JP2007287962A - Semiconductor light-emitting device - Google Patents

Semiconductor light-emitting device Download PDF

Info

Publication number
JP2007287962A
JP2007287962A JP2006114255A JP2006114255A JP2007287962A JP 2007287962 A JP2007287962 A JP 2007287962A JP 2006114255 A JP2006114255 A JP 2006114255A JP 2006114255 A JP2006114255 A JP 2006114255A JP 2007287962 A JP2007287962 A JP 2007287962A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
temperature sensor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006114255A
Other languages
Japanese (ja)
Other versions
JP4984621B2 (en
Inventor
Yoshinori Yamaji
芳紀 山路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2006114255A priority Critical patent/JP4984621B2/en
Publication of JP2007287962A publication Critical patent/JP2007287962A/en
Application granted granted Critical
Publication of JP4984621B2 publication Critical patent/JP4984621B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases

Landscapes

  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor light-emitting device which can control the temperature with high precision, and can emit light at a constant temperature without being affected by the temperature variation due to the generation of heat of the light-emitting element itself and by the variation of environmental temperature around the light-emitting device. <P>SOLUTION: The semiconductor light-emitting device is equipped with a light-emitting element, a support to mount the light-emitting element, a temperature sensor mounted on the support and electrically insulated to the light-emitting element, wherein the light-emitting element and the temperature sensor is integrally sealed by translucent resin. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体素子を用いた発光装置に関し、特に、温度測定および温度制御機能を備えた発光装置に関する。   The present invention relates to a light emitting device using a semiconductor element, and more particularly, to a light emitting device having a temperature measurement and temperature control function.

近年、高輝度、高出力の半導体発光装置が開発され、種々の分野に利用されている。このような発光装置は、小型、低消費電力や軽量等の特徴を生かして、例えば、携帯電話及び液晶バックライトの光源、各種メータの光源、各種読みとりセンサ、信号、照明用途等に利用されている。しかしながら、これらの半導体発光装置は、発光素子の発光に伴う発熱や、周囲温度の変化により光度が変化したり、色シフトが起こるという特性を有する。例えば、具体的には、温度が上昇すると光度が低下するという問題を有する。   In recent years, high-luminance and high-power semiconductor light-emitting devices have been developed and used in various fields. Such a light-emitting device is used for, for example, a light source of a mobile phone and a liquid crystal backlight, a light source of various meters, various reading sensors, a signal, a lighting application, etc. by taking advantage of features such as small size, low power consumption and light weight. Yes. However, these semiconductor light emitting devices have characteristics such that the light intensity changes due to heat generation due to light emission of the light emitting element, and the ambient temperature changes, and color shift occurs. For example, specifically, there is a problem that the luminous intensity decreases as the temperature rises.

この問題を解決するために、発光素子近傍に温度センサを載置し、温度センサにより検出された温度が設定温度となるようにペルチェ素子等の温度制御素子で制御を行う半導体発光装置が知られている(例えば特許文献1〜2参照)。   In order to solve this problem, a semiconductor light emitting device is known in which a temperature sensor is placed in the vicinity of the light emitting element, and control is performed by a temperature control element such as a Peltier element so that the temperature detected by the temperature sensor becomes a set temperature. (For example, refer to Patent Documents 1 and 2).

特開昭59−27568号公報JP 59-27568 特開平4−97572号公報Japanese Patent Laid-Open No. 4-97572

しかしながら、特許文献1に開示の発明では、発光素子の載置された金属ステムにp形半導体とn形半導体からなる冷却素子を備えているため、冷却素子自体の発熱により、発光素子の温度が正確に検出できない。   However, in the invention disclosed in Patent Document 1, a cooling element made of a p-type semiconductor and an n-type semiconductor is provided on the metal stem on which the light emitting element is mounted. It cannot be detected accurately.

また、特許文献2には温度センサを発光素子の裏面に臨む密閉凹所に取り付け、雰囲気中の温度の影響を受けにくく、光素子の温度を正確に検出することを可能とする光素子装置が開示されている。しかし、この方法ではスリットや密閉凹所を形成し、かつそのスリットや、密閉凹所に温度センサを取り付けなければならないため、取り付けが容易ではないという問題があった。また、温度センサを蒸着形成することも開示しているが、生産性が悪いという問題があった。   Further, Patent Document 2 discloses an optical element device in which a temperature sensor is attached to a sealed recess facing the back surface of a light emitting element and is not easily affected by the temperature in the atmosphere, and can accurately detect the temperature of the optical element. It is disclosed. However, this method has a problem that it is not easy to attach because a slit or a sealed recess is formed and a temperature sensor must be attached to the slit or the sealed recess. Moreover, although it discloses also forming a temperature sensor by vapor deposition, there existed a problem that productivity was bad.

また、温度制御用回路と発光素子点灯回路の一方の電極が共通の電極に依存している配線形態になっていると、各素子それぞれのノイズの影響を受けることがあり、精度の良い制御、測定ができない。   Also, if one electrode of the temperature control circuit and the light-emitting element lighting circuit is in a wiring configuration that depends on a common electrode, it may be affected by the noise of each element, so that accurate control, Measurement is not possible.

これらの問題は、高精度に温度制御を必要とする用途、例えば光度測定に用いられる測光標準光源として発光装置を用いる場合や、環境温度の変化が激しい場所で発光装置を用いる場合、例えば屋外の信号やディスプレイなどで重視されている。   These problems may occur in applications that require temperature control with high accuracy, such as when a light emitting device is used as a photometric standard light source used for photometric measurement, or when a light emitting device is used in a place where the ambient temperature changes drastically. Emphasis is placed on signals and displays.

そこで本発明は、高精度に温度を制御でき、発光素子自身の発熱による温度変化や、発光装置周辺の環境温度の変化に影響を受けずに一定の温度で発光素子を点灯させることができる半導体発光装置を提供することを目的とする。   Therefore, the present invention can control the temperature with high accuracy and can light up the light emitting element at a constant temperature without being affected by the temperature change caused by the heat generation of the light emitting element itself or the environmental temperature change around the light emitting device. An object is to provide a light emitting device.

以上の目的を達成するために、本発明に係る半導体装置は、発光素子と、前記発光素子を載置する支持体と、前記支持体に載置され、前記発光素子と電気的に絶縁された温度センサと、を備え、前記発光素子と前記温度センサが透光性樹脂により一体に封止されていることを特徴とする。   In order to achieve the above object, a semiconductor device according to the present invention includes a light-emitting element, a support body on which the light-emitting element is placed, and the semiconductor device placed on the support body and electrically insulated from the light-emitting element. A temperature sensor, wherein the light emitting element and the temperature sensor are integrally sealed with a translucent resin.

前記温度センサにより検出された温度を制御する温度制御素子を備えることが好ましい。   It is preferable to provide a temperature control element that controls the temperature detected by the temperature sensor.

前記発光素子の駆動回路と、前記温度センサの駆動回路と、前記温度制御素子の駆動回路は、各々独立して外部と電気的に接続されることが好ましい。   The driving circuit for the light emitting element, the driving circuit for the temperature sensor, and the driving circuit for the temperature control element are preferably independently electrically connected to the outside.

前記支持体と前記温度制御素子は、押止されて接していることが好ましい。   It is preferable that the support and the temperature control element are held in contact with each other.

前記温度制御素子はペルチェ素子であることが好ましい。   The temperature control element is preferably a Peltier element.

本発明は、高精度に温度を制御でき、発光素子自身の発熱による温度変化や、発光装置周辺の環境温度の変化に影響を受けずに一定の温度で発光素子を点灯させることができる半導体発光装置を提供することができる。   The present invention is a semiconductor light emitting device that can control the temperature with high accuracy and can light the light emitting element at a constant temperature without being affected by the temperature change caused by the heat generation of the light emitting element itself or the environmental temperature change around the light emitting device. An apparatus can be provided.

本発明を実施するための最良の形態を、以下に説明する。ただし、以下に示す形態は、本発明の技術思想を具体化するための半導体装置を例示するものであって、本発明は半導体装置を以下に限定するものではない。   The best mode for carrying out the present invention will be described below. However, the modes shown below exemplify a semiconductor device for embodying the technical idea of the present invention, and the present invention does not limit the semiconductor device to the following.

また、本明細書は特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細な説明を適宜省略する。   Further, the present specification by no means specifies the members shown in the claims to the members of the embodiments. The dimensions, materials, shapes, relative arrangements, and the like of the components described in the embodiments are not intended to limit the scope of the present invention only to the description unless otherwise specified. It is just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Further, in the following description, the same name and reference sign indicate the same or the same members, and detailed description will be omitted as appropriate.

本発明の半導体発光装置は、支持体に発光素子と温度センサを載置し、発光素子と温度センサを透光性樹脂で一体に封止して形成される。一体に封止とは、温度センサと発光素子とが共に透光性樹脂で封止されている状態をさす。同じ樹脂で共に封止されていてもよいし、発光素子を封止した樹脂を温度センサと一緒にさらに別の樹脂で封止してもよいし、また、発光素子と温度センサとをそれぞれ別の樹脂で封止し、それらを包含するように別の樹脂で封止されていてもよい。   The semiconductor light emitting device of the present invention is formed by placing a light emitting element and a temperature sensor on a support, and integrally sealing the light emitting element and the temperature sensor with a translucent resin. The integral sealing means a state in which the temperature sensor and the light emitting element are both sealed with a translucent resin. They may be sealed together with the same resin, the resin in which the light emitting element is sealed may be sealed with another resin together with the temperature sensor, or the light emitting element and the temperature sensor may be separately provided. The resin may be sealed with another resin so as to include them.

発光素子と温度センサは同一の支持体に載置される。このようにすることにより、発光素子と温度センサ間の熱抵抗を小さくすることができ、発光素子の温度をより正確に温度センサで検出することができる。また、このとき発光素子と温度センサは電気的に絶縁するようにして載置される。発光素子の駆動回路と温度センサの駆動回路が各々独立していることにより、互いに生じるノイズを軽減し、精度の高い計測が可能となる。さらに、発光素子と温度センサは透光性樹脂で一体に封止される。空気よりも熱伝導率の高い樹脂で封止することにより、熱循環を良くすることができ、温度制御フィードバックが高速に精度よく行える。また、温度センサを封止することにより、外気の風の影響を受けにくくすることができる。   The light emitting element and the temperature sensor are mounted on the same support. By doing in this way, the thermal resistance between a light emitting element and a temperature sensor can be made small, and the temperature of a light emitting element can be detected with a temperature sensor more correctly. At this time, the light emitting element and the temperature sensor are placed so as to be electrically insulated. Since the drive circuit for the light emitting element and the drive circuit for the temperature sensor are independent of each other, noise generated between each other can be reduced and highly accurate measurement can be performed. Further, the light emitting element and the temperature sensor are integrally sealed with a translucent resin. By sealing with a resin having a higher thermal conductivity than air, thermal circulation can be improved and temperature control feedback can be performed at high speed and with high accuracy. Further, by sealing the temperature sensor, it is possible to make it less susceptible to the influence of outside air.

また、温度センサにより検出された温度を制御する温度制御素子を備えることが好ましい。温度制御素子を備えることにより、温度センサで検出した値を制御することができる。温度制御素子は、発光素子と温度センサが載置されている支持体に一体的に取り付けられてもよいし、脱着可能となるようにして取り付けられてもよい。このとき、熱伝導が効率よくなるように載置することが好ましい。   Moreover, it is preferable to provide the temperature control element which controls the temperature detected by the temperature sensor. By providing the temperature control element, the value detected by the temperature sensor can be controlled. The temperature control element may be integrally attached to the support body on which the light emitting element and the temperature sensor are mounted, or may be attached so as to be removable. At this time, it is preferable to mount so that heat conduction becomes efficient.

また、発光素子の駆動回路と、温度センサの駆動回路と、温度制御素子の駆動回路は、各々独立して外部と電気的に接続されることが好ましい。発光素子の駆動回路と温度センサの駆動回路が各々独立していることにより、互いに生じるノイズを軽減し、精度の高い計測が可能となる。また、各素子に流す電流値の調整も容易となり、制御がしやすい。   Further, it is preferable that the drive circuit for the light emitting element, the drive circuit for the temperature sensor, and the drive circuit for the temperature control element are each electrically connected to the outside independently. Since the drive circuit for the light emitting element and the drive circuit for the temperature sensor are independent of each other, noise generated between each other can be reduced and highly accurate measurement can be performed. In addition, the adjustment of the current value flowing through each element is facilitated, and control is easy.

例えば図3のように、支持体と温度制御素子は、押止されて接していることが好ましい。このようにすることにより、温度センサを内蔵した発光装置のみを取りはずすことができ、メンテナンスがしやすい。   For example, as shown in FIG. 3, it is preferable that the support and the temperature control element are held in contact with each other. By doing so, only the light emitting device with the built-in temperature sensor can be removed, and maintenance is easy.

また、温度制御素子はペルチェ素子であることが好ましい。ペルチェ素子を用いることにより、加熱、冷却の両方が可能となる。ペルチェ素子は可動部がないため、騒音を発生せず、発光装置を小型化することができる。さらに、応答が速く、高精度な制御が可能である。   The temperature control element is preferably a Peltier element. By using a Peltier element, both heating and cooling are possible. Since the Peltier element has no movable part, no noise is generated and the light emitting device can be downsized. Furthermore, quick response and high-precision control are possible.

なお、発光素子を搭載する発光装置の形状は、砲弾型であっても表面実装型であってもよい。
以下、本発明の実施の形態の各構成について詳述する。
Note that the shape of the light-emitting device on which the light-emitting element is mounted may be a bullet-type or a surface-mount type.
Hereafter, each structure of embodiment of this invention is explained in full detail.

(発光素子)
本形態における発光素子は、半導体発光素子であり、発光ダイオードやレーザダイオードを用いることができる。
(Light emitting element)
The light-emitting element in this embodiment is a semiconductor light-emitting element, and a light-emitting diode or a laser diode can be used.

発光素子の組成としては、例えば、基板上に、InN、AlN、GaN、ZnS、ZnSe、SiC、GaP、GaAlAs、GaAsP、InGaN、AlGaN、AlGaInP、AlInGaN等の半導体を活性層として形成させた物が挙げられる。半導体の構造としては、MIS接合、PIN接合やpn接合を有したホモ構造、ヘテロ構造あるいはダブルへテロ構成のものが挙げられる。積層構造、半導体材料及びその混晶度等によって発光波長を紫外光から赤外光まで種々選択することができる。   As a composition of the light emitting element, for example, a substrate in which a semiconductor such as InN, AlN, GaN, ZnS, ZnSe, SiC, GaP, GaAlAs, GaAsP, InGaN, AlGaN, AlGaInP, and AlInGaN is formed as an active layer on a substrate. Can be mentioned. Examples of the semiconductor structure include a homo structure having a MIS junction, a PIN junction, and a pn junction, a hetero structure, and a double hetero structure. The emission wavelength can be variously selected from ultraviolet light to infrared light depending on the laminated structure, the semiconductor material, and the mixed crystal degree thereof.

このような発光素子は、後述する支持体に直接的または間接的に搭載される。発光素子を直接的に支持体に搭載するためには、接合部材が用いられる。例えば、サファイア等の絶縁性の基板上に半導体を成長させた発光素子の場合には、絶縁性基板側をエポキシ樹脂、シリコーン等を用いて固定することができる。また、樹脂を使用せず、Au−Sn共晶などの半田、低融点金属等のろう材を用いてもよいし、支持体に導体配線を設けて導電性ワイヤを利用することなく、Auバンプ、半田バンプなどの導電性部材によりフリップチップ実装されていてもよい。SiC、GaN、GaAs等の半導体基板を利用して両面に電極が形成された発光素子の場合には、銀、金、パラジウムなどの導電性ペースト等によってダイボンディングしてもよい。   Such a light emitting element is directly or indirectly mounted on a support described later. In order to mount the light emitting element directly on the support, a joining member is used. For example, in the case of a light-emitting element in which a semiconductor is grown on an insulating substrate such as sapphire, the insulating substrate side can be fixed using epoxy resin, silicone, or the like. In addition, a solder such as Au—Sn eutectic, a brazing material such as a low melting point metal may be used without using a resin, or an Au bump may be used without providing a conductive wire on a support and using a conductive wire. Alternatively, it may be flip-chip mounted with a conductive member such as a solder bump. In the case of a light-emitting element in which electrodes are formed on both sides using a semiconductor substrate such as SiC, GaN, or GaAs, die bonding may be performed using a conductive paste such as silver, gold, or palladium.

また、発光素子はサブマウントのような補助的な別の支持基板を介して間接的に載置されてもよい。   In addition, the light emitting element may be mounted indirectly via another auxiliary support substrate such as a submount.

また、発光素子とは別に保護素子を載置し、発光素子と逆並列に接続することにより、過電圧対策とすることができる。   In addition, a protective element can be placed separately from the light emitting element, and connected to the light emitting element in antiparallel to take measures against overvoltage.

(温度センサ)
本形態における温度センサには、サーミスタや白金測温抵抗体、水晶温度センサ、熱電対、IC化温度センサ、水銀、アルコール温度計等、全ての温度センサが含まれる。封止樹脂のなかに収まる大きさであればよいが、小さいほうが発光装置を小型化することができ好ましい。また、載置位置については、発光素子近傍に載置することにより、さらに測定精度を高くすることができるので好ましい。しかしながら、発光素子近傍に温度センサを載置すると発光素子の光取出しを妨げる場合があるので、その場合は図1に示したように発光素子の下部など、発光素子からの光取出しを妨げない位置に温度センサを載置すると、光取出しの低下を抑制することができる。
(Temperature sensor)
The temperature sensor in this embodiment includes all temperature sensors such as a thermistor, a platinum resistance temperature detector, a crystal temperature sensor, a thermocouple, an IC temperature sensor, mercury, and an alcohol thermometer. A size that can be accommodated in the sealing resin is sufficient, but a smaller size is preferable because the light emitting device can be downsized. Moreover, about a mounting position, since a measurement precision can be made still higher by mounting in the light emitting element vicinity, it is preferable. However, if a temperature sensor is placed in the vicinity of the light emitting element, the light extraction of the light emitting element may be hindered. In this case, a position that does not prevent the light extraction from the light emitting element, such as the lower part of the light emitting element as shown in FIG. If a temperature sensor is placed on the light sensor, it is possible to suppress a decrease in light extraction.

(支持体)
本形態における支持体は、発光素子と温度センサとを載置するものであり、その温度を速やかに温度センサに伝えるものが好ましい。したがって、金属等の熱伝導性が高いものが好ましい。支持体全体を金属で形成するのが好ましく、具体的には、銅、アルミニウム、金、銀、タングステン、鉄、ニッケル等の金属又は鉄−ニッケル合金、燐青銅、鉄入り銅等あるいはこれらの表面に銀、アルミニウム、銅、金等の金属メッキ膜が施こされたもの等が挙げられる。
(Support)
The support in this embodiment is for mounting the light-emitting element and the temperature sensor, and it is preferable that the temperature is quickly transmitted to the temperature sensor. Therefore, the thing with high heat conductivity, such as a metal, is preferable. The entire support is preferably made of metal, specifically, metal such as copper, aluminum, gold, silver, tungsten, iron, nickel, iron-nickel alloy, phosphor bronze, iron-containing copper, or the surface thereof. And a metal plating film made of silver, aluminum, copper, gold or the like.

熱伝導を著しく低下させることがなければ、内部に金属以外の材料を用いることもできる。具体的には、セラミックスにタングステン、クロム、チタン、コバルト、モリブデンやこれらの合金などの高融点金属で導電性を持たせたものや、さらに、上記高融点金属に対してNiやAu、Agなどの金属を鍍金したもの等が挙げられる。支持体を導電体で形成する場合は、支持体自身を外部電極と接続可能な電極として用いることもできる。温度センサへの熱伝導も好ましいものを用いることにより、温度測定精度を上げることもできる。   A material other than metal can also be used in the interior unless the heat conduction is significantly reduced. Specifically, ceramics made of refractory metal such as tungsten, chromium, titanium, cobalt, molybdenum, and alloys thereof are made conductive, and the refractory metal is made of Ni, Au, Ag, etc. The ones plated with these metals are listed. When the support is formed of a conductor, the support itself can be used as an electrode that can be connected to an external electrode. The temperature measurement accuracy can also be increased by using a material that is preferable for heat conduction to the temperature sensor.

また、本形態の支持体は、ペルチェ素子のような温度制御素子を略密着させることのできる面を持つことが好ましい。   Moreover, it is preferable that the support body of this embodiment has a surface on which a temperature control element such as a Peltier element can be substantially adhered.

(透光性樹脂)
本形態における透光性樹脂は、発光素子や温度センサなどを外部から保護するために設けられ、また、発光素子と温度センサとを一体に封止して発光素子から温度センサへの熱循環を良くする目的を持つ。また、さらに、視野角を広げたり、発光素子からの指向性を緩和したり、発光を収束、拡散させたりする目的も持たせることができる。これらの目的を達成するために、透光性樹脂は、所望の形状に形成される。すなわち、目的に合わせて凸レンズ形状、凹レンズ形状の他、複数積層する構造であっても良い。透光性樹脂の具体的材料としては、エポキシ樹脂、シリコーン樹脂、アクリル樹脂、ポリカーボネート樹脂、非晶質ポリオレフィン樹脂、ポリスチレン樹脂、ノルボルネン系樹脂、シクロオレフィンポリマー(COP)等が挙げられる。
(Translucent resin)
The translucent resin in this embodiment is provided to protect the light emitting element, the temperature sensor, and the like from the outside. Also, the light emitting element and the temperature sensor are integrally sealed to circulate heat from the light emitting element to the temperature sensor. With the purpose of improving. Furthermore, it is possible to provide a purpose of widening the viewing angle, relaxing directivity from the light emitting element, and converging and diffusing the light emission. In order to achieve these objects, the translucent resin is formed into a desired shape. That is, in addition to a convex lens shape and a concave lens shape, a structure in which a plurality of layers are stacked may be used in accordance with the purpose. Specific examples of the translucent resin include epoxy resin, silicone resin, acrylic resin, polycarbonate resin, amorphous polyolefin resin, polystyrene resin, norbornene resin, and cycloolefin polymer (COP).

