JP2007297243A - Arsenic-containing material treatment method - Google Patents

Arsenic-containing material treatment method Download PDF

Info

Publication number
JP2007297243A
JP2007297243A JP2006126772A JP2006126772A JP2007297243A JP 2007297243 A JP2007297243 A JP 2007297243A JP 2006126772 A JP2006126772 A JP 2006126772A JP 2006126772 A JP2006126772 A JP 2006126772A JP 2007297243 A JP2007297243 A JP 2007297243A
Authority
JP
Japan
Prior art keywords
arsenic
solution
alkaline earth
earth metal
alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006126772A
Other languages
Japanese (ja)
Other versions
JP4710034B2 (en
Inventor
Tetsuo Fujita
哲雄 藤田
Ryoichi Taguchi
良一 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2006126772A priority Critical patent/JP4710034B2/en
Publication of JP2007297243A publication Critical patent/JP2007297243A/en
Application granted granted Critical
Publication of JP4710034B2 publication Critical patent/JP4710034B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an arsenic-containing material treatment method by which the arsenic-containing material is treated to efficiently recover a solution containing high-purity and high-concentration arsenic, and arsenic is prevented from being mixed in an alkaline solution to be regenerated and the reusable alkaline solution can be recovered. <P>SOLUTION: A leachant containing arsenic obtained by oxidizing and leaching with NaOH a material containing arsenic and sulfur is added with an excessive amount of CaO to obtain a residue containing arsenic and an alkaline-earth metal compound. The used NaOH is regenerated. The obtained residue is washed and a sulfuric acid solution is added to the washed residue to recover the solution containing high-purity and high-concentration arsenic. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、砒素含有物質の処理方法に関し、特に、非鉄製錬の製錬中間物などの砒素以外の各種の元素を含む砒素含有物質を処理して高純度で高濃度の砒素含有溶液を回収する方法に関する。   The present invention relates to a method for treating an arsenic-containing substance, and in particular, treats an arsenic-containing substance containing various elements other than arsenic, such as a non-ferrous smelting intermediate, to recover a high-purity and high-concentration arsenic-containing solution. On how to do.

非鉄製錬において生成される各種の製錬中間物や製錬原料には、有価金属が含まれているが、砒素などの好ましくない元素も含まれている。   Various smelting intermediates and smelting raw materials produced in non-ferrous smelting contain valuable metals, but also contain undesirable elements such as arsenic.

従来、砒素を含む製錬中間物などから砒素を分離して回収する方法としては、製錬中間物などを焼成することによってAsとして回収する方法が提案されている。しかし、この方法では、CO雰囲気の制御やAsの粉塵の回収などが技術的に容易ではなく、大規模な設備が必要である。 Conventionally, as a method for separating and recovering arsenic from a smelting intermediate containing arsenic, a method of recovering As 2 O 3 by firing the smelting intermediate has been proposed. However, in this method, control of the CO atmosphere and recovery of As 2 O 3 dust are not technically easy, and a large-scale facility is required.

また、砒素を含む製錬中間物から砒素を浸出して分離する方法として、湿式反応により砒素を分離して回収する方法が提案されている(例えば、特許文献1参照)。この方法は、砒素を含む硫化物態の銅製錬中間物をスラリー化し、これに空気を吹き込みながらアルカリを添加し、スラリーの温度を50℃以上、pH5〜8に保持しながら浸出処理を行って、製錬中間物中の砒素を酸性砒酸塩として含有する溶液を生成し、この溶液と不溶解残渣を分離する第1工程と、この第1工程で得られた水溶液に消石灰を添加して、生成する砒酸カルシウム沈澱とアルカリの水溶液とを分離し、アルカリの水溶液を第1工程に再循環する第2工程と、この第2工程で得られた砒酸カルシウムの沈澱を硫酸に溶解し、得られた砒酸と石膏とを分離する第3工程と、この第3工程で得られた砒酸を亜硫酸ガスで還元し、得られた亜砒酸と硫酸溶液とを分離し、硫酸溶液を第3工程に再循環する第4工程とからなる。この特許文献1では、アルカリとして水酸化ナトリウムを使用した場合に砒素が酸化抽出される反応式として、以下の反応式を推定している。
As+3/2O+HO→2HAsO+3S (1)
HAsO+1/2O+NaOH→NaHAsO (2)
HAsO+1/2O+2NaOH→NaHAsO+HO (3)
As+6O+4HO→2HAsO+3HSO (4)
Further, as a method of leaching and separating arsenic from a smelting intermediate containing arsenic, a method of separating and recovering arsenic by a wet reaction has been proposed (for example, see Patent Document 1). In this method, a sulfide-type copper smelting intermediate containing arsenic is slurried, and alkali is added while blowing air thereto, and leaching is performed while maintaining the temperature of the slurry at 50 ° C. or higher and pH 5-8. A first step of producing a solution containing arsenic in the smelting intermediate as an acidic arsenate, separating the solution and the insoluble residue, and adding slaked lime to the aqueous solution obtained in the first step, The resulting calcium arsenate precipitate is separated from the aqueous alkali solution, the second step of recycling the aqueous alkali solution to the first step, and the calcium arsenate precipitate obtained in the second step is dissolved in sulfuric acid. A third step of separating arsenic acid and gypsum, reducing the arsenic acid obtained in this third step with sulfurous acid gas, separating the resulting arsenous acid and sulfuric acid solution, and recycling the sulfuric acid solution to the third step And a fourth step. In this patent document 1, the following reaction formula is estimated as a reaction formula in which arsenic is oxidized and extracted when sodium hydroxide is used as an alkali.
As 2 S 3 + 3 / 2O 2 + H 2 O → 2HAsO 2 + 3S (1)
HAsO 2 + 1 / 2O 2 + NaOH → NaH 2 AsO 4 (2)
HAsO 2 + 1 / 2O 2 + 2NaOH → Na 2 HAsO 4 + H 2 O (3)
As 2 S 3 + 6O 2 + 4H 2 O → 2HAsO 2 + 3H 2 SO 4 (4)

また、特許文献1には、抽出反応時のpHを高くして上記の反応式(4)に従ってもよいが、この反応式(4)に従うと、原料中の硫黄分が硫酸にまで酸化され、生成する硫酸を中和するために余分なアルカリの消費が行われるが、抽出反応時の水溶液のpHを5〜8に制御して反応式(1)に従って砒素を抽出すると、原料中の硫黄分は硫酸まで酸化されずに元素状態の硫黄でとどまるので、水溶液を中和するための余分なアルカリの消費を避けることができると記載されている。さらに、特許文献1の方法では、消石灰(CaO)を添加して砒酸カルシウム(Ca(AsO)を生成しているが、あまりに過剰の消石灰を添加すると、砒酸カルシウム中に消石灰が混入して、次工程の硫酸消費量の増大をきたすので、消石灰の添加量が抑制されている。 Further, in Patent Document 1, the pH during the extraction reaction may be increased and the above reaction formula (4) may be followed, but according to this reaction formula (4), the sulfur content in the raw material is oxidized to sulfuric acid, Excess alkali is consumed to neutralize the sulfuric acid produced. When arsenic is extracted according to the reaction formula (1) while controlling the pH of the aqueous solution during the extraction reaction to 5 to 8, the sulfur content in the raw material is reduced. Is not oxidized to sulfuric acid but remains in elemental sulfur, so that it is possible to avoid consumption of excess alkali to neutralize the aqueous solution. Furthermore, in the method of Patent Document 1, slaked lime (CaO) is added to produce calcium arsenate (Ca 3 (AsO 4 ) 2 ). However, when too much slaked lime is added, slaked lime is mixed in calcium arsenate. And since the increase in the sulfuric acid consumption of the following process is brought about, the addition amount of slaked lime is suppressed.

また、特許文献1の方法では、消石灰を添加して砒酸カルシウムを生成する際に、以下の反応式に示すようにNaOHが再生される。
2NaHAsO+3CaO→2NaOH+Ca(AsO+H
2NaHAsO+3CaO+HO→4NaOH+Ca(AsO
In the method of Patent Document 1, when calcium arsenate is generated by adding slaked lime, NaOH is regenerated as shown in the following reaction formula.
2NaH 2 AsO 4 + 3CaO → 2NaOH + Ca 3 (AsO 4 ) 2 + H 2 O
2Na 2 HAsO 4 + 3CaO + H 2 O → 4NaOH + Ca 3 (AsO 4 ) 2

特公昭61−24329号公報(第1−3頁)Japanese Examined Patent Publication No. 61-24329 (page 1-3)

しかし、特許文献1の方法では、アルカリの添加量をできるだけ少なくしてpH5〜8の領域で浸出処理を行っているので、浸出処理に非常に長い時間を要する。また、消石灰を添加して砒酸カルシウムを生成する反応の速度が極めて遅く、カルシウムの添加量が抑制されているため、再生されるNaOHの量も抑制され、溶液中の砒素濃度が高くなり、砒素の回収率が低くなって好ましくない。   However, in the method of Patent Document 1, since the leaching treatment is performed in the region of pH 5 to 8 with the amount of alkali added as small as possible, the leaching treatment requires a very long time. In addition, the reaction rate of adding slaked lime to produce calcium arsenate is extremely slow and the amount of calcium added is suppressed, so the amount of NaOH to be regenerated is also suppressed, the arsenic concentration in the solution is increased, and arsenic This is not preferable because the recovery rate is low.

一方、過剰の消石灰を添加すると、砒素の沈殿率が上昇して砒素の回収率が高くなるが、溶液中に過剰のCaが溶存してNaOH液に混入すると考えられる。すなわち、上記の砒酸カルシウムの生成反応が完了した後にさらに過剰の消石灰を添加すると、以下の反応式に示すように、Caが溶解度分だけ溶解し、さらに過剰に消石灰を添加すると、Ca(AsOの他にCa(OH)を生成する。その結果、再生されたNaOH液中にCaが入るので、この再生されたNaOH液を第1工程に再利用すると、Caと反応して砒素の浸出率が低下する。
2NaHAsO+3CaO+過剰のCaO
→2NaOH+Ca(AsO+Ca(OH)+HO+Ca2+(溶解成分)
2NaHAsO+3CaO+HO+過剰のCaO
→4NaOH+Ca(AsO+Ca(OH)+Ca2+(溶解成分)
2NaAsO+3CaO+3HO+過剰のCaO
→6NaOH+Ca(AsO+Ca(OH)+Ca2+(溶解成分)
On the other hand, when excess slaked lime is added, the precipitation rate of arsenic increases and the recovery rate of arsenic increases, but it is considered that excess Ca is dissolved in the solution and mixed into the NaOH solution. That is, when an excess of slaked lime is added after the formation reaction of calcium arsenate is completed, as shown in the following reaction formula, Ca is dissolved by the solubility, and when slaked lime is added excessively, Ca 3 (AsO 4) generating a Ca (OH) 2 in 2 other. As a result, Ca enters the regenerated NaOH solution, and when this regenerated NaOH solution is reused in the first step, it reacts with Ca and the arsenic leaching rate decreases.
2NaH 2 AsO 4 + 3CaO + excess CaO
→ 2NaOH + Ca 3 (AsO 4 ) 2 + Ca (OH) 2 + H 2 O + Ca 2+ (dissolved component)
2Na 2 HAsO 4 + 3CaO + H 2 O + excess CaO
→ 4NaOH + Ca 3 (AsO 4 ) 2 + Ca (OH) 2 + Ca 2+ (dissolved component)
2Na 3 AsO 4 + 3CaO + 3H 2 O + excess CaO
→ 6 NaOH + Ca 3 (AsO 4 ) 2 + Ca (OH) 2 + Ca 2+ (dissolved component)

したがって、本発明は、このような従来の問題点に鑑み、砒素含有物質を処理して高純度で高濃度の砒素含有溶液を効率的に回収することができるとともに、再生されるアルカリ液への砒素の混入を防止して再利用可能なアルカリ液を回収することができる、砒素含有物質の処理方法を提供することを目的とする。   Therefore, in view of such conventional problems, the present invention can efficiently recover a high-purity and high-concentration arsenic-containing solution by treating an arsenic-containing substance, It is an object of the present invention to provide a method for treating an arsenic-containing substance, which can prevent arsenic contamination and recover a reusable alkaline solution.

本発明者らは、上記課題を解決するために鋭意研究した結果、砒素含有物質をアルカリ溶液に加えて酸化しながらアルカリ浸出した後に固液分離して砒素を含む浸出液を得る工程と、この浸出液にアルカリ土類金属またはその塩を添加した後に固液分離して砒素とアルカリ土類金属の化合物を含む残渣を得る工程と、この残渣を洗浄して硫酸溶液に添加した後に固液分離して砒素含有溶液を得る工程とを備えた砒素含有物質の処理方法において、砒素含有物質をアルカリ溶液に加えてpH10以上にするとともに、砒素含有物質として硫黄を含む砒素含有物質を使用するか、あるいは砒素含有物質が硫黄を含まない場合には砒素含有物質または浸出液に硫黄を添加し、さらに、浸出液に添加するアルカリ土類金属またはその塩の量を、砒素とアルカリ土類金属の化合物を生成するのに必要なアルカリ土類金属またはその塩の量以上にすることによって、高純度で高濃度の砒素含有溶液を効率的に回収することができるとともに、再生されるアルカリ液への砒素の混入を防止して再利用可能なアルカリ液を回収することができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the inventors of the present invention have obtained a process of adding an arsenic-containing substance to an alkaline solution and leaching the alkali while oxidizing it, followed by solid-liquid separation to obtain a leachate containing arsenic, and the leachate. A step of obtaining a residue containing a compound of arsenic and an alkaline earth metal by adding an alkaline earth metal or a salt thereof to the solution, and washing the residue and adding it to a sulfuric acid solution, followed by solid-liquid separation. In a method for treating an arsenic-containing substance comprising a step of obtaining an arsenic-containing solution, the arsenic-containing substance is added to an alkaline solution to have a pH of 10 or more, and an arsenic-containing substance containing sulfur is used as the arsenic-containing substance. If the contained material does not contain sulfur, add sulfur to the arsenic-containing material or leachate, and then add the amount of alkaline earth metal or salt thereof added to the leachate to arsenic. By using more than the amount of alkaline earth metal or its salt required to produce a compound of rucal earth metal, it is possible to efficiently recover and regenerate a high-purity and high-concentration arsenic-containing solution. The present inventors have found that a reusable alkaline liquid can be recovered by preventing arsenic from being mixed into the alkaline liquid, and the present invention has been completed.

すなわち、本発明による砒素含有物質の処理方法は、砒素含有物質をアルカリ溶液に加えてpH10以上にして酸化しながらアルカリ浸出した後に固液分離して砒素を含む浸出液を得る工程と、この浸出液にアルカリ土類金属またはその塩を添加した後に固液分離して砒素とアルカリ土類金属の化合物を含む残渣を得る工程と、この残渣を洗浄して硫酸溶液に添加した後に固液分離して砒素含有溶液を得る工程とを備え、砒素含有物質として硫黄を含む砒素含有物質を使用するか、あるいは砒素含有物質が硫黄を含まない場合には砒素含有物質または浸出液に硫黄を添加し、さらに、浸出液に添加するアルカリ土類金属またはその塩の量を、砒素とアルカリ土類金属の化合物を生成するのに必要なアルカリ土類金属またはその塩の量以上にすることを特徴とする。   That is, the method for treating an arsenic-containing substance according to the present invention includes a step of adding an arsenic-containing substance to an alkaline solution to obtain a leachate containing arsenic by solid-liquid separation after alkali leaching while oxidizing to pH 10 or higher and oxidizing the arsenic containing substance. A step of solid-liquid separation after adding an alkaline earth metal or a salt thereof to obtain a residue containing a compound of arsenic and an alkaline earth metal, and washing and adding the residue to a sulfuric acid solution, followed by solid-liquid separation for arsenic And using an arsenic-containing substance containing sulfur as the arsenic-containing substance, or, if the arsenic-containing substance does not contain sulfur, adding sulfur to the arsenic-containing substance or leachate, and further The amount of the alkaline earth metal or salt thereof added to the alkali metal is greater than the amount of the alkaline earth metal or salt required to produce the arsenic and alkaline earth metal compound. I am characterized in.

この砒素含有物質の処理方法において、砒素含有物質が、銅、亜鉛、鉄、インジウム、ガリウム、錫、アンチモン、鉛、カドミウム、ナトリウム、カリウム、マグネシウムおよびカルシウムの少なくとも一種を含んでもよい。また、アルカリ溶液が、ナトリウムまたはカリウムの化合物からなるアルカリの溶液であるのが好ましく、さらに、アルカリ溶液が水酸化ナトリウム溶液であり、その溶液中の水酸化ナトリウム濃度が50〜300g/Lであるのが好ましい。また、アルカリ土類金属またはその塩が、酸化カルシウムまたは水酸化カルシウムであるのが好ましい。   In this arsenic-containing material treatment method, the arsenic-containing material may contain at least one of copper, zinc, iron, indium, gallium, tin, antimony, lead, cadmium, sodium, potassium, magnesium, and calcium. The alkali solution is preferably an alkali solution composed of a sodium or potassium compound. Further, the alkali solution is a sodium hydroxide solution, and the sodium hydroxide concentration in the solution is 50 to 300 g / L. Is preferred. The alkaline earth metal or salt thereof is preferably calcium oxide or calcium hydroxide.

本発明によれば、砒素含有物質を処理して高純度で高濃度の砒素含有溶液を効率的に回収することができるとともに、再生されるアルカリ液への砒素の混入を防止して再利用可能なアルカリ液を回収することができる。   According to the present invention, an arsenic-containing substance can be treated to efficiently recover a high-purity and high-concentration arsenic-containing solution, and can be reused by preventing arsenic from being mixed into the regenerated alkaline liquid. A simple alkaline solution can be recovered.

以下、添付図面を参照して、本発明による砒素含有物質の処理方法の実施の形態について説明する。   Embodiments of a method for treating an arsenic-containing material according to the present invention will be described below with reference to the accompanying drawings.

図1は、本発明による砒素含有物質の処理方法の実施の形態を概略的に示す工程図である。図1に示すように、本発明による砒素含有物質の処理方法の実施の形態は、(1)砒素含有物質をアルカリ溶液に加えてpH10以上、好ましくはpH12以上にして酸化しながらアルカリ浸出した後に固液分離して砒素を含む浸出液を得るアルカリ浸出・酸化工程と、(2)この浸出液にアルカリ土類金属またはその塩を添加した後に固液分離して砒素とアルカリ土類金属の化合物を含む残渣を得るアルカリ土類金属置換工程と、(3)この残渣を洗浄して付着したアルカリ液を除去する洗浄工程と、(4)この洗浄した残渣を硫酸溶液に添加した後に固液分離して高純度で高濃度の砒素含有溶液を得る硫酸溶解工程とを備えている。以下、これらの各工程について説明する。   FIG. 1 is a process diagram schematically showing an embodiment of a method for treating an arsenic-containing substance according to the present invention. As shown in FIG. 1, an embodiment of the method for treating an arsenic-containing material according to the present invention is as follows. (1) After leaching the alkali while oxidizing it to pH 10 or more, preferably pH 12 or more by adding the arsenic-containing material to an alkaline solution. Alkaline leaching / oxidation step for obtaining a leaching solution containing arsenic by solid-liquid separation, and (2) adding an alkaline earth metal or a salt thereof to the leaching solution, followed by solid-liquid separation and containing a compound of arsenic and alkaline earth metal An alkaline earth metal replacement step for obtaining a residue; (3) a washing step for washing the residue to remove the adhering alkaline solution; and (4) a solid-liquid separation after adding the washed residue to the sulfuric acid solution. And a sulfuric acid dissolution step for obtaining a high-purity and high-concentration arsenic-containing solution. Hereinafter, each of these steps will be described.

なお、本実施の形態の砒素含有物質の処理方法によって処理する砒素含有物質としては、硫化砒素(As)やFeAsSなどの硫化物のように硫黄と砒素を含む物質を使用することができる。また、亜鉛製錬工程などにより得られる砒化銅(CuAs)を主成分とする残渣なども使用することができる。この砒化銅を主成分とする残渣には、亜鉛や鉄などの他にインジウムやガリウムなどの有価金属も含まれている。なお、実施の形態の砒素含有物質の処理方法によって処理する砒素含有物質が硫黄を含まない場合には、アルカリ浸出・酸化工程前にNaSO塩のような硫酸塩などを添加するか、あるいは、アルカリ浸出・酸化工程後の浸出液に硫酸塩などを添加して、アルカリ土類金属置換工程前の浸出液中にSOイオンが存在するようにしておく必要がある。また、本実施の形態の砒素含有物質の処理方法によって処理する砒素含有物質は、砒素(As)と硫黄(S)の他に、銅(Cu)、亜鉛(Zn)、鉄(Fe)、インジウム(In)、ガリウム(Ga)、錫(Sn)、アンチモン(Sb)、鉛(Pb)、カドミウム(Cd)、ナトリウム(Na)、カリウム(K)、マグネシウム(Mg)およびカルシウム(Ca)の少なくとも一種を含んでもよい。 Note that as the arsenic-containing substance to be processed by the method for processing an arsenic-containing substance of the present embodiment, a substance containing sulfur and arsenic such as a sulfide such as arsenic sulfide (As 2 S 3 ) or FeAsS may be used. it can. Also, such residue composed mainly of the resulting copper arsenide (Cu 3 As) due zinc smelting process can also be used. The residue mainly composed of copper arsenide contains valuable metals such as indium and gallium in addition to zinc and iron. If the arsenic-containing material to be treated by the method for treating an arsenic-containing material of the embodiment does not contain sulfur, a sulfate such as Na 2 SO 4 salt is added before the alkali leaching / oxidation step, or Alternatively, it is necessary to add sulfate or the like to the leaching solution after the alkali leaching / oxidation step so that SO 4 ions are present in the leaching solution before the alkaline earth metal replacement step. In addition to arsenic (As) and sulfur (S), arsenic-containing materials to be treated by the method for treating arsenic-containing materials of the present embodiment include copper (Cu), zinc (Zn), iron (Fe), and indium. (In), gallium (Ga), tin (Sn), antimony (Sb), lead (Pb), cadmium (Cd), sodium (Na), potassium (K), magnesium (Mg) and calcium (Ca) One kind may be included.

(1)アルカリ浸出・酸化工程
まず、上記の砒素含有物質を酸化剤とともにアルカリ溶液に添加してpH10以上、好ましくはpH12以上にし、液温50〜100℃に加熱して撹拌しながら反応させることにより、砒素含有物質を酸化しながら浸出する。このアルカリ浸出・酸化工程における反応は、pH10以上、好ましくはpH12以上の強アルカリ性で起こる反応であり、反応速度は非常に速い。
(1) Alkali leaching / oxidation step First, the above-mentioned arsenic-containing substance is added to an alkaline solution together with an oxidizing agent so as to have a pH of 10 or more, preferably 12 or more, and the reaction is carried out while stirring at a liquid temperature of 50 to 100 ° C. Leaching while oxidizing the arsenic-containing material. The reaction in the alkali leaching / oxidation step is a reaction that occurs at a strong alkalinity of pH 10 or more, preferably pH 12 or more, and the reaction rate is very fast.

このアルカリ浸出によって、Cuを浸出させずにAsを浸出させてCuとAsを分離することができる。また、このアルカリ浸出では、In、Pb、CdおよびMgも浸出されず、Fe、Sn、SbおよびCaもほとんど浸出されない。しかし、Gaはほとんど浸出されるので、この段階では、AsとGaは分離されない。   By this alkali leaching, Cu and As can be separated by leaching As without leaching Cu. In this alkaline leaching, In, Pb, Cd and Mg are not leached, and Fe, Sn, Sb and Ca are hardly leached. However, since Ga is almost leached, As and Ga are not separated at this stage.

なお、Znは、アルカリ濃度が高いと浸出されるが、アルカリ濃度が低いと浸出されないので、砒素含有物質中のZnの品位、砒素の品位および他の不純物(特にSnとSb)の浸出挙動を勘案してアルカリ濃度を決定すればよい。すなわち、SnやSbの品位が低ければ、残渣中にZnを残しておく方がよいが、SnやSbの品位が高いと、ある程度Znを溶解させた方がよい。   Zn is leached when the alkali concentration is high, but is not leached when the alkali concentration is low. Therefore, the quality of Zn in the arsenic-containing material, the quality of arsenic, and the leaching behavior of other impurities (especially Sn and Sb) are affected. The alkali concentration may be determined in consideration. That is, if the quality of Sn or Sb is low, it is better to leave Zn in the residue, but if the quality of Sn or Sb is high, it is better to dissolve Zn to some extent.

アルカリ溶液としてNaOH溶液を使用することができ、その場合、NaOH濃度が50〜300g/Lであるのが好ましい。   A NaOH solution can be used as the alkaline solution, in which case the NaOH concentration is preferably 50 to 300 g / L.

酸化剤としては、過マンガン酸カリウムなどの固形酸化剤の他、過酸化水素やオゾンなどを使用することができるが、空気や濃度を高めた酸素などを使用してもよく、その場合、液中にガスを吹き込んでバブリングして撹拌することによって酸化反応が容易に進む。   As an oxidizing agent, hydrogen peroxide, ozone, etc. can be used in addition to a solid oxidizing agent such as potassium permanganate, but air or oxygen with increased concentration may be used. Oxidation reaction proceeds easily by bubbling and stirring the gas.

アルカリ浸出後に固液分離を行う。この固液分離は、フィルタプレス、遠心分離、デカンタ、ベルトフィルタなどの一般的なろ過のいずれでもよく、ろ過性、脱水性、洗浄性などを勘案してその種類および条件が決定される。   Solid-liquid separation is performed after alkali leaching. This solid-liquid separation may be any of general filtration such as a filter press, centrifugal separation, decanter, and belt filter, and its type and conditions are determined in consideration of filterability, dewaterability, washability, and the like.

一方、固液分離後の固形分は、有価なCuやInなどを含む金属性化合物と、一部酸化された化合物であるので、製錬工程において有効に活用することができる。なお、銅製錬では、自溶炉や反射炉に直接投入してアノードを作成することができる。   On the other hand, since the solid content after the solid-liquid separation is a metallic compound containing valuable Cu or In and a partially oxidized compound, it can be effectively utilized in the smelting process. In copper smelting, an anode can be created by directly charging into a flash smelting furnace or a reflection furnace.

(2)アルカリ土類金属置換工程
次に、固液分離後の浸出液(主にNaとAsを含む液)にアルカリ土類を添加する。アルカリ浸出後の浸出液にCaOなどのアルカリ土類を添加すると、アルカリ土類金属が砒素と反応してアルカリ土類金属と砒素の化合物を生成するとともに、NaOHのようなアルカリ液を再生する。なお、アルカリ薬品は非常に高価であるので、再生されたアルカリ液は前工程に繰り返し使用される。
(2) Alkaline earth metal replacement step Next, alkaline earth is added to the leachate (mainly a liquid containing Na and As) after solid-liquid separation. When an alkaline earth such as CaO is added to the leachate after alkaline leaching, the alkaline earth metal reacts with arsenic to produce a compound of alkaline earth metal and arsenic, and an alkaline liquid such as NaOH is regenerated. Since alkaline chemicals are very expensive, the regenerated alkaline liquid is repeatedly used in the previous step.

上記の反応のために過剰のアルカリ土類を添加することによって、再生されたアルカリ液にSO塩またはイオンを混在させて、アルカリ液へのアルカリ土類金属の混入を防止する。再生されたアルカリ液中にSO塩がなく、ほぼ純粋なアルカリ液である場合には、過剰にアルカリ土類を添加すると、再生されたアルカリ液中にアルカリ土類金属が溶存してしまう。 By adding an excess of alkaline earth for the above reaction, SO 4 salts or ions are mixed in the regenerated alkaline liquid to prevent the alkaline earth metal from being mixed into the alkaline liquid. In the case where the regenerated alkaline solution has no SO 4 salt and is a substantially pure alkaline solution, if the alkaline earth is added excessively, the alkaline earth metal is dissolved in the regenerated alkaline solution.

再生されたアルカリ液中にアルカリ土類金属が存在すると、そのアルカリ液を砒素の浸出に再利用する際に、砒素とアルカリ土類金属が反応して溶解度が低い沈殿物を生成するので、アルカリ浸出工程における浸出率が極端に悪くなる場合がある。一方、過剰のアルカリ土類金属を加えないと、アルカリ液中に砒素が除去されずに残ってしまうため、砒素の回収効率が非常に悪くなる。また、アルカリ液にSOが混在していると、アルカリ土類としてCaOを使用した場合に、CaOまたはCa(OH)がその状態で溶解せずに固形分中にとどまる。すなわち、NaとSO 2−の濃度を高くすることによって、Ca2+の溶解度が非常に低く抑制されるため、CaOとして固形分中にとどまる。 If alkaline earth metal is present in the regenerated alkaline liquid, when the alkaline liquid is reused for arsenic leaching, arsenic and alkaline earth metal react to produce a precipitate with low solubility. The leaching rate in the leaching process may become extremely poor. On the other hand, if excess alkaline earth metal is not added, arsenic will remain in the alkaline solution without being removed, and the arsenic recovery efficiency will be very poor. In addition, when SO 4 is mixed in the alkaline solution, when CaO is used as the alkaline earth, CaO or Ca (OH) 2 remains in the solid content without being dissolved in that state. That is, by increasing the concentration of Na + and SO 4 2− , the solubility of Ca 2+ is suppressed to be very low, so that it remains in the solid content as CaO.

アルカリ土類の添加量は、砒素とアルカリ土類金属の化合物を生成するための等当量でもよいが、Ca(AsOに加えてCa(OH)を生成するように、等当量よりもややアルカリ土類リッチにするのが好ましい。 The amount of alkaline earth added may be equivalent to produce a compound of arsenic and alkaline earth metal, but is equivalent to produce Ca (OH) 2 in addition to Ca 3 (AsO 4 ) 2. It is preferable to make it slightly richer in alkaline earth.

(3)洗浄工程
次に、固形分として得られた砒素とアルカリ土類金属の化合物に付着したアルカリ液を水洗する。この水洗では、固形分中に砒素をとどめておく必要がある。砒素が洗浄排水中に溶出すると、その排水中の砒素を除去するための煩雑な操作が必要になるからである。そのような操作を回避するために、洗浄によってアルカリ液を除去するが砒素を除去しないようにすることが必要である。このような洗浄を可能にするために、上述したようにアルカリ土類を添加する際にアルカリ土類リッチにしてアルカリ性にするのが好ましい。また、アルカリ土類リッチにすると、洗浄によってアルカリ液が洗い流されるだけでなく、アルカリ土類金属が優先的に溶出し、砒素とアルカリ土類金属の化合物はそのまま保持される。なお、アルカリ土類の添加量は、洗浄水の量の増加に伴って多くなるが、Asと反応する量よりも0.5〜1.0質量%だけ過剰にするのが好ましい。
(3) Washing step Next, the alkaline solution adhering to the arsenic and alkaline earth metal compound obtained as a solid content is washed with water. In this water washing, it is necessary to keep arsenic in the solid content. This is because if arsenic elutes into the washing waste water, a complicated operation for removing the arsenic in the waste water becomes necessary. In order to avoid such an operation, it is necessary to remove the alkaline solution by washing but not to remove arsenic. In order to enable such cleaning, it is preferable that the alkaline earth is made rich by alkaline earth when the alkaline earth is added as described above. Further, when the alkaline earth is rich, not only the alkaline solution is washed away but also the alkaline earth metal is preferentially eluted, and the compound of arsenic and alkaline earth metal is retained as it is. In addition, although the addition amount of alkaline-earth increases with the increase in the quantity of washing water, it is preferable to make it excess 0.5-1.0 mass% rather than the quantity which reacts with As.

(4)硫酸溶解工程
次に、洗浄後の砒素とアルカリ土類金属の化合物を硫酸溶液に添加して、強く撹拌しながら反応させて、砒素を再溶解させるとともに石膏を生成する。この砒素とアルカリ土類金属の化合物は、アルカリ側では不溶性であるが、pHが4以下ではほぼ全量が溶解するので、鉱酸によってpHを4以下にすれば、ほぼ全量を溶解させることが可能である。しかし、砒素とアルカリ土類金属を分離するためには、硫酸を用いて石膏と砒素含有溶液に分離するのが好ましい。砒素とアルカリ土類金属の化合物を硫酸溶液に添加すると、砒素の溶解と同時に、アルカリ土類と硫酸塩の析出反応が起こる。
(4) Sulfuric acid dissolution step Next, the washed arsenic and alkaline earth metal compound is added to the sulfuric acid solution and reacted with vigorous stirring to re-dissolve arsenic and produce gypsum. This arsenic and alkaline earth metal compound is insoluble on the alkali side, but almost completely dissolves when the pH is 4 or less. Therefore, if the pH is lowered to 4 or less with mineral acid, almost all of the compound can be dissolved. It is. However, in order to separate arsenic and alkaline earth metal, it is preferable to separate into gypsum and an arsenic-containing solution using sulfuric acid. When a compound of arsenic and alkaline earth metal is added to the sulfuric acid solution, precipitation of alkaline earth and sulfate occurs simultaneously with the dissolution of arsenic.

硫酸溶液の濃度は、100〜500g/Lであるのが好ましく、150〜300g/Lであるのがさらに好ましい。砒素含有溶液中の砒素を高濃度にしたい場合には、硫酸溶液の濃度をより高くする必要があるが、生成する石膏に付着する硫酸溶液の濃度が上昇し、また、溶液の粘度も上昇するので好ましくない。しかし、砒素の未反応を防止する観点では、砒素とアルカリ土類金属の化合物を濃硫酸に添加して、砒素だけでなく石膏も溶解させた後に、水を加えて加水分解により石膏を析出させてもよい。   The concentration of the sulfuric acid solution is preferably 100 to 500 g / L, and more preferably 150 to 300 g / L. To increase the concentration of arsenic in the arsenic-containing solution, it is necessary to increase the concentration of the sulfuric acid solution. However, the concentration of the sulfuric acid solution adhering to the gypsum produced increases, and the viscosity of the solution also increases. Therefore, it is not preferable. However, from the viewpoint of preventing unreacted arsenic, the compound of arsenic and alkaline earth metal is added to concentrated sulfuric acid to dissolve not only arsenic but also gypsum, and then water is added to precipitate gypsum by hydrolysis. May be.

撹拌は強く行うことが好ましい。砒素の溶解反応と石膏の析出反応が同時に起こり、また、ウェットケーキの状態で硫酸溶液に投入するのが好ましく、局部的な中和などを起こし易い系であるので、均一且つ完全に反応させるために、強く撹拌して十分に砒素を硫酸に接触させて高純度で高濃度の砒素含有溶液にする必要があるからである。   Stirring is preferably performed strongly. Arsenic dissolution reaction and gypsum precipitation reaction occur at the same time, and it is preferable to put it into the sulfuric acid solution in the form of a wet cake. In addition, it is necessary to vigorously agitate to sufficiently contact arsenic with sulfuric acid to obtain a high-purity and high-concentration arsenic-containing solution.

また、洗浄後の砒素とアルカリ土類金属の化合物を硫酸溶液に添加した時のpHが1程度になるのが好ましい。アルカリ土類金属の溶解度を1g/L以下に抑制するためには、若干硫酸リッチにしておくのがよい。pH=1では、H濃度で0.1g/Lになり、硫酸の濃度は4.9g/Lになるので、硫酸溶液をこの濃度にすれば、Caの溶解度が1g/L以下に下がる。そのため、砒素含有溶液とアルカリ土類金属を分離することができ、高純度で高濃度の砒素含有溶液を得ることができる。得られた砒素含有溶液は、亜鉛製錬所の亜砒酸浄液の原料として利用することができるが、過剰分を砒酸鉄(FeAsO)などの砒素と鉄の化合物として固定化することもできる。また、還元してAsとして析出させてもよい。 Further, it is preferable that the pH when the washed arsenic and alkaline earth metal compound is added to the sulfuric acid solution is about 1. In order to suppress the solubility of the alkaline earth metal to 1 g / L or less, it is preferable to make it slightly rich in sulfuric acid. At pH = 1, the H + concentration is 0.1 g / L, and the sulfuric acid concentration is 4.9 g / L. Therefore, when the sulfuric acid solution is adjusted to this concentration, the solubility of Ca falls to 1 g / L or less. Therefore, the arsenic-containing solution and the alkaline earth metal can be separated, and a high-purity and high-concentration arsenic-containing solution can be obtained. The obtained arsenic-containing solution can be used as a raw material for the arsenous acid purification solution of a zinc smelter, but the excess can also be fixed as a compound of arsenic and iron such as iron arsenate (FeAsO 4 ). Further, it may be reduced and precipitated as As 2 O 3 .

以下、本発明による砒素含有物質の処理方法の実施例について詳細に説明する。   Hereinafter, embodiments of the method for treating an arsenic-containing material according to the present invention will be described in detail.

まず、表1に示す組成の砒素含有物質を用意した。この砒素含有物質400gをNaOH濃度100g/LのNaOH溶液(Na濃度57.5g/L)4Lに入れ、液温90℃に加熱し、2L/分の流量で空気(ガス/液比率=0.5)を吹き込んで、撹拌しながら1時間反応させ、砒素含有物質を酸化しながらアルカリ浸出した。なお、砒素含有物質をNaOH溶液に入れた後のpHは約12であった。   First, an arsenic-containing material having the composition shown in Table 1 was prepared. 400 g of this arsenic-containing substance is placed in 4 L of NaOH solution (Na concentration 57.5 g / L) having a NaOH concentration of 100 g / L, heated to a liquid temperature of 90 ° C., and air (gas / liquid ratio = 0.0) at a flow rate of 2 L / min. 5) was blown in, reacted for 1 hour with stirring, and alkali leached while oxidizing the arsenic-containing substance. The pH after the arsenic-containing substance was added to the NaOH solution was about 12.

Figure 2007297243
Figure 2007297243

次に、液温70℃まで冷却した後、目開き3ミクロンのPTFE(ポリ四フッ化エチレン)からなるメンブランフィルタを用いて、加圧ろ過機によって0.4MPaに加圧して固液分離した。フィルタ上に残った残渣(浸出残渣)の水分は20%であり、質量は600gであった。この浸出残渣は、Cu、Zn、Fe、Inなどを含み、製錬原料として使用される。   Next, after cooling to a liquid temperature of 70 ° C., solid-liquid separation was performed using a membrane filter made of PTFE (polytetrafluoroethylene) having an opening of 3 μm and pressurizing to 0.4 MPa with a pressure filter. The residue (leaching residue) remaining on the filter had a water content of 20% and a mass of 600 g. This leaching residue contains Cu, Zn, Fe, In and the like and is used as a smelting raw material.

この固液分離後のフィルタを通過したろ液(アルカリ浸出液)と浸出残渣についてICPによって組成分析を行った。アルカリ浸出液および浸出残渣の分析結果をそれぞれ表2および表3に示し、浸出率の計算結果を表4に示す。これらの結果から、1時間という短時間でAsを効率的に浸出していることがわかる。   Composition analysis was performed by ICP on the filtrate (alkaline leachate) and leach residue that passed through the filter after this solid-liquid separation. The analysis results of the alkaline leaching solution and the leaching residue are shown in Table 2 and Table 3, respectively, and the calculation result of the leaching rate is shown in Table 4. From these results, it can be seen that As was efficiently leached in a short time of 1 hour.

Figure 2007297243
Figure 2007297243

Figure 2007297243
Figure 2007297243

Figure 2007297243
Figure 2007297243

次に、アルカリ浸出液に純度95%の工業用生石灰(CaO)を添加して、液温60℃に加熱し、撹拌して1時間反応させ、固形分としてCaとAsの化合物を得るとともに、NaOH液を再生した。この置換反応によって液温は60℃から80℃まで上昇した。なお、工業用生石灰の添加量は、アルカリ浸出の際に加えたNaOH溶液のNaOH濃度との関係からアルカリ浸出液を置換するに足りるCaOと同当量、すなわち、NaOH濃度が100g/Lであったので73.7g/L(=100÷40×56÷2÷0.95)とした。また、CaOを添加すると水(HO)を消費するので、濃度の上昇を避けるために、アルカリ浸出液が同じ量になるように水を補給して調整した。 Next, 95% pure industrial quicklime (CaO) is added to the alkaline leachate, heated to a liquid temperature of 60 ° C., stirred and reacted for 1 hour to obtain a compound of Ca and As as a solid content, and NaOH. The liquid was regenerated. The liquid temperature rose from 60 ° C. to 80 ° C. by this substitution reaction. The amount of industrial quicklime added was the same as CaO sufficient to replace the alkaline leachate from the relationship with the NaOH concentration of the NaOH solution added during alkali leaching, that is, the NaOH concentration was 100 g / L. It was set to 73.7 g / L (= 100 ÷ 40 × 56 ÷ 2 ÷ 0.95). Moreover, since water (H 2 O) is consumed when CaO is added, in order to avoid an increase in concentration, water was replenished and adjusted so that the alkaline leachate was the same amount.

次に、液温70℃まで冷却した後、加圧ろ過機によって固液分離した。得られた残渣(砒素とアルカリ土類金属の塩の固形分)は、20%の水分を含み、158g/Lであった。この固液分離後の液と残渣についてICPによって組成分析を行った。それぞれの分析結果を表5および表6に示す。   Next, after cooling to a liquid temperature of 70 ° C., solid-liquid separation was performed with a pressure filter. The resulting residue (solid content of arsenic and alkaline earth metal salt) contained 20% water and was 158 g / L. The liquid and the residue after the solid-liquid separation were subjected to composition analysis by ICP. The respective analysis results are shown in Tables 5 and 6.

Figure 2007297243
Figure 2007297243

Figure 2007297243
Figure 2007297243

次に、固液分離後の固形分に付着したアルカリ成分を除去するために、パルプ濃度200g/Lとしてリパルプ洗浄を3回行った。各々のリパルプ洗浄では、液温を60℃として撹拌しながら1時間反応させた。各々のリパルプ洗浄後の洗浄后液についてICPによって組成分析を行ったところ、第1回目、第2回目および第3回目の洗浄後の液中のNa濃度は、それぞれ2314mg/L、93mg/Lおよび4mg/Lになり、アルカリ成分を十分に除去することができた。また、これらの洗浄後の液中のAs濃度は、いずれも0mg/Lであり、Asが溶出しないのが確認された。その後、目開き3ミクロンのPTFEからなるメンブランフィルタを用いて、加圧ろ過機によって0.4MPaに加圧して、フィルタ上に残った残渣(洗浄後のカルシウムと砒素を含む固形分)とフィルタを通過したろ液(洗浄后液)に固液分離した。   Next, in order to remove the alkali component adhering to the solid content after solid-liquid separation, repulp washing was performed three times with a pulp concentration of 200 g / L. In each repulp washing, the liquid temperature was 60 ° C. and the reaction was performed for 1 hour with stirring. Composition analysis was performed by ICP for each post-washing solution after repulp washing, and the Na concentration in the solution after the first, second and third washings was 2314 mg / L, 93 mg / L and It became 4 mg / L, and the alkali component could be sufficiently removed. Further, the As concentration in the liquid after washing was 0 mg / L, and it was confirmed that As did not elute. Then, using a membrane filter made of PTFE having a mesh size of 3 microns, the pressure is reduced to 0.4 MPa by a pressure filter, and the residue (solid content including calcium and arsenic after washing) and the filter remaining on the filter are removed. The filtrate that passed through (liquid after washing) was subjected to solid-liquid separation.

次に、洗浄後の残渣(水分20%を含むカルシウムと砒素の固形分)1912gを200g/Lの硫酸溶液5.59Lに添加してpH1になるようにし、液温を50℃として強く撹拌しながら2時間反応させて残渣を再溶解させた。この置換反応により液温は50℃から80℃に上昇した。なお、この撹拌を行わなければ、カルシウムおよび砒素の溶解と同時にCaSOが析出するため、カルシウムと砒素の溶解反応を阻害するので、この撹拌によって良好に分散させる必要がある。 Next, 1912 g of the residue after washing (solid content of calcium and arsenic containing 20% water) was added to 5.59 L of a 200 g / L sulfuric acid solution to adjust to pH 1, and the liquid temperature was 50 ° C. and the mixture was vigorously stirred. For 2 hours to redissolve the residue. The liquid temperature rose from 50 ° C. to 80 ° C. by this substitution reaction. If this stirring is not performed, CaSO 4 precipitates simultaneously with the dissolution of calcium and arsenic, which inhibits the dissolution reaction of calcium and arsenic. Therefore, it is necessary to disperse well by this stirring.

その後、目開き3ミクロンのPTFEからなるメンブランフィルタを用いて、加圧ろ過機によって0.4MPaに加圧して、フィルタ上に残った残渣(石膏)とフィルタを通過したろ液(砒素含有溶液)に固液分離した。この固液分離後の再溶解液と残渣についてICPによって組成分析を行った。再溶解液と残渣(洗浄した石膏)の分析結果をそれぞれ表7および表8に示し、浸出率の計算結果を表9に示す。これらの結果から、再溶解液は、アルカリ土類金属などの不純物が非常に少ない高濃度の砒素を含む溶液であるのがわかる。   After that, using a membrane filter made of PTFE having a mesh size of 3 microns, the pressure (0.4 g) was pressurized by a pressure filter and the residue (gypsum) remaining on the filter and the filtrate that passed through the filter (arsenic-containing solution) Separated into solid and liquid. The re-dissolved solution and the residue after the solid-liquid separation were subjected to composition analysis by ICP. The analysis results of the redissolved solution and the residue (washed gypsum) are shown in Table 7 and Table 8, respectively, and the calculation results of the leaching rate are shown in Table 9. From these results, it can be seen that the redissolved solution is a solution containing a high concentration of arsenic with very little impurities such as alkaline earth metals.

Figure 2007297243
Figure 2007297243

Figure 2007297243
Figure 2007297243

Figure 2007297243
Figure 2007297243

本発明による砒素含有物質の処理方法の実施の形態を概略的に示す工程図である。It is process drawing which shows schematically embodiment of the processing method of the arsenic containing substance by this invention.

Claims (5)

砒素含有物質をアルカリ溶液に加えてpH10以上にして酸化しながらアルカリ浸出した後に固液分離して砒素を含む浸出液を得る工程と、この浸出液にアルカリ土類金属またはその塩を添加した後に固液分離して砒素とアルカリ土類金属の化合物を含む残渣を得る工程と、この残渣を洗浄して硫酸溶液に添加した後に固液分離して砒素含有溶液を得る工程とを備え、前記砒素含有物質として硫黄を含む砒素含有物質を使用するか、あるいは前記砒素含有物質が硫黄を含まない場合には前記砒素含有物質または前記浸出液に硫黄を添加し、さらに、前記浸出液に添加する前記アルカリ土類金属またはその塩の量を、前記砒素とアルカリ土類金属の化合物を生成するのに必要なアルカリ土類金属またはその塩の量以上にすることを特徴とする、砒素含有物質の処理方法。 A step of adding an arsenic-containing substance to an alkali solution to obtain a leachate containing arsenic by solid-liquid separation after alkali leaching while oxidizing to pH 10 or higher, and adding an alkaline earth metal or a salt thereof to the leach solution Separating and obtaining a residue containing an arsenic and alkaline earth metal compound; and washing and adding the residue to a sulfuric acid solution, followed by solid-liquid separation to obtain an arsenic-containing solution, the arsenic-containing substance An arsenic-containing substance containing sulfur, or when the arsenic-containing substance does not contain sulfur, sulfur is added to the arsenic-containing substance or the leachate, and the alkaline earth metal added to the leachate Or the amount of the salt is more than the amount of the alkaline earth metal or salt thereof necessary for producing the arsenic and alkaline earth metal compound, Method of processing-containing material. 前記砒素含有物質が、銅、亜鉛、鉄、インジウム、ガリウム、錫、アンチモン、鉛、カドミウム、ナトリウム、カリウム、マグネシウムおよびカルシウムの少なくとも一種を含むことを特徴とする、請求項1に記載の砒素含有物質の処理方法。 The arsenic-containing material according to claim 1, wherein the arsenic-containing material includes at least one of copper, zinc, iron, indium, gallium, tin, antimony, lead, cadmium, sodium, potassium, magnesium, and calcium. How to treat the substance. 前記アルカリ溶液が、ナトリウムまたはカリウムの化合物からなるアルカリの溶液であることを特徴とする、請求項1または2に記載の砒素含有物質の処理方法。 The method for treating an arsenic-containing substance according to claim 1 or 2, wherein the alkaline solution is an alkaline solution made of a sodium or potassium compound. 前記アルカリ溶液が水酸化ナトリウム溶液であり、その溶液中の水酸化ナトリウム濃度が50〜300g/Lであることを特徴とする、請求項1乃至3のいずれかに記載の砒素含有物質の処理方法。 4. The method for treating an arsenic-containing substance according to claim 1, wherein the alkaline solution is a sodium hydroxide solution, and the sodium hydroxide concentration in the solution is 50 to 300 g / L. . 前記アルカリ土類金属またはその塩が、酸化カルシウムまたは水酸化カルシウムであることを特徴とする、請求項1乃至4のいずれかに記載の砒素含有物質の処理方法。

The method for treating an arsenic-containing substance according to any one of claims 1 to 4, wherein the alkaline earth metal or a salt thereof is calcium oxide or calcium hydroxide.

JP2006126772A 2006-04-28 2006-04-28 Arsenic-containing material treatment method Active JP4710034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006126772A JP4710034B2 (en) 2006-04-28 2006-04-28 Arsenic-containing material treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006126772A JP4710034B2 (en) 2006-04-28 2006-04-28 Arsenic-containing material treatment method

Publications (2)

Publication Number Publication Date
JP2007297243A true JP2007297243A (en) 2007-11-15
JP4710034B2 JP4710034B2 (en) 2011-06-29

Family

ID=38767075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006126772A Active JP4710034B2 (en) 2006-04-28 2006-04-28 Arsenic-containing material treatment method

Country Status (1)

Country Link
JP (1) JP4710034B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150659A (en) * 2006-12-15 2008-07-03 Dowa Metals & Mining Co Ltd Method for producing arsenic liquid from copper-arsenic compound
JP2011161386A (en) * 2010-02-10 2011-08-25 Akita Univ Method for treating thioarsenite
RU2483129C1 (en) * 2012-03-02 2013-05-27 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский, проектный и конструкторский институт горного дела и металлургии цветных металлов" ФГУП "Гипроцветмет" Method of neutralising arsenic-containing sulfide cakes
CN103388076A (en) * 2013-07-23 2013-11-13 中南民族大学 Method for recovering elementary substance arsenic from arsenic sulfide slag
JP2014208338A (en) * 2013-03-29 2014-11-06 三菱マテリアル株式会社 Method for separating and immobilizing arsenic
CN106756031A (en) * 2016-11-23 2017-05-31 昆明理工大学 A kind of method that lead antimony and arsenic are separated in the alkaline leaching solution from the earth of positive pole
CN106756112A (en) * 2016-12-29 2017-05-31 湖南工业大学 A kind of method that heavy arsenic slag reduction sulphur fixing roast is directly produced metallic arsenic
CN113564384A (en) * 2021-07-23 2021-10-29 湖南辰州矿业有限责任公司 Production method of refined antimony with ultralow arsenic content
CN114606387A (en) * 2022-04-26 2022-06-10 中南大学 Wet-process and pyrogenic-process combined comprehensive recovery method for arsenic-alkali residue
CN114622099A (en) * 2022-03-17 2022-06-14 郴州金铖环保科技有限公司 Comprehensive recovery and safe disposal method for high-arsenic material in copper smelting

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124329B2 (en) * 1978-06-09 1986-06-10 Sumitomo Metal Mining Co
JPH09241776A (en) * 1996-03-08 1997-09-16 Nikko Kinzoku Kk Separation of arsenic container in smelting intermediate material and recovering method of arsenic
JPH09263408A (en) * 1996-03-29 1997-10-07 Nikko Kinzoku Kk Separation of arsenic from arsenic sulfide-containing smelting intermediate product
JPH09315819A (en) * 1996-05-30 1997-12-09 Nikko Kinzoku Kk Method for recovering arsenic from sulfide containing arsenic and production of calcium arsenate
JPH11199231A (en) * 1997-12-26 1999-07-27 Nippon Mining & Metals Co Ltd Production of calcium arsenate
JP2004523341A (en) * 2000-12-14 2004-08-05 バリック・ゴールド・コーポレイション Method for recovering arsenic from aqueous acid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124329B2 (en) * 1978-06-09 1986-06-10 Sumitomo Metal Mining Co
JPH09241776A (en) * 1996-03-08 1997-09-16 Nikko Kinzoku Kk Separation of arsenic container in smelting intermediate material and recovering method of arsenic
JPH09263408A (en) * 1996-03-29 1997-10-07 Nikko Kinzoku Kk Separation of arsenic from arsenic sulfide-containing smelting intermediate product
JPH09315819A (en) * 1996-05-30 1997-12-09 Nikko Kinzoku Kk Method for recovering arsenic from sulfide containing arsenic and production of calcium arsenate
JPH11199231A (en) * 1997-12-26 1999-07-27 Nippon Mining & Metals Co Ltd Production of calcium arsenate
JP2004523341A (en) * 2000-12-14 2004-08-05 バリック・ゴールド・コーポレイション Method for recovering arsenic from aqueous acid

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150659A (en) * 2006-12-15 2008-07-03 Dowa Metals & Mining Co Ltd Method for producing arsenic liquid from copper-arsenic compound
JP2011161386A (en) * 2010-02-10 2011-08-25 Akita Univ Method for treating thioarsenite
RU2483129C1 (en) * 2012-03-02 2013-05-27 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский, проектный и конструкторский институт горного дела и металлургии цветных металлов" ФГУП "Гипроцветмет" Method of neutralising arsenic-containing sulfide cakes
JP2014208338A (en) * 2013-03-29 2014-11-06 三菱マテリアル株式会社 Method for separating and immobilizing arsenic
CN103388076A (en) * 2013-07-23 2013-11-13 中南民族大学 Method for recovering elementary substance arsenic from arsenic sulfide slag
CN106756031A (en) * 2016-11-23 2017-05-31 昆明理工大学 A kind of method that lead antimony and arsenic are separated in the alkaline leaching solution from the earth of positive pole
CN106756031B (en) * 2016-11-23 2018-04-24 昆明理工大学 A kind of method that lead antimony and arsenic are separated in the alkaline leaching solution from the earth of positive pole
CN106756112A (en) * 2016-12-29 2017-05-31 湖南工业大学 A kind of method that heavy arsenic slag reduction sulphur fixing roast is directly produced metallic arsenic
CN113564384A (en) * 2021-07-23 2021-10-29 湖南辰州矿业有限责任公司 Production method of refined antimony with ultralow arsenic content
CN114622099A (en) * 2022-03-17 2022-06-14 郴州金铖环保科技有限公司 Comprehensive recovery and safe disposal method for high-arsenic material in copper smelting
CN114606387A (en) * 2022-04-26 2022-06-10 中南大学 Wet-process and pyrogenic-process combined comprehensive recovery method for arsenic-alkali residue

Also Published As

Publication number Publication date
JP4710034B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
JP4710034B2 (en) Arsenic-containing material treatment method
CA2437549C (en) Production of zinc oxide from complex sulfide concentrates using chloride processing
KR101330464B1 (en) Method for the recovery of valuable metals and arsenic from a solution
WO2007125627A1 (en) Method of treating arsenic-containing solution
EA013353B1 (en) Method for processing nickel bearing raw material in chloride-based leaching
JP4846677B2 (en) Arsenic-containing solution processing method
JP6986226B2 (en) Wastewater treatment method
JP7016463B2 (en) How to collect tellurium
JP4826532B2 (en) Processing method of molten fly ash
JP2009179841A (en) Method for treating molten fly ash
JP4710033B2 (en) Arsenic content treatment method
WO2015192234A1 (en) Recovery of zinc and manganese from pyrometallurgy sludge or residues
JP2008274382A (en) Method for separating lead from aqueous cobalt chloride solution
JP6233177B2 (en) Method for producing rhenium sulfide
JP2010059035A (en) Method for producing aqueous arsenous acid solution of high purity from copper removal slime
JP4817005B2 (en) Copper converter dust treatment method
JP2020105587A (en) Treatment method of acidic solution containing noble metal, selenium and tellurium
CA2464398C (en) A method for purifying the solution in the hydrometallurgical processing of copper
JP2017101276A (en) Method for removing sulfurizing agent
AU2002333937A1 (en) A method for purifying the solution in the hydrometallurgical processing of copper
JP2005154196A (en) Method for producing waste acid gypsum
JP2019189891A (en) Method for separating selenium and tellurium from mixture containing selenium and tellurium
JP4639398B2 (en) Method for treating fly ash using sulfur dioxide
CA3205590A1 (en) Method for recovering lead from copper smelting dust
JP2016014164A (en) Method for purifying cobalt chloride solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110224

R150 Certificate of patent or registration of utility model

Ref document number: 4710034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250