JP2007311656A - 熱電モジュール - Google Patents

熱電モジュール Download PDF

Info

Publication number
JP2007311656A
JP2007311656A JP2006140661A JP2006140661A JP2007311656A JP 2007311656 A JP2007311656 A JP 2007311656A JP 2006140661 A JP2006140661 A JP 2006140661A JP 2006140661 A JP2006140661 A JP 2006140661A JP 2007311656 A JP2007311656 A JP 2007311656A
Authority
JP
Japan
Prior art keywords
melting point
case
low melting
temperature side
thermoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006140661A
Other languages
English (en)
Inventor
Yoshiki Fukada
善樹 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006140661A priority Critical patent/JP2007311656A/ja
Publication of JP2007311656A publication Critical patent/JP2007311656A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】低融点材料と熱電素子との間の熱伝達効率を良好に維持しつつ、気化した低融点材料に起因した熱電素子の性能劣化を防止すること。
【解決手段】本発明は、熱電素子130A〜130Gと低融点材料を使用した緩衝体120A〜120Gとを同一の容器内に収容した熱電モジュール100A〜100Gにおいて、前記緩衝体の低融点材料を、前記緩衝体を前記熱電素子が設けられる基板に直接接触させると共に、熱電素子を前記熱電素子から隔離して密封するシール手段(170、172等)を設けることを特徴とする。
【選択図】図1

Description

本発明は、熱電素子と低融点材料を使用した緩衝体とを同一の容器内に収容した熱電モジュールに関する。
従来から、この種の熱電モジュールに関連した技術として、温度差のある高温側部材と低温側部材の間に挟まれて熱を伝達すると共に熱応力の緩和を行う熱応力緩和パッドにおいて、多孔質材料をマトリックスとして、その空孔に熱伝導率が大きくかつ融点が運転時の前記低温側部材の温度に近い温度である伝熱材料を含浸させたことを特徴とする熱応力緩和パッドが知られている(例えば、特許文献1参照)。
また、温度差のある2面の間に介在しこれら2面から加圧力を受けると共に高温側の面から低温側の面へと熱を伝える伝熱用クッションであって、使用温度下で液状を呈する低融点材料と、この低融点材料を封入し且つ液状の前記低融点材料の変形を許容する柔軟性を備えるシェルとを有することを特徴とする伝熱用クッションが知られている(例えば、特許文献2参照)。
特許第3482169号公報 特開2006−24608号公報
しかしながら、上述の特許文献1に記載の発明のような低融点材料を使用した緩衝体を、熱電素子と共に容器内に収めた場合、気化した低融点材料が容器内に滞留するので、熱電素子の内部に入り込み或いは熱電素子の表面に付着しやすくなり、熱電素子の性能が損なわれる虞がある。即ち、気化した低融点材料が熱電素子の内部に入り込むと、熱電素子の物性が変化してしまうし、気化した低融点材料が熱電素子の表面に付着すると、メッキ状態になり、熱電素子の表面に電気が流れてしまうので、いずれの場合も熱電素子の性能が損なわれることになる。
これに対して、上述の特許文献2に記載の発明のように、袋状のシェルに低融点材料を封入する構成では、低融点材料が気化しても袋状のシェル内に封止されるので、低融点材料の蒸気に起因して熱電素子の性能が劣化する虞がなくなる。しかしながら、袋状のシェルに低融点材料を封入する構成では、低融点材料が、熱電素子を支持する基板にシェルを介して接触するので(即ち低融点材料が基板に直接接触しないので)、低融点材料と熱電素子との間の熱伝達効率が悪くなるという問題がある。
そこで、本発明は、低融点材料と熱電素子との間の熱伝達効率を良好に維持しつつ、気化した低融点材料に起因した熱電素子の性能劣化を防止することができる熱電モジュールの提供を目的とする。
上記目的を達成するため、第1の発明は、熱電素子と低融点材料を使用した緩衝体とを同一の容器内に収容した熱電モジュールにおいて、
前記緩衝体の低融点材料を、前記熱電素子が設けられる基板に直接接触させると共に、前記緩衝体を前記熱電素子から隔離して密封するシール手段を設けることを特徴とする。尚、低融点材料を使用した緩衝体としては、低融点材料そのものや、低融点材料を含浸させた弾性体が好適である。
第2の発明は、第1の発明に係る熱電モジュールにおいて、
前記基板が、前記容器の側面との間に隙間ができるように配置されており、
前記シール手段が、前記隙間を封止することを特徴とする。
第3の発明は、第1の発明に係る熱電モジュールにおいて、
前記シール手段が、前記容器の上面又は底面と前記基板との間の隙間を封止することを特徴とする。
第4の発明は、第1〜3の何れかの発明に係る熱電モジュールにおいて、
前記シール手段が伸縮構造部を有することを特徴とする。これにより、容器と基板の間に相対変位が生じても、当該相対変位を伸縮構造部により吸収することで、シール手段の剥離等が発生せず、シール手段のシール性を維持することができる。
第5の発明は、第1〜4の何れかの発明に係る熱電モジュールにおいて、
前記容器が屈曲部を有することを特徴とする。これにより、例えば熱源と容器との間に相対的な変位が生じた場合にも、前記容器の屈曲部が変形することで当該相対変位を吸収して熱源との間で高い密着性が維持され、前記緩衝体による高い伝導性を維持することができる。
本発明によれば、低融点材料と熱電素子との間の熱伝達効率を良好に維持しつつ、気化した低融点材料に起因した熱電素子の性能劣化を防止することができる熱電モジュールが得られる。
以下、図面を参照して、幾つかの実施例に分けて本発明を実施するための最良の形態の説明を行う。
図1は、本発明の実施例1による熱電モジュール100Aの基本断面を示す断面図である。熱電モジュール100Aは、例えば自動車の廃熱を利用して電気を生成する装置であり、例えばエンジンからの排ガスの排出経路(エキゾーストパイプやマフラー)に設けられてよく、この場合、排ガスの熱を利用して電気を生成することになる。以下では、熱電モジュールにおいて、マフラーのような熱源から熱を受け取る側を高温側と称し、その逆側を、低温側という。以下では、説明の便宜上、熱電モジュール100Aの実際の設置状態での上下方向とは関係なく、図1に示すように、高温側を下方向とし、低温側を上方向とする。
熱電モジュール100Aは、容器として機能するケース140Aを有する。ケース140Aは、底面142Aと、底面142Aの周縁から立設される周壁(側壁)144Aとを有し、高温側が閉じた内部空間を画成する。
熱電モジュール100Aは、ケース140Aの底面142Aが熱源に押し付けられるように設置される。ケース140Aの底面142Aは、熱源に対して隙間なく接するように、熱源の形状に沿った形状を有する。例えば、熱源が円筒状の形状であれば、底面142Aは、奥行き方向(紙面垂直方向)で熱源の曲率半径に応じた曲面を構成する。また、底面142Aは、熱源との密着性を高めるため、適当な可撓性を有するように構成される。同様の観点から、ケース140Aの周壁144Aには、屈曲部146Aが形成される。屈曲部146Aは、周壁144Aの全周に亘って形成されるが、部分的に形成されてもよい。これにより、製造公差等によりケース140Aの底面142Aと熱源と間に僅かな隙間が存在する場合であっても、熱源に対して熱電モジュール100Aを押し付けて設置した際にケース140Aの底面142Aないし屈曲部146Aが変形して、熱電モジュール100A(ケース140Aの底面142A)と熱源との高い密着性(適切な押し付け力)が維持される。
ケース140Aには、下から順に、緩衝体120A、高温側絶縁基板104A、高温側電極108A、熱電素子130A、低温側電極110A及び低温側絶縁基板112Aが収容されている。尚、図示の例では、低温側絶縁基板112Aが、ケース140Aの内部空間を上方から閉塞する蓋の役割を果たしている。ケース140Aの内部空間には、熱電素子130Aが酸化しないように不活性ガスが充填される。
高温側絶縁基板104Aは、後述の緩衝体120Aの低融点金属に直接接触するため、低融点金属に対して良好な耐性を有する材料から形成され、又は耐性を付与するための表面処理がなされてもよい。高温側絶縁基板104Aは、ケース140Aの周壁144Aよりも僅かに小さい外形を有し、ケース140Aの周壁144Aとの間に隙間148Aを画成する。この隙間148Aは、ケース140Aの変形や、熱膨張係数の相違に起因した温度変化に伴う高温側絶縁基板104Aとケース140Aの熱膨張量の相違を吸収すべく設定されている。
熱電素子130Aは、図1に示すように、P型熱電半導体132AとN型熱電半導体134Aからなり、P型熱電半導体132AとN型熱電半導体134Aが交互に配列されてなる。互いに隣接するP型熱電半導体132A及びN型熱電半導体134A間は、低温側と高温側で交互に低温側電極110A又は高温側電極108Aにより電気的に接続される。低温側電極110Aは、低温側絶縁基板112Aに担持され、高温側電極108Aは、高温側絶縁基板104Aに担持される。尚、低温側電極110A、高温側電極108A、熱電素子130A、低温側絶縁基板112A及び高温側絶縁基板104Aのうちの幾つかの部材又は全ては、接着等により一体化されてケース140A内に組み付けられるものであってよい。
緩衝体120Aは、高い弾性の多孔質体又は繊維構造材料に低融点金属を含浸させてなる。多孔質体又は繊維構造材料は、例えばスチールウールや炭素繊維等である。低融点金属は、熱伝導率が高く、作動温度下で液体となる材料から選択され、例えば錫が好適である。緩衝体120Aは、図1に示すように、高温側絶縁基板104Aよりも幾分小さい外形を有し、高温側絶縁基板104Aにおける熱電素子130Aが載置された領域をカバーするような大きさを有する。
緩衝体120Aの低融点金属は、ケース140Aの底面142Aから高温側絶縁基板104Aへと熱を伝導する役割を果たす。緩衝体120Aの弾性材料(例えば多孔質体)は、例えば熱源の変形に追従してケース140Aが変形した場合にも、緩衝体120Aが自ら変形することにより当該ケース140Aの変形を吸収し、緩衝体120Aがケース140Aの底面142Aと高温側絶縁基板104Aに対して密着して、ケース140Aの底面142Aと高温側絶縁基板104Aとの間に空隙ができないようにする役割を果たす。これにより、ケース140Aが変形した場合に生じうるケース140Aの底面142Aと高温側絶縁基板104Aとの間の熱抵抗の増加を、防止することができる。
本実施例では、図1に示すように、緩衝体120Aは、その下面がケース140Aの底面142A(内側の面)に接触すると共に、その上面が高温側絶縁基板104Aの下面に接触する。従って、熱源に接するケース140Aの底面142からの熱は、ケース140Aの底面142A、緩衝体120Aの低融点金属、及び、高温側絶縁基板104Aを介して熱電素子130Aへと伝達される。
このように、本実施例では、緩衝体120Aの低融点金属をケース140Aの底面142Aと高温側絶縁基板104Aとの間の空間に直接的に封入するので、例えば低融点金属を袋体に封入してケースと高温側絶縁基板との間に配置する従来的な構成(例えば前記の特許文献2に開示されるような構成)に比して、界面での熱抵抗が小さくなるので、効率の良い熱伝導を実現することができる。即ち、前記の従来的な構成では、低融点金属と袋体との間の界面での熱抵抗、袋体とケースとの間の個体同士の界面での熱抵抗、及び、袋体と高温側絶縁基板との間の個体同士の界面での熱抵抗が存在し、熱抵抗が相対的に大きくなるのに対して、本実施例では、低融点金属とケース140Aとの間の界面での熱抵抗、及び、低融点金属と高温側絶縁基板104Aとの間の界面での熱抵抗しか存在せず、熱抵抗が相対的に小さくなる。
しかしながら、本実施例では、その反面として、緩衝体120A(低融点金属)をケース140A内の空間に、被覆なく直接的に晒すことになるので、例えば温度が上昇して僅かながら低融点金属が蒸発すると、気化した低融点金属が、ケース140Aの側壁144Aと高温側絶縁基板104Aとの間の僅かな隙間148Aを介して、ケース140Aの熱電素子130A側の空間114Aに侵入しうる。かかる低融点金属の蒸気が、熱電素子130A側の空間114Aに侵入すると、上述の如く、熱電素子130Aの性能が損なわれる虞がある。即ち、低融点材料の蒸気が熱電素子130Aの内部に入り込むと、熱電素子130Aの物性が変化してしまうし、低融点材料の蒸気が熱電素子130Aの表面に付着すると、メッキ状態になる熱電素子130Aの表面に電気が流れてしまう。
そこで、本実施例では、熱電モジュール100Aは、ガスケット170を有する。ガスケット170は、耐熱繊維の不織布が好適である。ガスケット170は、図1に示すように、ケース140Aの底面142Aと高温側絶縁基板104Aとの間に、緩衝体120Aを外周側から囲繞するように設けられる。即ち、ガスケット170は、高温側絶縁基板104Aの下面側の外周縁と、ケース140Aの底面142Aの外周縁との間に挟まるように設けられ、ケース140Aの緩衝体120A側の空間118Aと、ケース140Aの熱電素子130A側の空間114Aとの間の流体の流通を封止する。
これにより、緩衝体120Aの低融点金属が蒸発しても、低融点金属の蒸気は、ガスケット170により、ケース140Aの熱電素子130A側の空間114Aへの侵入が阻まれるので、低融点金属の蒸発に起因した熱電素子130Aの性能劣化を防止することができる。
このように本実施例によれば、緩衝体120Aの低融点金属を高温側絶縁基板104Aの下面に直接接触させつつ、緩衝体120Aの低融点金属の蒸気が熱電素子130A周辺の空間114Aに侵入するのを防止することができる。これにより、ケース140Aから熱電素子130Aまでの熱伝達経路における熱抵抗を少なくして熱伝導効率を高めつつ、低融点金属の蒸発に起因した熱電素子130Aの性能劣化を防止することができる。
図2は、本発明の実施例2による熱電モジュール100Bの基本断面を示す断面図である。実施例2は、上述の実施例1に対して、ガスケット170に代えて、ガスバリア膜172がシール手段を構成する点が異なる。上述の実施例1と同様の構成については、上述の実施例1と同様の参照符号を付して説明を省略し、以下では、実施例2特有の構成について主に説明する。
ガスバリア膜172は、例えばセラミック材料等により形成され、ケース140Bの側壁144Bと高温側絶縁基板104Bとの間の僅かな隙間148Bを封止するように設けられる。即ち、ガスバリア膜172は、ケース140Bの側壁144Bに沿ったリング状の形態を有し、外周側の端部がケース140Bの側壁144Bに接着等により固定され、内周側の端部が高温側絶縁基板104Bの外周縁に接着等により固定される。
これにより、緩衝体120Bの低融点金属が蒸発しても、低融点金属の蒸気は、ガスバリア膜172により、ケース140Bの熱電素子130B側の空間114Bへの侵入が阻まれるので、低融点金属の蒸発に起因した熱電素子130Bの性能劣化を防止することができる。
このように本実施例2によっても、上述の実施例1と同様、緩衝体120Bの低融点金属を高温側絶縁基板104Bの下面に直接接触させつつ、緩衝体120Bの低融点金属の蒸気が熱電素子130B周辺の空間114Bに侵入するのを防止することができる。これにより、ケース140Bから熱電素子130Bまでの熱伝達経路における熱抵抗を少なくして熱伝導効率を高めつつ、低融点金属の蒸発に起因した熱電素子130Bの性能劣化を防止することができる。
また、本実施例2において、ガスバリア膜172は、好ましくは、図2に示すように、屈曲した状態(即ちたるみを有する状態)で、ケース140Bの側壁144Bと高温側絶縁基板104Bの外周縁との間に架設される。これにより、ケース140Bの変形や、温度変化に伴い高温側絶縁基板104Bとケース140Bに熱膨張量差等に起因して、高温側絶縁基板104Bとケース140Bとの間に径方向の内外方向で相対変位が生じた場合でも、ガスバリア膜172が伸縮して当該相対変位を吸収するので、ガスバリア膜172の剥離等が発生することがなく、ガスバリア膜172による高いシール機能が維持される。
図3は、本発明の実施例3による熱電モジュール100Cの基本断面を示す断面図である。以下、上述の実施例1と同様の構成については、上述の実施例1と同様の参照符号を付して説明を省略し、実施例3特有の構成について主に説明する。
緩衝体120Cは、低融点金属そのものからなる。即ち、緩衝体120Cは、多孔質体又は繊維構造材料を含まず、低融点金属からなる。
ケース140Cの緩衝体120C側の空間118Cと、ケース140Cの熱電素子130C側の空間114Cとの間の流体の流通は、ガスケット174により封止される。即ち、ケース140Cの緩衝体120C側の空間118Cには、液体の低融点金属が充填され、当該液体の低融点金属を囲繞するように、ガスケット174が設けられる。ガスケット174は、低融点金属(液体)を封止する必要があるので、シール性の高いものが望ましい。このため、ガスケット174は、図3に示すように、金属製のC断面のOリングが好適である。
本実施例3においては、緩衝体120Cを構成する低融点金属が蒸発しても、低融点金属の蒸気は、ガスケット174により、ケース140Cの熱電素子130C側の空間114Cへの侵入が阻まれるので、低融点金属の蒸発に起因した熱電素子130Cの性能劣化を防止することができる。
ガスケット174が設けられるケース140Cの部分、即ち、ケース140Cの底部142Cと側壁144Cとの境界部(ケース140Cの底部周縁部)は、好ましくは、図3に示すように、高い剛性を有するように厚肉に形成される。これにより、ケース140Cの変形に起因したガスケット174のシール性の低下を防止することができる。一方、ケース140Cの底部142Cは、高い可撓性を有して熱源との高い密着性を維持できるように、周縁部を除いて薄肉に形成される。また、図3に示す例では、ケース140Cの底部142Cは、周縁部の下面よりも下方に突出し、熱源に押し付けられた際に変形しやすいように構成されている。
本実施例3によれば、上述の実施例1と同様、緩衝体120Cを構成する低融点金属を高温側絶縁基板104Cの下面に直接接触させつつ、緩衝体120Cを構成する低融点金属の蒸気が熱電素子130C周辺の空間114Cに侵入するのを防止することができる。これにより、ケース140Cから熱電素子130Cまでの熱伝達経路における熱抵抗を少なくして熱伝導効率を高めつつ、低融点金属の蒸発に起因した熱電素子130Cの性能劣化を防止することができる。
図4は、本発明の実施例4による熱電モジュール100Dの基本断面を示す断面図である。以下、上述の実施例1と同様の構成については、上述の実施例1と同様の参照符号を付して説明を省略し、実施例4特有の構成について主に説明する。
ケース140Dは、底面142Dと、底面142Dの周縁から立設される周壁144Dとを有する。周壁144Dには、高温側絶縁基板104Dの縁部の端面に向けて突出する突起部145Dが形成される。突起部145Dは、周壁144Dの全周に亘って形成される。互いに対向する突起部145Dの先端面と高温側絶縁基板104Dの縁部の端面との間には、隙間148Dが設定される。隙間148Dは、ケース140Dの変形や、温度変化に伴う高温側絶縁基板104Dとケース140Dの熱膨張量の相違を吸収する役割を果たす。
ケース140Dの底面142Dには、緩衝体120Dを囲繞するように屈曲部146Dが形成され、緩衝体120Dが載置されている底面142Dの部分に可撓性を付与する。これにより、熱電モジュール100Dが熱源に押し付けられた際に底面142Dと熱源の高い密着性が保障される。
ケース140Dの底面142D、及び周壁144Dの下部(突起部145Dの上面まで)には、ガスバリア膜176がコーティングされる。ガスバリア膜176は、例えばセラミック材料を含む液状のコーティング剤を塗布することで形成され、緩衝体120Dの低融点金属とケース140Dとの望ましくない反応を防止する役割を果たす。従って、ガスバリア膜176は、ケース140Dの材料が低融点金属と反応性がある場合に特に好適であり、逆に、ケース140Dの材料が低融点金属と反応性がない場合には、界面の熱抵抗を可能な限り低減すべく設定されなくてよい。
実施例4による熱電モジュール100Dは、上述の実施例1におけるガスケット170に代えて、ガスバリア膜180をシール手段として備える。
図5は、ガスバリア膜180の一例を示す平面図である。ガスバリア膜180は、例えばセラミック材料により形成され、図5に示すように、ケース140Dの側壁144Dに対応したドーナツ状の形態を有する。ガスバリア膜180は、内周側と外周側の中央部付近に、伸縮構造部181を有し、径方向の内外方向に伸縮可能に構成されている。伸縮構造部181は、蛇腹状に形成されるベローズであってもよい。
ガスバリア膜180は、ケース140Dの側壁144Dの突起部145Dと高温側絶縁基板104Dとの間の僅かな隙間148Dを封止するように設けられる。ガスバリア膜180は、ケース140Dの緩衝体120D側の空間118Dと、ケース140Dの熱電素子130D側の空間114Dとの間の流体の流通を封止する機能を果たす。ガスバリア膜180は、外周側の端部がケース140Dの突起部145Dの上面に接着等により固定され、内周側の端部が高温側絶縁基板104Dの外周縁に接着等により固定される。
これにより、緩衝体120Dの低融点金属が蒸発しても、低融点金属の蒸気は、ガスバリア膜172により、ケース140Dの熱電素子130D側の空間114Dへの侵入が阻まれるので、低融点金属の蒸発に起因した熱電素子130Dの性能劣化を防止することができる。また、ケース140Dの変形や、温度変化に伴い高温側絶縁基板104Dとケース140Dに熱膨張量差等に起因して、高温側絶縁基板104Dがケース140Dに対して径方向内外に相対変位した場合でも、ガスバリア膜180の伸縮構造部181が当該相対変位を吸収するので、ガスバリア膜180の剥離等が発生することがなく、ガスバリア膜180による高いシール機能が維持される。
また、本実施例4によっても、上述の実施例1と同様、緩衝体120Dの低融点金属を高温側絶縁基板104Dの下面に直接接触させつつ、緩衝体120Dの低融点金属の蒸気が熱電素子130D周辺の空間114Dに侵入するのを防止することができる。これにより、ケース140Dから熱電素子130Dまでの熱伝達経路における熱抵抗を少なくして熱伝導効率を高めつつ、低融点金属の蒸発に起因した熱電素子130Dの性能劣化を防止することができる。
図6は、本発明の実施例5による熱電モジュール100Eの基本断面を示す断面図である。以下、上述の実施例1と同様の構成については、上述の実施例1と同様の参照符号を付して説明を省略し、実施例5特有の構成について主に説明する。
実施例5による熱電モジュール100Eは、上述の実施例1におけるガスケット170に代えて、ガスバリア膜182をシール手段として備える。
ガスバリア膜182は、高温側絶縁基板104Eの外形に対応した外形であって、高温側絶縁基板104Eの外形よりも大きな外形を有する。ガスバリア膜182は、図6に示すように、高温側絶縁基板104Eの下面との間に、緩衝体120Eを封じ込めることで、ケース140Eの緩衝体120E側の空間118Eと、ケース140Eの熱電素子130E側の空間114Eとの間の流体の流通を封止する機能を果たす。ガスバリア膜182の外周縁は、高温側絶縁基板104Eの外周縁に対して密着され、ガスバリア膜182の外周縁には、下方から押さえ材184が設けられる。押さえ材184は、例えばスチールウール等の材料からなり、緩衝体120Eを外周側から囲繞するようなドーナツ状の形態を有する。押さえ材184は、ガスバリア膜182の外周縁を高温側絶縁基板104Eの外周縁に対して押圧して、ガスバリア膜182と高温側絶縁基板104Eとの間の密着性、即ちガスバリア膜182のシール性を高める役割を果たす。尚、ガスバリア膜182の外周縁が高温側絶縁基板104Eの外周縁に対して気密ないし液密的に固着可能な場合には、押さえ材184を無くしてもよい。
本実施例5においては、緩衝体120Eの低融点金属が蒸発しても、低融点金属の蒸気は、ガスバリア膜182により、ケース140Eの熱電素子130E側の空間114Eへの侵入が阻まれるので、低融点金属の蒸発に起因した熱電素子130Eの性能劣化を防止することができる。
従って、本実施例5によっても、上述の実施例1と同様、緩衝体120Eの低融点金属を高温側絶縁基板104Eの下面に直接接触させつつ、緩衝体120Eの低融点金属の蒸気が熱電素子130E周辺の空間114Eに侵入するのを防止することができる。これにより、ケース140Eから熱電素子130Eまでの熱伝達経路における熱抵抗を少なくして熱伝導効率を高めつつ、低融点金属の蒸発に起因した熱電素子130Eの性能劣化を防止することができる。
尚、本実施例5において、緩衝体120Eは、上述の実施例3と同様、低融点金属そのものであってもよい。この場合、液体の低融点金属は、ガスバリア膜182と高温側絶縁基板104Eとにより画成される閉塞空間内に封入・充填される。この場合も、上述の実施例と同様に、緩衝体120Eを構成する低融点金属を高温側絶縁基板104Eの下面に直接接触させつつ、緩衝体120Eを構成する低融点金属の蒸気が熱電素子130E周辺の空間114Eに侵入するのを防止することができる。
図7は、本発明の実施例6による熱電モジュール100Fの基本断面を示す断面図である。以下、上述の実施例1と同様の構成については、上述の実施例1と同様の参照符号を付して説明を省略し、実施例6特有の構成について主に説明する。
ケース140Fは、底面142Fと、底面142Fの周縁から立設される周壁144Fとを有する。周壁144Fには、高温側絶縁基板104Fよりも上方側と下方側にそれぞれ、屈曲部146Fが設けられる。屈曲部146Fのそれぞれは、上述の各実施例と同様、周壁144Fの全周に亘って形成されるが、周壁144Fの周方向に沿って部分的に形成されてもよい。
実施例6による熱電モジュール100Fは、上述の実施例1におけるガスケット170に代えて、シール材186をシール手段として備える。
シール材186は、図7に示すように、高温側絶縁基板104Fの外周縁に嵌合されるコの字断面を有し、高温側絶縁基板104Fの外周縁の全周に亘って設けられる。即ち、シール材186は、コの字断面の背面側(外周側)が、ケース140Fの側壁144Fに密着して当接する。これにより、緩衝体120Fの低融点金属が蒸発しても、低融点金属の蒸気は、ガスバリア膜182により、ケース140Fの熱電素子130F側の空間114Fへの侵入が阻まれるので、低融点金属の蒸発に起因した熱電素子130Fの性能劣化を防止することができる。
従って、本実施例5によっても、上述の実施例1と同様、緩衝体120Fの低融点金属を高温側絶縁基板104Fの下面に直接接触させつつ、緩衝体120Fの低融点金属の蒸気が熱電素子130F周辺の空間114Fに侵入するのを防止することができる。これにより、ケース140Fから熱電素子130Fまでの熱伝達経路における熱抵抗を少なくして熱伝導効率を高めつつ、低融点金属の蒸発に起因した熱電素子130Fの性能劣化を防止することができる。
また、本実施例6では、上述の実施例1と異なり、上述の如く、屈曲部146Fは、高温側絶縁基板104Fよりも上方側と下方側にそれぞれ設定されている。これにより、シール材186が取り付く高温側絶縁基板104Fの高さに対応する部分のケース140Fの剛性を低下させずに、ケース140Fに可撓性を付与することができる。即ち、本実施例6では、高温側絶縁基板104Fがケース140Fにシール材186を介して接合されているため、高温側絶縁基板104Fに対するケース140Fの相対的な変位は、高温側絶縁基板104Fよりも上方側と下方側の屈曲部146Fによりそれぞれ吸収される。これにより、高温側絶縁基板104Fとケース140Fの周壁144Fをシール材186を介して剛に接合しても、絶縁基板112F、104F上の電極108F,110Fの変形を防止することができる。また、上述の各実施例と同様に、高温側絶縁基板104Fよりも下方側の屈曲部146Fにより、熱源とケース140Fの底面142Fとの高い密着性を維持しつつ、緩衝体120Fの伸縮を吸収することができる。
本実施例6において、図7に示すように、ケース140Fの底面142Fには、ガスバリア膜188Fが載置されてもよい。ガスバリア膜188Fは、例えばセラミック材料からなり、緩衝体120Fの低融点金属とケース140Fとの望ましくない反応を防止する役割を果たす。従って、ガスバリア膜188Fは、ケース140Fの材料が低融点金属と反応性がある場合に特に好適であり、逆に、ケース140Fの材料が低融点金属と反応性がない場合には、界面の熱抵抗を可能な限り低減すべく設定されなくてよい。
図8は、本発明の実施例7による熱電モジュール100Gの基本断面を概略的に示す断面図である。以下、上述の実施例6と同様の構成については、上述の実施例6と同様の参照符号を付して説明を省略し、実施例7特有の構成について主に説明する。
実施例7は、図7に示した実施例6に対して、ガスバリア膜188Gが、ケース140Gの底面142G、及び周壁144Gの下部(シール材186の下面まで)にコーティングされている点が異なる。ガスバリア膜188Gは、例えばセラミック材料からなり、緩衝体120Gの低融点金属とケース140Gとの望ましくない反応を防止する役割を果たす。
実施例7によれば、緩衝体120Gの低融点金属が蒸発しても、低融点金属の蒸気からケース140Gがガスバリア膜188Gにより保護されているので、ケース140Gの耐性が向上する。
以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施例に種々の変形及び置換を加えることができる。
例えば、上述した実施例では、全て、高温側にシール手段を設定しているが、低温側に緩衝体120A〜120Gを配置して、低温側に同様のシール手段を設定することも可能である。この場合、低融点金属としては、水銀などが好適である。
また、上述では、幾つかの実施例を別々に説明しているが、各実施例の構成は適切に組み合わせることも可能である。例えば、実施例2又は実施例4によるガスバリア膜172又は180は、上述の実施例1と組み合わせることも可能である。即ち、図1に示したガスケット170と共に、ガスバリア膜172又は180を設けることとしてもよい。この場合、低融点金属の蒸発の侵入を2つのシール手段により阻むことができるので、信頼性が向上する。
以上のとおり本発明は、車両で発生する廃熱を利用する熱電モジュールとして適用可能であるし、その他の用途、例えば住宅やオフィス等で発生する廃熱を利用する熱電モジュールとしても適用することができる。
本発明の実施例1による熱電モジュール100Aの基本断面を概略的に示す断面図である。 本発明の実施例2による熱電モジュール100Bの基本断面を概略的に示す断面図である。 本発明の実施例3による熱電モジュール100Cの基本断面を概略的に示す断面図である。 本発明の実施例4による熱電モジュール100Dの基本断面を概略的に示す断面図である。 ガスバリア膜180の一例を示す平面図である。 本発明の実施例5による熱電モジュール100Eの基本断面を概略的に示す断面図である。 本発明の実施例6による熱電モジュール100Fの基本断面を概略的に示す断面図である。 本発明の実施例7による熱電モジュール100Gの基本断面を概略的に示す断面図である。
符号の説明
100A〜100G 熱電モジュール
104A〜104G 高温側絶縁基板
108A〜108G 高温側電極
110A〜110G 低温側電極
112A〜112G 低温側絶縁基板
114A〜114G ケース内部の熱電素子側の空間
118A〜118G ケース内部の緩衝体側の空間
120A〜120G 緩衝体、
130A〜130G 熱電素子
140A〜140G ケース
142A〜142G 底面
144A〜144G 周壁(側壁)
146A〜146G 屈曲部
148A〜146E 隙間
170 ガスケット
172 ガスバリア膜
174 ガスケット
180 ガスバリア膜
181 伸縮構造部
182 ガスバリア膜
186 シール材

Claims (5)

  1. 熱電素子と低融点材料を使用した緩衝体とを同一の容器内に収容した熱電モジュールにおいて、
    前記緩衝体の低融点材料を、前記熱電素子が設けられる基板に直接接触させると共に、前記緩衝体を前記熱電素子から隔離して密封するシール手段を設けることを特徴とする、熱電モジュール。
  2. 前記基板が、前記容器の側面との間に隙間ができるように配置されており、
    前記シール手段が、前記隙間を封止する、請求項1に記載の熱電モジュール。
  3. 前記シール手段が、前記容器の上面又は底面と前記基板との間の隙間を封止する、請求項1に記載の熱電モジュール。
  4. 前記シール手段が伸縮構造部を有する、請求項1〜3の何れかに記載の熱電モジュール。
  5. 前記容器が屈曲部を有する、請求項1〜4の何れかに記載の熱電モジュール。
JP2006140661A 2006-05-19 2006-05-19 熱電モジュール Withdrawn JP2007311656A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006140661A JP2007311656A (ja) 2006-05-19 2006-05-19 熱電モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006140661A JP2007311656A (ja) 2006-05-19 2006-05-19 熱電モジュール

Publications (1)

Publication Number Publication Date
JP2007311656A true JP2007311656A (ja) 2007-11-29

Family

ID=38844220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006140661A Withdrawn JP2007311656A (ja) 2006-05-19 2006-05-19 熱電モジュール

Country Status (1)

Country Link
JP (1) JP2007311656A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084718A1 (ja) * 2009-01-21 2010-07-29 財団法人電力中央研究所 パッケージ熱電変換モジュール
WO2010090350A1 (ja) * 2009-02-05 2010-08-12 ティーエス ヒートロニクス株式会社 発電装置
JP2012195441A (ja) * 2011-03-16 2012-10-11 Hitachi Powdered Metals Co Ltd 熱電変換システムおよびその製造方法
JP2014127617A (ja) * 2012-12-27 2014-07-07 Toyota Motor Corp 熱電発電装置
JP2016082081A (ja) * 2014-10-17 2016-05-16 京セラ株式会社 熱電モジュール
KR20190006535A (ko) * 2016-05-19 2019-01-18 젠썸 게엠베하 전기 에너지를 열 에너지로 변환하기 위한 변환 장치
CN112997331A (zh) * 2018-11-09 2021-06-18 株式会社Kelk 温调装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084718A1 (ja) * 2009-01-21 2010-07-29 財団法人電力中央研究所 パッケージ熱電変換モジュール
JP5432927B2 (ja) * 2009-01-21 2014-03-05 一般財団法人電力中央研究所 パッケージ熱電変換モジュール
WO2010090350A1 (ja) * 2009-02-05 2010-08-12 ティーエス ヒートロニクス株式会社 発電装置
JP2012195441A (ja) * 2011-03-16 2012-10-11 Hitachi Powdered Metals Co Ltd 熱電変換システムおよびその製造方法
JP2014127617A (ja) * 2012-12-27 2014-07-07 Toyota Motor Corp 熱電発電装置
JP2016082081A (ja) * 2014-10-17 2016-05-16 京セラ株式会社 熱電モジュール
KR20190006535A (ko) * 2016-05-19 2019-01-18 젠썸 게엠베하 전기 에너지를 열 에너지로 변환하기 위한 변환 장치
KR102164185B1 (ko) * 2016-05-19 2020-10-13 젠썸 게엠베하 전기 에너지를 열 에너지로 변환하기 위한 변환 장치
CN112997331A (zh) * 2018-11-09 2021-06-18 株式会社Kelk 温调装置

Similar Documents

Publication Publication Date Title
JP2007311656A (ja) 熱電モジュール
US7938289B2 (en) Thermal insulating container for a heat generating unit of a fuel cell system
JP6070816B2 (ja) ポペットバルブ
JP4905738B2 (ja) アキュムレータ
US10211808B2 (en) Acoustic wave filter device and package and method of manufacturing the same
WO2020100533A1 (ja) ベーパーチャンバー
JP2008209003A (ja) 液体式防振サポート
JP2009014469A (ja) 半導体装置及びその製造方法
TW201802378A (zh) 密封構件、減速機及清潔機器人
JP2004251451A (ja) 液圧式軸受
JP5889540B2 (ja) 圧力センサ
JPH02120585A (ja) 温度制御弁
JP5098449B2 (ja) 組電池
WO2021255967A1 (ja) 熱伝導部材
TWI266854B (en) Plate heat pipe, and manufacturing method and packing unit thereof
WO2021255968A1 (ja) 熱伝導部材
CN112682212A (zh) 一种环状密封结构、分体式气缸盖垫片及发动机
JP5016453B2 (ja) アキュムレータ
JP2016063104A (ja) 熱電変換装置
CN109676140A (zh) 一种热等静压连接成形用环形件包套
JPH0221648Y2 (ja)
JP2015068738A (ja) 静電容量型圧力センサ
JP3771703B2 (ja) 圧力容器
JP2817534B2 (ja) コンタクトシール機構
US7002244B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080709

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091217