また、透光性樹脂には、拡散剤又は蛍光物質又は染料又は顔料を含有させてもよい。二種類以上の含有物、例えば拡散剤と蛍光体を一緒に含有してもよい。拡散剤は、光を拡散させるものであり、発光素子からの指向性を緩和させ、視野角を増大させることができる。蛍光物質は、発光素子からの光を変換させるものであり、発光素子からパッケージの外部へ出射される光の波長を変換することができる。窒化物系化合物半導体を用いた発光素子の場合、有機蛍光体であるペリレン系誘導体、ZnCdS:Cu、YAG:Ce、Eu及び/又はCrで賦活された窒素含有CaO−Al−SiOなどの無機蛍光体など、種々好適に用いられる。本発明において、白色光を得る場合、特にYAG:Ce蛍光体を利用すると、その含有量によって青色発光素子からの光と、その光を一部吸収して補色となる黄色系が発光可能となり白色系が比較的簡単に信頼性良く形成できる。同様に、Eu及び/又はCrで賦活された窒素含有CaO−Al−SiO蛍光体を利用した場合は、その含有量によって青色発光素子からの光と、その光を一部吸収して補色となる赤色系が発光可能であり白色系が比較的簡単に信頼性よく形成できる。また、有機や無機の着色染料や着色顔料は、所望外の波長をカットすることができる。 Further, the translucent resin may contain a diffusing agent, a fluorescent substance, a dye, or a pigment. Two or more kinds of inclusions, for example, a diffusing agent and a phosphor may be contained together. The diffusing agent diffuses light and can reduce the directivity from the light emitting element and increase the viewing angle. The fluorescent substance converts light from the light emitting element, and can convert the wavelength of light emitted from the light emitting element to the outside of the package. In the case of a light-emitting element using a nitride-based compound semiconductor, a nitrogen-containing CaO—Al 2 O 3 —SiO 2 activated with a perylene-based derivative that is an organic phosphor, ZnCdS: Cu, YAG: Ce, Eu, and / or Cr. Inorganic phosphors such as are suitably used. In the present invention, when white light is obtained, in particular, when a YAG: Ce phosphor is used, light from the blue light emitting element and a yellow color which is a complementary color by partially absorbing the light can be emitted depending on the content. The system can be formed relatively easily and reliably. Similarly, when a nitrogen-containing CaO—Al 2 O 3 —SiO 2 phosphor activated with Eu and / or Cr is used, light from the blue light emitting element and a part of the light are absorbed depending on the content. Thus, a red color which is a complementary color can emit light, and a white color can be formed relatively easily and with high reliability. Organic and inorganic colored dyes and colored pigments can cut undesired wavelengths.

また、発光素子と温度センサとを一つの樹脂で一体に封止する場合はその樹脂は透光性である必要があるが、発光素子と温度センサとを別の樹脂で封止する場合や、温度センサのみを先に封止する場合は、温度センサを封止する樹脂は透光性である必要はない。例えば、炭酸カルシウム、酸化アルミニウム、酸化チタン等の拡散剤を含有させた反射率の高い白色樹脂で温度センサを封止し、その上から透光性の樹脂で発光素子と一体に封止してもよい。このようにすることにより、温度センサを封止した部分で発光素子からの光を反射させる機能を持たせることもできる。   In addition, when the light emitting element and the temperature sensor are integrally sealed with one resin, the resin needs to be translucent, but when the light emitting element and the temperature sensor are sealed with another resin, When only the temperature sensor is sealed first, the resin for sealing the temperature sensor does not need to be translucent. For example, a temperature sensor is sealed with a highly reflective white resin containing a diffusing agent such as calcium carbonate, aluminum oxide, titanium oxide, and the light emitting element is sealed with a translucent resin from above. Also good. By doing in this way, the function which reflects the light from a light emitting element in the part which sealed the temperature sensor can also be given.

(温度制御素子)
本形態における温度制御素子には、ペルチェ素子等の吸熱および放熱の少なくとも一方を行うことのできる全ての素子が含まれる。発光装置の用途および発光素子に流す電流の大きさ等によって、様々な大きさのものが用いることができ、ペルチェ素子自身の発熱や載置場所を考慮して、適宜選択される。発光素子を載置した支持体に密着させると、より直接的に温度を制御することができる。
(Temperature control element)
The temperature control element in this embodiment includes all elements that can perform at least one of heat absorption and heat dissipation, such as a Peltier element. Various sizes can be used depending on the application of the light emitting device and the magnitude of the current passed through the light emitting element, and the appropriate selection is made in consideration of the heat generated by the Peltier element itself and the mounting location. When the light emitting element is closely attached to the support body, the temperature can be controlled more directly.

以下、本発明に係る実施例について詳述する。なお、本発明は以下に示す実施例のみに限定されないことは言うまでもない。   Examples according to the present invention will be described in detail below. Needless to say, the present invention is not limited to the following examples.

実施例1
この実施例の半導体装置は、図1に示すように、砲弾型の半導体発光装置である。
Example 1
The semiconductor device of this embodiment is a shell-type semiconductor light emitting device as shown in FIG.

発光素子101はカップ部とリード部を持つ鉄入り銅に銀鍍金を施した支持体103に載置され、導電性ワイヤ108により導通がとられている。   The light-emitting element 101 is placed on a support 103 in which iron-plated copper having a cup part and a lead part is subjected to silver plating, and is made conductive by a conductive wire 108.

支持体103には、温度センサ102がシリコーン系の接着材を介して載置されている。温度センサ102は電極が両端にあるものを用いているため、発光素子101を載置したリードに接する部分は温度センサの基板の部分であり、絶縁性である。温度センサ102の電極は、支持体103の両横の2本のリード107a、107bに接続されている。したがって、発光素子101と温度センサ102とは電気的に絶縁されており、各々独立した回路構成となっている。支持体103に発光素子101と温度センサ102を取り付けて導通をとった後、発光素子101の載置されているカップ部に蛍光体を含む透光性のエポキシ樹脂104aを充填し、さらにこのコーティング部を覆うようにして透光性のエポキシ樹脂104bをモールドしてレンズが形成される。本実施例では青色に発光する発光素子と、発光素子から放出される光を吸収し、波長変換を行い、黄色に発光する蛍光体を用いることにより、白色系に発光する半導体発光装置としている。   A temperature sensor 102 is placed on the support 103 via a silicone adhesive. Since the temperature sensor 102 has electrodes at both ends, the portion in contact with the lead on which the light emitting element 101 is placed is a portion of the temperature sensor substrate and is insulative. The electrodes of the temperature sensor 102 are connected to the two leads 107 a and 107 b on both sides of the support 103. Therefore, the light emitting element 101 and the temperature sensor 102 are electrically insulated and have independent circuit configurations. After attaching the light emitting element 101 and the temperature sensor 102 to the support 103 to establish conduction, the cup portion on which the light emitting element 101 is placed is filled with a translucent epoxy resin 104a containing a phosphor, and this coating is further performed. A lens is formed by molding a translucent epoxy resin 104b so as to cover the portion. In this embodiment, a semiconductor light emitting device that emits white light is formed by using a light emitting element that emits blue light and a phosphor that absorbs light emitted from the light emitting element, performs wavelength conversion, and emits yellow light.

本実施例では温度センサ102は発光素子101が載置されたカップ部の下方に載置されているため、光取り出しに影響を受けない。また、発光素子101と温度センサ102が透光性樹脂で封止されているため、発光素子101と温度センサ102間の熱伝導がよく、また、熱抵抗差が小さく、発光部の温度を精度高く計測することができる。   In this embodiment, the temperature sensor 102 is placed below the cup portion on which the light emitting element 101 is placed, and thus is not affected by light extraction. In addition, since the light-emitting element 101 and the temperature sensor 102 are sealed with a light-transmitting resin, heat conduction between the light-emitting element 101 and the temperature sensor 102 is good, and a difference in thermal resistance is small, so that the temperature of the light-emitting portion is accurate. Highly measurable.

実施例2
本実施例の半導体装置は、図2に示すように、実施例1で示した温度センサ内蔵の半導体発光素子に、温度制御素子であるペルチェ素子209を備えたものである。ペルチェ素子209は接着材により、発光素子(図示せず)と温度センサ202の搭載された支持体203に略密着するように接続されている。温度センサ202で計測した温度を基に、ペルチェ素子209で発光部の温度を制御することができ、発光素子自身の発熱や周囲温度の急激な変化があっても、安定した光度・色調で発光素子を点灯させることができる。
Example 2
As shown in FIG. 2, the semiconductor device of this example includes the Peltier element 209 that is a temperature control element in addition to the semiconductor light-emitting element with a built-in temperature sensor shown in Example 1. The Peltier element 209 is connected by an adhesive so as to be in close contact with the light emitting element (not shown) and the support 203 on which the temperature sensor 202 is mounted. Based on the temperature measured by the temperature sensor 202, the temperature of the light emitting unit can be controlled by the Peltier element 209. Even if the light emitting element itself generates heat or suddenly changes in ambient temperature, light is emitted with a stable luminous intensity and color tone. The element can be lit.

比較例
以下、本発明の実施例2の比較例を述べる。
Comparative Example Hereinafter, a comparative example of Example 2 of the present invention will be described.

温度センサを発光素子と一体に透光性樹脂で封止せずに、発光素子の封止された透光性樹脂の外側に温度センサを取り付けている以外は実施例2と同様に、同じ構成の半導体発光装置を得る。   The same configuration as in Example 2 except that the temperature sensor is not sealed with the light-transmitting resin integrally with the light-emitting element, but is attached to the outside of the light-transmitting resin sealed with the light-emitting element. A semiconductor light emitting device is obtained.

図5はこのようにして得られた、従来、測光標準LEDとして知られている半導体発光装置である。温度センサ502が取り付けられているリードは、発光素子(図示せず)の載置されたリードである。   FIG. 5 shows a semiconductor light emitting device conventionally known as a photometric standard LED, obtained as described above. The lead to which the temperature sensor 502 is attached is a lead on which a light emitting element (not shown) is placed.

実施例2の発光装置と比較例の発光装置を恒温槽内に入れ、槽内温度を20℃、25℃、30℃に変化させて、それぞれの温度で光度と電圧を測定した。印加電流は20mA、温度センサの設定温度は30℃である。その他の測定環境はCIE ConditionBに基づく。   The light-emitting device of Example 2 and the light-emitting device of the comparative example were placed in a constant temperature bath, the bath temperature was changed to 20 ° C., 25 ° C., and 30 ° C., and the light intensity and voltage were measured at each temperature. The applied current is 20 mA, and the set temperature of the temperature sensor is 30 ° C. Other measurement environments are based on CIE Condition B.

実施例2の発光装置では周囲温度を20℃、25℃、30℃にしたときの光度の変動幅が0.1%に抑えられていたのに対し、比較例の発光装置では0.2%であった。また、電圧は実施例2の発光装置がほとんど変化しないのに対し、比較例の発光装置では0.004V変動した。なお、測定値は電流印加後、150秒から180秒の平均値を使用した。   In the light emitting device of Example 2, the fluctuation range of the luminous intensity when the ambient temperature was 20 ° C., 25 ° C., and 30 ° C. was suppressed to 0.1%, whereas in the light emitting device of the comparative example, 0.2% Met. Moreover, the voltage fluctuated by 0.004 V in the light emitting device of the comparative example, while the light emitting device of Example 2 hardly changed. The measured value was an average value from 150 seconds to 180 seconds after the current application.

また、実施例2の発光装置は比較例の発光装置に比べ、電源立ち上がり初期での変動が抑えられていた。   In addition, the light emitting device of Example 2 was suppressed from fluctuation at the beginning of power-up compared to the light emitting device of the comparative example.

実施例3
本実施例の半導体装置は、図3に示すように、実施例1で示した温度センサ内蔵の半導体発光素子に、温度制御素子であるペルチェ素子409を備えたものである。実施例2の発光装置がペルチェ素子と接着材で接続されているのに対し、本実施例の半導体装置では、ペルチェ素子309がソケット310に収納されており、このソケット310が実施例1で示した発光装置と着脱可能となっている。治具内には発光素子駆動用の電源と繋ぐための配線や、温度センサ駆動用、ペルチェ素子駆動用の電源と繋ぐための配線が施されている。
Example 3
As shown in FIG. 3, the semiconductor device of this example includes the semiconductor light-emitting element with a built-in temperature sensor shown in Example 1 and a Peltier element 409 that is a temperature control element. Whereas the light emitting device of the second embodiment is connected to the Peltier element by an adhesive, in the semiconductor device of the present embodiment, the Peltier element 309 is accommodated in the socket 310, and this socket 310 is shown in the first embodiment. It is detachable from the light emitting device. In the jig, wiring for connecting to the power source for driving the light emitting element and wiring for connecting to the power source for driving the temperature sensor and Peltier element are provided.

ペルチェ素子309と支持部303は発光装置保持部312で押さえつけられて略密着している。ボタン311を押し下げることにより、発光装置保持部312が持ち上がり、固定が外れるようになっている。このような構成にすることにより、発光部分を簡単に取り外せるため、メンテナンスが容易である。また、必要に応じて、ねじ穴313にねじを挿入して固定することにより、ペルチェ素子309と発光装置を密着させ、きつく固定する事ができる。   The Peltier element 309 and the support portion 303 are pressed down by the light emitting device holding portion 312 and are in close contact with each other. By depressing the button 311, the light emitting device holding unit 312 is lifted up and released. By adopting such a configuration, the light emitting part can be easily removed, so that maintenance is easy. Further, if necessary, by inserting a screw into the screw hole 313 and fixing it, the Peltier element 309 and the light emitting device can be brought into close contact and fixed firmly.

この発光装置を駆動させるときの回路図は、図4のようになる。発光素子駆動電源にて発光素子401を点灯させると、発光素子401が発熱する。この発熱を温度センサ402で検出し、温度センサ402で検出した抵抗値を温度変換部で温度に変換する。PID制御部は設定温度と温度センサからの検出値の偏差等に基づき、ペルチェ駆動部にてペルチェ素子を効率よく制御するフィードバック回路となっている。   A circuit diagram for driving the light emitting device is as shown in FIG. When the light emitting element 401 is turned on by the light emitting element driving power source, the light emitting element 401 generates heat. This heat generation is detected by the temperature sensor 402, and the resistance value detected by the temperature sensor 402 is converted into a temperature by the temperature converter. The PID control unit is a feedback circuit that efficiently controls the Peltier element by the Peltier driving unit based on the deviation between the set temperature and the detected value from the temperature sensor.

発光素子の駆動回路と、温度センサの駆動回路と、温度制御素子の駆動回路は、各々独立して外部と電気的に接続させることができる。発光素子401の駆動回路と温度センサ402の駆動回路が各々独立していることにより、互いに生じるノイズを軽減し、精度の高い計測が可能となる。また、各素子に流す電流値の調整も容易となり、制御がしやすい。   The drive circuit of the light emitting element, the drive circuit of the temperature sensor, and the drive circuit of the temperature control element can be electrically connected to the outside independently. Since the drive circuit of the light emitting element 401 and the drive circuit of the temperature sensor 402 are independent from each other, noise generated between each other can be reduced and highly accurate measurement can be performed. In addition, the adjustment of the current value flowing through each element is facilitated, and control is easy.

本発明の半導体装置は、高精度に温度制御を必要とする用途、例えば光度測定に用いられる測光標準光源や、屋外の信号やディスプレイなどに利用可能である。   The semiconductor device of the present invention can be used for applications requiring temperature control with high accuracy, for example, a photometric standard light source used for photometric measurement, an outdoor signal or a display.

本発明にかかる半導体発光装置の一例を示す図である。It is a figure which shows an example of the semiconductor light-emitting device concerning this invention. 本発明にかかる半導体発光装置の一例を示す図である。It is a figure which shows an example of the semiconductor light-emitting device concerning this invention. 本発明にかかる半導体発光装置の一例を示す図である。It is a figure which shows an example of the semiconductor light-emitting device concerning this invention. 本発明にかかる半導体発光装置の駆動回路の一例を示す図である。It is a figure which shows an example of the drive circuit of the semiconductor light-emitting device concerning this invention. 従来の半導体発光装置の一例を示す図である。It is a figure which shows an example of the conventional semiconductor light-emitting device.

符号の説明Explanation of symbols

101、401 発光素子
102、202、302、402、502 温度センサ
103、203、303、503 支持体
104a、104b、204、304、504 透光性樹脂
105 発光素子のアノード電極
106 発光素子のカソード電極
107a、107b 温度センサ用端子
108 導電性ワイヤ
209、309、509 ペルチェ素子
310 ソケット
311 ボタン
312 発光装置保持部
313 ねじ穴
101, 401 Light emitting element 102, 202, 302, 402, 502 Temperature sensor 103, 203, 303, 503 Support body 104a, 104b, 204, 304, 504 Translucent resin 105 Anode electrode of light emitting element 106 Cathode electrode of light emitting element 107a, 107b Temperature sensor terminal 108 Conductive wire 209, 309, 509 Peltier element 310 Socket 311 Button 312 Light emitting device holding part 313 Screw hole

Claims (5)

発光素子と、
前記発光素子を載置する支持体と、
前記支持体に載置され、前記発光素子と電気的に絶縁された温度センサと、を備え、
前記発光素子と前記温度センサが透光性樹脂により一体に封止されていることを特徴とする半導体発光装置。
A light emitting element;
A support on which the light emitting element is placed;
A temperature sensor mounted on the support and electrically insulated from the light emitting element;
The semiconductor light-emitting device, wherein the light-emitting element and the temperature sensor are integrally sealed with a translucent resin.
前記温度センサにより検出された温度を制御する温度制御素子を備えた請求項1に記載の半導体発光装置。   The semiconductor light-emitting device according to claim 1, further comprising a temperature control element that controls a temperature detected by the temperature sensor. 前記発光素子の駆動回路と、前記温度センサの駆動回路と、前記温度制御素子の駆動回路は、各々独立して外部と電気的に接続される請求項1または2に記載の半導体発光装置。   3. The semiconductor light emitting device according to claim 1, wherein the light emitting element drive circuit, the temperature sensor drive circuit, and the temperature control element drive circuit are each independently electrically connected to the outside. 前記支持体と前記温度制御素子は、押止されて接している請求項1乃至3のいずれか1項に記載の半導体発光装置。   The semiconductor light-emitting device according to claim 1, wherein the support body and the temperature control element are held in contact with each other. 前記温度制御素子はペルチェ素子である請求項1乃至4のいずれか1項に記載の半導体発光装置。
The semiconductor light-emitting device according to claim 1, wherein the temperature control element is a Peltier element.
JP2006114255A 2006-04-18 2006-04-18 Semiconductor light emitting device Active JP4984621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006114255A JP4984621B2 (en) 2006-04-18 2006-04-18 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006114255A JP4984621B2 (en) 2006-04-18 2006-04-18 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2007287962A true JP2007287962A (en) 2007-11-01
JP4984621B2 JP4984621B2 (en) 2012-07-25

Family

ID=38759439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006114255A Active JP4984621B2 (en) 2006-04-18 2006-04-18 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP4984621B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299248A (en) * 2010-06-25 2011-12-28 惟昌企业股份有限公司 Manufacturing method for improving LED (light emitting diode) packaging support and packaging structure manufactured by using method
KR20160067528A (en) * 2014-12-04 2016-06-14 인텍엘앤이 주식회사 Led package and its manufacturing method
WO2023276659A1 (en) * 2021-07-02 2023-01-05 株式会社日立ハイテク Light source and automatic analysis device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927568A (en) * 1982-08-06 1984-02-14 Mitsubishi Electric Corp Semiconductor element
JPS6450460U (en) * 1987-09-22 1989-03-29
JPH0381655U (en) * 1989-12-12 1991-08-21
JPH06237013A (en) * 1991-05-27 1994-08-23 Mitsubishi Kasei Corp System for controlling spectrum of emitted light
JP2000261039A (en) * 1999-03-12 2000-09-22 Mitsubishi Electric Corp Light source device
JP2000261089A (en) * 1999-03-09 2000-09-22 Fuji Photo Film Co Ltd Semiconductor laser
JP2005115257A (en) * 2003-10-10 2005-04-28 Ricoh Opt Ind Co Ltd Light source device
JP2005332951A (en) * 2004-05-19 2005-12-02 Toyoda Gosei Co Ltd Light emitting device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927568A (en) * 1982-08-06 1984-02-14 Mitsubishi Electric Corp Semiconductor element
JPS6450460U (en) * 1987-09-22 1989-03-29
JPH0381655U (en) * 1989-12-12 1991-08-21
JPH06237013A (en) * 1991-05-27 1994-08-23 Mitsubishi Kasei Corp System for controlling spectrum of emitted light
JP2000261089A (en) * 1999-03-09 2000-09-22 Fuji Photo Film Co Ltd Semiconductor laser
JP2000261039A (en) * 1999-03-12 2000-09-22 Mitsubishi Electric Corp Light source device
JP2005115257A (en) * 2003-10-10 2005-04-28 Ricoh Opt Ind Co Ltd Light source device
JP2005332951A (en) * 2004-05-19 2005-12-02 Toyoda Gosei Co Ltd Light emitting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299248A (en) * 2010-06-25 2011-12-28 惟昌企业股份有限公司 Manufacturing method for improving LED (light emitting diode) packaging support and packaging structure manufactured by using method
KR20160067528A (en) * 2014-12-04 2016-06-14 인텍엘앤이 주식회사 Led package and its manufacturing method
KR101687209B1 (en) * 2014-12-04 2016-12-19 인텍엘앤이 주식회사 Led package and its manufacturing method
WO2023276659A1 (en) * 2021-07-02 2023-01-05 株式会社日立ハイテク Light source and automatic analysis device

Also Published As

Publication number Publication date
JP4984621B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
US6940704B2 (en) Semiconductor light emitting device
US7291866B2 (en) Semiconductor light emitting device and semiconductor light emitting unit
JP4239509B2 (en) Light emitting diode
JP4543779B2 (en) Semiconductor light emitting device
JP4882634B2 (en) Light emitting device
JP4935514B2 (en) Light emitting device
JP2007214524A (en) Light emitting device and method for producing the same
US20110175512A1 (en) Light emitting diode and light source module having same
JP2011129854A (en) Light-emitting diode package and manufacturing method thereof
JP2007066939A (en) Semiconductor light emitting device
JP2004207367A (en) Light emitting diode and light emitting diode arrangement plate
JP5125060B2 (en) Light emitting device
JP2007088078A (en) Light-emitting device
JP2006344717A (en) Light-emitting device and its manufacturing method
JP4984621B2 (en) Semiconductor light emitting device
JP2007280983A (en) Light-emitting device
JP2004186309A (en) Semiconductor light emitting device equipped with metal package
JP4552798B2 (en) LED lighting device
JP3941826B2 (en) LED luminaire manufacturing method
JP2007317956A (en) Light-emitting device
JP5196107B2 (en) Light emitting device
JP2023032709A (en) Light-emitting module
JP2008004665A (en) Semiconductor light-emitting apparatus and lighting system using it
US20060157859A1 (en) Led packaging method and package structure
JP4900374B2 (en) Semiconductor light emitting device with metal package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Ref document number: 4984621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250