatch device, sample distribution system and laboratory automation system
EP2927625A1 (en) 2014-03-31 2015-10-07 Roche Diagniostics GmbH Sample distribution system and laboratory automation system
EP2927168A1 (en) * 2014-03-31 2015-10-07 Roche Diagniostics GmbH Transport device, sample distribution system and laboratory automation system
EP2927695B1 (en) 2014-03-31 2018-08-22 Roche Diagniostics GmbH Sample distribution system and laboratory automation system
EP2927163B1 (en) 2014-03-31 2018-02-28 Roche Diagnostics GmbH Vertical conveyor, sample distribution system and laboratory automation system
CA3110586C (en) * 2014-06-11 2022-11-08 Rmb Products, Inc. Phase-change accommodating rigid fluid container with manipulating assisting recesses
EP2957914B1 (en) 2014-06-17 2018-01-03 Roche Diagnostics GmbH Laboratory sample distribution system and laboratory automation system
FR3023714A1 (en) * 2014-07-18 2016-01-22 Lab Francais Du Fractionnement INNOVATIVE THERAPY DRUG PACKAGING
EP2977766A1 (en) 2014-07-24 2016-01-27 Roche Diagniostics GmbH Laboratory sample distribution system and laboratory automation system
EP2995960B1 (en) 2014-09-09 2020-07-15 Roche Diagniostics GmbH Laboratory sample distribution system and method for calibrating magnetic sensors
EP2995580A1 (en) 2014-09-09 2016-03-16 Roche Diagniostics GmbH Laboratory sample distribution system and laboratory automation system
US9952242B2 (en) 2014-09-12 2018-04-24 Roche Diagnostics Operations, Inc. Laboratory sample distribution system and laboratory automation system
EP2995958A1 (en) 2014-09-15 2016-03-16 Roche Diagniostics GmbH Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
EP3006943B1 (en) 2014-10-07 2020-04-22 Roche Diagniostics GmbH Module for a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
EP3016116A1 (en) 2014-11-03 2016-05-04 Roche Diagniostics GmbH Printed circuit board arrangement, coil for a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
EP3070479B1 (en) 2015-03-16 2019-07-03 Roche Diagniostics GmbH Transport carrier, laboratory cargo distribution system and laboratory automation system
EP3073270B1 (en) 2015-03-23 2019-05-29 Roche Diagniostics GmbH Laboratory sample distribution system and laboratory automation system
EP3096146A1 (en) 2015-05-22 2016-11-23 Roche Diagniostics GmbH Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
EP3095739A1 (en) 2015-05-22 2016-11-23 Roche Diagniostics GmbH Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
EP3096145B1 (en) 2015-05-22 2019-09-04 Roche Diagniostics GmbH Method of operating a laboratory automation system and laboratory automation system
EP3112874A1 (en) 2015-07-02 2017-01-04 Roche Diagnostics GmbH Storage module, method of operating a laboratory automation system and laboratory automation system
EP3121603A1 (en) 2015-07-22 2017-01-25 Roche Diagnostics GmbH Sample container carrier, laboratory sample distribution system and laboratory automation system
EP3139175B1 (en) 2015-09-01 2021-12-15 Roche Diagnostics GmbH Laboratory cargo distribution system, laboratory automation system and method of operating a laboratory cargo distribution system
EP3153867B1 (en) 2015-10-06 2018-11-14 Roche Diagniostics GmbH Method of configuring a laboratory automation system, laboratory sample distribution system and laboratory automation system
EP3153866A1 (en) 2015-10-06 2017-04-12 Roche Diagnostics GmbH Method of determining a handover position and laboratory automation system
WO2017062692A1 (en) 2015-10-06 2017-04-13 Cold Chain Technologies,Inc. Thermally insulated shipping system for pallet-sized payload, methods of making and using the same, and kit for use therein
EP3156352B1 (en) 2015-10-13 2019-02-27 Roche Diagniostics GmbH Laboratory sample distribution system and laboratory automation system
EP3156353B1 (en) 2015-10-14 2019-04-03 Roche Diagniostics GmbH Method of rotating a sample container carrier, laboratory sample distribution system and laboratory automation system
DE202016001097U1 (en) * 2016-01-28 2017-05-02 Va-Q-Tec Ag Transport container system
EP3211430A1 (en) 2016-02-26 2017-08-30 Roche Diagnostics GmbH Transport device with base plate modules
EP3211429A1 (en) 2016-02-26 2017-08-30 Roche Diagnostics GmbH Transport device having a tiled driving surface
EP3211428A1 (en) 2016-02-26 2017-08-30 Roche Diagnostics GmbH Transport device unit for a laboratory sample distribution system
CN109196363A (en) 2016-06-03 2019-01-11 豪夫迈·罗氏有限公司 Laboratory sample distribution system and laboratory automation system
EP3255519B1 (en) 2016-06-09 2019-02-20 Roche Diagniostics GmbH Laboratory sample distribution system and method of operating a laboratory sample distribution system
EP3260867A1 (en) 2016-06-21 2017-12-27 Roche Diagnostics GmbH Method of setting a handover position and laboratory automation system
MX2016008614A (en) * 2016-06-29 2017-12-28 Univ Nacional Autónoma De Mexico Device for the thermal protection and transport of biomacromolecules.
JP6752350B2 (en) 2016-08-04 2020-09-09 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Laboratory sample distribution system and laboratory automation system
USD804807S1 (en) 2016-09-22 2017-12-12 Sandy Wengreen Insulated container
EP3330717B1 (en) 2016-12-01 2022-04-06 Roche Diagnostics GmbH Laboratory sample distribution system and laboratory automation system
EP3343232B1 (en) 2016-12-29 2021-09-15 Roche Diagnostics GmbH Laboratory sample distribution system and laboratory automation system
CN106966060A (en) * 2016-12-29 2017-07-21 浙江工商大学 A kind of cold-storage express delivery box structure
EP3355065B1 (en) 2017-01-31 2021-08-18 Roche Diagnostics GmbH Laboratory sample distribution system and laboratory automation system
EP3357842B1 (en) 2017-02-03 2022-03-23 Roche Diagnostics GmbH Laboratory automation system
JP6881710B2 (en) * 2017-03-28 2021-06-02 国立研究開発法人宇宙航空研究開発機構 Insulation container and heat and cold insulation device using it
EP3410123B1 (en) 2017-06-02 2023-09-20 Roche Diagnostics GmbH Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
EP3428653B1 (en) 2017-07-13 2021-09-15 Roche Diagnostics GmbH Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
EP3457144B1 (en) 2017-09-13 2021-10-20 Roche Diagnostics GmbH Sample container carrier, laboratory sample distribution system and laboratory automation system
EP3456415B1 (en) 2017-09-13 2021-10-20 Roche Diagnostics GmbH Sample container carrier, laboratory sample distribution system and laboratory automation system
EP3537159B1 (en) 2018-03-07 2022-08-31 Roche Diagnostics GmbH Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
EP3540443B1 (en) 2018-03-16 2023-08-30 Roche Diagnostics GmbH Laboratory system, laboratory sample distribution system and laboratory automation system
US10722427B2 (en) 2018-03-29 2020-07-28 Simon Charles Cantor Hermetically sealable case for medical device and medicine
CN109160083A (en) * 2018-09-27 2019-01-08 佛山科学技术学院 A kind of laboratory sample transport save set
KR200491161Y1 (en) 2018-12-14 2020-04-24 대한민국 Liquid nitrogen housing for straws freezing of sperm
GB201917625D0 (en) * 2019-12-03 2020-01-15 Asymptote Ltd Container sterilising apparatus and method
US20210315201A1 (en) * 2020-04-08 2021-10-14 Biolife Solutions, Inc. Shock absorbing device to protect cryopreserved biological material
EP3925911B1 (en) 2020-06-19 2023-05-24 Roche Diagnostics GmbH Laboratory sample distribution system and corresponding method of operation
EP3940388B1 (en) 2020-07-15 2024-04-10 Roche Diagnostics GmbH Laboratory sample distribution system and method for operating the same
CN112167242B (en) * 2020-09-24 2022-03-25 清华大学 No active cooling low temperature storage and transportation device based on multilayer phase change material
WO2022094714A1 (en) * 2020-11-05 2022-05-12 Acorn Biolabs, Inc. Temperature-controlled system for the collection and/or transportation of living and/or temperature-sensitive material
US11747356B2 (en) 2020-12-21 2023-09-05 Roche Diagnostics Operations, Inc. Support element for a modular transport plane, modular transport plane, and laboratory distribution system
US11602486B2 (en) * 2021-06-29 2023-03-14 Daniel Singh Device for chilling insulin in a travel mug
DE102022212394A1 (en) 2022-11-21 2024-05-23 dot.COOL Group Inc. VACUUM CONTAINER, METHOD FOR MANUFACTURING THE SAME AND EVACUATION MODULE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3858410A (en) * 1973-09-24 1975-01-07 Daniel H Drake Dental material mixing holder and cooler
US6068882A (en) * 1995-11-09 2000-05-30 Aspen Systems, Inc. Flexible aerogel superinsulation and its manufacture
US6209343B1 (en) * 1998-09-29 2001-04-03 Life Science Holdings, Inc. Portable apparatus for storing and/or transporting biological samples, tissues and/or organs
US6467299B1 (en) * 1996-08-30 2002-10-22 Triple Ccc Cc Container for a vial or ampoule

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US52269A (en) * 1866-01-30 Improvement in bottle-stoppers
US1771186A (en) * 1928-06-20 1930-07-22 Mock Hugo Serving element for electric refrigerators
GB1004791A (en) * 1963-06-19 1965-09-15 Salterpak Ltd Improvements relating to thermally-insulated cases
US5355684A (en) * 1992-04-30 1994-10-18 Guice Walter L Cryogenic shipment or storage system for biological materials
US5895561A (en) * 1996-01-17 1999-04-20 Kennecott Utah Copper Corporation Method of sealing cooling blocks using electrodeposited metal
JP2710606B2 (en) * 1996-02-29 1998-02-10 耀明 蔡 Cooling retention media for cooling cups
NL1005375C1 (en) * 1997-02-26 1998-08-28 Kombo Publishing B V Chilled dish for presentation of e.g. perishable cocktail snacks
US5934099A (en) * 1997-07-28 1999-08-10 Tcp/Reliable Inc. Temperature controlled container
US6032481A (en) * 1997-08-26 2000-03-07 Mosby; Sharon D. Thermoregulating container
US6119465A (en) * 1999-02-10 2000-09-19 Mullens; Patrick L. Shipping container for storing materials at cryogenic temperatures
US6446461B1 (en) * 2001-02-20 2002-09-10 David L. Williams, Jr. Beverage cooler
FR2840289A1 (en) * 2002-05-29 2003-12-05 Centre Nat Rech Scient PACKAGING BOX FOR BIOLOGICAL PRODUCTS AND THE LIKE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3858410A (en) * 1973-09-24 1975-01-07 Daniel H Drake Dental material mixing holder and cooler
US6068882A (en) * 1995-11-09 2000-05-30 Aspen Systems, Inc. Flexible aerogel superinsulation and its manufacture
US6467299B1 (en) * 1996-08-30 2002-10-22 Triple Ccc Cc Container for a vial or ampoule
US6209343B1 (en) * 1998-09-29 2001-04-03 Life Science Holdings, Inc. Portable apparatus for storing and/or transporting biological samples, tissues and/or organs

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009545157A (en) * 2006-07-28 2009-12-17 マッパー・リソグラフィー・アイピー・ビー.ブイ. Lithography system, method of heat dissipation, and frame
JP2010525996A (en) * 2007-05-04 2010-07-29 エントロピー ソリューションズ、インコーポレイテッド Packaging with phase change material and use during transportation of temperature sensitive packages
JP2017035080A (en) * 2015-08-11 2017-02-16 株式会社ジェイ・エム・エス Container for cell conveyance
WO2022139119A1 (en) * 2020-12-23 2022-06-30 천성태 Specimen ampoule storing apparatus

Also Published As

Publication number Publication date
US20070210090A1 (en) 2007-09-13
CN100594347C (en) 2010-03-17
CN101124444A (en) 2008-02-13
WO2005066559A3 (en) 2005-11-10
JP4680935B2 (en) 2011-05-11
WO2005066559A2 (en) 2005-07-21
EP1704374A2 (en) 2006-09-27
DE112005000154A5 (en) 2007-06-21

Similar Documents

Publication Publication Date Title
JP4680935B2 (en) Transport container for cooling and holding frozen materials
JP7005095B2 (en) Shipping container
US4357809A (en) Cooling arrangement including a gel
EP3604476B1 (en) Cold storage material composition, method for using cold storage material composition, cold storage material and transport container
EP3763800B1 (en) Cold storage material composition and use thereof
WO2007049380A1 (en) Constant-temperature cold-reserving box and method of reserving cold at constant temperature
US10376103B2 (en) Cocktail shaker and chiller apparatus
NO337527B1 (en) Method and apparatus for ensuring maintained temperature inside a transport container or equivalent
JP2016503871A (en) Method for preconditioning a latent heat storage element
JP5406129B2 (en) Specimen holder for high-pressure freezing equipment
FR2981245A1 (en) Double-walled container useful in ice machine for producing frozen preparation, comprises composite tub with outer shell, device for cold storing that is present between tub and outer shell, and temperature display device for cooling device
JP2017128622A (en) Cold insulator, cold insulation member and cold insulation container
DE202006004344U1 (en) Self-cooling transport container for sample transport, e.g. for medical and oncologocial samples having a vacuum enclosed sample storage space that is cooled by making use of latent heat principles
CN100581942C (en) Container of beverage, and method for using the container
KR20070092020A (en) Cup for cooling and maintaining cooling
US20130098069A1 (en) Self-Cooling Beverage Can
WO2021104244A1 (en) Cooling device
US20130052730A1 (en) Methods and system for cryogenic preservation of cells
WO2003101861A2 (en) Packing container for biological products and analogous items
KR200250105Y1 (en) A canteen
KR200419437Y1 (en) Cup for cooling and maintaining cooling
JPS5847137B2 (en) ice cream maker
US20230404068A1 (en) Methods and devices for thermal stabilization on perishable biological specimens
US20110042549A1 (en) Metallic Cylinder Core Ice Mold Beverage Cooler
JP2004315814A (en) Storing and transporting method of gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees