JP2007319795A - Catalyst for purifying exhaust gas and its production method - Google Patents

Catalyst for purifying exhaust gas and its production method Download PDF

Info

Publication number
JP2007319795A
JP2007319795A JP2006153509A JP2006153509A JP2007319795A JP 2007319795 A JP2007319795 A JP 2007319795A JP 2006153509 A JP2006153509 A JP 2006153509A JP 2006153509 A JP2006153509 A JP 2006153509A JP 2007319795 A JP2007319795 A JP 2007319795A
Authority
JP
Japan
Prior art keywords
particles
buffer material
exhaust gas
oxide
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006153509A
Other languages
Japanese (ja)
Other versions
JP5217116B2 (en
Inventor
Kazuyuki Shiratori
一幸 白鳥
Katsuo Suga
克雄 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006153509A priority Critical patent/JP5217116B2/en
Publication of JP2007319795A publication Critical patent/JP2007319795A/en
Application granted granted Critical
Publication of JP5217116B2 publication Critical patent/JP5217116B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for purifying an exhaust gas which is excellent in heat endurance. <P>SOLUTION: The catalyst 1 for purifying the exhaust gas has a Rh particle 2, a porous buffer material 3 which is formed around a Rh particle 2 and supports the Rh particle 2, and an oxide 4 which is formed around the Rh particle 2 and the buffer material 3 and is substantially not solid-soluble in the buffer material. The buffer material 3 is a material which consists of a material capable of making a composite with the Rh particle 2 and can secure the gas diffusibility. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車のエンジンから排出される排ガスを浄化する排ガス浄化用触媒及びその製造方法に関する。   The present invention relates to an exhaust gas purifying catalyst for purifying exhaust gas discharged from an automobile engine and a method for manufacturing the same.

環境保全意識の高まりに伴い、自動車等の排ガス量についての規制が強化されている。そのため、自動車のエンジンから排出される排ガスを浄化する排ガス浄化用触媒の性能向上を図る研究が各種行われている。   With increasing awareness of environmental conservation, regulations on the amount of exhaust gas from automobiles and the like have been strengthened. For this reason, various studies have been conducted to improve the performance of exhaust gas purifying catalysts that purify exhaust gas discharged from automobile engines.

排ガス浄化用触媒は、通常、アルミナ(Al)等よりなる粒状の金属酸化物の担体表面に、白金(Pt)やパラジウム(Pd)やロジウム(Rh)等の貴金属の微粒子を担持した構成を有していて、これらの貴金属粒子の触媒作用により、排ガス中に含まれる未燃焼炭化水素(HC)や一酸化炭素(CO)や窒素酸化物(NO)等の有害なガスを、無害な水やガスに変換している。 The exhaust gas purifying catalyst usually carries fine particles of noble metal such as platinum (Pt), palladium (Pd) and rhodium (Rh) on the surface of a granular metal oxide carrier made of alumina (Al 2 O 3 ) or the like. Due to the catalytic action of these noble metal particles, harmful gases such as unburned hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NO x ) contained in the exhaust gas, It is converted into harmless water and gas.

排ガス浄化用触媒に用いられる貴金属のなかでも、Rhは、低温浄化性能に優れていることから、排ガス浄化用触媒に含有される貴金属である。このRhを含む排ガス浄化用触媒に関し、Rhを担持する化合物として低熱劣化性セリア(CeO)−ジルコニア(ZrO)複合酸化物を用いたものがある(例えば、特許文献1)。この複合酸化物中のセリアは、酸素吸蔵放出能を有するため、貴金属粒子の近傍に位置させることで、助触媒としての機能、具体的には、排ガスの雰囲気の変動による浄化性能の変動を抑制する機能を有する。そのため、ロジウムを担持する化合物としてセリアを含む複合酸化物を用いた排ガス浄化用触媒は、Ce酸化物の酸素吸放出効果が発揮され、貴金属粒子周辺の雰囲気変動を緩和し、触媒の活性が高まり、ひいては排ガス浄化用触媒の性能を向上させることができる。
特開2004−298813号公報
Among the noble metals used for the exhaust gas purification catalyst, Rh is a noble metal contained in the exhaust gas purification catalyst because of its excellent low-temperature purification performance. As for the exhaust gas-purifying catalyst containing Rh, there is one using a low heat-degradable ceria (CeO 2 ) -zirconia (ZrO 2 ) composite oxide as a compound supporting Rh (for example, Patent Document 1). Ceria in this composite oxide has oxygen storage and release capacity, so it is located near the noble metal particles, thereby suppressing the function as a co-catalyst, specifically, purification performance fluctuations due to fluctuations in the exhaust gas atmosphere. It has the function to do. Therefore, the exhaust gas purifying catalyst using a complex oxide containing ceria as a compound supporting rhodium exhibits the effect of absorbing and releasing oxygen of Ce oxide, alleviates the atmospheric fluctuation around noble metal particles, and increases the activity of the catalyst. As a result, the performance of the exhaust gas purifying catalyst can be improved.
Japanese Patent Laid-Open No. 2004-289813

しかしながら、Rhを担持する化合物にCeO(セリア)を含む複合酸化物を用いた従来の排ガス浄化用触媒は、このCe酸化物が排ガス浄化用触媒中でRhと接触していることにより、Rhの酸化が促進され、触媒性能が低下する場合があった。 However, a conventional exhaust gas purification catalyst using a composite oxide containing CeO 2 (ceria) as a compound supporting Rh is in contact with Rh in the exhaust gas purification catalyst. Oxidation of the catalyst was promoted, and the catalyst performance sometimes deteriorated.

また、排ガス浄化用触媒の性能を高めるために、排ガス浄化用触媒中の貴金属粒子の粒径は調整直後はできるだけ小さく担持されているが、排ガス浄化用触媒の使用時、つまり高温の酸化雰囲気と還元雰囲気とが交互に繰り返す雰囲気中に晒されているうちに、近隣する貴金属粒子が互いに凝集、合体して数十nmに粗大化してしまい、貴金属粒子の表面積が低下して有害物質の浄化率が経時的に低下することがあった。また、Rh等の貴金属粒子をセリアを含む複合酸化物に担持させた触媒においては、排ガス雰囲気では熱劣化に加え、高温水蒸気によりZr−O結合やCe−O結合の分解が生じることにより、通常の空気気流下などと比較して、セリアを含む複合酸化物の担体の凝集が進行し易いと考えられる。このような凝集によりRh粒子周囲でガス拡散性が低下し、排ガスがRh粒子に十分には接触できなくなって、経時的に触媒性能が低下することがあった。   In order to improve the performance of the exhaust gas purification catalyst, the particle size of the noble metal particles in the exhaust gas purification catalyst is supported as small as possible immediately after adjustment. While being exposed to an atmosphere that alternates with the reducing atmosphere, neighboring noble metal particles agglomerate and coalesce with each other and coarsen to several tens of nm, reducing the surface area of the noble metal particles and reducing the harmful substances Sometimes decreased over time. In addition, in a catalyst in which noble metal particles such as Rh are supported on a composite oxide containing ceria, in addition to thermal degradation in an exhaust gas atmosphere, decomposition of Zr-O bonds and Ce-O bonds is caused by high-temperature steam, It is considered that the aggregation of the carrier of the complex oxide containing ceria is more likely to proceed than in an air stream of Due to such agglomeration, the gas diffusibility is reduced around the Rh particles, and the exhaust gas cannot sufficiently contact the Rh particles, and the catalyst performance may deteriorate with time.

上述した問題を有利に解決する本発明の排ガス浄化用触媒は、Rh粒子と、このRh粒子の周囲に形成され、当該Rh粒子を担持する多孔質の緩衝材と、このRh粒子及び緩衝材の周囲に形成され、この緩衝材とは実質的に非固溶な酸化物とをそなえ、前記緩衝材は、Rh粒子と複合化可能な材料よりなることを要旨とする。   The exhaust gas purifying catalyst of the present invention that advantageously solves the above-described problems includes Rh particles, a porous buffer material formed around the Rh particles and carrying the Rh particles, and the Rh particles and the buffer material. The gist of the present invention is that the buffer material is formed of a material that can be combined with Rh particles.

また、本発明の排ガス浄化用触媒の製造方法は、Rh粒子と、このRh粒子の周囲に形成され、当該Rh粒子を担持する多孔質の緩衝材と、この緩衝材及び前記Rh粒子の周囲に形成され、この緩衝材とは実質的に非固溶な酸化物とをそなえる排ガス浄化用触媒の製造方法であって、Rh前駆体と緩衝材前駆体とを混合しRh−緩衝材ユニットを形成する工程を含み、更には該ユニットを酸化物前駆体と混合して該ユニットを酸化物で包接する工程を含むことを要旨とする。   Further, the method for producing an exhaust gas purifying catalyst of the present invention includes Rh particles, a porous buffer material formed around the Rh particles, and supporting the Rh particles, and the buffer material and the Rh particles. A method for producing an exhaust gas purifying catalyst having a substantially non-solid oxide, which is formed by mixing a Rh precursor and a buffer material precursor to form a Rh-buffer material unit. And further including a step of mixing the unit with an oxide precursor to include the unit with an oxide.

本発明に係る排ガス浄化用触媒によれば、貴金属粒子の酸化を抑制して触媒活性の低下を防止するとともに、貴金属粒子の移動、凝集を抑制し、製造コストや環境負荷を大きくすることなく、貴金属粒子の活性向上効果を維持することができる。   According to the exhaust gas purifying catalyst according to the present invention, the oxidation of the noble metal particles is suppressed to prevent a decrease in the catalytic activity, the movement and aggregation of the noble metal particles are suppressed, and the production cost and the environmental load are not increased. The effect of improving the activity of the noble metal particles can be maintained.

本発明に係る排ガス浄化用触媒の製造方法によれば、本発明に係る排ガス浄化用触媒を確実に安定して製造することができる。   According to the method for producing an exhaust gas purification catalyst according to the present invention, the exhaust gas purification catalyst according to the present invention can be produced reliably and stably.

以下、本発明の排ガス浄化用触媒の実施形態を図面を用いつつ説明する。   Hereinafter, embodiments of the exhaust gas purifying catalyst of the present invention will be described with reference to the drawings.

図1は、本発明に係る排ガス浄化用触媒の微視的な最小構成の一例の模式図である。同図において、排ガス浄化用触媒1は、排ガスに接触して有害成分を浄化させる活性金属の粒子であるRh粒子2と、このRh粒子2の周囲に形成され、このRh粒子2を担持する多孔質の緩衝材3と、Rh粒子2を担持した緩衝材3の周囲に形成された酸化物4とを有している。緩衝材3はRhと複合可能な材料よりなり、酸化物4は、緩衝材3とは実質的に非固溶な酸化物である。   FIG. 1 is a schematic view of an example of a microscopic minimum configuration of an exhaust gas purifying catalyst according to the present invention. In the figure, an exhaust gas purifying catalyst 1 is formed of Rh particles 2 that are active metal particles that come into contact with exhaust gas to purify harmful components, and a porous material that is formed around the Rh particles 2 and carries the Rh particles 2. It has a quality buffer material 3 and an oxide 4 formed around the buffer material 3 carrying the Rh particles 2. The buffer material 3 is made of a material that can be combined with Rh, and the oxide 4 is an oxide that is substantially insoluble in the buffer material 3.

触媒活性を有するRh粒子2を担持する担体は、Rh粒子2の酸化を抑制すべく、Rh粒子2と活性酸素の授受や化合物の形成を行わない化合物であることが好ましい。この点で、例えばZr酸化物の粒子は、好ましい化合物である。Zr酸化物を主成分とする粒子のような、活性酸素の授受や化合物の形成を行わない化合物担体上にRh粒子2を担持すれば、その化合物担体の一次粒子が、クラスター状にRh粒子2の周囲を取り囲むことになる。したがって、Rh粒子2同士の接触、移動を阻害する役割を果たすことができる。このことにより、Rh粒子2の凝集を抑制し、ひいてはRh粒子2の活性表面積の低下を抑制することで高温、長時間使用後も優れた触媒活性を維持することが可能となる。   The carrier supporting the Rh particles 2 having catalytic activity is preferably a compound that does not exchange active oxygen with the Rh particles 2 or form a compound in order to suppress oxidation of the Rh particles 2. In this respect, for example, Zr oxide particles are a preferred compound. If Rh particles 2 are supported on a compound carrier that does not give or receive active oxygen or form a compound, such as particles mainly composed of Zr oxide, the primary particles of the compound carrier become Rh particles 2 in clusters. Will be surrounded. Therefore, it can play a role of inhibiting contact and movement between the Rh particles 2. As a result, it is possible to maintain excellent catalytic activity even after high temperature use for a long period of time by suppressing aggregation of the Rh particles 2 and thus suppressing a decrease in the active surface area of the Rh particles 2.

もっとも、このRh粒子2を、活性酸素の授受や化合物の形成を行わない化合物担体上に直接的に担持しただけでは、この化合物担体が、排ガスを浄化する環境下では熱及び高温の水蒸気に晒されて凝集することにより、Rh粒子2の周囲のガス拡散性が悪化してしまうことがある。Rh粒子2周囲のガス拡散性が悪化すると、Rh粒子2に接触する排ガス量が低下するので、触媒活性が低下してしまう。   However, if the Rh particles 2 are directly supported on a compound carrier that does not exchange active oxygen or form a compound, the compound carrier is exposed to heat and high-temperature water vapor in an environment for purifying exhaust gas. As a result, the gas diffusibility around the Rh particles 2 may deteriorate. When the gas diffusibility around the Rh particles 2 is deteriorated, the amount of exhaust gas in contact with the Rh particles 2 is reduced, so that the catalytic activity is lowered.

そこで、本発明に係る排ガス浄化用触媒1は、Rh粒子2と、活性酸素の授受や化合物の形成を行わない化合物である酸化物4との間に、このRh粒子2周囲のガス拡散性を維持するための緩衝材3が形成されている。この緩衝材3は、例えば多孔質粒子の集合物であって、その粒子自体に形成されている一次細孔及び粒子間に形成されている二次細孔(メソ細孔)により、全体として多孔質の材料となっている。この多孔質の材料は、後で詳述するが、このRh粒子と複合化可能な材料が適合する。   Therefore, the exhaust gas purifying catalyst 1 according to the present invention has a gas diffusivity around the Rh particles 2 between the Rh particles 2 and the oxide 4 which is a compound that does not exchange active oxygen or form a compound. The buffer material 3 for maintaining is formed. The buffer material 3 is an aggregate of porous particles, for example, and is porous as a whole by primary pores formed in the particles themselves and secondary pores (mesopores) formed between the particles. It is a quality material. The porous material will be described in detail later, but a material that can be combined with the Rh particles is suitable.

本実施形態の排ガス浄化用触媒は、多孔質の緩衝材3を、Rh粒子2の周囲に形成させ、この緩衝材3の周囲に酸化物4を形成させた構造とすることにより、酸化物4が凝集したとしても、この緩衝材3の細孔を通して排ガスはRh粒子2に容易に到達するので、Rh粒子2周囲のガス拡散性が維持される。したがって、本実施形態の排ガス浄化用触媒は、高温、長時間使用後においても排ガス浄化性能の低下の少ない、優れた触媒活性を有する排ガス浄化用触媒である。   The exhaust gas purifying catalyst of the present embodiment has a structure in which the porous buffer material 3 is formed around the Rh particles 2, and the oxide 4 is formed around the buffer material 3. Even if agglomerates, the exhaust gas easily reaches the Rh particles 2 through the pores of the buffer material 3, so that the gas diffusibility around the Rh particles 2 is maintained. Therefore, the exhaust gas purifying catalyst of the present embodiment is an exhaust gas purifying catalyst having excellent catalytic activity with little deterioration in exhaust gas purifying performance even after high temperature and long time use.

緩衝材3の作用効果のためには、本実施形態の排ガス浄化用触媒において、Rh粒子2の80%以上が緩衝材3と接していることが好ましい。Rh粒子2の80%以上が緩衝材3と接していることにより、触媒使用の経時後も酸化物4の凝集によるガス拡散性の低下が効果的に抑制され、高い触媒活性を維持することが可能である。80%に満たないと、Rh粒子2が酸化物4の凝集に巻き込まれ易くなり、触媒の使用の経時後に、Rh粒子2の周囲が酸化物4で覆われ、排ガス中の有害ガス成分が、触媒活性を有するRh粒子2に到達できず、触媒活性が低下する。このRh粒子2の緩衝材3への接触率は、例えば、TEM−EDXにより、所定領域内に存在するRh粒子2と緩衝材3との量比を測定し、この量比を、排ガス浄化用触媒中のRh粒子2及び緩衝材3の含有量比と対比することにより求めることができる。   In order to achieve the effect of the buffer material 3, it is preferable that 80% or more of the Rh particles 2 are in contact with the buffer material 3 in the exhaust gas purifying catalyst of the present embodiment. Since 80% or more of the Rh particles 2 are in contact with the buffer material 3, a decrease in gas diffusibility due to the aggregation of the oxide 4 can be effectively suppressed even after the catalyst is used, and high catalytic activity can be maintained. Is possible. If it is less than 80%, the Rh particles 2 are likely to be involved in the aggregation of the oxide 4, and after use of the catalyst, the periphery of the Rh particles 2 is covered with the oxide 4, and harmful gas components in the exhaust gas are The Rh particles 2 having catalytic activity cannot be reached, and the catalytic activity decreases. The contact ratio of the Rh particles 2 to the buffer material 3 is determined, for example, by measuring the quantity ratio between the Rh particles 2 and the buffer material 3 existing in a predetermined region by TEM-EDX, and using this quantity ratio for exhaust gas purification. It can be determined by comparing with the content ratio of the Rh particles 2 and the buffer material 3 in the catalyst.

緩衝材3は、Rh粒子2と複合化可能な材料であるAl、SiO及びTiOから選ばれる少なくとも1種の酸化物を含むことが好ましい。これらの酸化物は、いずれも耐熱性に優れ、細孔を有することから、本発明に係る排ガス浄化用触媒における緩衝材3として好適である。これらの酸化物のなかでも、Alは、特に排ガス雰囲気のような高温かつ多量の水蒸気を含む条件下での耐熱性に優れ、多くの細孔を有することで、Rh粒子2周囲のガス拡散性を維持する緩衝材として優れている。緩衝材3は、上掲したAl、SiO及びTiOのうち1種類を含んでも良いし、2種類以上を複合して含んでもよい。また、緩衝材3は、これらの酸化物のほかに、副成分としてZrOやCeOを含むことができる。このZrOやCeOは、緩衝材3の耐熱性を向上させる材料であり、緩衝材3全体に対する割合で10mol%以下程度の量で含有させることができる。10mol%以下程度の量であれば、CeOを含む場合であっても、Rh粒子が高酸化状態にはならない。 The buffer material 3 preferably contains at least one oxide selected from Al 2 O 3 , SiO 2, and TiO 2 , which is a material that can be combined with the Rh particles 2. Since these oxides are all excellent in heat resistance and have pores, they are suitable as the buffer material 3 in the exhaust gas purifying catalyst according to the present invention. Among these oxides, Al 2 O 3 is particularly excellent in heat resistance under conditions including a high temperature and a large amount of water vapor such as an exhaust gas atmosphere, and has many pores. It is excellent as a buffer material that maintains gas diffusibility. The buffer material 3 may include one of Al 2 O 3 , SiO 2 and TiO 2 listed above, or may include two or more in combination. Also, the buffer member 3, in addition to these oxides, can be as an auxiliary component containing ZrO 2 and CeO 2. This ZrO 2 or CeO 2 is a material that improves the heat resistance of the buffer material 3, and can be contained in an amount of about 10 mol% or less with respect to the entire buffer material 3. If the amount is about 10 mol% or less, the Rh particles will not be in a highly oxidized state even when CeO 2 is contained.

緩衝材3に担持されるRh粒子2は、緩衝材3がAl、SiO及びTiOを含むものであるとき、これらの酸化物から活性酸素を受けて酸化されることが考えられるが、発明者らの研究により、緩衝材3とRh粒子2とのモル比を適切に調整することにより、Rh粒子2の触媒活性の低下を極力抑制できることが確認されている。このモル比については、後述する。 The Rh particles 2 supported on the buffer material 3 may be oxidized by receiving active oxygen from these oxides when the buffer material 3 contains Al 2 O 3 , SiO 2 and TiO 2 . It has been confirmed by the inventors' research that a decrease in the catalytic activity of the Rh particles 2 can be suppressed as much as possible by appropriately adjusting the molar ratio between the buffer material 3 and the Rh particles 2. This molar ratio will be described later.

酸化物4は、少なくともZrを含む酸化物であることが好ましい。より好ましくは、酸化物4の主成分がZrを含む酸化物であることである。ここでいう主成分とは、Zrが50mol%以上含まれることを指す。Rh粒子2は、Zrに対し反応性が低く、活性酸素の授受や複合化合物の生成が生じ難い。このため酸化物4の主成分がZrを含む酸化物であることにより、Rh粒子2の電子状態にほとんど影響を与えることがなく、Rh粒子2を活性なメタル状態か活性なRhの状態で維持することができる。また、酸化物4の主成分がZrを含む酸化物であることにより、この酸化物4は緩衝材3とは実質的に非固溶となり、よって高温、長時間での排ガス浄化処理後も、本発明の排ガス浄化用触媒の構造を維持することができる。酸化物4は、Zrを含む酸化物以外の酸化物を含むことができ、例えば、Nd、Pr、Y、La及びCeから選ばれる1種又は2種以上の金属の酸化物を含むことができる。ZrO単独では熱に対し結晶成長の早い単斜晶をとり易く、著しく比表面積が低下する傾向がある。このため、上掲した元素をmol%で1〜10%程度、好ましくは1〜7%程度の量でドープすることにより安定な正方晶又は立方晶へ転移させ、耐久性を高めることが可能である。 The oxide 4 is preferably an oxide containing at least Zr. More preferably, the main component of the oxide 4 is an oxide containing Zr. The main component here means that Zr is contained by 50 mol% or more. The Rh particles 2 have low reactivity with respect to Zr, and do not easily generate active oxygen or generate complex compounds. For this reason, since the main component of the oxide 4 is an oxide containing Zr, the Rh particles 2 are hardly affected by the Rh particles 2 in the active metal state or the active Rh 2 O 3 . Can be maintained in a state. In addition, since the main component of the oxide 4 is an oxide containing Zr, the oxide 4 becomes substantially non-solid solution with the buffer material 3, and thus after exhaust gas purification treatment at a high temperature for a long time, The structure of the exhaust gas purifying catalyst of the present invention can be maintained. The oxide 4 can include an oxide other than an oxide containing Zr. For example, the oxide 4 can include an oxide of one or more metals selected from Nd, Pr, Y, La, and Ce. . ZrO 2 alone tends to form a monoclinic crystal whose crystal growth is fast with respect to heat, and the specific surface area tends to decrease remarkably. For this reason, the elements listed above can be transformed into a stable tetragonal or cubic crystal by doping in an amount of about 1 to 10%, preferably about 1 to 7% in mol%, and durability can be improved. is there.

Rh粒子2の平均粒子径は2〜10nmであることが望ましい。これは、平均粒子径が2nmに満たないと、Rh粒子の急激な融点降下が起こり、シンタリングが発生し易くなるためである。また、平均粒子径が10nmを超えると、単位重量あたりの活性表面積が著しく低下し、その結果、十分な触媒活性が得られず、所望の触媒性能を確保するためにはより多くの量のRhを触媒中に使用する必要があるためである。   The average particle size of the Rh particles 2 is desirably 2 to 10 nm. This is because if the average particle diameter is less than 2 nm, a sharp melting point drop of Rh particles occurs and sintering is likely to occur. On the other hand, when the average particle diameter exceeds 10 nm, the active surface area per unit weight is remarkably reduced. As a result, sufficient catalytic activity cannot be obtained, and a larger amount of Rh is required to ensure desired catalyst performance. This is because it is necessary to use in the catalyst.

Rh粒子2の周囲に存在する緩衝材3と、このRh粒子2と緩衝材3とのモル比は、[緩衝材/Rh]としたとき、0.5〜3であることが望ましい。このモル比は、更には0.5〜2であることがより好ましい。このモル比が0.5未満ではRh粒子2を担持する緩衝材3の量が足りず、酸化物4中にRh粒子2が巻き込まれ、ガス拡散性が低下するおそれがある。また、モル比が3超では緩衝材3の量が多過ぎ、Rh粒子2と緩衝材3との酸化反応等が進行し易く、Rh粒子2が高酸化状態となって触媒活性が低下するおそれがある。モル比が0.5〜2の範囲であるときは特に、Rh粒子2の触媒活性の低下を招くことなく、優れたガス拡散性を維持することが可能である。   The molar ratio of the buffer material 3 present around the Rh particles 2 and the Rh particles 2 to the buffer material 3 is preferably 0.5 to 3 when [buffer material / Rh]. This molar ratio is more preferably 0.5-2. If the molar ratio is less than 0.5, the amount of the buffer material 3 supporting the Rh particles 2 is insufficient, and the Rh particles 2 are involved in the oxide 4 and the gas diffusibility may be lowered. On the other hand, if the molar ratio is more than 3, the amount of the buffer material 3 is too large, the oxidation reaction between the Rh particles 2 and the buffer material 3 easily proceeds, and the Rh particles 2 may be in a highly oxidized state and the catalytic activity may be reduced. There is. In particular, when the molar ratio is in the range of 0.5 to 2, it is possible to maintain excellent gas diffusibility without causing a decrease in the catalytic activity of the Rh particles 2.

本発明に係る排ガス浄化用触媒は、例えば、Rh前駆体と緩衝材前駆体とを混合しRh−緩衝材ユニットを形成する工程を含み、更には該ユニットを酸化物前駆体と混合して該ユニットを酸化物で包接する工程を経て、製造することができる。   The exhaust gas purifying catalyst according to the present invention includes, for example, a step of mixing an Rh precursor and a buffer material precursor to form an Rh-buffer material unit, and further mixing the unit with an oxide precursor to The unit can be manufactured through a process of inclusion with an oxide.

この製造工程においては、まず、Rh前駆体と緩衝材前駆体とを混合してRh−緩衝材ユニットを形成する。このRh前駆体としては、硝酸ロジウム溶液、ヘキサアンミンロジウム溶液、PVP−Rhコロイド、PEI−Rhコロイド等を任意に用いることができる。また、緩衝材の前駆体としては、アルミニウムイソプロポキシド、硝酸アルミニウム、アルミナゾル、ベーマイト、TEOS、シリカゾル、などを任意で用いることができる。   In this manufacturing process, first, an Rh-buffer material unit is formed by mixing an Rh precursor and a buffer material precursor. As this Rh precursor, a rhodium nitrate solution, a hexaammine rhodium solution, a PVP-Rh colloid, a PEI-Rh colloid, or the like can be arbitrarily used. Moreover, as a precursor of the buffer material, aluminum isopropoxide, aluminum nitrate, alumina sol, boehmite, TEOS, silica sol, and the like can be arbitrarily used.

次に、該ユニットを酸化物で包接する工程において用いる酸化物前駆体としては、硝酸塩、酢酸塩、水酸化物、ゾルなどを任意に用いることができる。   Next, as an oxide precursor used in the step of clathrating the unit with an oxide, nitrate, acetate, hydroxide, sol, or the like can be arbitrarily used.

本発明の排ガス浄化用触媒の製造方法においては、上記工程を含むことで、まず、Rh粒子前駆体周囲に緩衝材前駆体を形成し、しかる後に酸化物前駆体によりRh−緩衝材のユニットを包接することで、本発明に係る排ガス浄化用触媒を設計どおりに製造することができる。   In the method for producing an exhaust gas purifying catalyst of the present invention, by including the above-described steps, first, a buffer material precursor is formed around the Rh particle precursor, and then the Rh-buffer material unit is formed by the oxide precursor. By inclusion, the exhaust gas purifying catalyst according to the present invention can be manufactured as designed.

その後に焼成することにより排ガス浄化用触媒粉末を得る。この粉末はスラリー化し、ハニカム担体に塗布したのち、乾燥及び焼成することにより、排ガス浄化用触媒として使用される。   Thereafter, the catalyst powder for exhaust gas purification is obtained by firing. This powder is slurried, applied to a honeycomb carrier, dried and fired, and used as an exhaust gas purifying catalyst.

1.表層触媒粉末調製
[実施例1]
PVP−Rhコロイド(Rh粒径:2nm、Rh:2wt%)と、アルミナゾル(10wt%)とを純水中に分散させ、約1時間マグネットスターラにて攪拌した。更に、5%硝酸溶液を加えて適宜pHを調整することにより、Rhコロイド周囲にアルミナゾルが吸着したRh−アルミナ複合ゾルを得た。その一方で、酸化ジルコニウム−酸化ランタン複合化合物(比表面積:70m/g)を純水中に分散させたスラリを、ビーズミル(ビーズ径:0.1mm)により、レーザ回折散乱型粒度分布計でメジアン径が120nmになるよう粉砕した。このスラリ中に、先ほどのRh−アルミナ複合ゾルをゆっくりと混合し1時間攪拌した。この混合スラリを120℃のオイルバス中でエバポレータを用いて減圧下で水分を留去させ、得られた粉末を80℃で6時間、更に150℃で12時間乾燥した後に、550℃で2時間空気気流下で焼成した。
1. Preparation of surface layer catalyst powder [Example 1]
PVP-Rh colloid (Rh particle size: 2 nm, Rh: 2 wt%) and alumina sol (10 wt%) were dispersed in pure water and stirred with a magnetic stirrer for about 1 hour. Furthermore, by adding a 5% nitric acid solution and adjusting the pH appropriately, an Rh-alumina composite sol in which the alumina sol was adsorbed around the Rh colloid was obtained. On the other hand, a slurry in which a zirconium oxide-lanthanum oxide composite compound (specific surface area: 70 m 2 / g) is dispersed in pure water is subjected to a laser diffraction scattering type particle size distribution analyzer by a bead mill (bead diameter: 0.1 mm). It grind | pulverized so that a median diameter might be set to 120 nm. In this slurry, the Rh-alumina composite sol was slowly mixed and stirred for 1 hour. Water was distilled off from this mixed slurry in an oil bath at 120 ° C. under reduced pressure using an evaporator, and the resulting powder was dried at 80 ° C. for 6 hours and further at 150 ° C. for 12 hours, and then at 550 ° C. for 2 hours. Firing was performed under an air stream.

これによりRh粒子の周囲にアルミナが存在し、更にZr−La−O複合酸化物で覆われた触媒を得た。 As a result, an alumina was present around the Rh particles, and a catalyst covered with a Zr—La—O x composite oxide was obtained.

[実施例2]
PVP−Rhコロイド(Rh粒径:2nm、Rh:2wt%)とアルミナゾル(10wt%)とを純水中に分散させ、約1時間マグネットスターラにて攪拌した。更に、5%硝酸溶液を加えて適宜pHを調整することにより、Rhコロイド周囲にアルミナゾルが吸着したRh−アルミナ複合ゾルを得た。その一方で、酸化ジルコニウム−酸化セリウム複合化合物(比表面積70m/g)を純水中に分散させたスラリを、ボールミル(ボール径:10mm)で湿式粉砕によりメジアン径を2μm以下に粉砕した後、更にビーズミル(ビーズ径:0.1mm)により、レーザ回折散乱型粒度分布計でメジアン径が120nmになるよう粉砕した。このスラリ中に、先ほどのRh−アルミナ複合ゾルをゆっくりと混合し1時間攪拌した。この混合スラリを120℃のオイルバス中でエバポレータを用いて減圧下で水分を留去させ、得られた粉末を80℃で6時間、更に150℃で12時間乾燥した後に、550℃で2時間空気気流下で焼成した。
[Example 2]
PVP-Rh colloid (Rh particle size: 2 nm, Rh: 2 wt%) and alumina sol (10 wt%) were dispersed in pure water and stirred with a magnetic stirrer for about 1 hour. Furthermore, by adding a 5% nitric acid solution and adjusting the pH appropriately, an Rh-alumina composite sol in which the alumina sol was adsorbed around the Rh colloid was obtained. Meanwhile, after a slurry in which a zirconium oxide-cerium oxide composite compound (specific surface area 70 m 2 / g) is dispersed in pure water is pulverized to a median diameter of 2 μm or less by wet pulverization with a ball mill (ball diameter: 10 mm). Further, it was pulverized with a bead mill (bead diameter: 0.1 mm) with a laser diffraction / scattering particle size distribution meter so that the median diameter became 120 nm. In this slurry, the Rh-alumina composite sol was slowly mixed and stirred for 1 hour. Water was distilled off from this mixed slurry in an oil bath at 120 ° C. under reduced pressure using an evaporator, and the resulting powder was dried at 80 ° C. for 6 hours and further at 150 ° C. for 12 hours, and then at 550 ° C. for 2 hours. Firing was performed under an air stream.

これによりRh粒子の周囲にZr-Al-Ox複合酸化物が存在し、さらにZr−Ce−O複合酸化物で覆われた触媒を得た。 As a result, a Zr—Al—Ox composite oxide was present around the Rh particles, and a catalyst covered with the Zr—Ce—O x composite oxide was obtained.

[実施例3]
PVP−Rhコロイド(Rh粒径:2nm、Rh:2wt%)と、シリカゾル(10wt%)とを純水中に分散させ、約1時間マグネットスターラにて攪拌した。更に、5%硝酸溶液を加えて適宜pHを調整することにより、Rhコロイド周囲にシリカゾルが吸着したRh−シリカ複合ゾルを得た。その一方で、酸化ジルコニウム−酸化ランタン複合化合物(比表面積:70m/g)を純水中に分散させたスラリを、ボールミル(ボール径:10mm)で湿式粉砕によりメジアン径を2μm以下に粉砕した後、更にビーズミル(ビーズ径:0.1mm)により、レーザ回折散乱型粒度分布計でメジアン径が120nmになるよう粉砕した。このスラリ中に、先ほどのRh−シリカ複合ゾルをゆっくりと混合し1時間攪拌した。この混合スラリを120℃のオイルバス中でエバポレータを用いて減圧下で水分を留去させ、得られた粉末を80℃で6時間、更に150℃で12時間乾燥した後に、550℃で2時間空気気流下で焼成した。
[Example 3]
PVP-Rh colloid (Rh particle size: 2 nm, Rh: 2 wt%) and silica sol (10 wt%) were dispersed in pure water and stirred with a magnetic stirrer for about 1 hour. Furthermore, by adding a 5% nitric acid solution and adjusting the pH appropriately, an Rh-silica composite sol in which the silica sol was adsorbed around the Rh colloid was obtained. Meanwhile, a slurry in which a zirconium oxide-lanthanum oxide composite compound (specific surface area: 70 m 2 / g) was dispersed in pure water was pulverized to a median diameter of 2 μm or less by wet pulverization with a ball mill (ball diameter: 10 mm). Thereafter, the mixture was further pulverized with a bead mill (bead diameter: 0.1 mm) with a laser diffraction / scattering particle size distribution meter so that the median diameter became 120 nm. In this slurry, the Rh-silica composite sol was mixed slowly and stirred for 1 hour. Water was distilled off from this mixed slurry in an oil bath at 120 ° C. under reduced pressure using an evaporator, and the resulting powder was dried at 80 ° C. for 6 hours and further at 150 ° C. for 12 hours, and then at 550 ° C. for 2 hours. Firing was performed under an air stream.

これによりRh粒子の周囲にシリカが存在し、さらにZr−La−O複合酸化物で覆われた触媒を得た。 As a result, a catalyst in which silica was present around the Rh particles and covered with the Zr—La—O x composite oxide was obtained.

[実施例4]
PVP−Rhコロイド(Rh粒径:2nm、Rh:2wt%)と、アルミナゾル(10wt%)、セリアゾル(15wt%)とを純水中に分散させ、約1時間マグネットスターラにて攪拌した。更に、5%硝酸溶液を加えて適宜pHを調整することにより、Rhコロイド周囲にアルミナゾルとセリアゾルとが吸着したRh−アルミナ−セリア複合ゾルを得た。その一方で、酸化ジルコニウム−酸化ランタン複合化合物(比表面積:70m/g)を純水中に分散させ、このスラリをボールミル(ボール径:10mm)で湿式粉砕によりメジアン径を2μm以下に粉砕した後、更にビーズミル(ビーズ径:0.1mm)により、レーザ回折散乱型粒度分布計でメジアン径が120nmになるよう粉砕した。このスラリ中に、先ほどのRh−アルミナ−セリア複合ゾルをゆっくりと混合し1時間攪拌した。この混合スラリを120℃のオイルバス中でエバポレータを用いて減圧下で水分を留去させ、得られた粉末を80℃で6時間、更に150℃で12時間乾燥した後に、550℃で2時間空気気流下で焼成した。
[Example 4]
PVP-Rh colloid (Rh particle size: 2 nm, Rh: 2 wt%), alumina sol (10 wt%), and ceria sol (15 wt%) were dispersed in pure water and stirred with a magnetic stirrer for about 1 hour. Further, a 5% nitric acid solution was added to adjust the pH appropriately to obtain an Rh-alumina-ceria composite sol in which the alumina sol and ceria sol were adsorbed around the Rh colloid. Meanwhile, a zirconium oxide-lanthanum oxide composite compound (specific surface area: 70 m 2 / g) was dispersed in pure water, and the slurry was pulverized to a median diameter of 2 μm or less by wet pulverization with a ball mill (ball diameter: 10 mm). Thereafter, the mixture was further pulverized with a bead mill (bead diameter: 0.1 mm) with a laser diffraction / scattering particle size distribution meter so that the median diameter became 120 nm. In this slurry, the Rh-alumina-ceria composite sol was slowly mixed and stirred for 1 hour. Water was distilled off from this mixed slurry in an oil bath at 120 ° C. under reduced pressure using an evaporator, and the resulting powder was dried at 80 ° C. for 6 hours and further at 150 ° C. for 12 hours, and then at 550 ° C. for 2 hours. Firing was performed under an air stream.

これによりRh粒子の周囲にアルミナ及びセリアが存在し、さらにZr−La−O複合酸化物で覆われた触媒を得た。 As a result, alumina and ceria were present around the Rh particles, and a catalyst covered with a Zr—La—O x composite oxide was obtained.

[実施例5]
PVP−Rhコロイド(Rh粒径:2nm、Rh:2wt%)と、チタニアゾル(10wt%)とを純水中に分散させ、約1時間マグネットスターラにて攪拌した。更に、5%硝酸溶液を加えて適宜pHを調整することにより、Rhコロイド周囲にチタニアゾルが吸着したRh−チタニア複合ゾルを得た。その一方で、酸化ジルコニウム−酸化ランタン複合化合物(比表面積:70m/g)を純水中に分散させたスラリを、ボールミル(ボール径:10mm)で湿式粉砕によりメジアン径を2μm以下に粉砕した後、更にビーズミル(ビーズ径:0.1mm)により、レーザ回折散乱型粒度分布計でメジアン径が120nmになるよう粉砕した。このスラリ中に、先ほどのRh−チタニア複合ゾルをゆっくりと混合し1時間攪拌した。この混合スラリを120℃のオイルバス中でエバポレータを用いて減圧下で水分を留去させ、得られた粉末を80℃で6時間、更に150℃で12時間乾燥した後に、550℃で2時間空気気流下で焼成した。
[Example 5]
PVP-Rh colloid (Rh particle size: 2 nm, Rh: 2 wt%) and titania sol (10 wt%) were dispersed in pure water and stirred with a magnetic stirrer for about 1 hour. Further, by adjusting the pH appropriately by adding a 5% nitric acid solution, an Rh-titania composite sol in which the titania sol was adsorbed around the Rh colloid was obtained. Meanwhile, a slurry in which a zirconium oxide-lanthanum oxide composite compound (specific surface area: 70 m 2 / g) was dispersed in pure water was pulverized to a median diameter of 2 μm or less by wet pulverization with a ball mill (ball diameter: 10 mm). Thereafter, the mixture was further pulverized with a bead mill (bead diameter: 0.1 mm) with a laser diffraction / scattering particle size distribution meter so that the median diameter became 120 nm. In this slurry, the Rh-titania composite sol was slowly mixed and stirred for 1 hour. Water was distilled off from this mixed slurry in an oil bath at 120 ° C. under reduced pressure using an evaporator, and the resulting powder was dried at 80 ° C. for 6 hours and further at 150 ° C. for 12 hours, and then at 550 ° C. for 2 hours. Firing was performed under an air stream.

これによりRh粒子の周囲にチタニアが存在し、更にZr−La−O複合酸化物で覆われた触媒を得た。 As a result, a catalyst in which titania was present around the Rh particles and was further covered with a Zr—La—O x composite oxide was obtained.

[比較例1]
硝酸ロジウム硝酸酸性溶液(Rh:8.1wt%)と純水とを混合し、市販の酸化ジルコニア−酸化ランタン複合酸化物(比表面積:70m/g)をこの溶液中に分散させ、約2時間マグネットスターラで攪拌した。溶媒を留去した後、150℃で12時間乾燥し、400℃で1時間空気気流下で焼成した。
[Comparative Example 1]
A rhodium nitrate acidic solution (Rh: 8.1 wt%) and pure water are mixed, and a commercially available zirconia oxide-lanthanum oxide composite oxide (specific surface area: 70 m 2 / g) is dispersed in this solution. Stir with a magnetic stirrer for hours. After distilling off the solvent, it was dried at 150 ° C. for 12 hours and calcined at 400 ° C. for 1 hour in an air stream.

これにより酸化ランタン−ジルコニウム上にRh粒子が担持された触媒を得た。   As a result, a catalyst having Rh particles supported on lanthanum oxide-zirconium was obtained.

[比較例2]
硝酸ロジウム硝酸酸性溶液(Rh:8.1wt%)と純水とを混合し、市販の酸化ジルコニウム−酸化セリウム複合酸化物(比表面積:70m/g)をこの溶液中に分散させ、約2時間マグネットスターラで攪拌した。溶媒を留去した後、150℃で12時間乾燥し、400℃で1時間空気気流下で焼成した。
[Comparative Example 2]
A rhodium nitrate acidic solution (Rh: 8.1 wt%) and pure water are mixed, and a commercially available zirconium oxide-cerium oxide composite oxide (specific surface area: 70 m 2 / g) is dispersed in this solution. Stir with a magnetic stirrer for hours. After distilling off the solvent, it was dried at 150 ° C. for 12 hours and calcined at 400 ° C. for 1 hour in an air stream.

これにより酸化ジルコニウム−酸化セリウム上にRh粒子が担持された触媒を得た。   As a result, a catalyst having Rh particles supported on zirconium oxide-cerium oxide was obtained.

2.内層触媒粉末調製
硝酸セリウム6水和物を純水中に溶解させた溶液中に、活性アルミナ(比表面積100m/g)を分散させ、約2時間マグネットスターラにて攪拌した。溶媒を留去した後、150℃で12時間乾燥し、空気気流下にて400℃、1時間焼成を行った。この粉末をジニトロジアミン白金硝酸酸性水溶液(Pt:8.83wt%)と純水とを混合した溶液中に分散させてマグネットスターラにて2時間攪拌した。溶媒を留去した後、150℃で12時間乾燥し、空気気流下にて400℃、1時間焼成を行い、Ptを担持した酸化セリウム−アルミナを得た。
2. Preparation of inner layer catalyst powder Activated alumina (specific surface area 100 m 2 / g) was dispersed in a solution of cerium nitrate hexahydrate dissolved in pure water, and stirred for about 2 hours with a magnetic stirrer. After the solvent was distilled off, it was dried at 150 ° C. for 12 hours, and baked in an air stream at 400 ° C. for 1 hour. This powder was dispersed in a mixed solution of dinitrodiamine platinum nitrate acidic aqueous solution (Pt: 8.83 wt%) and pure water and stirred with a magnetic stirrer for 2 hours. After the solvent was distilled off, it was dried at 150 ° C. for 12 hours, and baked at 400 ° C. for 1 hour in an air stream to obtain cerium oxide-alumina carrying Pt.

3.ハニカム状基体へのコート層の作成
上述した内層触媒粉末調製の操作で得られた触媒粉末を363.6g、ベーマイトを50.9g、10%硝酸を42.0g、イオン交換水を575.3g、磁性ポットに投入し、アルミナボールとともに振とう粉砕し、内層用触媒スラリーを得た。このときのスラリ粒径は2.8μmであった。
3. Preparation of coat layer on honeycomb substrate 363.6 g of catalyst powder obtained by the above-described operation of preparing the inner layer catalyst powder, 50.9 g of boehmite, 42.0 g of 10% nitric acid, 575.3 g of ion-exchanged water, It was put into a magnetic pot and shaken and pulverized with alumina balls to obtain an inner layer catalyst slurry. The slurry particle size at this time was 2.8 μm.

また、前述した表層触媒粉末調製の操作で得られた各実施例及び各比較例の触媒粉末をそれぞれ363.6g、ベーマイトを50.9g、10%硝酸を42.0g、イオン交換水を575.3g、磁性ポットに投入し、アルミナボールとともに振とう粉砕し、各表層用触媒スラリーを得た。このときのスラリ粒径は2.8μmであった。   In addition, 363.6 g of each of the catalyst powders obtained in the above-described preparation of the surface catalyst powder and the comparative examples, 50.9 g of boehmite, 42.0 g of 10% nitric acid, and 575. 3 g was put into a magnetic pot and shaken and ground together with alumina balls to obtain catalyst slurry for each surface layer. The slurry particle size at this time was 2.8 μm.

上記内層用触媒スラリをセラミック製、ハニカム担体(400セル/6ミル、1.2L)に投入し、空気流にて、余剰スラリを除去し、120℃にて乾燥、400℃、空気気流中で焼成した。コート量は100g/Lであった。次に、上記表層用触媒スラリをそれぞれ同様に塗布した。コート量は100g/Lであった。   The above inner layer catalyst slurry is put into a ceramic honeycomb support (400 cell / 6 mil, 1.2 L), excess slurry is removed by air flow, dried at 120 ° C., 400 ° C. in an air stream Baked. The coating amount was 100 g / L. Next, the catalyst slurry for the surface layer was applied in the same manner. The coating amount was 100 g / L.

以上の工程により、内層にPtが1.0g/L、表層には表1中にそれぞれ示された量のRhを含む各実施例及び各比較例の触媒を得た。すなわち、各々の触媒は、内層は共通のPtを含むコート層を持ち、表層には各実施例及び各比較例の成分とRhを含むコート層を有する。   Through the above-described steps, the catalyst of each Example and each Comparative Example including Pt of 1.0 g / L for the inner layer and the amount of Rh indicated in Table 1 for the surface layer was obtained. That is, in each catalyst, the inner layer has a common coating layer containing Pt, and the surface layer has a coating layer containing the components of each Example and each Comparative Example and Rh.

また、以下に述べる耐久試験を行う前の初期状態において、表層のロジウム粒子の粒径は、いずれも2nm以下であった。また、表層のコート層についてTEM−EDXを用いて調べたところ、実施例1〜5の試料はいずれも、ロジウム粒子の80%以上が、緩衝材上に存在していることが確認された。
In the initial state before the durability test described below, the particle size of the rhodium particles in the surface layer was 2 nm or less. Moreover, when it investigated using TEM-EDX about the coating layer of the surface layer, as for the sample of Examples 1-5, it was confirmed that 80% or more of rhodium particle | grains exist on a buffer material.

4.触媒の耐久試験
実施例及び比較例の各触媒について、耐久試験を行った。耐久試験は、日産自動車製V型6気筒エンジンの両バンクに各々1個の触媒コンバータを設置し、使用燃料に無鉛ガソリンを用い、触媒入口温度が850℃、50時間の条件で行った。この温度調整は、触媒入口温度が上記温度となるようコンバータの位置を調整することにより行った。
4). Endurance test of catalyst The endurance test was done about each catalyst of an Example and a comparative example. The endurance test was conducted under the conditions that one catalytic converter was installed in each bank of Nissan Motor's V-type 6-cylinder engine, unleaded gasoline was used as the fuel, and the catalyst inlet temperature was 850 ° C. for 50 hours. This temperature adjustment was performed by adjusting the position of the converter so that the catalyst inlet temperature was the above temperature.

5.触媒性能評価条件
上記耐久試験を施した触媒の一部をくり抜き、40ccとして、模擬排ガス流通装置に組み込んだ。次に、表2に示す組成のモデルガスを触媒に導入し、10℃/minの昇温速度で入口ガス温度を上昇させた。出口ガス組成を連続分析計にて測定し、得られた入口及び出口ガス濃度から、各温度での排ガス転化率を算出した。入口ガス濃度に対して出口ガス濃度が半分、すなわち転化率50%となる温度をT50と表し、HCの転化率50%温度をHC−T50として表1中に記載した。また、この表1には、耐久試験後のRh粒子の平均粒径及びRh粒子の周囲の緩衝材の接触率についても併記した。Rh粒子の平均粒径は、TEMにより測定したものである。またRh粒子周囲の緩衝材の接触率は、TEM−EDXにより、EDX同一スポット(5nm)内に存在するRhと緩衝材の比を測定することにより求めた。具体的には、スポットを10点とり、各点で測定したRhと緩衝材の比を、縦軸がRh(atm%)、横軸が緩衝材主元素(Al等)(atm%)とするグラフにして比の直線を求め、その直線のグラフ上の傾きの値を、触媒製造時に添加したRh量と緩衝材量とから求められる理論的な比の値を100とする百分率により接触率を計算した。例えば、触媒中の含有量についてRhが3atm%、Alが10atm%とした時、RhがAlと100%接触していれば比の直線の傾きは3/10=0.3である(これを100%とする。)。そして、実際にTEM−EDXにより計測して、得られた直線の傾きが2/10=0.2であるとき、接触率は0.2/0.3=0.67、すなわち、67%と計算できる。同様にして、各実施例及び各比較例の触媒についての接触率を求めた。
5). Catalyst Performance Evaluation Conditions A part of the catalyst subjected to the above durability test was cut out and incorporated into a simulated exhaust gas distribution device as 40 cc. Next, a model gas having the composition shown in Table 2 was introduced into the catalyst, and the inlet gas temperature was increased at a temperature increase rate of 10 ° C./min. The outlet gas composition was measured with a continuous analyzer, and the exhaust gas conversion rate at each temperature was calculated from the obtained inlet and outlet gas concentrations. The temperature at which the outlet gas concentration is half that of the inlet gas concentration, that is, the conversion rate is 50%, is expressed as T50, and the HC conversion rate temperature of 50% is shown in Table 1 as HC-T50. Table 1 also shows the average particle size of the Rh particles after the durability test and the contact ratio of the buffer material around the Rh particles. The average particle size of Rh particles is measured by TEM. The contact ratio of the buffer material around the Rh particles was determined by measuring the ratio of Rh and buffer material present in the same spot (5 nm) of EDX by TEM-EDX. Specifically, ten spots are taken, and the ratio of Rh to the buffer material measured at each point is Rh (atm%) on the vertical axis and the main element of the buffer material (Al, etc.) (atm%) on the horizontal axis. Obtain a straight line of the ratio in the graph, and calculate the contact ratio by the percentage with the value of the slope of the straight line as the theoretical ratio value obtained from the Rh amount and the buffer material amount added at the time of catalyst production being 100. Calculated. For example, when the Rh content is 3 atm% and the Al content is 10 atm% with respect to the content in the catalyst, the slope of the ratio straight line is 3/10 = 0.3 if Rh is 100% in contact with Al (this is 100%). And when actually measured by TEM-EDX and the slope of the obtained straight line is 2/10 = 0.2, the contact rate is 0.2 / 0.3 = 0.67, that is, 67%. Can be calculated. Similarly, the contact ratios for the catalysts of each Example and each Comparative Example were determined.

表1に示された触媒性能評価から分かるように、本発明に従う実施例1〜5は、緩衝材を有していない比較例1及び比較例2と比べて、耐久試験後のRh粒子が小さく、Rh粒子の凝集が抑制されていることがわかる。これは、実施例1〜5は、緩衝材がRh粒子の周囲に形成されていることから、Rh粒子同士の凝集が抑制されたためと考えられる。   As can be seen from the catalyst performance evaluation shown in Table 1, Examples 1 to 5 according to the present invention have smaller Rh particles after the endurance test compared to Comparative Example 1 and Comparative Example 2 that do not have a buffer material. It can be seen that aggregation of Rh particles is suppressed. This is probably because in Examples 1 to 5, the buffer material was formed around the Rh particles, and thus aggregation of the Rh particles was suppressed.

また、実施例1〜5は、緩衝材を有していない比較例1及び比較例2と比べて、HC−T50の温度が低く、耐久試験後においても、優れた排ガス浄化性能を具備していることが分かる。これは、緩衝材がRh粒子の周囲に形成されていることから、比較例1及び比較例2のように複合酸化物の凝集に伴ってガス拡散性が低下することがかったためと考えられる。   Moreover, Examples 1-5 are low in the temperature of HC-T50 compared with the comparative example 1 and the comparative example 2 which do not have a buffer material, and have comprised the exhaust gas purification performance outstanding after the endurance test. I understand that. This is probably because the buffer material is formed around the Rh particles, so that the gas diffusibility is likely to be lowered with the aggregation of the composite oxide as in Comparative Example 1 and Comparative Example 2.

本発明に係る排ガス浄化用触媒の微視的な最小構成の一例の模式図である。It is a schematic diagram of an example of the microscopic minimum structure of the exhaust gas purification catalyst which concerns on this invention.

符号の説明Explanation of symbols

1 排ガス浄化用触媒
2 Rh粒子
3 緩衝材
4 酸化物
DESCRIPTION OF SYMBOLS 1 Exhaust gas purification catalyst 2 Rh particle 3 Buffer material 4 Oxide

Claims (7)

Rh粒子と、
このRh粒子の周囲に形成され、当該Rh粒子を担持する多孔質の緩衝材と、
このRh粒子及び緩衝材の周囲に形成され、この緩衝材とは実質的に非固溶な酸化物とをそなえ、
前記緩衝材は、Rh粒子と複合化可能な材料よりなることを特徴とする排ガス浄化用触媒。
Rh particles,
A porous buffer formed around the Rh particles and carrying the Rh particles;
Formed around the Rh particles and the buffer material, the buffer material having a substantially non-solid oxide,
The said buffer material consists of material which can be combined with Rh particle | grains, The exhaust gas purification catalyst characterized by the above-mentioned.
前記Rh粒子の80%以上が前記緩衝材と接していることを特徴とする請求項1に記載の排ガス浄化用触媒。   The exhaust gas-purifying catalyst according to claim 1, wherein 80% or more of the Rh particles are in contact with the buffer material. 前記緩衝材は、Al、SiO及びTiOから選ばれる少なくとも1種の酸化物を含むことを特徴とする請求項1又は2に記載の排ガス浄化用触媒。 3. The exhaust gas purifying catalyst according to claim 1, wherein the buffer material includes at least one oxide selected from Al 2 O 3 , SiO 2, and TiO 2 . 前記酸化物は、少なくともZrを含むものであることを特徴とする請求項1〜3のいずれか1項に記載の排ガス浄化用触媒。   The exhaust gas-purifying catalyst according to any one of claims 1 to 3, wherein the oxide contains at least Zr. 前記Rh粒子の粒径が、2〜10nmであることを特徴とする請求項1〜4のいずれか1項に記載の排ガス浄化用触媒。   The exhaust gas purifying catalyst according to any one of claims 1 to 4, wherein the Rh particles have a particle size of 2 to 10 nm. 前記Rh粒子に対する前記緩衝材のモル比が、[緩衝材/Rh]としたとき、0.5〜3であることを特徴とする請求項1〜5のいずれか1項に記載の排ガス浄化用触媒。   6. The exhaust gas purifying apparatus according to claim 1, wherein a molar ratio of the buffer material to the Rh particles is 0.5 to 3 when [buffer material / Rh] is used. catalyst. Rh粒子と、このRh粒子の周囲に形成され、当該Rh粒子を担持する多孔質の緩衝材と、この緩衝材及び前記Rh粒子の周囲に形成され、この緩衝材とは実質的に非固溶な酸化物とをそなえる排ガス浄化用触媒の製造方法であって、
Rh前駆体と緩衝材前駆体とを混合しRh−緩衝材ユニットを形成する工程を含み、更には該ユニットを酸化物前駆体と混合して該ユニットを酸化物で包接する工程を含むことを特徴とする排ガス浄化用触媒の製造方法。
Rh particles, a porous buffer material formed around the Rh particles and supporting the Rh particles, and formed around the buffer material and the Rh particles. The buffer material is substantially insoluble. A method for producing an exhaust gas purifying catalyst comprising an oxide and comprising:
Mixing the Rh precursor and the buffer material precursor to form a Rh-buffer material unit, and further including the step of mixing the unit with the oxide precursor and including the unit with the oxide. A method for producing an exhaust gas purifying catalyst.
JP2006153509A 2006-06-01 2006-06-01 Exhaust gas purification catalyst Expired - Fee Related JP5217116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006153509A JP5217116B2 (en) 2006-06-01 2006-06-01 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006153509A JP5217116B2 (en) 2006-06-01 2006-06-01 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2007319795A true JP2007319795A (en) 2007-12-13
JP5217116B2 JP5217116B2 (en) 2013-06-19

Family

ID=38853025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006153509A Expired - Fee Related JP5217116B2 (en) 2006-06-01 2006-06-01 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP5217116B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014176848A (en) * 2008-08-27 2014-09-25 Umicore Shokubai Japan Co Ltd Exhaust gas purification catalyst and exhaust gas purification method using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06198178A (en) * 1992-12-28 1994-07-19 Nissan Motor Co Ltd Catalyst for purification of exhaust gas
JPH10216517A (en) * 1997-02-05 1998-08-18 Toyota Motor Corp Exhaust gas purifying catalyst and its production
JP2004216226A (en) * 2003-01-10 2004-08-05 Toyota Motor Corp Exhaust gas purification filter catalyst
JP2005111336A (en) * 2003-10-06 2005-04-28 Nissan Motor Co Ltd Heat-resistant catalyst and manufacturing method therefor
JP2005238027A (en) * 2004-02-24 2005-09-08 Nissan Motor Co Ltd Catalyst, exhaust gas cleaning catalyst, and catalyst production method
JP2006021144A (en) * 2004-07-08 2006-01-26 Nissan Motor Co Ltd Catalyst for cleaning exhaust gas and preparing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06198178A (en) * 1992-12-28 1994-07-19 Nissan Motor Co Ltd Catalyst for purification of exhaust gas
JPH10216517A (en) * 1997-02-05 1998-08-18 Toyota Motor Corp Exhaust gas purifying catalyst and its production
JP2004216226A (en) * 2003-01-10 2004-08-05 Toyota Motor Corp Exhaust gas purification filter catalyst
JP2005111336A (en) * 2003-10-06 2005-04-28 Nissan Motor Co Ltd Heat-resistant catalyst and manufacturing method therefor
JP2005238027A (en) * 2004-02-24 2005-09-08 Nissan Motor Co Ltd Catalyst, exhaust gas cleaning catalyst, and catalyst production method
JP2006021144A (en) * 2004-07-08 2006-01-26 Nissan Motor Co Ltd Catalyst for cleaning exhaust gas and preparing method therefor

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JPN6011026990; TAGO, T. et al: 'Synthesis of silica-coated rhodium nanoparticles in reversed micellar solution' J. Mater. Sci. Vol.37, No.5, 20020301, p.977-982 *
JPN6011026993; GRAF, C. et al: 'A General Method To Coat Colloidal Particles with Silica' Langmuir Vol.19, No.17, 20030711, p.6693-6700 *
JPN6011027004; DUN, H. et al: 'Layer-by-Layer Self-Assembly of Multilayer Zirconia Nanoparticles on Silica Spheres for HPLC Packing' Anal. Chem. Vol.76, No.17, 20040728, p.5016-5023 *
JPN6012018679; 触媒学会編: 触媒講座5 工学編4 触媒設計 , 19851210, p.88,89, 講談社 *
JPN7011001871; USKOKOVIC, V. et al: 'SYNTHESIS OF MATERIALS WITHIN REVERSE MICELLES' Surface Review and Letters Vol.12, No.2, 200504, p.239-277 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014176848A (en) * 2008-08-27 2014-09-25 Umicore Shokubai Japan Co Ltd Exhaust gas purification catalyst and exhaust gas purification method using the same

Also Published As

Publication number Publication date
JP5217116B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP5147687B2 (en) Exhaust gas purification catalyst and method for producing the same
JP6324953B2 (en) Mixed metal oxide composites for oxygen storage
JP4956801B2 (en) Exhaust gas purification catalyst and method for producing the same
WO2010023919A1 (en) Exhaust gas purification catalyst and exhaust gas purification method using same
JP2008168278A (en) Catalyst for cleaning exhaust gas and its manufacturing method
JP5014845B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method using such a catalyst
JP2019084467A (en) Exhaust gas purification catalyst
JP5526502B2 (en) Exhaust gas purification catalyst and method for producing the same
JP6482986B2 (en) Method for producing exhaust gas purifying catalyst
JP6087362B2 (en) Platinum-based oxidation catalyst and exhaust gas purification method using the same
JP7187654B2 (en) Exhaust gas purification catalyst composition and automobile exhaust gas purification catalyst
JP4797797B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2007144290A (en) Exhaust gas purification catalyst and manufacturing method of exhaust gas purification catalyst
JP2005254047A (en) Exhaust emission control catalyst, metal oxide particle, and production method thereof
JP7450346B2 (en) Catalyst material for methane purification
US20210053033A1 (en) Platinum-containing catalyst systems
JP5217116B2 (en) Exhaust gas purification catalyst
JP6305921B2 (en) Exhaust gas purification catalyst composition and exhaust gas purification catalyst
JP4805031B2 (en) Exhaust gas purification catalyst, its production method and use method
JP7448620B2 (en) Nitrogen oxide storage materials and exhaust gas purification catalysts
WO2022209154A1 (en) Exhaust gas purifying catalyst and exhaust gas purification system
JP2015231598A (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees