JP2007260588A - Method for producing catalyst for methacrylic acid production and method for producing methacrylic acid - Google Patents

Method for producing catalyst for methacrylic acid production and method for producing methacrylic acid Download PDF

Info

Publication number
JP2007260588A
JP2007260588A JP2006090552A JP2006090552A JP2007260588A JP 2007260588 A JP2007260588 A JP 2007260588A JP 2006090552 A JP2006090552 A JP 2006090552A JP 2006090552 A JP2006090552 A JP 2006090552A JP 2007260588 A JP2007260588 A JP 2007260588A
Authority
JP
Japan
Prior art keywords
catalyst
methacrylic acid
producing
dried product
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006090552A
Other languages
Japanese (ja)
Other versions
JP4848813B2 (en
Inventor
Junya Yoshizawa
純也 吉澤
Koichi Nagai
功一 永井
Hiroyuki Ando
博幸 安東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2006090552A priority Critical patent/JP4848813B2/en
Publication of JP2007260588A publication Critical patent/JP2007260588A/en
Application granted granted Critical
Publication of JP4848813B2 publication Critical patent/JP4848813B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To produce a long-life catalyst for methacrylic acid production and to produce methacrylic acid in good productivity over a long term by using the catalyst. <P>SOLUTION: A catalyst comprising a heteropolyacid compound containing phosphorus and molybdenum is produced by drying an aqueous mixture of raw materials for the catalyst to obtain a dried product of a chromaticness index b of 6.0 or higher, molding the dried product, and firing the molding. A compound selected from among methacrolein, isobutylaldehyde, isobutane, and isobutyric acid is subjected to a gas-phase catalytic oxidation reaction in the presence of the produced catalyst. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、メタクリル酸製造用触媒を製造する方法に関するものである。また、本発明は、この方法により得られた触媒を用いて、メタクリル酸を製造する方法にも関係している。   The present invention relates to a method for producing a catalyst for producing methacrylic acid. The present invention also relates to a method for producing methacrylic acid using the catalyst obtained by this method.

メタクロレイン等の気相接触酸化反応によりメタクリル酸を製造する際に用いる触媒としては、リン及びモリブデンを含むヘテロポリ酸やその塩からなるものが有効であることが知られている。この触媒は、通常、触媒原料の水性混合液を乾燥した後、焼成することにより製造され、その際、該水性混合液の乾燥には、蒸発乾固法、噴霧乾燥法、ドラム乾燥法、気流乾燥法等が用いられる(例えば特許文献1〜4参照)。また、特許文献2には、この乾燥により得られる乾燥物の粒子径を1〜250μmとすることで、触媒性能が向上することが開示されている。   As a catalyst used when producing methacrylic acid by a gas phase catalytic oxidation reaction such as methacrolein, it is known that a catalyst comprising a heteropolyacid containing phosphorus and molybdenum or a salt thereof is effective. This catalyst is usually produced by drying and calcining an aqueous mixed solution of catalyst raw materials. In this case, the aqueous mixed solution can be dried by evaporation to dryness, spray drying, drum drying, airflow A drying method or the like is used (see, for example, Patent Documents 1 to 4). Patent Document 2 discloses that the catalyst performance is improved by setting the particle size of the dried product obtained by this drying to 1 to 250 μm.

特開昭60−4402号公報Japanese Patent Laid-Open No. 60-4402 特開平8−10621号公報JP-A-8-10621 特開平9−173852号公報JP-A-9-173852 特開平9−299803号公報JP-A-9-299803

メタクリル酸を長期間にわたり生産性良く製造するには、触媒活性の持続性、すなわち触媒寿命の点で優れる触媒が求められるが、従来の方法により得られる触媒は、その点で必ずしも満足できるものではなかった。そこで、本発明の目的は、優れた触媒寿命を有するメタクリル酸製造用触媒を製造しうる方法を提供することにある。そして、この方法により得られた触媒を用いて、長期間にわたり生産性良くメタクリル酸を製造しうる方法を提供することにある。   In order to produce methacrylic acid over a long period of time with good productivity, a catalyst that is excellent in sustaining catalytic activity, that is, in terms of catalyst life, is required. However, catalysts obtained by conventional methods are not necessarily satisfactory in that respect. There wasn't. Then, the objective of this invention is providing the method which can manufacture the catalyst for methacrylic acid manufacture which has the outstanding catalyst lifetime. And it is providing the method which can manufacture methacrylic acid with high productivity over a long period of time using the catalyst obtained by this method.

本発明者らは、鋭意研究を行った結果、触媒原料の水性混合液の乾燥により、所定の黄色味を有する乾燥物を得、これを成形した後、焼成することにより、上記目的を達成できることを見出し、本発明を完成するに至った。すなわち、本発明は、リン及びモリブデンを含むヘテロポリ酸化合物からなるメタクリル酸製造用触媒の製造方法であって、触媒原料の水性混合液を乾燥して、b値が6.0以上である乾燥物を得、この乾燥物を成形した後、焼成することを特徴とするメタクリル酸製造用触媒の製造方法を提供するものである。また、本発明は、こうして得られる触媒の存在下に、メタクロレイン、イソブチルアルデヒド、イソブタン及びイソ酪酸から選ばれる化合物を気相接触酸化反応に付すことにより、メタクリル酸を製造する方法にも関係している。   As a result of diligent research, the present inventors have obtained a dried product having a predetermined yellowishness by drying an aqueous mixed solution of catalyst raw materials, and can achieve the above-mentioned object by molding the product and then firing it. As a result, the present invention has been completed. That is, the present invention relates to a method for producing a catalyst for producing methacrylic acid comprising a heteropolyacid compound containing phosphorus and molybdenum, and a dried product having a b value of 6.0 or more by drying an aqueous mixed solution of catalyst raw materials. And providing a method for producing a catalyst for methacrylic acid production, characterized in that the dried product is molded and then calcined. The present invention also relates to a method for producing methacrylic acid by subjecting a compound selected from methacrolein, isobutyraldehyde, isobutane and isobutyric acid to a gas phase catalytic oxidation reaction in the presence of the catalyst thus obtained. ing.

本発明によれば、優れた触媒寿命を有するメタクリル酸製造用触媒を製造することができ、こうして得られた触媒を用いることにより、メタクリル酸を長期間にわたり生産性良く製造することができる。   According to the present invention, a catalyst for producing methacrylic acid having an excellent catalyst life can be produced. By using the catalyst thus obtained, methacrylic acid can be produced with a high productivity over a long period of time.

以下、本発明を詳細に説明する。本発明が製造の対象とするメタクリル酸製造用触媒は、リン及びモリブデンを必須とするヘテロポリ酸化合物からなるものであり、遊離のヘテロポリ酸からなるものであってもよいし、ヘテロポリ酸の塩からなるものであってもよい。中でも、ヘテロポリ酸の酸性塩(部分中和塩)からなるものが好ましく、さらに好ましくはケギン型ヘテロポリ酸の酸性塩からなるものである。   Hereinafter, the present invention will be described in detail. The catalyst for methacrylic acid production to be produced by the present invention is composed of a heteropolyacid compound essentially containing phosphorus and molybdenum, and may be composed of a free heteropolyacid or from a salt of a heteropolyacid. It may be. Especially, what consists of an acidic salt (partially neutralized salt) of heteropolyacid is preferable, More preferably, it consists of an acidic salt of Keggin type heteropolyacid.

上記触媒には、リン及びモリブデン以外の元素として、バナジウムが含まれるのが望ましく、また、カリウム、ルビジウム、セシウム及びタリウムから選ばれる少なくとも1種の元素(以下、X元素ということがある)や、銅、ヒ素、アンチモン、ホウ素、銀、ビスマス、鉄、コバルト、ランタン及びセリウムから選ばれる少なくとも1種の元素(以下、Y元素ということがある)が含まれるのが望ましい。通常、モリブデン12原子に対して、リン、バナジウム、X元素及びY元素が、それぞれ3原子以下の割合で含まれる触媒が、好適に用いられる。   The catalyst preferably contains vanadium as an element other than phosphorus and molybdenum, and at least one element selected from potassium, rubidium, cesium and thallium (hereinafter sometimes referred to as X element), It is desirable that at least one element selected from copper, arsenic, antimony, boron, silver, bismuth, iron, cobalt, lanthanum and cerium (hereinafter sometimes referred to as Y element) is included. Usually, a catalyst containing phosphorus, vanadium, X element and Y element at a ratio of 3 atoms or less to 12 atoms of molybdenum is preferably used.

