JP2007324087A - Ceria family buffer layer for air electrode of solid oxide fuel cell and its manufacturing method - Google Patents

Ceria family buffer layer for air electrode of solid oxide fuel cell and its manufacturing method Download PDF

Info

Publication number
JP2007324087A
JP2007324087A JP2006156116A JP2006156116A JP2007324087A JP 2007324087 A JP2007324087 A JP 2007324087A JP 2006156116 A JP2006156116 A JP 2006156116A JP 2006156116 A JP2006156116 A JP 2006156116A JP 2007324087 A JP2007324087 A JP 2007324087A
Authority
JP
Japan
Prior art keywords
ceria
air electrode
powder
buffer layer
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006156116A
Other languages
Japanese (ja)
Other versions
JP4796895B2 (en
Inventor
Reiichi Chiba
玲一 千葉
Yoshitaka Tabata
嘉隆 田畑
Takeshi Komatsu
武志 小松
Himeko Orui
姫子 大類
Kazuhiko Nozawa
和彦 野沢
Masayasu Arakawa
正泰 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2006156116A priority Critical patent/JP4796895B2/en
Publication of JP2007324087A publication Critical patent/JP2007324087A/en
Application granted granted Critical
Publication of JP4796895B2 publication Critical patent/JP4796895B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To increase adhesion between an air electrode and an electrolyte membrane and enhance electrode characteristics of the air electrode in a solid oxide fuel cell using a zirconia family electrolyte as the electrolyte membrane. <P>SOLUTION: A ceria family buffer layer 4 containing a ceria family electrolyte is interposed between an electrolyte substrate 1 which is the electrolyte membrane and the air electrode. The ceria family buffer layer is composed of a baked material of a mixture containing an oxide of a transition metal element of at least one selected from the group comprising Co, Fe, Ni, Cu, and Mn and a ceria family electrolyte material, or a baked material of a mixture containing a perovskite oxide represented by ABO<SB>3</SB>(wherein, A is at least one element selected from the group comprising Sc, Y, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu; and B is at least one element selected from the group comprising Co, Fe, Ni, Cu, and Mn) and a ceria family electrolyte material. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、固体酸化物形燃料電池(SOFC;solid oxide fuel cell)(固体電解質型燃料電池ともいう)に関し、特に、固体酸化物形燃料電池の空気極に用いられるバッファー層とその製造方法とに関する。   The present invention relates to a solid oxide fuel cell (SOFC) (also referred to as a solid oxide fuel cell), and in particular, a buffer layer used for an air electrode of a solid oxide fuel cell, and a method for manufacturing the same. About.

近年、燃料電池として、固体酸化物である酸素イオン伝導体を電解質膜として用いる固体酸化物形燃料電池に関心が集まりつつある。固体酸化物形燃料電池は、負極となり燃料が供給される燃料極と、正極となり空気(あるいは酸素)が供給される空気極とによって、酸素イオン伝導体である電解質膜を挟んだ構成を有しており、電解質膜としては、多くの場合、緻密なジルコニア系固体電解質が用いられる。燃料極及び空気極は、いずれも多孔質材料によって構成され、典型的にはセラミック材料の焼成によって形成される。エネルギーの有効利用という観点からすると、固体酸化物型燃料電池は、熱機関における制約条件であるカルノー(Carnot)効率の制約を受けないために、本質的に高いエネルギー変換効率を有し、さらに、良好な環境保全が期待されるなどの優れた特徴を有している。固体酸化物形燃料電池では、単位セルが発生する起電力が小さいため、所望の電圧出力が得られるように、複数のセルを直列に接続してセルスタックを構成するのが一般的である。   In recent years, as a fuel cell, there has been an interest in a solid oxide fuel cell using an oxygen ion conductor, which is a solid oxide, as an electrolyte membrane. A solid oxide fuel cell has a configuration in which an electrolyte membrane that is an oxygen ion conductor is sandwiched between a fuel electrode that serves as a negative electrode and is supplied with fuel, and an air electrode that serves as a positive electrode and is supplied with air (or oxygen). In many cases, a dense zirconia solid electrolyte is used as the electrolyte membrane. Both the fuel electrode and the air electrode are made of a porous material, and are typically formed by firing a ceramic material. From the viewpoint of effective use of energy, the solid oxide fuel cell has essentially high energy conversion efficiency because it is not limited by Carnot efficiency, which is a constraint in heat engines, It has excellent features such as good environmental protection. In a solid oxide fuel cell, since an electromotive force generated by a unit cell is small, it is general to configure a cell stack by connecting a plurality of cells in series so that a desired voltage output can be obtained.

このような固体酸化物形燃料電池は、その開発の初期段階においては動作温度が900℃〜1000℃と高く、すべての部材をセラミックで構成する必要があって、セルスタックの製造コストの低減が難しかった。ここで、動作温度を800℃程度にまで低下させることができれば、セル間の電気的接続やセルからの電力取り出しに用いられるインターコネクトを耐熱合金材料で構成することが可能になり、セルスタックの製造コストの低減が可能になる。しかしながら、動作温度の低下に伴い、空気極における電気化学的な抵抗、すなわち過電圧が急激に増大し、セルスタックからの出力電圧の低下を招いてしまう。   Such a solid oxide fuel cell has an operating temperature as high as 900 ° C. to 1000 ° C. in the initial stage of development, and all the members must be made of ceramic. was difficult. Here, if the operating temperature can be lowered to about 800 ° C., it becomes possible to configure an interconnect used for electrical connection between cells and power extraction from the cell with a heat-resistant alloy material. Cost can be reduced. However, as the operating temperature decreases, the electrochemical resistance at the air electrode, that is, the overvoltage, increases rapidly, resulting in a decrease in the output voltage from the cell stack.

このような出力電圧の低下に関し、焼成によって空気極を形成する際にその空気極を構成する材料の粒子径を小さくすることによって、空気極の低温特性の向上、すなわち、電気化学的な抵抗の減少を図ることができることが知られている。これは、電極での電気化学反応を担っている三相界面、すなわち、酸素イオン伝導性の電解質膜と空気極の構成粒子と空気との三相が接する部分の長さ(三相界面長)を大きくすることができるからである。   With regard to such a decrease in output voltage, by reducing the particle size of the material constituting the air electrode when forming the air electrode by firing, the low temperature characteristics of the air electrode are improved, that is, the electrochemical resistance is reduced. It is known that a reduction can be achieved. This is the length of the three-phase interface that is responsible for the electrochemical reaction at the electrode, that is, the portion where the three phases of the oxygen ion conductive electrolyte membrane, air electrode constituent particles, and air contact (three-phase interface length). It is because it can enlarge.

ところで、従来、空気極には、電子伝導性が大きく、高温の酸化雰囲気下でも安定なLa(Sr)MnO3やLa(Sr)Fe(Ni)O3などのランタン(La)系のペロブスカイト系の酸化物の粉末を焼成した多孔質体が用いられている。しかしながら、空気極にランタン系のペロブスカイト系材料を使用した場合、空気極の焼成時に、電解質膜として用いられるジルコニア系電解質材料と空気極材料とがわずかではあるが反応してLa2Zr27などの不導体層(絶縁体層)が形成される。これによって、空気極の特性が低下する。 By the way, conventionally, the air electrode has a high electron conductivity and is stable even in a high-temperature oxidizing atmosphere, such as La (Sr) MnO 3 or La (Sr) Fe (Ni) O 3 , which is a lanthanum (La) -based perovskite system. The porous body which baked the powder of this oxide is used. However, when a lanthanum-based perovskite material is used for the air electrode, the zirconia-based electrolyte material used as the electrolyte membrane and the air electrode material react slightly to react with La 2 Zr 2 O 7 during firing of the air electrode. A non-conductive layer (insulator layer) is formed. As a result, the characteristics of the air electrode deteriorate.

そこで、ジルコニア系電解質材料からなる電解質膜と空気極との間に、バッファー層を設けることが試みられている。セリア系電解質材料は、酸素イオン伝導性に優れ、かつペロブスカイト系空気極材料との反応性が低いため、このようなバッファー層として設けるのに適している。セリア系電解質材料とは、セリア(酸化セリウム)を主成分として、導電性の制御などのためにY,Sm,Gdなどの酸化物がドープされた材料のことであり、固体酸化物形燃料電池の技術分野においてよく知られている材料である。しかしながら、セリア系電解質材料は、焼結性が低く、1250℃以上の高温焼成を行うことによって、ようやく比較的結晶粒が強く結合した層を得ることができる。特に、スクリーンプリント(スクリーン印刷)法などの簡便な塗布方法を用いてセリア系電解質材料からなるバッファー層を形成した場合には、機械強度が十分でない膜となりやすく、結果として、電解質膜または空気極との界面の密着性が不十分となり、セルの特性自体も低下させることになる。   Therefore, an attempt has been made to provide a buffer layer between an electrolyte membrane made of a zirconia-based electrolyte material and the air electrode. The ceria-based electrolyte material is suitable for providing such a buffer layer because of its excellent oxygen ion conductivity and low reactivity with the perovskite-based air electrode material. The ceria-based electrolyte material is a material in which ceria (cerium oxide) is a main component and an oxide such as Y, Sm, Gd or the like is doped for conductivity control, and is a solid oxide fuel cell. It is a well-known material in the technical field. However, the ceria-based electrolyte material has low sinterability, and a layer having relatively strongly bonded crystal grains can be finally obtained by performing high-temperature firing at 1250 ° C. or higher. In particular, when a buffer layer made of a ceria-based electrolyte material is formed using a simple coating method such as a screen printing (screen printing) method, a film with insufficient mechanical strength tends to be formed, and as a result, the electrolyte membrane or air electrode Adhesiveness at the interface with the substrate becomes insufficient, and the characteristics of the cell itself are deteriorated.

また、セリア系電解質材料は、燃料極と空気極とを隔てる電解質膜として用いられるジルコニア系電解質材料に対して固溶しやすいので、セリア系電解質材料からなるバッファー層の形成のために高温焼成を行うことによって、電気伝導度の低い組成の成分を生じがちである。さらに、ジルコニア系電解質材料からジルコニウム原子がバッファー層内に高濃度で拡散するため、バッファー層としての効果が大きく損なわれる。さらに、高温で焼成を行うことによって空気極の粒成長が進行し、電気化学的な反応場である三相界面の面積が減少してしまう、という問題も生じる。このほか、焼成温度が高いほど、より高価な炉(焼成炉)が必要になるなど、生産コストの面でも不利となる。   In addition, the ceria-based electrolyte material is easily dissolved in a zirconia-based electrolyte material used as an electrolyte membrane that separates the fuel electrode and the air electrode, so high-temperature firing is performed to form a buffer layer made of the ceria-based electrolyte material. Doing so tends to produce components of low electrical conductivity. Furthermore, since zirconium atoms diffuse from the zirconia-based electrolyte material at a high concentration in the buffer layer, the effect as the buffer layer is greatly impaired. Furthermore, there is also a problem that the grain growth of the air electrode proceeds by firing at a high temperature, and the area of the three-phase interface that is an electrochemical reaction field is reduced. In addition, the higher the firing temperature, the more expensive the furnace (firing furnace) becomes necessary, which is disadvantageous in terms of production cost.

なお、固体酸化物形燃料電池(SOFC)に関する一般的な総説としては、非特許文献1に記載されたものがある。セリア系電解質材料からなるバッファー層を設けることについては、非特許文献2に記載されている。特許文献1には、イットリア安定化ジルコニアを電解質膜とし、燃料極としてNiジルコニアサーメットを用い、空気極にLaMnO3を用いた固体酸化物形燃料電池が開示されている。特許文献2には、安定化ジルコニアを電解質膜とし、燃料極としてニッケルジルコニアサーメットを用い、空気極にLaMnO3を用いた固体酸化物形燃料電池が開示されている。特許文献3には、安定化ジルコニアを電解質膜とし、燃料極としてNiO−YSZサーメットを用い、空気極に(La,Sr)MnO3を用いた固体酸化物形燃料電池が開示されている。
特開平5−343092号公報 特開平7−122287号公報 特開平9−147884号公報 N. Q. Minh; J. Am. Ceram. Soc., 76, 563 (1993) M. Shiono, K. Kobayashi, T. L. Nguyen, K. Hosoda, T. Kato, K. Ota and M. Dokiya; Solid State Ionics, 170 (2004) 1
In addition, as a general review regarding the solid oxide fuel cell (SOFC), there is one described in Non-Patent Document 1. Non-patent document 2 describes providing a buffer layer made of a ceria-based electrolyte material. Patent Document 1 discloses a solid oxide fuel cell in which yttria-stabilized zirconia is used as an electrolyte membrane, Ni zirconia cermet is used as a fuel electrode, and LaMnO 3 is used as an air electrode. Patent Document 2 discloses a solid oxide fuel cell in which stabilized zirconia is used as an electrolyte membrane, nickel zirconia cermet is used as a fuel electrode, and LaMnO 3 is used as an air electrode. Patent Document 3 discloses a solid oxide fuel cell in which stabilized zirconia is used as an electrolyte membrane, NiO—YSZ cermet is used as a fuel electrode, and (La, Sr) MnO 3 is used as an air electrode.
JP-A-5-343092 Japanese Patent Laid-Open No. 7-122287 Japanese Patent Laid-Open No. 9-147848 NQ Minh; J. Am. Ceram. Soc., 76, 563 (1993) M. Shiono, K. Kobayashi, TL Nguyen, K. Hosoda, T. Kato, K. Ota and M. Dokiya; Solid State Ionics, 170 (2004) 1

以上述べたように、固体酸化物形燃料電池では、空気極と電解質膜との反応劣化を防いで電気的特性の向上を図るために、空気極と酸素イオン伝導性を有する電解質膜との間にバッファー層を設けることが有効であり、セリア系電解質材料は、このバッファー層として有望な材料である。しかしながら、セリア系電解質材料は、高温での焼成が必要であって形成されるバッファー層の密着性が低下しがちであり、また、電解質膜からジルコニウム原子がセリア系電解質材料からなるバッファー層に拡散するためにバッファー層の効果が損なわれがちである、という問題点を有する。   As described above, in the solid oxide fuel cell, in order to prevent the reaction deterioration between the air electrode and the electrolyte membrane and to improve the electrical characteristics, the air electrode and the electrolyte membrane having oxygen ion conductivity are disposed between the air electrode and the electrolyte membrane. It is effective to provide a buffer layer, and the ceria-based electrolyte material is a promising material for the buffer layer. However, the ceria-based electrolyte material needs to be fired at a high temperature, and the adhesion of the formed buffer layer tends to be lowered, and zirconium atoms diffuse from the electrolyte film into the buffer layer made of the ceria-based electrolyte material. Therefore, there is a problem that the effect of the buffer layer tends to be impaired.

以下の説明において、電解質膜と空気極との間に配置され、セリア系電解質材料を含み、あるいはセリア系電解質材料を出発物質の少なくとも1つとするバッファー層のことを、セリア系バッファー層と呼ぶ。   In the following description, a buffer layer that is disposed between an electrolyte membrane and an air electrode, includes a ceria-based electrolyte material, or uses a ceria-based electrolyte material as at least one of starting materials is referred to as a ceria-based buffer layer.

本発明の目的は、固体酸化物形燃料電池に設けられ、酸素イオン伝導性を有しジルコニア系電解質材料からなる電解質膜と正極である空気極との間に配置されるセリア系バッファー層であって、空気極と電解質膜との反応劣化を防ぎ、比較的低温での焼成が可能であって、電解質膜と空気極との界面の密着性が向上したセリア系バッファー層を提供することにある。   An object of the present invention is a ceria-based buffer layer provided in a solid oxide fuel cell and disposed between an electrolyte membrane made of a zirconia-based electrolyte material having oxygen ion conductivity and an air electrode as a positive electrode. Thus, it is intended to provide a ceria-based buffer layer that prevents reaction deterioration between the air electrode and the electrolyte membrane, can be fired at a relatively low temperature, and has improved adhesion at the interface between the electrolyte membrane and the air electrode. .

本発明の別の目的は、固体酸化物形燃料電池に設けられ、酸素イオン伝導性を有しジルコニア系電解質材料からなる電解質膜と正極である空気極との間に配置されるセリア系バッファー層であって、空気極と電解質膜との反応劣化を防ぎ、比較的低温での焼成が可能であって、電解質膜と空気極との界面の密着性が向上したセリア系バッファー層の製造方法と、この製造方法に用いられる原料粉を提供することにある。   Another object of the present invention is a ceria-based buffer layer provided in a solid oxide fuel cell and disposed between an electrolyte membrane made of a zirconia-based electrolyte material having oxygen ion conductivity and an air electrode as a positive electrode. A method for producing a ceria-based buffer layer that prevents reaction deterioration between the air electrode and the electrolyte membrane, can be fired at a relatively low temperature, and has improved adhesion at the interface between the electrolyte membrane and the air electrode; An object of the present invention is to provide a raw material powder used in this production method.

本発明の固体酸化物形燃料電池の空気極用セリア系バッファー層は、固体酸化物形燃料電池の空気極と電解質膜との間に配置される空気極用セリア系バッファー層において、
[1]Co,Fe,Ni,Cu,Mnからなる群から選ばれた1種以上の遷移金属元素の酸化物とセリア系電解質材料とを含む混合物であることを特徴とする、あるいは、
[2]ABO3(ただし、Aは、Sc,Y,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luからなる群から選ばれた1種以上の元素であり、BはCo,Fe,Ni,Cu,Mnからなる群から選ばれた1種以上の元素である)で表されるペロブスカイト系酸化物とセリア系電解質材料とを含む混合物であることを特徴とする、あるいは、
[3]セリア系電解質材料からなる粉末とSc,Y,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luからなる群から選ばれた1種以上の希土類元素の酸化物の粉末とをセリア系電解質材料の粉末と希土類元素の酸化物の粉末との混合比が質量比において70:30〜95:5となるように混合し媒質に展開してスラリを形成し、該スラリを焼成して得られた焼成体であることを特徴とする。
The ceria-based buffer layer for the air electrode of the solid oxide fuel cell of the present invention is a ceria-based buffer layer for the air electrode disposed between the air electrode and the electrolyte membrane of the solid oxide fuel cell.
[1] A mixture containing an oxide of one or more transition metal elements selected from the group consisting of Co, Fe, Ni, Cu, and Mn and a ceria-based electrolyte material, or
[2] ABO 3 (where A is one or more elements selected from the group consisting of Sc, Y, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu; Is one or more elements selected from the group consisting of Co, Fe, Ni, Cu and Mn), and is a mixture containing a perovskite oxide and a ceria electrolyte material. Or
[3] Powder of a ceria-based electrolyte material and one or more rare earth element oxides selected from the group consisting of Sc, Y, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu The slurry is mixed with a ceria-based electrolyte material powder and a rare earth element oxide powder so that the mass ratio is 70:30 to 95: 5 in a mass ratio and developed into a medium to form a slurry. It is a fired body obtained by firing a slurry.

上記[1]の場合、混合物におけるセリア系電解質材料と遷移金属の酸化物との混合比が、質量比において30:70〜99.9:0.1であることが好ましい。上記[2]の場合、混合物におけるセリア系電解質材料とペロブスカイト系酸化物との混合比が、質量比において20:80〜80:20であることが好ましい。この場合、混合物は、Co,Fe,Ni,Cu,Mnからなる群から選ばれた1種以上の遷移金属元素の酸化物をさらに含み、この酸化物は混合物において質量比で0.1%以上20%以下含まれるようにしてもよい。   In the case of [1] above, the mixing ratio of the ceria-based electrolyte material and the transition metal oxide in the mixture is preferably 30:70 to 99.9: 0.1 in terms of mass ratio. In the case of the above [2], the mixing ratio of the ceria-based electrolyte material and the perovskite-based oxide in the mixture is preferably 20:80 to 80:20 in mass ratio. In this case, the mixture further includes an oxide of one or more transition metal elements selected from the group consisting of Co, Fe, Ni, Cu, and Mn, and the oxide is 0.1% or more by mass ratio in the mixture. You may make it contain 20% or less.

本発明の製造方法は、前述の[1],[2]の空気極用セリア系バッファー層を製造する製造方法において、混合物の粉末を含むスラリを用意し、電解質膜上にスラリを塗布し、その後、焼成を行うことを特徴とする。   The production method of the present invention is the production method for producing a ceria buffer layer for an air electrode according to [1] and [2] described above, preparing a slurry containing powder of the mixture, applying the slurry on the electrolyte membrane, Thereafter, firing is performed.

本発明の別の製造方法は、固体酸化物形燃料電池の空気極と電解質膜との間に配置される空気極用セリア系バッファー層の製造方法において、セリア系電解質材料からなる粉末とSc,Y,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luからなる群から選ばれた1種以上の希土類元素の酸化物の粉末とをセリア系電解質材料の粉末と希土類元素の酸化物の粉末との混合比が質量比において70:30〜95:5となるように混合したスラリを用意し、電解質膜上にスラリを塗布し、その後、焼成を行うことを特徴とする。   Another production method of the present invention is a method for producing a ceria buffer layer for an air electrode disposed between an air electrode and an electrolyte membrane of a solid oxide fuel cell, wherein a powder made of ceria electrolyte material, Sc, One or more rare earth oxide powders selected from the group consisting of Y, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu are used. A slurry is prepared so that the mixing ratio of the oxide powder to the oxide powder is 70:30 to 95: 5 in mass ratio, the slurry is applied on the electrolyte membrane, and then fired. .

本発明の原料粉は、媒質に展開してスラリを形成するために用いられる原料粉であって、セリア系電解質材料からなる粉末とSc,Y,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luからなる群から選ばれた1種以上の希土類元素の酸化物の粉末とをセリア系電解質材料の粉末と希土類元素の酸化物の粉末との混合比が質量比において70:30〜95:5となるように混合された原料粉である。   The raw material powder of the present invention is a raw material powder used for forming a slurry by spreading in a medium, and a powder made of a ceria-based electrolyte material and Sc, Y, Sm, Eu, Gd, Tb, Dy, Ho, One or more rare earth element oxide powders selected from the group consisting of Er, Tm, Yb, and Lu, and the mixing ratio of the ceria based electrolyte material powder to the rare earth element oxide powder is 70 in terms of mass ratio. : It is the raw material powder mixed so that it may become 30-95: 5.

本発明において、電解質膜は典型的には酸素イオン伝導性を有するものであって、例えば、ジルコニア系電解質材料から構成される。セリア系電解質材料は、セリアを主成分として導電性の制御などのためにSm,Gd,Yなどの酸化物がドープされた材料のことであり、例えば、Ce0.8Gd0.22、Ce0.8Sm0.22、Ce0.80.22、Ce0.9Gd0.12、Ce0.9Sm0.12、Ce0.90.12で表される酸化物のように、セリウムとSm、Gd、Yなどの添加元素とのモル比が7:3〜9.5:0.5などであるような酸化物である。 In the present invention, the electrolyte membrane typically has oxygen ion conductivity, and is composed of, for example, a zirconia-based electrolyte material. The ceria-based electrolyte material is a material that contains ceria as a main component and is doped with an oxide such as Sm, Gd, Y for the purpose of controlling conductivity. For example, Ce 0.8 Gd 0.2 O 2 , Ce 0.8 Sm 0.2 O 2 , Ce 0.8 Y 0.2 O 2 , Ce 0.9 Gd 0.1 O 2 , Ce 0.9 Sm 0.1 O 2 , Ce 0.9 Y 0.1 O 2 , such as oxides such as cerium and Sm, Gd, Y An oxide having a molar ratio with an additive element of 7: 3 to 9.5: 0.5 or the like.

本発明に基づくセリア系バッファー層は、典型的には、セリア系電界質材料の粉末と上述したような遷移金属酸化物の粉末、ペロブスカイト系酸化物の粉末、希土類酸化物の粉末とを混合して原料粉とし、これを水や有機溶媒などの媒質に展開してスラリとし、このスラリを電解質膜上に湿式塗布法で塗布し、その後、焼成することによって形成されるものである。湿式塗布法としては、例えば、スクリーンプリント法、ディップコート法、ドクターブレード法などを用いることができる。   The ceria-based buffer layer according to the present invention typically comprises mixing a powder of a ceria-based electrolyte material with a transition metal oxide powder, a perovskite oxide powder, and a rare earth oxide powder as described above. The raw powder is developed into a medium such as water or an organic solvent to form a slurry, and this slurry is applied onto the electrolyte membrane by a wet coating method and then fired. As the wet coating method, for example, a screen printing method, a dip coating method, a doctor blade method, or the like can be used.

[作用]
Co,Fe,Ni,Cu,Mnなどの遷移金属の酸化物は、セリア(CeO2)に比べて焼結性が高いため、セリアと混合した状態で焼成を行うと、全体として焼結性が高まる。これは、遷移金属酸化物の一部がセリア結晶粒の粒界に存在するようになるためであると考えられる。これらの遷移金属酸化物は、空気中ではセリアとはほとんど反応しないため、すなわちセリアへの固溶量が極めて少ないため、セリアのイオン伝導性を損なうことがない。そして、全体として焼結性が高まるため、焼結後の機械的強度が向上する。また、セリアへは遷移金属がわずかしか固溶しないため、微量の遷移金属酸化物の添加であっても、全体に対して均一な機械的強度の向上が期待できる。遷移金属酸化物の混合量は、全体(セリア系電解質材料と遷移金属酸化物の和)に対して、0.1%以上30%以下とすることが好ましく、0.2%以上10%以下とすることがさらに好ましい。
[Action]
Since transition metal oxides such as Co, Fe, Ni, Cu, and Mn have higher sinterability than ceria (CeO 2 ), when sintered in a mixed state with ceria, the sinterability as a whole is increased. Rise. This is considered to be because a part of the transition metal oxide comes to exist at the grain boundary of the ceria crystal grains. Since these transition metal oxides hardly react with ceria in the air, that is, the amount of solid solution in ceria is very small, the ion conductivity of ceria is not impaired. And since sinterability improves as a whole, the mechanical strength after sintering improves. Further, since only a slight amount of transition metal is dissolved in ceria, even when a small amount of transition metal oxide is added, uniform mechanical strength can be expected to be improved over the whole. The mixing amount of the transition metal oxide is preferably 0.1% or more and 30% or less, and 0.2% or more and 10% or less with respect to the whole (the sum of the ceria-based electrolyte material and the transition metal oxide). More preferably.

同様に、Sc,Y,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luなどの希土類元素とCo,Fe,Ni,Cu,Mnなどの遷移金属元素とから構成されるペロブスカイト系酸化物(複合酸化物)をセリア系バッファー層に分散させるようにした場合も、電解質膜に対する空気極の密着性が向上する。この場合も、セリアと比べて焼結性が高く、空気中ではセリアとはほとんど反応せず、かつ、わずかにセリアに固溶するため、このようなペロブスカイト系酸化物を用いることにより、イオン伝導性を損なうことなく、焼結性及び機械的強度を高めることができる。   Similarly, it is composed of rare earth elements such as Sc, Y, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu and transition metal elements such as Co, Fe, Ni, Cu, and Mn. Even when the perovskite oxide (composite oxide) is dispersed in the ceria buffer layer, the adhesion of the air electrode to the electrolyte membrane is improved. In this case as well, sinterability is higher than ceria, hardly reacts with ceria in air, and slightly dissolves in ceria. Therefore, by using such a perovskite oxide, ion conduction is achieved. Sinterability and mechanical strength can be improved without impairing the properties.

Sm,Yなどの希土類酸化物(Sc,Y,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luからなる群から選ばれた1種以上の希土類元素の酸化物)は、セリアやジルコニアに固溶する性質を有するが、そもそも固体酸化物形燃料電池においてジルコニア電解質あるいはセリア電解質に対して添加されていることから分かるように、イオン伝導性を損なわない。したがって、セリア系電解質材料にこれらの希土類酸化物を混合したスラリを用いてセリア系バッファー層を焼成した場合、希土類酸化物がジルコニアまたはセリアに固溶反応を起こす過程で焼結を進めることとなり、イオン伝導性を損なうことなく、焼結性及び機械的強度を高めることができる。スラリ作製の際の希土類酸化物の混合量は、全体(セリア系電解質材料と希土類酸化物の和)に対して、5%以上30%以下とすることが好ましく、7%以上20%以下とすることがさらに好ましい。   Rare earth oxides such as Sm, Y (Sc, Y, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu oxide selected from the group consisting of rare earth elements) Although it has the property of being dissolved in ceria and zirconia, it does not impair the ion conductivity as can be seen from the fact that it is added to the zirconia electrolyte or ceria electrolyte in the solid oxide fuel cell. Therefore, when a ceria buffer layer is fired using a slurry in which these rare earth oxides are mixed with a ceria based electrolyte material, sintering will proceed in the process where the rare earth oxide causes a solid solution reaction in zirconia or ceria, Sinterability and mechanical strength can be improved without impairing ionic conductivity. The mixing amount of the rare earth oxide during slurry preparation is preferably 5% or more and 30% or less, and preferably 7% or more and 20% or less with respect to the total (the sum of the ceria-based electrolyte material and the rare earth oxide). More preferably.

本発明では、固体酸化物形燃料電池において、酸素イオン伝導性を有する電解質膜と空気極との間に設けられるセリア系バッファー層において、セリア系電解質材料と遷移金属(Co,Fe,Ni,Cu,Mn)酸化物との混合物、またはセリア系電解質材料とABO3(ただし、Aは、Sc,Y,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luからなる群から選ばれた1種以上の元素であり、BはCo,Fe,Ni,Cu,Mnからなる群から選ばれた1種以上の元素である)で表されるペロブスカイト系酸化物との混合物を用いることにより、イオン伝導性を損なうことなく、セリア系バッファー層の電解質膜及び空気極との界面での密着力を向上させることができる。この結果、空気極自体の電極特性も向上する。 In the present invention, in the solid oxide fuel cell, in the ceria-based buffer layer provided between the electrolyte membrane having oxygen ion conductivity and the air electrode, the ceria-based electrolyte material and the transition metal (Co, Fe, Ni, Cu) , Mn) oxide mixture, or a ceria-based electrolyte material and ABO 3 (where A is Sc, Y, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) 1 or more selected elements, and B is one or more elements selected from the group consisting of Co, Fe, Ni, Cu, and Mn). Thus, the adhesion of the ceria-based buffer layer at the interface between the electrolyte membrane and the air electrode can be improved without impairing the ionic conductivity. As a result, the electrode characteristics of the air electrode itself are also improved.

また本発明では、セリア系電解質材料の粉末と希土類酸化物の粉末とを混合したスラリを用いてセリア系バッファー層を焼成することにより、イオン伝導性を損なうことなく、セリア系バッファー層の電解質膜及び空気極との界面での密着力を向上させることができる。この結果、空気極自体の電極特性も向上する。   In the present invention, the ceria-based buffer layer electrolyte membrane is obtained by firing the ceria-based buffer layer using a slurry obtained by mixing the powder of the ceria-based electrolyte material and the rare earth oxide powder, without impairing ion conductivity. And the adhesive force in the interface with an air electrode can be improved. As a result, the electrode characteristics of the air electrode itself are also improved.

これらにより、信頼性の高い固体酸化物形燃料電池用空気極を得ることができる。本発明は、固体酸化物形燃料電池の信頼性を高めることに大きな貢献をなすものである。   Thus, a highly reliable air electrode for a solid oxide fuel cell can be obtained. The present invention greatly contributes to improving the reliability of a solid oxide fuel cell.

次に、本発明について、実施例を用いて説明する。なお、当然のことであるが、本発明は、以下の実施例に限定されるものではない。   Next, the present invention will be described using examples. As a matter of course, the present invention is not limited to the following examples.

[実施例1、比較例1,2]
まず、ドクターブレード法で焼成した0.2mm厚でSc23,Al23添加ジルコニア(SASZ)(0.89ZrO2−0.10Sc23−0.01Al23)からなる固体電解質基板の片面に、NiO−YSZ(0.92ZrO2−0.08Y23)のスラリ(平均粒径が約0.3μmの10モル%Y23添加ジルコニア(YSZ)粉末を40質量%含み、平均粒径が約0.8μmのNiO粉末を60質量%含む混合物をスラリとしたもの)をスクリーンプリント法で塗布した後、白金(Pt)メッシュ集電体を載置して、1400℃、8時間空気中で焼成し、厚さ40μmの燃料極を設けた。なお、本明細書の実施例及び比較例の記載において、粉末の平均粒径は、レーザー回折法によって測定されたものであり、測定には、堀場製作所製のレーザ回折/散乱式粒度分布測定装置HORIBA LA-920を使用した。
[Example 1, Comparative Examples 1 and 2]
First, a solid consisting of 0.2mm thick by Sc 2 O 3, Al 2 O 3 doped zirconia fired at a doctor blade method (SASZ) (0.89ZrO 2 -0.10Sc 2 O 3 -0.01Al 2 O 3) 40 masses of NiO—YSZ (0.92ZrO 2 −0.08Y 2 O 3 ) slurry (10 mol% Y 2 O 3 added zirconia (YSZ) powder having an average particle size of about 0.3 μm) on one surface of the electrolyte substrate And a platinum (Pt) mesh current collector was placed thereon by applying a screen printing method, and a platinum (Pt) mesh current collector 1400. Firing was carried out in air at 8 ° C. for 8 hours, and a fuel electrode having a thickness of 40 μm was provided. In the description of the examples and comparative examples of the present specification, the average particle diameter of the powder is measured by a laser diffraction method, and the measurement is performed by a laser diffraction / scattering particle size distribution measuring apparatus manufactured by Horiba. HORIBA LA-920 was used.

次に、粒径1.0μmのLNF(LaNi0.6Fe0.43)の粉末をポリエチレングリコールに展開したスラリを調製し、これを電解質基板の裏面にスクリーンプリント法で塗布した後、この上に白金メッシュ集電体を載せて、1000℃、2時間空気中で焼成し、厚さ40μmの空気極を設けた。この結果、酸素イオン伝導性を有する電解質膜として用いられる固体電解質基板の両面に、それぞれ、燃料極と空気極とが設けられたことになる。燃料極、空気極とも、10mm径の大きさで設けた。このようにして作製された燃料電池セルを比較例1の燃料電池セルとし、以下の説明においてセル#1−0−0で表すこととする。 Next, a slurry in which a powder of LNF (LaNi 0.6 Fe 0.4 O 3 ) having a particle size of 1.0 μm was developed in polyethylene glycol was prepared, and this was applied to the back surface of the electrolyte substrate by a screen printing method. A mesh current collector was placed and fired in air at 1000 ° C. for 2 hours to provide an air electrode having a thickness of 40 μm. As a result, the fuel electrode and the air electrode are provided on both surfaces of the solid electrolyte substrate used as the electrolyte membrane having oxygen ion conductivity, respectively. Both the fuel electrode and the air electrode were provided with a diameter of 10 mm. The fuel cell thus produced is referred to as the fuel cell of Comparative Example 1, and is represented by cell # 1-0-0 in the following description.

図1は、比較例1の燃料電池セル(セル#1−0−0)の構成を示す斜視図であり、(A)は燃料電池として発電試験を行う際の単セルの構成を示し、(B)は密着試験を行う際のハーフセルの構成を示している。(A)に示す単セルにおいて、略矩形の電解質基板1の上面のほぼ中央部に、直径10mmの円形の領域として、空気極2が形成されている。電解質基板1の外周部には、白金メッシュなどからなる参照極3が形成されている。斜視図であるから電解質基板1の裏面側は示されていないが、電解質基板1の裏面には、空気極2に対応する位置に、空気極2と同じ形状で燃料極が設けられている。また、(B)に示すハーフセルは、電解質基板1上に空気極2のみを設けた構成のものである。ハーフセルでは、密着試験を行う都合上、10mm角の矩形の領域として空気極2を形成してある。   FIG. 1 is a perspective view showing a configuration of a fuel cell (cell # 1-0-0) of Comparative Example 1, and (A) shows a configuration of a single cell when a power generation test is performed as a fuel cell. B) shows the structure of the half cell when the adhesion test is performed. In the single cell shown in (A), an air electrode 2 is formed as a circular region having a diameter of 10 mm at a substantially central portion of the upper surface of the substantially rectangular electrolyte substrate 1. A reference electrode 3 made of platinum mesh or the like is formed on the outer periphery of the electrolyte substrate 1. Although it is a perspective view, the back surface side of the electrolyte substrate 1 is not shown, but a fuel electrode having the same shape as the air electrode 2 is provided on the back surface of the electrolyte substrate 1 at a position corresponding to the air electrode 2. Further, the half cell shown in (B) has a configuration in which only the air electrode 2 is provided on the electrolyte substrate 1. In the half cell, the air electrode 2 is formed as a rectangular area of 10 mm square for convenience of the adhesion test.

次に、比較例2の燃料電池セル(セル#1−1−0)として、セリア系電解質材料のみからなるセリア系バッファー層を有するものを作製した。この燃料電池は、前述の比較例1のセル(セル#1−0−0)の作製過程と同じ手順で電解質基板の表面に燃料極までを形成した後、電解質基板の裏面に、平均粒径が0.2μmであるCe0.8Gd0.22粉末をポリエチレングリコールに展開したスラリをスクリーンプリント法で塗布し、1000℃で2時間空気中で焼成し、セリア系バッファー層を設けた。焼成後のセリア系バッファー層の厚さは5μmであった。その後、比較例1の場合と同様の手順によって、セリア系バッファー層の上に白金メッシュ集電体を載置し、LNFスラリを塗布し、1000℃で2時間空気中で焼成して、空気極を形成した。 Next, a fuel cell (cell # 1-1-0) of Comparative Example 2 having a ceria-based buffer layer made only of a ceria-based electrolyte material was produced. In this fuel cell, after forming up to the fuel electrode on the surface of the electrolyte substrate by the same procedure as that of the cell of Comparative Example 1 (cell # 1-0-0), the average particle size is formed on the back surface of the electrolyte substrate. A slurry in which Ce 0.8 Gd 0.2 O 2 powder having a particle size of 0.2 μm was developed in polyethylene glycol was applied by screen printing and baked in air at 1000 ° C. for 2 hours to provide a ceria-based buffer layer. The thickness of the ceria buffer layer after firing was 5 μm. Thereafter, a platinum mesh current collector is placed on the ceria-based buffer layer by the same procedure as in Comparative Example 1, coated with LNF slurry, fired in air at 1000 ° C. for 2 hours, and air electrode Formed.

次に、実施例の燃料電池セル(セル#1−1−1〜#1−1−5)を形成した。この燃料電池セルは、比較例2の燃料電池セルにおいて、セリア系バッファー層を形成するために用いる粉末として、Ce0.8Gd0.22粉末の代わりに、平均粒径が0.2μmのCe0.8Gd0.22粉末と平均粒径が1μmのCo34粉末とを混合したものを用い、このような混合物のスラリを作製して比較例2と同じ条件でセリア系バッファー層を形成したものである。電解質基板、燃料極、空気極及び参照極については、比較例2のものと同じである。ここで、セリア系バッファー層形成用の混合粉末におけるCe0.8Gd0.22粉末とCo34粉末との重量比が99.9:0.1、99.5:0.5、99:1、95:5、90:10、70:30であるものをそれぞれセル#1−1−1〜#1−1−6としている。 Next, the fuel cell (cell # 1-1-1 to # 1-1-5) of the example was formed. In this fuel cell, the powder used for forming the ceria-based buffer layer in the fuel cell of Comparative Example 2 was replaced by Ce 0.8 Gd 0.2 O 2 powder with an average particle size of Ce 0.8 Gd of 0.2 μm. Using a mixture of 0.2 O 2 powder and Co 3 O 4 powder having an average particle diameter of 1 μm, a slurry of such a mixture was prepared to form a ceria-based buffer layer under the same conditions as in Comparative Example 2. is there. The electrolyte substrate, fuel electrode, air electrode, and reference electrode are the same as those in Comparative Example 2. Here, the weight ratio of the Ce 0.8 Gd 0.2 O 2 powder to the Co 3 O 4 powder in the mixed powder for forming the ceria-based buffer layer is 99.9: 0.1, 99.5: 0.5, 99: 1. , 95: 5, 90:10, and 70:30 are designated as cells # 1-1-1 to # 1-1-6, respectively.

図2は、セリア系バッファー層を有する燃料電池の単セルの構成を示している。酸素イオン伝導体として用いられ緻密なジルコニア系固体電解質からなる固体電解質基板1と、固体電解質基板1の一方の表面のほぼ中央領域に設けられた燃料極5と、固体電解質基板1の外周部に設けられた参照極3と、固体電解質基板1の他方の表面のほぼ中央領域に設けられた空気極2と、固体電解質基板1と空気極2との界面に配置されたセリア系バッファー層4とを備えている。   FIG. 2 shows the configuration of a single cell of a fuel cell having a ceria-based buffer layer. A solid electrolyte substrate 1 made of a dense zirconia solid electrolyte used as an oxygen ion conductor, a fuel electrode 5 provided in a substantially central region of one surface of the solid electrolyte substrate 1, and an outer peripheral portion of the solid electrolyte substrate 1 A reference electrode 3 provided; an air electrode 2 provided in a substantially central region of the other surface of the solid electrolyte substrate 1; and a ceria-based buffer layer 4 disposed at the interface between the solid electrolyte substrate 1 and the air electrode 2; It has.

前述のようにして作製した実施例及び比較例のセルを燃料電池に組み立て、800℃における空気極の電極特性を交流インピーダンス法で測定した。ここで、燃料極には3%加湿水素(H2+H2O)、空気極と参照極には酸素(O2)を供給した。水素への加湿は室温で行った。電極特性は、開放起電力条件での界面抵抗によって評価した。いずれのセルについて、開放起電力としては1.14V以上の値が得られた。図3は、電極特性評価時の燃料電池の構成を示す断面図である。図示されていないが、比較例2及び各実施例のセルの場合には、空気極と電解質基板との間にセリア系バッファー層が形成されている。また、燃料極及び空気極の白金メッシュ集電体にはそれぞれ白金端子が接続している。参照極にも白金端子が接続している。 The cells of Examples and Comparative Examples produced as described above were assembled into a fuel cell, and the electrode characteristics of the air electrode at 800 ° C. were measured by the AC impedance method. Here, 3% humidified hydrogen (H 2 + H 2 O) was supplied to the fuel electrode, and oxygen (O 2 ) was supplied to the air electrode and the reference electrode. Humidification to hydrogen was performed at room temperature. The electrode characteristics were evaluated by the interface resistance under open electromotive force conditions. For any cell, an open electromotive force of 1.14 V or higher was obtained. FIG. 3 is a cross-sectional view showing the configuration of the fuel cell at the time of electrode characteristic evaluation. Although not shown, in the case of the cell of Comparative Example 2 and each example, a ceria-based buffer layer is formed between the air electrode and the electrolyte substrate. Also, platinum terminals are connected to the platinum mesh current collectors of the fuel electrode and the air electrode, respectively. A platinum terminal is also connected to the reference electrode.

さらに、これらの実施例及び比較例のセルについて、燃料極と参照極とを備えないハーフセル(図1(B)参照)を作製し、空気極が固体電解質基板に対してどれだけ密着しているかを示す密着力試験を行った。この場合、前述したように、空気極の形状は1辺が1cmの正方形状とした。試験は、白金メッシュ集電体が載置されない状態で空気極を焼成によって固体電解質基板上に形成し、その後、粘着テープを空気極上に貼り付け、粘着テープを引き剥がすことによって行った。空気極の固体電解質基板に対する密着力が弱ければ、粘着テープを引き剥がしたときに空気極の一部が引き剥がされて粘着テープに付着したままとなるので、その分、粘着テープの質量が増加する。そこで、空気極の本来の質量を別途求めておいて、粘着テープの貼り付けと引き剥がしを経て空気極の全質量のうちのどれだけの部分が残っているかを算出し、これを空気極の残留率(残留質量率)とした。残留質量率が1(すなわち100%)に近いほど、密着力が強い、ということになる。セリア系バッファー層成分についても同様に粒子残留率を評価した。なお、以下の各実施例においても、同一組成のスラリを用いて図1(A)に示すセルと図1(B)に示すセルとを作製し、図1(A)に示すセルを用いて空気極界面抵抗を測定し、図1(B)に示すセルを用いて密着力試験を行っているが、便宜上、図1(A)に示すセルと図1(B)に示すセルとを組として、同一のセル番号で表記している。   Further, with respect to the cells of these examples and comparative examples, a half cell (see FIG. 1B) that does not include a fuel electrode and a reference electrode is manufactured, and how close the air electrode is to the solid electrolyte substrate. An adhesion test was conducted. In this case, as described above, the shape of the air electrode was a square shape with one side of 1 cm. The test was performed by forming an air electrode on a solid electrolyte substrate by firing in a state where the platinum mesh current collector was not placed, and then attaching an adhesive tape on the air electrode and peeling off the adhesive tape. If the adhesion of the air electrode to the solid electrolyte substrate is weak, when the adhesive tape is peeled off, a part of the air electrode is peeled off and remains attached to the adhesive tape, which increases the mass of the adhesive tape. To do. Therefore, the original mass of the air electrode is obtained separately, and after calculating the amount of the air electrode remaining after applying and peeling the adhesive tape, calculate this. The residual ratio (residual mass ratio) was used. The closer the residual mass ratio is to 1 (ie 100%), the stronger the adhesion. The ceria buffer layer component was similarly evaluated for the particle residual rate. In each of the following examples, the cell shown in FIG. 1A and the cell shown in FIG. 1B are manufactured using a slurry having the same composition, and the cell shown in FIG. 1A is used. The air electrode interface resistance was measured, and an adhesion test was performed using the cell shown in FIG. 1B. For convenience, the cell shown in FIG. 1A and the cell shown in FIG. As the same cell number.

実施例(セル#1−1−1〜#1−1−5)及び各比較例(セル#1−0−0、#1−1−0)についての電極特性の評価結果と粒子残留率の評価結果とを表1に示す。   Evaluation results of electrode characteristics and particle residual ratios of the examples (cells # 1-1-1 to # 1-1-5) and the comparative examples (cells # 1-0-0 and # 1-1-0) The evaluation results are shown in Table 1.

Figure 2007324087
Figure 2007324087

セリア系バッファー層をそもそも備えない比較例1のセル#1−0−0に比べ、Ce0.8Gd0.22からなるバッファー層を有する比較例2のセル#1−1−0のほうが、より小さな界面抵抗を示しており、電極特性が向上した。一方、密着性については、比較例1よりも比較例2の方が低下(残留率が小さい)している。実施例のセル(セル#1−1−1〜#1−1−6)は、比較例2と同程度の界面抵抗かこれよりも小さな界面抵抗を示して電極特性としては比較例2と同程度かこれを上回るものであり、かつ、密着力が向上している。このことから、セリア系電解質材料にCo34を混合して焼成してセリア系バッファー層を形成することにより、電極特性および密着力を向上させることができることが分かる。 The cell # 1-1-0 of the comparative example 2 having a buffer layer made of Ce 0.8 Gd 0.2 O 2 is smaller than the cell # 1-0-0 of the comparative example 1 which does not have a ceria-based buffer layer in the first place. The interfacial resistance is shown, and the electrode characteristics are improved. On the other hand, as for the adhesion, the comparative example 2 is lower than the comparative example 1 (the residual rate is small). The cells of the examples (cells # 1-1-1 to # 1-1-6) exhibit the same or lower interface resistance as that of the comparative example 2, and the electrode characteristics are the same as those of the comparative example 2. The degree is higher or higher, and the adhesion is improved. From this, it can be seen that electrode characteristics and adhesion can be improved by mixing the ceria-based electrolyte material with Co 3 O 4 and baking it to form a ceria-based buffer layer.

次に、実施例のセル#1−1−4におけるCe0.8Gd0.22粉末の代わりにそれぞれCe0.80.22粉末及びCe0.8Yb0.22粉末を用いてセル#1−2−1、#1−2−2を作製し、同様の実験を行った。さらに、セル#1−1−1〜#1−1−6におけるCo23粉末に代えて、Fe23粉末、MnO2粉末、NiO粉末、CuO粉末をそれぞれ用いてバッファー層を形成したセル#1−3−1〜#1−3−6、#1−4−1〜#1−4−6、#1−5−1〜#1−5−6、#1−6−1〜#1−6−6を作製し、同様の実験を行った。これらのセルについての実験結果も表1に示されている。これらのセルでは、比較例のセル(セル#1−0−0、#1−1−0)に比べて、電極特性及び密着力とも向上している。 Next, instead of the Ce 0.8 Gd 0.2 O 2 powder in the cell # 1-1-4 of the example, a Ce 0.8 Y 0.2 O 2 powder and a Ce 0.8 Yb 0.2 O 2 powder were used, respectively, to obtain a cell # 1-2-1. # 1-2-2 was prepared and the same experiment was performed. Further, instead of the Co 2 O 3 powder in the cell # 1-1-1~ # 1-1-6 to form a buffer layer using Fe 2 O 3 powder, MnO 2 powder, NiO powder, CuO powder each Cells # 1-3-1 to # 1-3-6, # 1-4-1 to # 1-4-6, # 1-5-1 to # 1-5-6, # 1-6-1 to # 1-6-6 was prepared and the same experiment was performed. The experimental results for these cells are also shown in Table 1. In these cells, both the electrode characteristics and the adhesion are improved as compared with the comparative cells (cells # 1-0-0 and # 1-1-0).

さらに、遷移金属の酸化物であるこれらのFe23、Co34、MnO2、NiO、CuOのうちの2種あるいは3種の粉末をCe0.90.12粉末に混合してセリア系バッファー層を形成したセル#1−7−1〜#1−7−9、#1−8−1〜#1−8−9、#1−9−1〜#1−9−9を作製し、同様の実験を行った。結果を表2に示す。 Further, two or three kinds of powders of transition metal oxides such as Fe 2 O 3 , Co 3 O 4 , MnO 2 , NiO, and CuO are mixed with Ce 0.9 Y 0.1 O 2 powder to form ceria. Cells # 1-7-1 to # 1-7-9, # 1-8-1 to # 1-8-9, and # 1-9-1 to # 1-9-9 on which a system buffer layer is formed The same experiment was conducted. The results are shown in Table 2.

Figure 2007324087
Figure 2007324087

これらのセル(セル#1−7−1〜#1−9−9)も、比較例の各セルに比べて電極特性及び密着力とも向上している。   These cells (cells # 1-7-1 to # 1-9-9) also have improved electrode characteristics and adhesion as compared with the cells of the comparative example.

[実施例2]
実施例1では、セリア系電解質材料(Ce0.8Gd0.22粉末、Ce0.80.22粉末、Ce0.8Yb0.22粉末)に対して遷移金属の酸化物を混合させているが、この実施例2では、セリア系電解質材料(Ce0.8Gd0.22粉末)に対してペロブスカイト系酸化物の粉末を混合させて、セリア系バッファー層を形成した。ここでは、ペロブスカイト結晶構造におけるAサイトにSm、Bサイト(及びB’サイト)に実施例1で用いた遷移金属元素を配した遷移元素ペロブスカイト系酸化物を用い、実施例1と同様の条件で、表3に示すセル#2−5−1〜#2−5−5を作製し、実施例1の場合と同様に、電極特性と密着力の評価を行った。さらにセリア系電解質材料におけるCe0.8Gd0.22粉末の代わりにCe0.80.22粉末、Ce0.8Yb0.22粉末を用いて、同様に、表3に示すセル#2−6−1〜#2−6−7を作製し、実施例1の場合と同様に、電極特性と密着力の評価を行った。これらの結果を表3に示す。
[Example 2]
In Example 1, a transition metal oxide is mixed with a ceria-based electrolyte material (Ce 0.8 Gd 0.2 O 2 powder, Ce 0.8 Y 0.2 O 2 powder, Ce 0.8 Yb 0.2 O 2 powder). In Example 2, a ceria-based buffer layer was formed by mixing a ceria-based electrolyte material (Ce 0.8 Gd 0.2 O 2 powder) with a perovskite-based oxide powder. Here, the transition element perovskite oxide in which the transition metal element used in Example 1 is arranged in Sm and the B site (and B ′ site) in the A site in the perovskite crystal structure is used under the same conditions as in Example 1. Cells # 2-5-1 to # 2-5-5 shown in Table 3 were prepared, and the electrode characteristics and adhesion were evaluated in the same manner as in Example 1. Further, using Ce 0.8 Y 0.2 O 2 powder and Ce 0.8 Yb 0.2 O 2 powder instead of Ce 0.8 Gd 0.2 O 2 powder in the ceria-based electrolyte material, cell # 2-6-1 shown in Table 3 is similarly used. # 2-6-7 was prepared, and the electrode characteristics and adhesion were evaluated in the same manner as in Example 1. These results are shown in Table 3.

Figure 2007324087
Figure 2007324087

いずれのセルも、比較例のセルに比べて、電極特性及び密着力が向上(界面抵抗は低下)している。   All the cells have improved electrode characteristics and adhesion (interfacial resistance is reduced) compared to the cells of the comparative example.

さらに、セリア系電解質材料としてCe0.9Gd0.12粉末を用いるとともに、遷移金属ペロブスカイト系酸化物のAサイトにおけるSmをSc,Y,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luに代えて実施例1と同様にセルを作製した(表4のセル#2−10−1〜#2−10−10、#2−11−1〜2−11−3)。これらのセルについても、実施例1と同様に、電極特性と密着力の評価を行った。その結果を表4に示す。 Further, Ce 0.9 Gd 0.1 O 2 powder is used as the ceria-based electrolyte material, and Sm at the A site of the transition metal perovskite oxide is changed to Sc, Y, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Cells were produced in the same manner as in Example 1 instead of Lu (cells # 2-10-1 to # 2-10-10 and # 2-11-1 to 2-11-3 in Table 4). These cells were also evaluated for electrode characteristics and adhesion as in Example 1. The results are shown in Table 4.

Figure 2007324087
Figure 2007324087

いずれのセルも、比較例のセルに比べて、電極特性及び密着力が向上(界面抵抗は低下)している。   All the cells have improved electrode characteristics and adhesion (interfacial resistance is reduced) compared to the cells of the comparative example.

[実施例3]
実施例1における遷移金属酸化物の粉末の代わりに、Sc,Y,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luの各希土類元素の酸化物の粉末を用いてセリア系バッファー層を形成し、表5に示すセル#3−1−1〜#3−2−3を作製した。セリア系電解質材料として、Ce0.90.12粉末を使用した。作製条件は、セリア系バッファー層を形成するための混合粉末が異なることを除けば、実施例1と同じである。これらのセルについて、実施例1と同様に、電極特性と密着力の評価を行った。その結果を表5に示す。
[Example 3]
Instead of the transition metal oxide powder in Example 1, a ceria-based buffer is prepared by using a rare earth element oxide powder of Sc, Y, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. A layer was formed, and cells # 3-1-1 to # 3-2-3 shown in Table 5 were produced. Ce 0.9 Y 0.1 O 2 powder was used as the ceria-based electrolyte material. The production conditions are the same as those in Example 1 except that the mixed powder for forming the ceria-based buffer layer is different. For these cells, the electrode characteristics and adhesion were evaluated in the same manner as in Example 1. The results are shown in Table 5.

Figure 2007324087
Figure 2007324087

いずれのセルも、比較例のセルに比べて、電極特性及び密着力が向上(界面抵抗は低下)している。   All the cells have improved electrode characteristics and adhesion (interfacial resistance is reduced) compared to the cells of the comparative example.

[実施例4]
実施例1における遷移金属酸化物の粉末の代わりに、ペロブスカイト系酸化物であるYCoO3の粉末あるいYFe0.4Cu0.63の粉末と前述した遷移金属酸化物の粉末とを混合したものを用いてセリア系バッファー層を形成し、表6に示すセル#3−3−1〜#3−3−13を作製した。セリア系電解質材料として、Ce0.90.12粉末を使用した。作製条件は、セリア系バッファー層を形成するための混合粉末が異なることを除けば、実施例1と同じである。これらのセルについて、実施例1と同様に、電極特性と密着力の評価を行った。その結果を表6に示す。
[Example 4]
Instead of the transition metal oxide powder in Example 1, a mixture of YCoO 3 powder or YFe 0.4 Cu 0.6 O 3 powder, which is a perovskite oxide, and the aforementioned transition metal oxide powder is used. A ceria-based buffer layer was formed to prepare cells # 3-3-1 to # 3-3-13 shown in Table 6. Ce 0.9 Y 0.1 O 2 powder was used as the ceria-based electrolyte material. The production conditions are the same as those in Example 1 except that the mixed powder for forming the ceria-based buffer layer is different. For these cells, the electrode characteristics and adhesion were evaluated in the same manner as in Example 1. The results are shown in Table 6.

Figure 2007324087
Figure 2007324087

いずれのセルも、比較例のセルに比べて、電極特性及び密着力が向上(界面抵抗は低下)している。   All the cells have improved electrode characteristics and adhesion (interfacial resistance is reduced) compared to the cells of the comparative example.

図4は、本発明に基づく燃料電池セル(単セル)の製造工程の一例を示すフロー図である。まず、燃料極形成用のスラリを調製し(ステップ101)、酸素イオン伝導性を有する電解質膜となるべき固体電解質基板の一方の面に塗布する(ステップ102)。このスラリ上に燃料極用の集電体を載置し(ステップ103)、焼成を行って燃料極を形成する(ステップ104)。またセリア系バッファー層形成用のスラリを調製し(ステップ105)、このスラリを固体電解質基板の他方の面に塗布し(ステップ106)、焼成を行ってバッファ層を形成する(ステップ107)。さらに、空気極形成用のスラリを調製し(ステップ108)、バッファー層上に塗布し(ステップ109)、スラリ上に空気極用の集電体を載置し(ステップ110)、焼成を行って空気極を形成する(ステップ111)。以上の工程を経て、図2に示した燃料電池セル(ただし参照極は設けられていない)が完成する。   FIG. 4 is a flowchart showing an example of a manufacturing process of a fuel cell (single cell) according to the present invention. First, a slurry for forming a fuel electrode is prepared (step 101) and applied to one surface of a solid electrolyte substrate to be an electrolyte membrane having oxygen ion conductivity (step 102). A current collector for the fuel electrode is placed on this slurry (step 103), and firing is performed to form a fuel electrode (step 104). Also, a slurry for forming a ceria-based buffer layer is prepared (step 105), this slurry is applied to the other surface of the solid electrolyte substrate (step 106), and baked to form a buffer layer (step 107). Further, a slurry for forming the air electrode is prepared (step 108), applied on the buffer layer (step 109), a current collector for the air electrode is placed on the slurry (step 110), and firing is performed. An air electrode is formed (step 111). Through the above steps, the fuel cell shown in FIG. 2 (however, no reference electrode is provided) is completed.

(A)は燃料電池セルの単セルを示す斜視図であり、(B)は燃料電池セルのハーフセルを示す斜視図である。(A) is a perspective view which shows the single cell of a fuel cell, (B) is a perspective view which shows the half cell of a fuel cell. セリア系バッファー層を有する燃料電池セルの断面図である。It is sectional drawing of the fuel battery cell which has a ceria type buffer layer. 実施例で使用した燃料電池構造を示す模式断面図である。It is a schematic cross section which shows the fuel cell structure used in the Example. 燃料電池セル(単セル)の製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of a fuel cell (single cell).

符号の説明Explanation of symbols

1 電解質基板
2 空気極
3 参照極
4 セリア系バッファー層
5 燃料極
1 Electrolyte Substrate 2 Air Electrode 3 Reference Electrode 4 Ceria Buffer Layer 5 Fuel Electrode

Claims (9)

固体酸化物形燃料電池の空気極と電解質膜との間に配置される空気極用セリア系バッファー層において、Co,Fe,Ni,Cu,Mnからなる群から選ばれた1種以上の遷移金属元素の酸化物とセリア系電解質材料とを含む混合物であることを特徴とする、固体酸化物形燃料電池の空気極用セリア系バッファー層。   One or more transition metals selected from the group consisting of Co, Fe, Ni, Cu, and Mn in a ceria buffer layer for an air electrode disposed between an air electrode and an electrolyte membrane of a solid oxide fuel cell A ceria-based buffer layer for an air electrode of a solid oxide fuel cell, characterized by being a mixture containing an oxide of an element and a ceria-based electrolyte material. 前記混合物における前記セリア系電解質材料と前記遷移金属の酸化物との混合比が、質量比において30:70〜99.9:0.1である、請求項3に記載の空気極用セリア系バッファー層。   The ceria buffer for an air electrode according to claim 3, wherein a mixing ratio of the ceria electrolyte material and the oxide of the transition metal in the mixture is 30:70 to 99.9: 0.1 in terms of mass ratio. layer. 固体酸化物形燃料電池の空気極と電解質膜との間に配置されるセリア系バッファー層において、ABO3(ただし、Aは、Sc,Y,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luからなる群から選ばれた1種以上の元素であり、BはCo,Fe,Ni,Cu,Mnからなる群から選ばれた1種以上の元素である)で表されるペロブスカイト系酸化物とセリア系電解質材料とを含む混合物であることを特徴とする、固体酸化物形燃料電池の空気極用セリア系バッファー層。 In the ceria-based buffer layer disposed between the air electrode and the electrolyte membrane of the solid oxide fuel cell, ABO 3 (where A is Sc, Y, Sm, Eu, Gd, Tb, Dy, Ho, Er) , Tm, Yb, and Lu, and B is one or more elements selected from the group consisting of Co, Fe, Ni, Cu, and Mn. A ceria-based buffer layer for an air electrode of a solid oxide fuel cell, wherein the perovskite-based oxide and a ceria-based electrolyte material are mixed. 前記混合物における前記セリア系電解質材料と前記ペロブスカイト系酸化物との混合比が、質量比において20:80〜80:20である、請求項3に記載の空気極用セリア系バッファー層。   The ceria buffer layer for an air electrode according to claim 3, wherein a mixing ratio of the ceria electrolyte material and the perovskite oxide in the mixture is 20:80 to 80:20 in mass ratio. 前記混合物は、Co,Fe,Ni,Cu,Mnからなる群から選ばれた1種以上の遷移金属元素の酸化物をさらに含み、該酸化物は前記混合物において質量比で0.1%以上20%以下含まれる、請求項4に記載の空気極用セリア系バッファー層。   The mixture further includes an oxide of one or more transition metal elements selected from the group consisting of Co, Fe, Ni, Cu, and Mn, and the oxide is 0.1% or more and 20% by mass in the mixture. The ceria-based buffer layer for an air electrode according to claim 4, which is contained in an amount of not more than%. 媒質に展開してスラリを形成するために用いられる原料粉であって、
セリア系電解質材料からなる粉末とSc,Y,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luからなる群から選ばれた1種以上の希土類元素の酸化物の粉末とが、前記セリア系電解質材料の粉末と前記希土類元素の酸化物の粉末との混合比が質量比において70:30〜95:5となるように混合されている原料粉。
Raw material powder used to form a slurry by spreading on a medium,
A powder composed of a ceria-based electrolyte material and a powder of an oxide of one or more rare earth elements selected from the group consisting of Sc, Y, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu However, the raw material powder in which the mixing ratio of the powder of the ceria-based electrolyte material and the powder of the rare earth element oxide is 70:30 to 95: 5 in mass ratio.
固体酸化物形燃料電池の空気極と電解質膜との間に配置される空気極用セリア系バッファー層を形成するために用いられる原料粉であって、
セリア系電解質材料からなる粉末とSc,Y,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luからなる群から選ばれた1種以上の希土類元素の酸化物の粉末とを前記セリア系電解質材料の粉末と前記希土類元素の酸化物の粉末との混合比が質量比において70:30〜95:5となるように混合されてなり、
媒質に展開してスラリとし、該スラリを塗布して焼成することにより前記空気極用セリア系バッファー層を形成するために用いられる原料粉。
A raw material powder used to form a ceria buffer layer for an air electrode disposed between an air electrode and an electrolyte membrane of a solid oxide fuel cell,
A powder composed of a ceria-based electrolyte material and a powder of an oxide of one or more rare earth elements selected from the group consisting of Sc, Y, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu Is mixed so that the mixing ratio of the ceria-based electrolyte material powder and the rare earth element oxide powder is 70:30 to 95: 5 in mass ratio,
Raw material powder used for forming the ceria buffer layer for an air electrode by spreading the slurry on a medium to form a slurry, applying the slurry, and firing the slurry.
請求項1乃至4のいずれか1項に記載の空気極用セリア系バッファー層の製造方法において、前記混合物の粉末を含むスラリを用意し、前記電解質膜上に前記スラリを塗布し、その後、焼成を行うことを特徴とする、製造方法。   The method for producing a ceria buffer layer for an air electrode according to any one of claims 1 to 4, wherein a slurry containing powder of the mixture is prepared, the slurry is applied on the electrolyte membrane, and then fired. The manufacturing method characterized by performing. 固体酸化物形燃料電池の空気極と電解質膜との間に配置される空気極用セリア系バッファー層の製造方法において、
セリア系電解質材料からなる粉末とSc,Y,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luからなる群から選ばれた1種以上の希土類元素の酸化物の粉末とを前記セリア系電解質材料の粉末と前記希土類元素の酸化物の粉末との混合比が質量比において70:30〜95:5となるように混合したスラリを用意し、
前記電解質膜上に前記スラリを塗布し、
その後、焼成を行うことを特徴とする、製造方法。
In the method for producing a ceria-based buffer layer for an air electrode disposed between an air electrode and an electrolyte membrane of a solid oxide fuel cell,
A powder composed of a ceria-based electrolyte material and a powder of an oxide of one or more rare earth elements selected from the group consisting of Sc, Y, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu Prepared in such a way that the mixing ratio of the ceria-based electrolyte material powder and the rare earth element oxide powder is 70:30 to 95: 5 in mass ratio,
Applying the slurry on the electrolyte membrane;
Then, baking is performed, The manufacturing method characterized by the above-mentioned.
JP2006156116A 2006-06-05 2006-06-05 Ceria buffer layer for air electrode of solid oxide fuel cell and method for producing the same Expired - Fee Related JP4796895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006156116A JP4796895B2 (en) 2006-06-05 2006-06-05 Ceria buffer layer for air electrode of solid oxide fuel cell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006156116A JP4796895B2 (en) 2006-06-05 2006-06-05 Ceria buffer layer for air electrode of solid oxide fuel cell and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007324087A true JP2007324087A (en) 2007-12-13
JP4796895B2 JP4796895B2 (en) 2011-10-19

Family

ID=38856690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006156116A Expired - Fee Related JP4796895B2 (en) 2006-06-05 2006-06-05 Ceria buffer layer for air electrode of solid oxide fuel cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP4796895B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272291A (en) * 2008-02-08 2009-11-19 Nippon Telegr & Teleph Corp <Ntt> Solid-oxide fuel cell
JP2010177096A (en) * 2009-01-30 2010-08-12 Nippon Telegr & Teleph Corp <Ntt> Method for manufacturing air electrode for solid oxide fuel cell and solid oxide fuel cell
JP2010177097A (en) * 2009-01-30 2010-08-12 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell
KR101060630B1 (en) * 2009-01-30 2011-08-31 연세대학교 산학협력단 Solid Oxide Electrolyte and Manufacturing Method Thereof
JP2011233286A (en) * 2010-04-26 2011-11-17 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell
KR101353642B1 (en) * 2011-12-09 2014-01-21 주식회사 포스코 Solid oxide fuel cell having reaction preventing layer and method for manufacturing the same
CN113540489A (en) * 2021-05-15 2021-10-22 山东工业陶瓷研究设计院有限公司 Barrier layer slurry, preparation method, barrier layer preparation method and battery monomer
CN113745531A (en) * 2021-09-14 2021-12-03 北京思伟特新能源科技有限公司 High-performance solid oxide electrolytic cell and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198304A (en) * 1992-01-17 1993-08-06 Ngk Insulators Ltd Manufacture of solid electrolyte fuel cell
JPH11111323A (en) * 1997-09-11 1999-04-23 Sulzer Hexis Ag Electrochemically active element for high-temperature fuel cell
JPH11126617A (en) * 1997-10-23 1999-05-11 Fujikura Ltd Solid electrolyte-type fuel cell and its manufacture
JP2003187811A (en) * 2001-12-19 2003-07-04 Nippon Telegr & Teleph Corp <Ntt> Method for manufacturing composite air electrode for solid electrolyte fuel cell
WO2005015671A1 (en) * 2003-08-06 2005-02-17 Toto Ltd. Solid oxide fuel cell
JP2005116260A (en) * 2003-10-06 2005-04-28 Nissan Motor Co Ltd Electrode for solid oxide fuel cell, and its manufacturing method
JP2005310737A (en) * 2004-03-23 2005-11-04 Toto Ltd Solid oxide fuel cell
JP2005322547A (en) * 2004-05-11 2005-11-17 Toho Gas Co Ltd Low-temperature operation type solid oxide fuel cell unit battery cell
JP2006073230A (en) * 2004-08-31 2006-03-16 Kyocera Corp Fuel cell
JP2006134871A (en) * 2004-10-06 2006-05-25 Matsushita Electric Ind Co Ltd Solid electrolyte

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198304A (en) * 1992-01-17 1993-08-06 Ngk Insulators Ltd Manufacture of solid electrolyte fuel cell
JPH11111323A (en) * 1997-09-11 1999-04-23 Sulzer Hexis Ag Electrochemically active element for high-temperature fuel cell
JPH11126617A (en) * 1997-10-23 1999-05-11 Fujikura Ltd Solid electrolyte-type fuel cell and its manufacture
JP2003187811A (en) * 2001-12-19 2003-07-04 Nippon Telegr & Teleph Corp <Ntt> Method for manufacturing composite air electrode for solid electrolyte fuel cell
WO2005015671A1 (en) * 2003-08-06 2005-02-17 Toto Ltd. Solid oxide fuel cell
JP2005116260A (en) * 2003-10-06 2005-04-28 Nissan Motor Co Ltd Electrode for solid oxide fuel cell, and its manufacturing method
JP2005310737A (en) * 2004-03-23 2005-11-04 Toto Ltd Solid oxide fuel cell
JP2005322547A (en) * 2004-05-11 2005-11-17 Toho Gas Co Ltd Low-temperature operation type solid oxide fuel cell unit battery cell
JP2006073230A (en) * 2004-08-31 2006-03-16 Kyocera Corp Fuel cell
JP2006134871A (en) * 2004-10-06 2006-05-25 Matsushita Electric Ind Co Ltd Solid electrolyte

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272291A (en) * 2008-02-08 2009-11-19 Nippon Telegr & Teleph Corp <Ntt> Solid-oxide fuel cell
JP2010177096A (en) * 2009-01-30 2010-08-12 Nippon Telegr & Teleph Corp <Ntt> Method for manufacturing air electrode for solid oxide fuel cell and solid oxide fuel cell
JP2010177097A (en) * 2009-01-30 2010-08-12 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell
KR101060630B1 (en) * 2009-01-30 2011-08-31 연세대학교 산학협력단 Solid Oxide Electrolyte and Manufacturing Method Thereof
JP2011233286A (en) * 2010-04-26 2011-11-17 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell
KR101353642B1 (en) * 2011-12-09 2014-01-21 주식회사 포스코 Solid oxide fuel cell having reaction preventing layer and method for manufacturing the same
CN113540489A (en) * 2021-05-15 2021-10-22 山东工业陶瓷研究设计院有限公司 Barrier layer slurry, preparation method, barrier layer preparation method and battery monomer
CN113745531A (en) * 2021-09-14 2021-12-03 北京思伟特新能源科技有限公司 High-performance solid oxide electrolytic cell and preparation method thereof

Also Published As

Publication number Publication date
JP4796895B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
JP4796895B2 (en) Ceria buffer layer for air electrode of solid oxide fuel cell and method for producing the same
WO2007061043A1 (en) Solid oxide fuel cell
JP5225336B2 (en) Fuel cell and fuel cell
JP4972468B2 (en) Solid oxide fuel cell
JP5791552B2 (en) FUEL CELL AND METHOD FOR PRODUCING LAMINATED SINTERED BODY
JP4912576B2 (en) Fuel cell
JP2011119178A (en) Solid oxide fuel cell
JP2001332122A (en) Oxide ion conducting material, its manufacturing method, and fuel cell using it
JP2010225363A (en) Solid oxide fuel cell
JP5336207B2 (en) Solid oxide fuel cell
JP2006351406A (en) Air electrode powder for ceria coated sofc, its manufacturing method, and manufacturing method of air electrode
JP2007335193A (en) Ceria layer for air electrode of solid oxide fuel cell, and its manufacturing method
JP2011142042A (en) Power generation cell for solid oxide fuel battery and its manufacturing method
JP5226656B2 (en) Solid oxide fuel cell and method for producing solid oxide fuel cell
JP2007200664A (en) Method of manufacturing solid oxide fuel cell
JP2012074306A (en) Power generation cell for solid oxide fuel cell
JP5005431B2 (en) Solid oxide fuel cell
JP4795701B2 (en) Solid oxide fuel cell and method for producing solid oxide fuel cell
JP5390655B2 (en) Solid oxide fuel cell
JP6836156B2 (en) Fuel cell
JP5350893B2 (en) Solid oxide fuel cell
JP5133787B2 (en) Solid oxide fuel cell
JP2013051043A (en) Fuel electrode for fuel battery, and method of manufacturing the same
JP6088949B2 (en) Fuel cell single cell and manufacturing method thereof
JP5117834B2 (en) Solid oxide fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

R150 Certificate of patent or registration of utility model

Ref document number: 4796895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees