JP2007273498A - Wavelength converter and light emitting device - Google Patents

Wavelength converter and light emitting device Download PDF

Info

Publication number
JP2007273498A
JP2007273498A JP2006093525A JP2006093525A JP2007273498A JP 2007273498 A JP2007273498 A JP 2007273498A JP 2006093525 A JP2006093525 A JP 2006093525A JP 2006093525 A JP2006093525 A JP 2006093525A JP 2007273498 A JP2007273498 A JP 2007273498A
Authority
JP
Japan
Prior art keywords
wavelength converter
light
wavelength
sealing film
day
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006093525A
Other languages
Japanese (ja)
Inventor
Masato Fukutome
正人 福留
Shuichi Tateno
周一 立野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006093525A priority Critical patent/JP2007273498A/en
Publication of JP2007273498A publication Critical patent/JP2007273498A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wavelength converter which is superior in handling property and mounting property and has high light emitting efficiency and long service life. <P>SOLUTION: A wavelength converting body 9 wherein a wavelength converting substance 5 for converting an excited light into a visible light is dispersed in a resin 8 is covered with a sealing film 7 to make a wavelength converter 4. The sealing film 7 has at least either of oxygen barrier property with light transmission of 80% or more and oxygen transmission of 1 ml/m<SP>2</SP>/day or less and steam barrier property with steam transmission of 1 ml/m<SP>2</SP>/day or less. The light emitting device includes the wavelength converter 4 and a light emitting element for directing an excited light to the wavelength converter 4. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、LED(Light Emitting Diode:発光ダイオード)等の発光素子から発せられる光を波長変換する波長変換器、および該波長変換器が変換した光を外部に取り出す発光装置に関し、特に、電子ディスプレイ用のバックライト電源、蛍光ランプ等に好適に用いられる波長変換器および発光装置に関する。   The present invention relates to a wavelength converter that converts the wavelength of light emitted from a light emitting element such as an LED (Light Emitting Diode), and a light emitting device that extracts the light converted by the wavelength converter to the outside, and more particularly to an electronic display. The present invention relates to a wavelength converter and a light-emitting device that are preferably used for a backlight power source, a fluorescent lamp and the like.

半導体材料からなる発光素子(LEDチップ)は、小型で電力効率がよく、鮮やかに発色する。LEDチップは、製品寿命が長い、オン・オフ点灯の繰り返しに強い、消費電力が低い等の優れた特徴を有するため、液晶等のバックライト光源や蛍光ランプ等の照明用光源への応用が期待されている。   A light emitting element (LED chip) made of a semiconductor material is small in size, power efficient, and vividly colors. LED chips have excellent features such as long product life, strong on / off lighting repeatability, low power consumption, etc., so they are expected to be applied to backlight sources such as liquid crystals and lighting sources such as fluorescent lamps. Has been.

LEDチップの発光装置への応用は、LEDチップの光の一部を蛍光体(波長変換物質)で波長変換し、該波長変換された光と波長変換されないLEDの光とを混合して放出することにより、LEDの光とは異なる色を発光する発光装置として既に製造されている   The application of the LED chip to the light emitting device is to convert a part of the light of the LED chip with a phosphor (wavelength conversion substance), and mix and emit the wavelength-converted light and the light of the LED that is not wavelength-converted. As a result, it has already been manufactured as a light emitting device that emits a color different from that of LED light.

具体的には、白色光を発するために、LEDチップ表面に蛍光体を含む波長変換層(波長変換器)を設けた発光装置が提案されている。例えば、nGaN系材料を使った青色LEDチップ上に(Y,Gd)3(Al,Ga)512の組成式で表されるYAG系蛍光体を含む波長変換層を形成した発光装置では、LEDチップから青色光が放出され、波長変換層で青色光の一部が黄色光に変化するため、青色と黄色の光が混色して白色を呈する(特許文献1参照)。 Specifically, in order to emit white light, a light emitting device in which a wavelength conversion layer (wavelength converter) including a phosphor is provided on the surface of an LED chip has been proposed. For example, in a light emitting device in which a wavelength conversion layer containing a YAG phosphor expressed by a composition formula of (Y, Gd) 3 (Al, Ga) 5 O 12 is formed on a blue LED chip using an nGaN-based material, Blue light is emitted from the LED chip, and part of the blue light is changed to yellow light in the wavelength conversion layer, so that blue and yellow light are mixed to give white (see Patent Document 1).

このような構成の発光装置の一例を図4に示す。同図に示すように、この発光装置100は、電極101が形成された基板102と、この基板102上に設けられ中心波長が470nmの光を発する半導体材料を具備する発光素子103と、この発光素子103を覆うように設けられた波長変換器104と、反射部材106とで構成されている。また、波長変換器104は、波長変換物質105を樹脂108中に分散させた波長変換体109からなる。   An example of such a light emitting device is shown in FIG. As shown in the figure, the light emitting device 100 includes a substrate 102 on which an electrode 101 is formed, a light emitting element 103 provided on the substrate 102 and including a semiconductor material that emits light having a central wavelength of 470 nm, and the light emitting device 103. A wavelength converter 104 provided so as to cover the element 103 and a reflection member 106 are included. The wavelength converter 104 includes a wavelength converter 109 in which the wavelength conversion material 105 is dispersed in the resin 108.

しかしながら、上記のような構成の発光装置100は、波長変換器104の樹脂108および波長変換物質105が、酸素、水分、熱等により劣化して発光効率が低下するという問題がある。この劣化は、酸素や水分による酸化や溶解現象によるものと考えられ、高温高湿条件化において顕著に発生する。これに対し、波長変換器104をガラス製の容器等に入れて被覆する方法も考えられるが、加工コストがかかり、高コスト化する。また、ガラス等は衝撃に弱いため、組み立て時の問題や製品の耐衝撃性という問題があった。
特許第3503139号公報
However, the light emitting device 100 having the above-described configuration has a problem that the light emission efficiency is lowered due to deterioration of the resin 108 and the wavelength conversion material 105 of the wavelength converter 104 due to oxygen, moisture, heat, or the like. This deterioration is considered to be due to oxidation or dissolution phenomenon due to oxygen or moisture, and is noticeably generated under high temperature and high humidity conditions. On the other hand, a method of covering the wavelength converter 104 by putting it in a glass container or the like is also conceivable, but the processing cost is increased and the cost is increased. Further, since glass and the like are vulnerable to impact, there are problems during assembly and impact resistance of the product.
Japanese Patent No. 3503139

本発明の課題は、取り扱い性および実装性に優れると共に、高発光効率でかつ長寿命な波長変換器および発光装置を提供することである。   An object of the present invention is to provide a wavelength converter and a light-emitting device that are excellent in handleability and mountability, and have a high luminous efficiency and a long lifetime.

本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、以下の構成からなる解決手段を見出し、本発明を完成するに至った。
(1)励起光を可視光に変換する波長変換物質を樹脂中に分散させた波長変換体と、この波長変換体を被覆した封止フィルムとを備え、前記封止フィルムは、全光線透過率80%以上であり、かつ酸素透過率1ml/m2/day以下の酸素バリア性および水蒸気透過率1ml/m2/day以下の水蒸気バリア性の少なくともいずれか一方を有することを特徴とする波長変換器。
(2)前記封止フィルムが、全光線透過率80%以上であり、かつ酸素透過率1ml/m2/day以下の酸素バリア性フィルムと、全光線透過率80%以上であり、かつ水蒸気透過率1ml/m2/day以下の水蒸気バリア性フィルムの二層構造からなる前記(1)記載の波長変換器。
(3)前記波長変換体が複数のフィルムで被覆され、このフィルムのうち少なくとも一層が前記封止フィルムである前記(1)記載の波長変換器。
(4)前記波長変換物質が、非酸化物半導体組成物質からなる前記(1)〜(3)のいずれかに記載の波長変換器。
(5)前記波長変換物質が、平均粒子径10nm以下の半導体超微粒子である前記(1)〜(4)のいずれかに記載の波長変換器。
(6)前記(1)〜(5)のいずれかに記載の波長変換器と、該波長変換器に励起光を照射する発光素子とを備えたことを特徴とする発光装置。
(7)波長変換器と、該波長変換器に励起光を照射する発光素子とを備えた発光装置であって、前記波長変換器は、励起光を可視光に変換する波長変換物質を樹脂中に分散させた波長変換体と、この波長変換体の少なくとも外気との接触面を被覆した封止フィルムとを備え、前記封止フィルムは、全光線透過率80%以上であり、かつ酸素透過率1ml/m2/day以下の酸素バリア性および水蒸気透過率1ml/m2/day以下の水蒸気バリア性の少なくともいずれか一方を有することを特徴とする発光装置。
As a result of intensive studies to solve the above problems, the present inventor has found a solution means having the following configuration, and has completed the present invention.
(1) A wavelength conversion body in which a wavelength conversion substance that converts excitation light into visible light is dispersed in a resin, and a sealing film that covers the wavelength conversion body, and the sealing film has a total light transmittance. Wavelength conversion characterized by having at least one of an oxygen barrier property of 80% or more and an oxygen permeability of 1 ml / m 2 / day or less and a water vapor barrier property of water vapor permeability of 1 ml / m 2 / day or less vessel.
(2) The sealing film has a total light transmittance of 80% or more and an oxygen barrier film having an oxygen transmission rate of 1 ml / m 2 / day or less, a total light transmittance of 80% or more, and water vapor transmission. The wavelength converter according to (1), comprising a two-layer structure of a water vapor barrier film having a rate of 1 ml / m 2 / day or less.
(3) The wavelength converter according to (1), wherein the wavelength converter is covered with a plurality of films, and at least one of the films is the sealing film.
(4) The wavelength converter according to any one of (1) to (3), wherein the wavelength conversion substance is made of a non-oxide semiconductor composition substance.
(5) The wavelength converter according to any one of (1) to (4), wherein the wavelength converting substance is a semiconductor ultrafine particle having an average particle diameter of 10 nm or less.
(6) A light-emitting device comprising: the wavelength converter according to any one of (1) to (5); and a light-emitting element that irradiates the wavelength converter with excitation light.
(7) A light-emitting device including a wavelength converter and a light-emitting element that irradiates the wavelength converter with excitation light, wherein the wavelength converter includes a wavelength conversion substance that converts excitation light into visible light in a resin. And a sealing film covering at least the contact surface of the wavelength converter with the outside air, the sealing film having a total light transmittance of 80% or more and an oxygen transmittance A light emitting device having at least one of an oxygen barrier property of 1 ml / m 2 / day or less and a water vapor permeability of 1 ml / m 2 / day or less.

前記(1),(3)によれば、波長変換器における波長変換体を封止フィルムで被覆するので、波長変換器の取り扱い性および実装性に優れるという効果がある。また、前記封止フィルムは、全光線透過率が80%以上なので、発光効率の低下を抑制できる。さらに、前記封止フィルムは、酸素透過率1ml/m2/day以下の酸素バリア性および水蒸気透過率1ml/m2/day以下の水蒸気バリア性の少なくともいずれか一方を有するので、酸素や水が波長変換物質および樹脂に接触するのを遮断することができ、波長変換物質および樹脂が劣化するのを抑制することができる。その結果、高発光効率でかつ長寿命な波長変換器となる。また、波長変換体をガラス製の容器等に入れて被覆する方法に対して、コストダウンを図ることもできる。 According to said (1) and (3), since the wavelength converter in a wavelength converter is coat | covered with a sealing film, there exists an effect that it is excellent in the handleability and mounting property of a wavelength converter. Moreover, since the said sealing film has a total light transmittance of 80% or more, it can suppress the fall of luminous efficiency. Further, the sealing film, because it has one oxygen transmission rate 1ml / m 2 / day or less of oxygen barrier properties and water vapor transmission rate 1ml / m 2 / day or less of water vapor barrier properties at least one, oxygen and water Contact with the wavelength converting substance and the resin can be blocked, and deterioration of the wavelength converting substance and the resin can be suppressed. As a result, the wavelength converter has a high luminous efficiency and a long lifetime. In addition, the cost can be reduced with respect to the method of covering the wavelength converter by putting it in a glass container or the like.

前記(2)によれば、封止フィルムが所定の酸素バリア性フィルムと水蒸気バリア性フィルムの2層構造からなるので、酸素と水分の両方を遮断することができ、さらに長寿命化を実現できる。
前記(4)によれば、前記波長変換物質が、非酸化物半導体組成物質からなるので、紫外〜紫領域での励起効率が向上し、さらに500〜650nm程度の可視光領域の発光効率を増大することができる。これは、酸化物に対して非酸化物の方がエネルギーギャップを減少させることができるので、目的とする波長領域での励起、発光が実現できる。
前記(5)によれば、前記波長変換物質が、平均粒子径10nm以下の半導体超微粒子であるので、量子サイズ効果が発現し、非常に高い発光特性を示すと共に、粒子のサイズにより発光波長を自由に制御することができる。
前記(6),(7)によれば、発光効率及び長期信頼性に優れた発光装置を実現することができる。
According to the above (2), since the sealing film has a two-layer structure of a predetermined oxygen barrier film and a water vapor barrier film, both oxygen and moisture can be blocked, and a longer life can be realized. .
According to the above (4), since the wavelength converting material is made of a non-oxide semiconductor composition material, the excitation efficiency in the ultraviolet to purple region is improved, and the luminous efficiency in the visible light region of about 500 to 650 nm is further increased. can do. This is because a non-oxide can reduce an energy gap with respect to an oxide, and thus excitation and light emission in a target wavelength region can be realized.
According to the above (5), since the wavelength converting substance is a semiconductor ultrafine particle having an average particle diameter of 10 nm or less, a quantum size effect is exhibited, and the emission wavelength is changed depending on the particle size. It can be controlled freely.
According to said (6) and (7), the light-emitting device excellent in luminous efficiency and long-term reliability is realizable.

<発光装置>
以下、本発明の波長変換器および発光装置の一実施形態について図面を参照して詳細に説明する。図1は、本実施形態の発光装置を示す概略断面図である。図1に示すように、この発光装置10は、励起光を発する半導体材料を備えた発光素子3と、この発光素子3と電気的に接続しかつ外部と接続させるための導体1と、前記発光素子3を覆うように設けられ前記励起光の波長を変換する波長変換器4とを基板2上に備えている。また、この発光装置は、反射部材6を備えている。
<Light emitting device>
Hereinafter, an embodiment of a wavelength converter and a light emitting device of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing the light emitting device of the present embodiment. As shown in FIG. 1, the light-emitting device 10 includes a light-emitting element 3 including a semiconductor material that emits excitation light, a conductor 1 that is electrically connected to the light-emitting element 3 and connected to the outside, and the light-emitting device 10. A wavelength converter 4 provided so as to cover the element 3 and converting the wavelength of the excitation light is provided on the substrate 2. In addition, the light emitting device includes a reflecting member 6.

(発光素子)
発光素子3は、波長変換物質の励起を効率的に行なう上で、中心波長が450nm以下の光を発する半導体材料を備えた発光素子を用いるのが好ましい。特に380〜420nmの光を発することが好ましい。これにより、出力光の強度を高め、より発光強度の高い照明装置を得ることが可能となる。
(Light emitting element)
The light emitting element 3 is preferably a light emitting element including a semiconductor material that emits light having a center wavelength of 450 nm or less in order to efficiently excite the wavelength conversion substance. In particular, it is preferable to emit light of 380 to 420 nm. Thereby, it is possible to increase the intensity of the output light and obtain a lighting device with higher emission intensity.

発光素子3は、上記中心波長を発するものが好ましいが、発光素子基板表面に、半導体材料からなる発光層を備える構造(不図示)を有していることが、高い外部量子効率を有する点で好ましい。このような半導体材料として、例えばZnSeや窒化物半導体(GaN等)等種々の半導体を挙げることができるが、発光波長が上記波長範囲であれば、特に半導体材料の種類は限定されない。これらの半導体材料を有機金属気相成長法(MOCVD法)や分子線エピタシャル成長法等の結晶成長法により、発光素子基板上に半導体材料からなる発光層を有する積層構造を形成すればよい。発光素子基板は、結晶性のよい窒化物半導体を量産性よく形成させるために、例えば窒化物半導体からなる発光層を表面に形成する場合、サファイア、スピネル、SiC、Si、ZnO、ZrB2、GaNおよび石英等の材料が好適に用いられる。 The light-emitting element 3 preferably emits the above-mentioned center wavelength, but having a structure (not shown) having a light-emitting layer made of a semiconductor material on the surface of the light-emitting element substrate has a high external quantum efficiency. preferable. Examples of such semiconductor materials include various semiconductors such as ZnSe and nitride semiconductors (GaN and the like). However, the type of the semiconductor material is not particularly limited as long as the emission wavelength is in the above wavelength range. A stacked structure including a light-emitting layer made of a semiconductor material may be formed over a light-emitting element substrate using a crystal growth method such as a metal organic chemical vapor deposition method (MOCVD method) or a molecular beam epitaxial growth method. In order to form a nitride semiconductor with good crystallinity with high productivity, for example, when a light emitting layer made of a nitride semiconductor is formed on the surface, the light emitting element substrate is made of sapphire, spinel, SiC, Si, ZnO, ZrB 2 , GaN. In addition, materials such as quartz are preferably used.

なお、波長変換器4が備える波長変換物質5の少なくとも一部のバンドギャップエネルギーは、発光素子3が発するエネルギーよりも小さいことが好ましい。このような構成とすれば、発光素子3が発するエネルギーを効率よく波長変換物質5に吸収させることができるため、発光効率を向上させることができる。   In addition, it is preferable that the band gap energy of at least a part of the wavelength conversion substance 5 provided in the wavelength converter 4 is smaller than the energy emitted by the light emitting element 3. With such a configuration, the wavelength conversion material 5 can efficiently absorb the energy emitted from the light emitting element 3, and thus the light emission efficiency can be improved.

(導体)
導体1は、発光素子3を電気的に接続するための導電路としての機能を有し、導電性接合材で発光素子3と接続されている。導体1としては、例えばW,Mo,Cu,Ag等の金属粉末を含むメタライズ層を用いることができる。導体1は、基板2がセラミックスから成る場合、その上面に配線導体がタングステン(W),モリブデン(Mo)−マンガン(Mn)等から成る金属ペーストを高温で焼成して形成され、基板2が樹脂から成る場合、銅(Cu)や鉄(Fe)−ニッケル(Ni)合金等から成るリード端子がモールド成型されて基板2の内部に設置固定される。
(conductor)
The conductor 1 has a function as a conductive path for electrically connecting the light emitting element 3 and is connected to the light emitting element 3 with a conductive bonding material. As the conductor 1, for example, a metallized layer containing metal powder such as W, Mo, Cu, or Ag can be used. When the substrate 2 is made of ceramics, the conductor 1 is formed by firing a metal paste made of tungsten (W), molybdenum (Mo) -manganese (Mn), or the like on the upper surface of the substrate 2 at a high temperature. , Lead terminals made of copper (Cu), iron (Fe) -nickel (Ni) alloy or the like are molded and fixed inside the substrate 2.

(基板)
基板2は、熱伝導性に優れ、かつ全反射率の大きいことが求められるため、例えばアルミナ、窒素アルミニウム等のセラミック材料の他に、金属酸化物微粒子を分散させた高分子樹脂が好適に用いられる。
(substrate)
Since the substrate 2 is required to have excellent thermal conductivity and high total reflectance, for example, a polymer resin in which metal oxide fine particles are dispersed is suitably used in addition to a ceramic material such as alumina or nitrogen aluminum. It is done.

(反射部材)
発光素子3と波長変換器4の側面には、必要に応じて、光を反射する反射部材6を設けてもよい。これにより、側面に逃げる光を前方に反射し、出力光の強度を高めることができる。反射部材6の材料としては、例えばアルミニウム(Al)、ニッケル(Ni)、銀(Ag)、クロム(Cr)、チタン(Ti)、銅(Cu)、金(Au)、鉄(Fe)およびこれらの積層構造物や合金、さらにアルミナセラミックス等のセラミックス、またはエポキシ樹脂等の樹脂を用いることができる。
(Reflective member)
A reflective member 6 that reflects light may be provided on the side surfaces of the light emitting element 3 and the wavelength converter 4 as necessary. Thereby, the light which escapes to a side surface can be reflected forward, and the intensity | strength of output light can be raised. Examples of the material of the reflecting member 6 include aluminum (Al), nickel (Ni), silver (Ag), chromium (Cr), titanium (Ti), copper (Cu), gold (Au), iron (Fe), and these. These laminated structures and alloys, ceramics such as alumina ceramics, or resins such as epoxy resins can be used.

<波長変換器>
波長変換器4は、励起光を可視光に変換する波長変換物質5を透光性マトリクスである樹脂8中に分散させた波長変換体9の全面を、封止フィルム7で被覆してなる。この波長変換器4は、光源である発光素子3から発せられる光の波長を変換して、波長が変換された光を含む出力光を出力する。
<Wavelength converter>
The wavelength converter 4 is formed by covering the entire surface of a wavelength converter 9 in which a wavelength conversion material 5 that converts excitation light into visible light is dispersed in a resin 8 that is a translucent matrix, with a sealing film 7. The wavelength converter 4 converts the wavelength of light emitted from the light emitting element 3 as a light source, and outputs output light including the light whose wavelength has been converted.

波長変換器4の厚みは、変換効率の観点から0.1〜5.0mm、好ましくは0.2〜1mmとするのがよい。波長変換物質5の平均粒子径が10nm以下の半導体超微粒子を用いる場合には、波長変換器4の厚みを0.3〜1.0mmとすることが好ましい。また、前記平均粒子径が1nm以上の波長変換物質の場合には、波長変換器4の厚みを0.1〜1mm、特に0.1〜0.5mmとするのが好ましい。厚みをこの範囲内とすれば、波長変換物質5による波長変換効率を向上でき、変換された光が他の蛍光体により吸収されることを抑制することができる。その結果、発光素子3から発せられる光を可視光に高効率で変換することができ、さらに変換された可視光を外部に高効率で透過させることができる。   The thickness of the wavelength converter 4 is 0.1 to 5.0 mm, preferably 0.2 to 1 mm from the viewpoint of conversion efficiency. In the case where semiconductor ultrafine particles having an average particle diameter of the wavelength conversion substance 5 of 10 nm or less are used, the thickness of the wavelength converter 4 is preferably set to 0.3 to 1.0 mm. In the case of a wavelength conversion substance having an average particle diameter of 1 nm or more, the thickness of the wavelength converter 4 is preferably 0.1 to 1 mm, particularly preferably 0.1 to 0.5 mm. If the thickness is within this range, the wavelength conversion efficiency of the wavelength conversion material 5 can be improved, and the converted light can be suppressed from being absorbed by other phosphors. As a result, the light emitted from the light emitting element 3 can be converted into visible light with high efficiency, and the converted visible light can be transmitted to the outside with high efficiency.

波長変換器4内で変換された出力光のピーク波長は400〜750nm、好ましくは450〜700nm、より好ましくは450〜650nm、さらに好ましくは500〜650nmであるのがよい。これにより、幅広い範囲で発光波長をカバーし、演色性を向上することができる。   The peak wavelength of the output light converted in the wavelength converter 4 is 400 to 750 nm, preferably 450 to 700 nm, more preferably 450 to 650 nm, and further preferably 500 to 650 nm. Thereby, the emission wavelength can be covered in a wide range, and the color rendering can be improved.

(波長変換物質)
樹脂8中に複数分散する波長変換物質5は、蛍光体であり、発光素子3から発せられる光で直接励起され、変換光として可視光を発生する。波長変換器4内で波長変換物質5により変換された変換光は、合成されて出力光として取り出される。
(Wavelength conversion substance)
A plurality of wavelength conversion substances 5 dispersed in the resin 8 are phosphors, and are directly excited by light emitted from the light emitting element 3 to generate visible light as converted light. The converted light converted by the wavelength converting substance 5 in the wavelength converter 4 is synthesized and extracted as output light.

波長変換物質5としては、特に限定されるものではないが、例えば周期律表第I−b族、第II族、第III族、第IV族、第V族、第VI族に属する少なくとも2種類以上の元素からなる半導体超微粒子であることが好ましい。具体的には、例えばBN、BP、BAs、AlN、AlP、AlSb、GaN、GaP、GaSb、InN、InP、InSb等のIII−V族化合物半導体、CdSe、ZnO、ZnS等のII−VI族化合物半導体、CuInS2、CuGaS2、CuAlS2、Cu(In1-xAlx)S2(0≦x≦1)、CuInS2、CuInxGa1-x2(0≦x≦1)、AgInS2、AgGaS2、AgAlS2、Ag(In1-xAlx)S2(0≦x≦1)、AgInS2、Ag(In1-xGax)S2(0≦x≦1)、ZnAgInS2、ZnCuInS2等が挙げられる。 Although it does not specifically limit as the wavelength conversion substance 5, For example, at least 2 types which belong to periodic table group Ib group II group III group IV group V group VI A semiconductor ultrafine particle composed of the above elements is preferable. Specifically, for example, III-V group compound semiconductors such as BN, BP, BAs, AlN, AlP, AlSb, GaN, GaP, GaSb, InN, InP, and InSb, and II-VI group compounds such as CdSe, ZnO, and ZnS Semiconductor, CuInS 2 , CuGaS 2 , CuAlS 2 , Cu (In 1-x Al x ) S 2 (0 ≦ x ≦ 1), CuInS 2 , CuIn x Ga 1-x S 2 (0 ≦ x ≦ 1), AgInS 2 , AgGaS 2 , AgAlS 2 , Ag (In 1-x Al x ) S 2 (0 ≦ x ≦ 1), AgInS 2 , Ag (In 1-x Ga x ) S 2 (0 ≦ x ≦ 1), ZnAgInS 2 , ZnCuInS 2 and the like.

また、上記で例示した以外の波長変換物質5としては、例えば(Sr,Ca,Ba,Mg)10(PO46Cl2:Eu、BaMgAl1017:Eu,Mn、BaMgAl1017:Eu、(Ba,Eu)MgAl1017、(Sr,Ca,Ba,Mg)10(PO46Cl17:Eu、Sr10(PO46Cl12:Eu、(Ba,Sr,Eu)(Mg,Mn)Al1017、10(Sr,Ca,Ba,Eu)・6PO4・Cl2、BaMg2Al1625:Eu、Y3Al512:Tb、Y3(Al,Ga)512:Tb、Y2SiO5:Tb、Zn2SiO4:Mn、ZnS:Cu+Zn2SiO4:Mn、Gd22S:Tb、(Zn,Cd)S:Ag、Y22S:Tb、ZnS:Cu,Al+In23、(Zn,Cd)S:Ag+In23、(Zn,Mn)2SiO4、BaAl1219:Mn、(Ba,Sr,Mg)O・aAl23:Mn、LaPO4:Ce,Tb、3(Ba,Mg,Eu,Mn)O・8Al23、La23・0.2SiO2・0.9P25:Ce,Tb、CeMgAl1119:Tb、Y22S:Eu、Y23:Eu、Zn3(PO42:Mn、(Zn,Cd)S:Ag+In23、(Y,Gd、Eu)BO3、(Y,Gd、Eu)23、YVO4:Eu、La22S:Eu,Sm、YAG:Ce等が挙げられる。 Examples of the wavelength converting substance 5 other than those exemplified above include (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu, BaMgAl 10 O 17 : Eu, Mn, BaMgAl 10 O 17 : Eu, (Ba, Eu) MgAl 10 O 17 , (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 17 : Eu, Sr 10 (PO 4 ) 6 Cl 12 : Eu, (Ba, Sr, Eu ) (Mg, Mn) Al 10 O 17, 10 (Sr, Ca, Ba, Eu) · 6PO 4 · Cl 2, BaMg 2 Al 16 O 25: Eu, Y 3 Al 5 O 12: Tb, Y3 (Al, Ga) 5 O 12 : Tb, Y 2 SiO 5 : Tb, Zn 2 SiO 4 : Mn, ZnS: Cu + Zn 2 SiO 4 : Mn, Gd 2 O 2 S: Tb, (Zn, Cd) S: Ag, Y 2 O 2 S: Tb, ZnS: Cu, Al + In 2 O 3 , (Zn, Cd) S: Ag + In 2 O 3 , (Zn, Mn) 2 SiO 4 , BaAl 12 O 19 : Mn, (Ba, Sr, Mg) O.aAl 2 O 3 : Mn, LaPO 4 : Ce, Tb, 3 (Ba, Mg, Eu, Mn) O.8Al 2 O 3 , La 2 O 3 .0.2SiO 2 .0.9P 2 O 5 : Ce, Tb, CeMgAl 11 O 19 : Tb, Y 2 O 2 S: Eu, Y 2 O 3 : Eu, Zn 3 (PO 4 ) 2 : Mn, (Zn, Cd) S: Ag + In 2 O 3 , (Y, Gd, Eu) BO 3 , (Y, Gd, Eu) 2 O 3 , YVO 4 : Eu, La 2 O 2 S: Eu, Sm, YAG: Ce and the like.

波長変換物質5は、非酸化物半導体組成物質からなるのが好ましい。これにより、紫外〜紫領域での励起効率が向上し、さらに500〜650nm程度の可視光領域の発光効率を増大することができる。前記非酸化物半導体組成物質としては、例えばCdSe、ZnAgInS2等が挙げられる。 The wavelength converting material 5 is preferably made of a non-oxide semiconductor composition material. Thereby, the excitation efficiency in the ultraviolet to violet region can be improved, and the luminous efficiency in the visible light region of about 500 to 650 nm can be further increased. Examples of the non-oxide semiconductor composition material include CdSe and ZnAgInS 2 .

波長変換物質5は、平均粒子径が10nm以下、好ましくは2nm〜5nmの半導体超微粒子からなるのがよい。これにより、量子サイズ効果が発現し、非常に高い発光特性を示すと共に、粒子のサイズにより発光波長を自由に制御することができる。前記平均粒子径は、透過型電子顕微鏡(TEM)[JEOL社製の「JEM2010F」]により、加速電圧200kVで観察して測定し得られた値である。   The wavelength converting substance 5 is preferably composed of semiconductor ultrafine particles having an average particle diameter of 10 nm or less, preferably 2 nm to 5 nm. As a result, a quantum size effect is exhibited, and very high emission characteristics are exhibited, and the emission wavelength can be freely controlled by the size of the particles. The average particle diameter is a value obtained by observation and measurement with a transmission electron microscope (TEM) [“JEM2010F” manufactured by JEOL Co., Ltd.] at an acceleration voltage of 200 kV.

(樹脂)
樹脂8は透光性マトリクスであり、波長変換物質5を均一に分散および担持し、かつ波長変換物質5の光劣化を抑制することができる上で、高分子樹脂等からなるのが好ましい。前記高分子樹脂は、透明性が高く、かつ加熱や光によって容易に変色しない耐久性を有するものが望ましい。
(resin)
The resin 8 is a translucent matrix, and is preferably made of a polymer resin or the like in order to uniformly disperse and carry the wavelength conversion substance 5 and to suppress light deterioration of the wavelength conversion substance 5. It is desirable that the polymer resin has high transparency and durability that does not easily discolor due to heating or light.

具体的には、前記高分子樹脂としては、特に限定されるものではないが、例えばエポキシ樹脂、シリコーン樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、酢酸セルロース、ポリアリレート、さらにこれら材料の誘導体等が挙げられ、特に350nm以上の波長域において優れた光透過性を有していることが好ましい。このような透明性に加え、耐熱性の観点から、シリコーン樹脂がより好適である。   Specifically, the polymer resin is not particularly limited, for example, epoxy resin, silicone resin, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polystyrene, polycarbonate, polyethersulfone, cellulose acetate, Examples thereof include polyarylate and derivatives of these materials, and it is particularly preferable that they have excellent light transmittance in a wavelength region of 350 nm or more. In addition to such transparency, a silicone resin is more preferable from the viewpoint of heat resistance.

(封止フィルム)
波長変換器4は、波長変換体9の全面を封止フィルム7で被覆してなる。これにより、波長変換器4の取り扱い性および実装性が優れたものとなる。該封止フィルム7は、全光線透過率が80%以上である。これにより、封止フィルム7が発光を吸収することによる発光効率の低下を抑制できる。前記全光線透過率は、JIS K 7361に準じ、東洋精機(株)製の直読ヘイズメーターを用いて、589.3nm、23℃での全光線透過率(%)を測定して得られた値である。なお、片側の面にプリズムを設けたプリズムシートにおいては、プリズムを設けたのと反対側の面から入射光をあてて測定すればよい。
(Sealing film)
The wavelength converter 4 is formed by covering the entire surface of the wavelength converter 9 with a sealing film 7. Thereby, the handleability and mountability of the wavelength converter 4 are excellent. The sealing film 7 has a total light transmittance of 80% or more. Thereby, the fall of the luminous efficiency by the sealing film 7 absorbing light emission can be suppressed. The total light transmittance is a value obtained by measuring the total light transmittance (%) at 589.3 nm and 23 ° C. using a direct reading haze meter manufactured by Toyo Seiki Co., Ltd. according to JIS K 7361. It is. Note that in a prism sheet having a prism on one side, incident light may be applied from the side opposite to the side on which the prism is provided.

また、封止フィルム7は、酸素透過率1ml/m2/day以下の酸素バリア性および水蒸気透過率1ml/m2/day以下の水蒸気バリア性の少なくともいずれか一方を有する。これにより、酸素や水が波長変換物質5および樹脂8に接触するのを遮断することができ、波長変換物質5および樹脂8が劣化するのを抑制することができる。 The sealing film 7, having at least one of the oxygen transmission rate 1ml / m 2 / day or less of oxygen barrier properties and water vapor transmission rate 1ml / m 2 / day or less of water vapor barrier properties. Thereby, it can block | disconnect that oxygen and water contact the wavelength conversion substance 5 and the resin 8, and can suppress that the wavelength conversion substance 5 and the resin 8 deteriorate.

前記酸素透過率および水蒸気透過率は、それぞれモコン法により測定して得られた値である。具体的には、モコン法による透過率測定法は、セルに試験片(100mm各フィルム)をセットし、キャリアガスを流して、キャリアガスとともに流れる酸素分子もしくは水分子をクーロトリックセンサーもしくは赤外センサーで検知し、電気信号を透過率に変換することにより測定する方法である。   The oxygen transmission rate and the water vapor transmission rate are values obtained by measurement by the Mocon method. Specifically, the transmittance measurement method by the Mocon method is to set a test piece (each film of 100 mm) in a cell, flow a carrier gas, and move oxygen molecules or water molecules flowing along with the carrier gas to a coulolytic sensor or infrared sensor. It is a method of measuring by detecting by converting the electrical signal into transmittance.

封止フィルム7は樹脂からなり、全光線透過率、酸素透過率および水蒸気透過率の少なくともいずれか一方が上記した所定の値を満たしていればよく、特に限定されるものではないが、例えばポリ塩化ビニル、ポリ塩化ビニリデン、ポリプロピレン、ポリエチレン、ポリビニルアルコール、ポリスチレン、ナイロン6、ポリカーボネート、ポリエチレンテレフタレート(PET)等が挙げられ、特にポリ塩化ビニリデン、ポリビニルアルコールが好適に用いられる。   The sealing film 7 is made of resin, and is not particularly limited as long as at least one of total light transmittance, oxygen transmittance, and water vapor transmittance satisfies the above-described predetermined value. Examples include vinyl chloride, polyvinylidene chloride, polypropylene, polyethylene, polyvinyl alcohol, polystyrene, nylon 6, polycarbonate, polyethylene terephthalate (PET), and particularly, polyvinylidene chloride and polyvinyl alcohol are preferably used.

封止フィルム7は、厚さが1〜100μm程度であるのが好ましい。これに対し、前記厚さが1μmより薄いと、封止フィルム7で被覆することによる効果が得られないおそれがあり、100μmより厚いと、フィルムの透過率が低下し、結果として発光効率が低下するおそれがある。   It is preferable that the sealing film 7 has a thickness of about 1 to 100 μm. On the other hand, if the thickness is less than 1 μm, the effect of covering with the sealing film 7 may not be obtained. If the thickness is more than 100 μm, the transmittance of the film is lowered, and as a result, the luminous efficiency is lowered. There is a risk.

封止フィルム7は、全光線透過率80%以上であり、かつ酸素透過率1ml/m2/day以下の酸素バリア性フィルムと、全光線透過率80%以上であり、かつ水蒸気透過率1ml/m2/day以下の水蒸気バリア性フィルムの二層構造からなるのが好ましい。これにより、酸素や水が波長変換物質5および樹脂8に接触するのをより効果的に遮断することができる。酸素バリア性フィルムとしては、特に限定されるものではなく、厚さは10〜100μm程度であり、例えばポリエチレン、ポリプロピレン、酢酸ビニル、ポリスチレン、ポリカーボネート、ニトリセルロース、酢酸セルロース、ポリアクリロニトリル、ナイロン6またはそれぞれの共重合体等が挙げられる。 The sealing film 7 has a total light transmittance of 80% or more and an oxygen barrier film having an oxygen transmission rate of 1 ml / m 2 / day or less, a total light transmittance of 80% or more, and a water vapor transmission rate of 1 ml / ml. It preferably has a two-layer structure of a water vapor barrier film of m 2 / day or less. Thereby, it is possible to more effectively block oxygen and water from coming into contact with the wavelength converting substance 5 and the resin 8. The oxygen barrier film is not particularly limited and has a thickness of about 10 to 100 μm. For example, polyethylene, polypropylene, vinyl acetate, polystyrene, polycarbonate, nitrile cellulose, cellulose acetate, polyacrylonitrile, nylon 6 or each And the like.

水蒸気バリア性フィルムとしては、特に限定されるものではなく、厚さは10〜100μm程度であり、例えばポリ塩化ビニリデン、ポリエチレン、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、環状オレフィン系重合体等が挙げられる。   The water vapor barrier film is not particularly limited, and has a thickness of about 10 to 100 μm. Examples thereof include polyvinylidene chloride, polyethylene, polypropylene (PP), polyethylene terephthalate (PET), and cyclic olefin polymers. Can be mentioned.

なお、封止フィルムは、酸素バリア性フィルムと水蒸気バリア性フィルムの二層構造からなる場合に限定されるものではなく、例えば酸素バリア性フィルムおよび水蒸気バリア性フィルムの少なくともいずれか一方を複数層積層したものであってもよい。また、フィルム強度およびガスバリア性を増強する上で、波長変換体を複数のフィルムで被覆してもよい。この場合には、複数のフィルムのうち少なくとも一層が前記封止フィルムであればよい。封止フィルム以外の他のフィルムとしては、例えばポリビニルアルコール、シリコーン等からなるフィルムが挙げられる。   The sealing film is not limited to the case where it has a two-layer structure of an oxygen barrier film and a water vapor barrier film. For example, at least one of an oxygen barrier film and a water vapor barrier film is laminated in multiple layers. It may be what you did. Further, the wavelength converter may be covered with a plurality of films in order to enhance film strength and gas barrier properties. In this case, at least one layer of the plurality of films may be the sealing film. Examples of the film other than the sealing film include films made of polyvinyl alcohol, silicone, and the like.

次に、上記で説明した波長変換器4および発光装置10の製造方法について説明する。
(波長変換器の製造方法)
波長変換器4における波長変換体9は、高分子樹脂等を用いて、例えば塗布法等により形成することができる。該塗布法としては、一般的な塗布法であれば限定されないが、ディスペンサーによる塗布が好ましい。例えば、液状で未硬化の樹脂、または溶剤で可塑性を持たせた樹脂に、波長変換物質5を混合することにより製造することができる。
Next, a method for manufacturing the wavelength converter 4 and the light emitting device 10 described above will be described.
(Wavelength converter manufacturing method)
The wavelength converter 9 in the wavelength converter 4 can be formed using a polymer resin or the like, for example, by a coating method or the like. The application method is not limited as long as it is a general application method, but application by a dispenser is preferable. For example, it can be produced by mixing the wavelength converting substance 5 with a liquid uncured resin or a resin plasticized with a solvent.

前記未硬化の樹脂としては、例えばシリコーン樹脂が使用できる。未硬化の樹脂は、2液を混合して硬化させるタイプのものであってもよく、1液で硬化するタイプのものであってもよい。2液を混合して硬化させるタイプの場合には、両液にそれぞれ波長変換物質5を混練してもよく、あるいは一方の液にのみ波長変換物質5を混練してもよい。また、溶剤で可塑性を持たせた樹脂としては、例えばアクリル樹脂を使用することができる。   As the uncured resin, for example, a silicone resin can be used. The uncured resin may be of a type in which two liquids are mixed and cured, or may be of a type that is cured by one liquid. In the case of a type in which two liquids are mixed and cured, the wavelength converting substance 5 may be kneaded in both liquids, or the wavelength converting substance 5 may be kneaded only in one liquid. Moreover, as a resin given plasticity with a solvent, for example, an acrylic resin can be used.

波長変換体9は、樹脂が未硬化の状態で、ディスペンサー等の塗布法を使用するなどしてフィルム状に成形して硬化させた後、図1に示すような形状に切削、研磨等の公知の方法で加工する。なお、樹脂が未硬化の状態で、例えば注型成形法等により、波長変換体9を得てもよく、また、未硬化の樹脂を所定の型内に流し込んで硬化させた後、取り出して波長変換体9を得てもよい。樹脂を硬化させる方法としては、例えば熱エネルギーや光エネルギーを使う方法がある他、溶剤を揮発させる方法がある。   The wavelength converter 9 is formed in a film shape by using a coating method such as a dispenser while the resin is in an uncured state, and then cured into a shape as shown in FIG. Process by the method of. In addition, the wavelength converter 9 may be obtained by, for example, a cast molding method in an uncured state of the resin, or after the uncured resin is poured into a predetermined mold and cured, the wavelength converter 9 is taken out and the wavelength is obtained. You may obtain the converter 9. As a method of curing the resin, for example, there is a method of using heat energy or light energy, and a method of volatilizing the solvent.

上記のようにして得た波長変換体9の全面を、2枚の封止フィルム7で挟み、ラミネート装置等により加熱被覆して、波長変換体9の全面を封止フィルム7で被覆し波長変換器4が得られる。加熱被覆する際の温度としては、封止フィルム7の軟化温度以上であり融点以下であればよく、特に制限はされないが、100℃〜200℃が好ましい。   The entire surface of the wavelength converter 9 obtained as described above is sandwiched between two sealing films 7 and heated and coated with a laminating apparatus or the like, and the entire surface of the wavelength converter 9 is covered with the sealing film 7 to convert the wavelength. A vessel 4 is obtained. The temperature at the time of heat-coating may be at least the softening temperature of the sealing film 7 and below the melting point, and is not particularly limited, but is preferably 100 ° C to 200 ° C.

(発光装置の製造方法)
発光装置10は、図1に示すように、波長変換器4を発光素子3上に設置することにより得られる。波長変換器4を発光素子3上に設置する方法としては、例えば接着剤等を介して設置する方法等が挙げられる。また、図1に示すように、波長変換器4の上部側における封止フィルム7の両側端から鍔部7aを延設し、該鍔部7aに液状の未硬化樹脂等を塗布して硬化させることにより設置してもよい。
(Method for manufacturing light emitting device)
The light emitting device 10 is obtained by installing the wavelength converter 4 on the light emitting element 3 as shown in FIG. Examples of a method for installing the wavelength converter 4 on the light emitting element 3 include a method for installing the wavelength converter 4 via an adhesive or the like. Moreover, as shown in FIG. 1, the collar part 7a is extended from the both ends of the sealing film 7 in the upper part side of the wavelength converter 4, and liquid uncured resin etc. are apply | coated and hardened to this collar part 7a. May be installed.

本発明における波長変換体の形状は、図1に示す波長変換体9の形状に限定されるものではなく、例えば図2に示す波長変換体9aのような形状であってもよい。この波長変換体9aの製造方法は、上記で説明した波長変換体9と同様にして製造することができる。なお、図2においては、前述した図1の構成と同一または同等な部分には同一の符号を付して説明は省略する。   The shape of the wavelength converter in the present invention is not limited to the shape of the wavelength converter 9 shown in FIG. 1, and may be a shape such as the wavelength converter 9a shown in FIG. The manufacturing method of this wavelength converter 9a can be manufactured similarly to the wavelength converter 9 demonstrated above. In FIG. 2, the same or equivalent parts as those in FIG. 1 described above are denoted by the same reference numerals and description thereof is omitted.

また、波長変換体の全面を封止フィルムで被覆せず、波長変換体の少なくとも外気との接触面を封止フィルムで被覆していてもよい。図3は、外気との接触面を封止フィルムで被覆した発光装置を示す概略断面図である。なお、図3においては、前述した図1および図2の構成と同一または同等な部分には同一の符号を付して説明は省略する。   Further, the entire surface of the wavelength converter may not be covered with the sealing film, and at least the contact surface with the outside air of the wavelength converter may be covered with the sealing film. FIG. 3 is a schematic cross-sectional view showing a light emitting device in which a contact surface with outside air is covered with a sealing film. In FIG. 3, the same or equivalent parts as those in FIGS. 1 and 2 described above are denoted by the same reference numerals and description thereof is omitted.

図3に示すように、この波長変換器20は、波長変換器4と発光素子3を備えたものであって、波長変換器4は、波長変換体9と、この波長変換体9の外気との接触面21を被覆した封止フィルム7とを備えている。すなわち、この波長変換器20は、図1および図2に示したように、波長変換体9の全面を封止フィルム7で被覆せず、波長変換体9の少なくとも外気との接触面21を封止フィルム7で被覆している。このような構成であっても、上記で説明した波長変換器10と同様の効果を奏することができる。
波長変換器20の製造方法は、波長変換体9の外気との接触面21を封止フィルム7で被覆する他は、上記で説明した波長変換器10と同様にして、製造すればよい。
As shown in FIG. 3, the wavelength converter 20 includes a wavelength converter 4 and a light emitting element 3, and the wavelength converter 4 includes a wavelength converter 9 and the outside air of the wavelength converter 9. And a sealing film 7 covering the contact surface 21. That is, as shown in FIGS. 1 and 2, the wavelength converter 20 does not cover the entire surface of the wavelength converter 9 with the sealing film 7, and seals at least the contact surface 21 of the wavelength converter 9 with the outside air. Covered with a stop film 7. Even with such a configuration, the same effects as those of the wavelength converter 10 described above can be obtained.
The wavelength converter 20 may be manufactured in the same manner as the wavelength converter 10 described above except that the contact surface 21 with the outside air of the wavelength converter 9 is covered with the sealing film 7.

以下、実施例を挙げて本発明についてさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。なお、以下の実施例で使用した材料は次の通りである。
・樹脂:ジメチルシリコーン骨格からなるシリコーン樹脂
・波長変換物質:CdSe半導体超微粒子(非酸化物半導体組成物質、平均粒子径:3.0nm)
・フィルム:表1および表2に示すフィルムA〜E
酸素バリア性および水蒸気バリア性を有するフィルム:A
酸素バリア性フィルム:C
水蒸気バリア性フィルム:B
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to a following example. The materials used in the following examples are as follows.
Resin: Silicone resin composed of a dimethyl silicone skeleton Wavelength converting material: CdSe semiconductor ultrafine particles (non-oxide semiconductor composition material, average particle size: 3.0 nm)
Film: Films A to E shown in Table 1 and Table 2
Film having oxygen barrier property and water vapor barrier property: A
Oxygen barrier film: C
Water vapor barrier film: B

<波長変換器の作製>
図1に示したような波長変換器を作製した。具体的には、まず、ジメチルシリコーン骨格からなるシリコーン樹脂に、CdSe半導体超微粒子を分散混合して蛍光体含有樹脂ペーストを作製した。なお、この蛍光体含有樹脂ペーストは、CdSe半導体超微粒子をシリコーン樹脂100重量部に対して5重量部添加して作製した。
<Production of wavelength converter>
A wavelength converter as shown in FIG. 1 was produced. Specifically, first, phosphor-containing resin paste was prepared by dispersing and mixing CdSe semiconductor ultrafine particles in a silicone resin having a dimethyl silicone skeleton. This phosphor-containing resin paste was prepared by adding 5 parts by weight of CdSe semiconductor ultrafine particles to 100 parts by weight of silicone resin.

ついで、上記で得られた蛍光体含有樹脂ペーストを平滑な基板上にディスペンサーにて塗布し、これをホットプレート上において150℃で5分間加熱して、仮硬化膜を作製した。続いて、これを150℃の乾燥機内に5時間入れ蛍光体含有フィルムを作製し、これを図1に示した波長変換体の形状に切削および研磨により成形し、波長変換体を作製した。   Next, the phosphor-containing resin paste obtained above was applied onto a smooth substrate with a dispenser, and this was heated on a hot plate at 150 ° C. for 5 minutes to prepare a temporarily cured film. Subsequently, this was placed in a drier at 150 ° C. for 5 hours to produce a phosphor-containing film, which was shaped into the shape of the wavelength converter shown in FIG. 1 by cutting and polishing to produce a wavelength converter.

ついで、上記で得られた波長変換体の全面を、表1および表2に示すフィルムA〜Eを表3に示す組み合わせで用いて被覆し、これをラミネート装置(KOKUYO社製の「KLMP240」)で加熱被覆して、2層構造の封止フィルムで被覆された波長変換器を得た(表3中の試料No.1〜10)。具体的には、例えば試料No.1の波長変換器の場合には、まず波長変換体の全面を2枚のフィルムAで挟み、該フィルムAの表面をさらに2枚のフィルムBで挟み、これを上記ラミネート装置で加熱被覆(温度:100〜150℃)して、試料No.1の波長変換器を得た。   Next, the entire surface of the wavelength converter obtained above was coated using the films A to E shown in Table 1 and Table 2 in the combinations shown in Table 3, and this was laminated with a laminating apparatus (“KLMP240” manufactured by KOKUYO). To obtain a wavelength converter coated with a two-layer sealing film (Sample Nos. 1 to 10 in Table 3). Specifically, for example, sample no. In the case of one wavelength converter, first, the entire surface of the wavelength converter is sandwiched between two films A, the surface of the film A is further sandwiched between two films B, and this is heated and coated with the laminating apparatus (temperature : 100-150 ° C.) 1 wavelength converter was obtained.

フィルムA〜Eの物性を示す酸素バリア性、水蒸気バリア性、全光線透過率および発光特性(発光効率および寿命)は、それぞれ以下のようにして測定した。その測定結果を表1および表2に示す。
(酸素バリア性、水蒸気バリア性)
上記したモコン法により測定した。
(全光線透過率)
JIS K 7361に準じ、東洋精機(株)製の直読ヘイズメーターを上記した条件で用いて測定した。
(発光効率の測定方法)
大塚電子社製の発光特性評価装置を使用して測定した。
(寿命の測定方法)
上記発光効率の測定において、光束減退が50%に至るまでの時間を測定した。
Oxygen barrier properties, water vapor barrier properties, total light transmittance, and luminescent properties (luminous efficiency and lifetime) showing the physical properties of films A to E were measured as follows. The measurement results are shown in Tables 1 and 2.
(Oxygen barrier property, water vapor barrier property)
It was measured by the above-mentioned mocon method.
(Total light transmittance)
According to JIS K 7361, measurement was performed using a direct reading haze meter manufactured by Toyo Seiki Co., Ltd. under the conditions described above.
(Measurement method of luminous efficiency)
It measured using the luminescent property evaluation apparatus by an Otsuka Electronics company.
(Lifetime measurement method)
In the measurement of the luminous efficiency, the time until the luminous flux declined to 50% was measured.

Figure 2007273498
Figure 2007273498

Figure 2007273498
Figure 2007273498

<評価>
上記で作製した波長変換器(表3中の試料No.1〜10)について、発光特性(発光効率および寿命)を上記フィルムA〜Eと同様にして測定した。その結果を表3に示す。
<Evaluation>
About the wavelength converter produced above (sample Nos. 1 to 10 in Table 3), the emission characteristics (emission efficiency and lifetime) were measured in the same manner as the films A to E. The results are shown in Table 3.

Figure 2007273498
Figure 2007273498

表3から明らかなように、本発明の範囲外の試料No.10は、低い寿命であったのに対し、所定のフィルムで被覆した試料No.1〜9は、発光効率が高く、20000時間以上の長期信頼性を示しているのがわかる。また、試料No.1〜9の各波長変換器の取り扱い性は良好であった。   As is apparent from Table 3, sample Nos. Outside the scope of the present invention. No. 10 had a low life, whereas sample No. 10 coated with a predetermined film. It can be seen that 1 to 9 have high luminous efficiency and show long-term reliability of 20000 hours or more. Sample No. The handleability of each of the wavelength converters 1 to 9 was good.

本発明の一実施形態にかかる発光装置を示す概略断面図である。It is a schematic sectional drawing which shows the light-emitting device concerning one Embodiment of this invention. 本発明の他の実施形態にかかる発光装置を示す概略断面図である。It is a schematic sectional drawing which shows the light-emitting device concerning other embodiment of this invention. 本発明のさらに他の実施形態にかかる発光装置を示す概略断面図である。It is a schematic sectional drawing which shows the light-emitting device concerning other embodiment of this invention. 従来の発光装置を示す概略断面図である。It is a schematic sectional drawing which shows the conventional light-emitting device.

符号の説明Explanation of symbols

1 導体
2 圧電振動板
3 発光素子
4 波長変換器
5 波長変換物質
6 反射部材
7 封止フィルム
8 樹脂
9 波長変換体
10 発光装置
DESCRIPTION OF SYMBOLS 1 Conductor 2 Piezoelectric diaphragm 3 Light emitting element 4 Wavelength converter 5 Wavelength converting substance 6 Reflective member 7 Sealing film 8 Resin 9 Wavelength converter 10 Light emitting device

Claims (7)

励起光を可視光に変換する波長変換物質を樹脂中に分散させた波長変換体と、この波長変換体を被覆した封止フィルムとを備え、
前記封止フィルムは、全光線透過率80%以上であり、かつ酸素透過率1ml/m2/day以下の酸素バリア性および水蒸気透過率1ml/m2/day以下の水蒸気バリア性の少なくともいずれか一方を有することを特徴とする波長変換器。
A wavelength conversion body in which a wavelength conversion substance that converts excitation light into visible light is dispersed in a resin, and a sealing film that covers this wavelength conversion body,
The sealing film has at least one of an oxygen barrier property having a total light transmittance of 80% or more and an oxygen transmittance of 1 ml / m 2 / day or less and a water vapor barrier property of water vapor permeability of 1 ml / m 2 / day or less. A wavelength converter characterized by having one.
前記封止フィルムが、全光線透過率80%以上であり、かつ酸素透過率1ml/m2/day以下の酸素バリア性フィルムと、全光線透過率80%以上であり、かつ水蒸気透過率1ml/m2/day以下の水蒸気バリア性フィルムの二層構造からなる請求項1記載の波長変換器。 The sealing film has an oxygen barrier film having a total light transmittance of 80% or more and an oxygen transmission rate of 1 ml / m 2 / day, a total light transmittance of 80% or more, and a water vapor transmission rate of 1 ml / The wavelength converter according to claim 1, comprising a two-layer structure of a water vapor barrier film of m 2 / day or less. 前記波長変換体が複数のフィルムで被覆され、このフィルムのうち少なくとも一層が前記封止フィルムである請求項1記載の波長変換器。   The wavelength converter according to claim 1, wherein the wavelength converter is covered with a plurality of films, and at least one of the films is the sealing film. 前記波長変換物質が、非酸化物半導体組成物質からなる請求項1〜3のいずれかに記載の波長変換器。   The wavelength converter according to any one of claims 1 to 3, wherein the wavelength conversion material is made of a non-oxide semiconductor composition material. 前記波長変換物質が、平均粒子径10nm以下の半導体超微粒子である請求項1〜4のいずれかに記載の波長変換器。   The wavelength converter according to any one of claims 1 to 4, wherein the wavelength converting substance is a semiconductor ultrafine particle having an average particle diameter of 10 nm or less. 請求項1〜5のいずれかに記載の波長変換器と、該波長変換器に励起光を照射する発光素子とを備えたことを特徴とする発光装置。   A light-emitting device comprising: the wavelength converter according to claim 1; and a light-emitting element that irradiates the wavelength converter with excitation light. 波長変換器と、該波長変換器に励起光を照射する発光素子とを備えた発光装置であって、
前記波長変換器は、励起光を可視光に変換する波長変換物質を樹脂中に分散させた波長変換体と、この波長変換体の少なくとも外気との接触面を被覆した封止フィルムとを備え、
前記封止フィルムは、全光線透過率80%以上であり、かつ酸素透過率1ml/m2/day以下の酸素バリア性および水蒸気透過率1ml/m2/day以下の水蒸気バリア性の少なくともいずれか一方を有することを特徴とする発光装置。
A light-emitting device comprising a wavelength converter and a light-emitting element that emits excitation light to the wavelength converter,
The wavelength converter includes a wavelength converter in which a wavelength conversion substance that converts excitation light into visible light is dispersed in a resin, and a sealing film that covers at least a contact surface of the wavelength converter with the outside air,
The sealing film has at least one of an oxygen barrier property having a total light transmittance of 80% or more and an oxygen transmittance of 1 ml / m 2 / day or less and a water vapor barrier property of water vapor permeability of 1 ml / m 2 / day or less. A light-emitting device including one of the light-emitting devices.
JP2006093525A 2006-03-30 2006-03-30 Wavelength converter and light emitting device Pending JP2007273498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006093525A JP2007273498A (en) 2006-03-30 2006-03-30 Wavelength converter and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006093525A JP2007273498A (en) 2006-03-30 2006-03-30 Wavelength converter and light emitting device

Publications (1)

Publication Number Publication Date
JP2007273498A true JP2007273498A (en) 2007-10-18

Family

ID=38676039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006093525A Pending JP2007273498A (en) 2006-03-30 2006-03-30 Wavelength converter and light emitting device

Country Status (1)

Country Link
JP (1) JP2007273498A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009267040A (en) * 2008-04-24 2009-11-12 Panasonic Corp Semiconductor light-emitting device
JP2010206039A (en) * 2009-03-05 2010-09-16 Nichia Corp Light emitting device
JP2011054958A (en) * 2009-08-06 2011-03-17 Mitsubishi Chemicals Corp Semiconductor light emitting device, image display device, and lighting system
JP2012502455A (en) * 2008-09-04 2012-01-26 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Conversion film and method for producing the same
EP2416389A1 (en) * 2009-03-31 2012-02-08 Toshiba Lighting&Technology Corporation Light-emitting device and illumination device
WO2012152812A1 (en) 2011-05-10 2012-11-15 Basf Se Novel color converters
WO2013001686A1 (en) * 2011-06-29 2013-01-03 パナソニック株式会社 Light-emitting device
JP2014531739A (en) * 2011-07-13 2014-11-27 コーニンクレッカ フィリップス エヌ ヴェ Wavelength conversion element
JP2015503180A (en) * 2011-10-25 2015-01-29 ショット アクチエンゲゼルシャフトSchott AG High brightness light converter
JP2015530606A (en) * 2012-07-05 2015-10-15 コーニンクレッカ フィリップス エヌ ヴェ Stack of layers comprising a luminescent material, lamp, luminaire and method for manufacturing such a stack of layers
KR20150133137A (en) * 2014-05-19 2015-11-27 후지필름 가부시키가이샤 Wavelength conversion member, backlight unit, and liquid crystal display device and method for manufacturing wavelength conversion member and polymerizable composition containing quantum dot
WO2015194296A1 (en) * 2014-06-18 2015-12-23 日本電気硝子株式会社 Light emitting device
WO2016204024A1 (en) * 2015-06-19 2016-12-22 ソニーセミコンダクタソリューションズ株式会社 Display device
JP2017016134A (en) * 2013-09-13 2017-01-19 凸版印刷株式会社 Wavelength conversion sheet and backlight unit
KR20170014225A (en) * 2015-07-29 2017-02-08 주식회사 엘지화학 Optical film
US9677001B2 (en) 2007-03-19 2017-06-13 Nanosys, Inc. Light-emitting diode (LED) devices comprising nanocrystals
JP2017523602A (en) * 2014-06-12 2017-08-17 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic semiconductor device, method of manufacturing optoelectronic semiconductor device, and light source including optoelectronic semiconductor device
JP2017538166A (en) * 2014-12-05 2017-12-21 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Conversion element, optoelectronic semiconductor component, and method of manufacturing conversion element
JP2018500755A (en) * 2014-12-03 2018-01-11 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Radiation emitting optoelectronic semiconductor component and manufacturing method thereof
WO2018016589A1 (en) * 2016-07-20 2018-01-25 富士フイルム株式会社 Quantum-dot-containing composition, wavelength conversion member, backlight unit, and liquid-crystal display device
JP2018160646A (en) * 2017-03-24 2018-10-11 大日本印刷株式会社 Light emitting device, backlight device, and image display device
CN109313365A (en) * 2016-07-28 2019-02-05 富士胶片株式会社 Backlight film
WO2021166785A1 (en) * 2020-02-19 2021-08-26 ソニーグループ株式会社 Light-emitting element, light-emitting element array, and display device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151977A (en) * 1992-11-11 1994-05-31 Sharp Corp Optical semiconductor device
JPH08236271A (en) * 1995-03-01 1996-09-13 Mitsubishi Chem Corp Organic electroluminescent element and its manufacture
JPH11249243A (en) * 1998-03-03 1999-09-17 Konica Corp Stimulable phosphor plate and stimulable phosphor panel
JP2000174347A (en) * 1998-12-07 2000-06-23 Nichia Chem Ind Ltd Optical semiconductor device
JP2003139895A (en) * 2001-08-23 2003-05-14 Agfa Gevaert Nv Phosphor panel having good humidity resistivity
WO2004000971A1 (en) * 2002-06-19 2003-12-31 National Institute Of Advanced Industrial Science And Technology Semiconductor superfine particle phosphor and light emitting device
JP2004085367A (en) * 2002-08-27 2004-03-18 Fuji Photo Film Co Ltd Radiation image conversion panel
JP2005148008A (en) * 2003-11-19 2005-06-09 Fuji Photo Film Co Ltd Radiological image conversion panel
WO2005071039A1 (en) * 2004-01-26 2005-08-04 Kyocera Corporation Wavelength converter, light-emitting device, wavelength converter manufacturing method, and light-emitting device manufacturing method
JP2005227169A (en) * 2004-02-13 2005-08-25 Konica Minolta Medical & Graphic Inc Radiation image conversion panel
JP2005243801A (en) * 2004-02-25 2005-09-08 Toshiba Corp Led device
JP2006052250A (en) * 2004-08-10 2006-02-23 Fuji Photo Film Co Ltd Electroluminescent (el) phosphor, method for producing the same and electroluminescent element

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151977A (en) * 1992-11-11 1994-05-31 Sharp Corp Optical semiconductor device
JPH08236271A (en) * 1995-03-01 1996-09-13 Mitsubishi Chem Corp Organic electroluminescent element and its manufacture
JPH11249243A (en) * 1998-03-03 1999-09-17 Konica Corp Stimulable phosphor plate and stimulable phosphor panel
JP2000174347A (en) * 1998-12-07 2000-06-23 Nichia Chem Ind Ltd Optical semiconductor device
JP2003139895A (en) * 2001-08-23 2003-05-14 Agfa Gevaert Nv Phosphor panel having good humidity resistivity
WO2004000971A1 (en) * 2002-06-19 2003-12-31 National Institute Of Advanced Industrial Science And Technology Semiconductor superfine particle phosphor and light emitting device
JP2004085367A (en) * 2002-08-27 2004-03-18 Fuji Photo Film Co Ltd Radiation image conversion panel
JP2005148008A (en) * 2003-11-19 2005-06-09 Fuji Photo Film Co Ltd Radiological image conversion panel
WO2005071039A1 (en) * 2004-01-26 2005-08-04 Kyocera Corporation Wavelength converter, light-emitting device, wavelength converter manufacturing method, and light-emitting device manufacturing method
JP2005227169A (en) * 2004-02-13 2005-08-25 Konica Minolta Medical & Graphic Inc Radiation image conversion panel
JP2005243801A (en) * 2004-02-25 2005-09-08 Toshiba Corp Led device
JP2006052250A (en) * 2004-08-10 2006-02-23 Fuji Photo Film Co Ltd Electroluminescent (el) phosphor, method for producing the same and electroluminescent element

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9677001B2 (en) 2007-03-19 2017-06-13 Nanosys, Inc. Light-emitting diode (LED) devices comprising nanocrystals
US9909062B2 (en) 2007-03-19 2018-03-06 Nanosys, Inc. Light-emitting diode (LED) devices comprising nanocrystals
JP2009267040A (en) * 2008-04-24 2009-11-12 Panasonic Corp Semiconductor light-emitting device
JP2012502455A (en) * 2008-09-04 2012-01-26 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Conversion film and method for producing the same
JP2010206039A (en) * 2009-03-05 2010-09-16 Nichia Corp Light emitting device
US8783914B2 (en) 2009-03-31 2014-07-22 Toshiba Lighting & Technology Corporation Light emitting apparatus and illumination apparatus
EP2416389A4 (en) * 2009-03-31 2012-08-01 Toshiba Lighting & Technology Light-emitting device and illumination device
EP2416389A1 (en) * 2009-03-31 2012-02-08 Toshiba Lighting&Technology Corporation Light-emitting device and illumination device
JP2011054958A (en) * 2009-08-06 2011-03-17 Mitsubishi Chemicals Corp Semiconductor light emitting device, image display device, and lighting system
WO2012152812A1 (en) 2011-05-10 2012-11-15 Basf Se Novel color converters
US9711665B2 (en) 2011-05-10 2017-07-18 Basf Se Color converters
WO2013001686A1 (en) * 2011-06-29 2013-01-03 パナソニック株式会社 Light-emitting device
CN103650181A (en) * 2011-06-29 2014-03-19 松下电器产业株式会社 Light-emitting device
JPWO2013001686A1 (en) * 2011-06-29 2015-02-23 パナソニック株式会社 Light emitting device
JP2014531739A (en) * 2011-07-13 2014-11-27 コーニンクレッカ フィリップス エヌ ヴェ Wavelength conversion element
US9897285B2 (en) 2011-07-13 2018-02-20 Philips Lighting Holding B.V. Wavelength converting element
JP2015503180A (en) * 2011-10-25 2015-01-29 ショット アクチエンゲゼルシャフトSchott AG High brightness light converter
JP2018185542A (en) * 2011-10-25 2018-11-22 ショット アクチエンゲゼルシャフトSchott AG Optical converter for high luminance
US9738828B2 (en) 2011-10-25 2017-08-22 Schott Ag Optical converter for high luminances
JP2015530606A (en) * 2012-07-05 2015-10-15 コーニンクレッカ フィリップス エヌ ヴェ Stack of layers comprising a luminescent material, lamp, luminaire and method for manufacturing such a stack of layers
JP2017016134A (en) * 2013-09-13 2017-01-19 凸版印刷株式会社 Wavelength conversion sheet and backlight unit
JP2016066041A (en) * 2014-05-19 2016-04-28 富士フイルム株式会社 Wavelength conversion member, backlight unit, liquid crystal display device, method for manufacturing wavelength conversion member, and quantum dot-containing polymerizable composition
KR102156138B1 (en) 2014-05-19 2020-09-16 후지필름 가부시키가이샤 Wavelength conversion member, backlight unit, and liquid crystal display device and method for manufacturing wavelength conversion member
KR20150133137A (en) * 2014-05-19 2015-11-27 후지필름 가부시키가이샤 Wavelength conversion member, backlight unit, and liquid crystal display device and method for manufacturing wavelength conversion member and polymerizable composition containing quantum dot
JP2017523602A (en) * 2014-06-12 2017-08-17 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic semiconductor device, method of manufacturing optoelectronic semiconductor device, and light source including optoelectronic semiconductor device
US10505085B2 (en) 2014-06-12 2019-12-10 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor device package with conversion layer and method for producing the same
JPWO2015194296A1 (en) * 2014-06-18 2017-04-20 日本電気硝子株式会社 Light emitting device
WO2015194296A1 (en) * 2014-06-18 2015-12-23 日本電気硝子株式会社 Light emitting device
CN106104824A (en) * 2014-06-18 2016-11-09 日本电气硝子株式会社 Luminescent device
JP2018500755A (en) * 2014-12-03 2018-01-11 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Radiation emitting optoelectronic semiconductor component and manufacturing method thereof
JP2017538166A (en) * 2014-12-05 2017-12-21 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Conversion element, optoelectronic semiconductor component, and method of manufacturing conversion element
WO2016204024A1 (en) * 2015-06-19 2016-12-22 ソニーセミコンダクタソリューションズ株式会社 Display device
US11247439B2 (en) 2015-06-19 2022-02-15 Sony Semiconductor Solutions Corporation Display unit
KR101959461B1 (en) 2015-07-29 2019-03-18 주식회사 엘지화학 Optical film
KR20170014225A (en) * 2015-07-29 2017-02-08 주식회사 엘지화학 Optical film
WO2018016589A1 (en) * 2016-07-20 2018-01-25 富士フイルム株式会社 Quantum-dot-containing composition, wavelength conversion member, backlight unit, and liquid-crystal display device
JPWO2018016589A1 (en) * 2016-07-20 2019-03-07 富士フイルム株式会社 Quantum dot-containing composition, wavelength conversion member, backlight unit, and liquid crystal display device
US11535761B2 (en) 2016-07-20 2022-12-27 Fujifilm Corporation Quantum dot-containing composition, wavelength conversion member, backlight unit, and liquid crystal display device
CN109313365A (en) * 2016-07-28 2019-02-05 富士胶片株式会社 Backlight film
JP2018160646A (en) * 2017-03-24 2018-10-11 大日本印刷株式会社 Light emitting device, backlight device, and image display device
WO2021166785A1 (en) * 2020-02-19 2021-08-26 ソニーグループ株式会社 Light-emitting element, light-emitting element array, and display device

Similar Documents

Publication Publication Date Title
JP2007273498A (en) Wavelength converter and light emitting device
JP4838005B2 (en) Light emitting device
JP2007103512A (en) Light emitting device
JP2011071404A (en) Light-emitting device and illumination apparatus
KR101201266B1 (en) Resin composition and sheet containing phosphor, and light emitting element using such composition and sheet
CN107665940B (en) Light emitting device and method for manufacturing the same
US20110133237A1 (en) Semiconductor light-emitting device
JP5137850B2 (en) Phosphor and wavelength converter, light emitting device, and illumination device using the same
US7737457B2 (en) Phosphor down converting element for an LED package and fabrication method
JP3617587B2 (en) Light emitting diode and method for forming the same
JP2017531324A (en) Light emitting device
JP5975269B2 (en) Method for manufacturing light emitting device
JP5230594B2 (en) Phosphor, its manufacturing method, wavelength converter, light emitting device, and lighting device
JP5489456B2 (en) Light emission conversion LED
TWI418611B (en) Phosphor and light emitting device
JP2007157798A (en) Light emitting device
JP2007146154A (en) Wavelength converter, lighting system, and lighting system assembly
JP2010225960A (en) Light emitting device and illumination apparatus
JP2012169653A (en) Method of manufacturing light-emitting device
JP2011054958A (en) Semiconductor light emitting device, image display device, and lighting system
JP2007059898A (en) Semiconductor light-emitting device
JP2006005336A (en) Light-emitting diode and manufacturing method therefor
JP4949793B2 (en) Phosphor, wavelength converter and light emitting device
JP2011155125A (en) Light-emitting device, and illumination apparatus
JP2010199273A (en) Light-emitting device and lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110607