上記触媒の原料としては、通常、上記触媒に含まれる各元素を含む化合物、例えば、各元素のオキソ酸、オキソ酸塩、酸化物、硝酸塩、炭酸塩、水酸化物、ハロゲン化物等が、所望の原子比を満たすような割合で用いられる。例えば、リンを含む化合物としては、リン酸、リン酸塩等が用いられ、モリブデンを含む化合物としては、モリブデン酸、モリブデン酸塩、酸化モリブデン、塩化モリブデン等が用いられ、バナジウムを含む化合物としては、バナジン酸、バナジン酸塩、酸化バナジウム、塩化バナジウム等が用いられる。また、X元素を含む化合物としては、酸化物、硝酸塩、炭酸塩、水酸化物、ハロゲン化物等が用いられ、Y元素を含む化合物としては、オキソ酸、オキソ酸塩、硝酸塩、炭酸塩、水酸化物、ハロゲン化物等が用いられる。   As the raw material of the catalyst, a compound containing each element contained in the catalyst, for example, an oxo acid, an oxo acid salt, an oxide, a nitrate, a carbonate, a hydroxide, a halide, or the like of each element is desired. It is used at a ratio that satisfies the atomic ratio of For example, phosphoric acid, phosphate, etc. are used as the compound containing phosphorus, and molybdic acid, molybdate, molybdenum oxide, molybdenum chloride, etc. are used as the compound containing molybdenum, and as the compound containing vanadium, Vanadic acid, vanadate, vanadium oxide, vanadium chloride and the like are used. In addition, oxides, nitrates, carbonates, hydroxides, halides and the like are used as the compounds containing the X element, and oxo acids, oxoacid salts, nitrates, carbonates, water, and the like as the compounds containing the Y element. Oxides, halides and the like are used.

本発明の触媒の製造方法は、上記の触媒原料の水性混合液を乾燥した後、成形し、次いで焼成することからなるものである。この水性混合液は、触媒原料を水中で混合することにより調製でき、水溶液であってもよいし、水性スラリーであってもよい。そして、この水性混合液の乾燥により、b値が6.0以上である乾燥物を得、これを成形した後、焼成することにより、優れた触媒寿命を有する触媒を製造することができる。   The method for producing a catalyst of the present invention comprises drying the above aqueous mixture of catalyst raw materials, molding, and then firing. This aqueous mixture can be prepared by mixing the catalyst raw material in water, and may be an aqueous solution or an aqueous slurry. Then, by drying this aqueous mixed solution, a dried product having a b value of 6.0 or more is obtained, and after molding this, it is possible to produce a catalyst having an excellent catalyst life.

ここで、b値は、Lab表色系における色相を表す指標の1つで、ハンターの色差式における色座標の1つであり、プラス側で値が大きいほど黄色味が強いことを表し、マイナス側で値が大きいほど青味が強いことを表すものである。具体的には、JIS Z8722に規定されるXYZ表色系における三刺激値X、Y及びZのうち、Y及びZを用いて、式「b=7.0(Y−0.847Z)/Y1/2」により計算される。 Here, the b value is one of the indices representing the hue in the Lab color system, and is one of the color coordinates in the Hunter's color difference formula. The larger the value on the positive side, the stronger the yellowness, The larger the value on the side, the stronger the blueness. Specifically, among the tristimulus values X, Y, and Z in the XYZ color system defined in JIS Z8722, using Y and Z, the expression “b = 7.0 (Y−0.847Z) / Y Calculated by 1/2 ".

上記水性混合液の乾燥には、この分野で通常用いられている方法、例えば、蒸発乾固法、噴霧乾燥法、ドラム乾燥法、気流乾燥法等を適用できるが、中でも噴霧乾燥法が好ましく用いられる。この噴霧乾燥法は、上記水性混合液と熱風を噴霧乾燥機(スプレードライヤー)に供給して、該水性混合液を熱風中に噴霧することにより実施でき、その際、該水性混合液の噴霧は、例えば、回転円盤方式により行ってもよいし、圧力ノズル方式により行ってもよい。また、熱風としては、空気等の酸化性ガスを用いてもよいし、窒素等の非酸化性ガスを用いてもよい。そして、得られる乾燥物のb値は、上記水性混合液に対する熱風の供給割合が高いほど、また熱風の温度が高いほど、高くなる傾向にあるので、これらを調整して、乾燥物のb値が6.0以上となるようにすればよい。通常、上記水性混合液に対する熱風の供給割合は、単位時間あたりでの該水性混合液の液供給量(L)に対する熱風の標準状態(0℃、1気圧)でのガス供給量(Nm3)で表して、10〜20Nm3/Lの範囲で調整すればよく、また、熱風温度は、乾燥機入口の温度として、200〜250℃の範囲で調整すればよい。b値が6.0に満たなかった場合には、加熱処理等により、b値が6.0以上になるまで、追加の乾燥を行えばよく、その際の温度は通常50〜150℃程度である。なお、乾燥物のb値は、好ましくは7.0以上であり、また、上限については特に限定されないが、通常20以下である。 For the drying of the aqueous mixed solution, a method usually used in this field, for example, an evaporation to dryness method, a spray drying method, a drum drying method, an airflow drying method and the like can be applied, and among these, the spray drying method is preferably used. It is done. This spray drying method can be carried out by supplying the aqueous mixture and hot air to a spray dryer (spray dryer), and spraying the aqueous mixture into hot air. For example, it may be performed by a rotating disk method or a pressure nozzle method. Further, as the hot air, an oxidizing gas such as air may be used, or a non-oxidizing gas such as nitrogen may be used. And since the b value of the obtained dried product tends to increase as the supply ratio of hot air to the aqueous mixture is higher and the temperature of the hot air is higher, the b value of the dried product is adjusted. May be set to 6.0 or more. Usually, the supply ratio of hot air to the aqueous mixture is determined as follows: gas supply amount (Nm 3 ) in the standard state (0 ° C., 1 atm) of hot air with respect to the liquid supply amount (L) of the aqueous mixture per unit time expressed in, may be adjusted in a range of: 10 to 20 nm 3 / L, also hot air temperature, the temperature of the dryer inlet may be adjusted in the range of 200 to 250 ° C.. When the b value is less than 6.0, additional drying may be performed until the b value becomes 6.0 or more by heat treatment, and the temperature at that time is usually about 50 to 150 ° C. is there. The b value of the dried product is preferably 7.0 or more, and the upper limit is not particularly limited, but is usually 20 or less.

なお、乾燥物のb値を6.0以上とすることで、得られる触媒の寿命が向上する理由については明らかでないが、乾燥物をXPS(X線光電子分光法)により分析すると、6価のモリブンデン(232.5eV付近に観測)に対する5価のモリブデン(231.2eV付近に観測)のピーク面積比(Mo5+/Mo6+)が小さいほど、b値が大きくなる傾向にあり、また、バナジウムを含有する場合、乾燥物をESR(電子スピン共鳴法)により分析すると、4価のバナジウム(3445〜3500G付近に観測)のピーク面積が小さいほど、b値が大きくなる傾向にあることから、乾燥物の酸化還元状態が、得られる触媒の寿命に影響していると考えられる。 The reason why the life of the resulting catalyst is improved by setting the b value of the dried product to 6.0 or more is not clear, but when the dried product is analyzed by XPS (X-ray photoelectron spectroscopy), The smaller the peak area ratio (Mo 5+ / Mo 6+ ) of pentavalent molybdenum (observed near 231.2 eV) to Molybdenden (observed near 232.5 eV), the b value tends to increase. When vanadium is contained, when the dried product is analyzed by ESR (electron spin resonance method), the b value tends to increase as the peak area of tetravalent vanadium (observed in the vicinity of 3445 to 3500 G) decreases. It is thought that the redox state of the dried product affects the life of the resulting catalyst.

こうして得られるb値が6.0以上である乾燥物を、必要に応じて成形助剤を用いて、円柱状、球状、リング状等に成形し、次いで、この成形体を焼成することで、触媒が得られる。この焼成は、酸素等の酸化性ガスの雰囲気下に行ってもよいし、窒素等の非酸化性ガスの雰囲気下に行ってもよいが、非酸化性ガスの雰囲気下に400〜500℃の温度で行うのが好ましく、また、この非酸化性ガスによる焼成の前には、酸化性ガス雰囲気又は非酸化性ガスの雰囲気下に180〜300℃程度の温度で保持して、熱処理(前焼成)を行うのが好ましい。そして、この熱処理の際に、ケギン型ヘテロポリ酸塩の構造が形成されるようにするのがよく、このためには、触媒原料としてアンモニウム化合物を用いたり、アンモニアやアンモニウム塩を添加したりして、アンモニウム根を含む水性混合液を得、これを乾燥したものを成形するのがよい。さらに、上記非酸化性ガスによる焼成の後に、酸化性ガスの雰囲気下に300〜400℃程度の温度で追加の焼成(後焼成)を行うのも有効である。なお、各焼成の時間は、それぞれ適宜調整されるが、通常1〜30時間程度である。また、各焼成は、雰囲気ガスとして使用されるガスを流通させながら行うのが好ましい。   By forming a dry product having a b value of 6.0 or more thus obtained into a cylindrical shape, a spherical shape, a ring shape or the like using a molding aid as necessary, and then firing the molded body, A catalyst is obtained. This calcination may be performed in an atmosphere of an oxidizing gas such as oxygen or in an atmosphere of a non-oxidizing gas such as nitrogen, but is performed at 400 to 500 ° C. in an atmosphere of a non-oxidizing gas. It is preferable to carry out the heat treatment, and before firing with this non-oxidizing gas, heat treatment (pre-firing) is performed by holding at a temperature of about 180 to 300 ° C. in an oxidizing gas atmosphere or a non-oxidizing gas atmosphere. ) Is preferably performed. In this heat treatment, a Keggin heteropolyacid salt structure is preferably formed. For this purpose, an ammonium compound is used as a catalyst raw material, or ammonia or an ammonium salt is added. It is preferable to obtain an aqueous mixed solution containing ammonium roots and mold the dried one. It is also effective to perform additional baking (post-baking) at a temperature of about 300 to 400 ° C. in an oxidizing gas atmosphere after baking with the non-oxidizing gas. In addition, although the time of each baking is each adjusted suitably, it is about 1 to 30 hours normally. Moreover, it is preferable to perform each baking, distribute | circulating the gas used as atmospheric gas.

こうして得られるメタクリル酸製造用触媒は、優れた触媒寿命を有しており、この触媒を用いて、メタクロレイン、イソブチルアルデヒド、イソブタン、イソ酪酸等の原料化合物を気相接触酸化反応させることにより、メタクリル酸を長期間にわたり生産性良く製造することができる。   The methacrylic acid production catalyst thus obtained has an excellent catalyst life, and by using this catalyst, a raw material compound such as methacrolein, isobutyraldehyde, isobutane, isobutyric acid is subjected to a gas phase catalytic oxidation reaction, Methacrylic acid can be produced with good productivity over a long period of time.

メタクリル酸の製造は、通常、固定床多管式反応器に触媒を充填し、これに原料化合物と酸素を含む原料ガスを供給することにより行われるが、流動床や移動床のような反応形式を採用することもできる。酸素源としては、通常、空気が用いられ、また原料ガス中には、原料化合物及び酸素以外の成分として、窒素、二酸化炭素、一酸化炭素、水蒸気等が含まれうる。   The production of methacrylic acid is usually carried out by filling a fixed bed multi-tubular reactor with a catalyst and supplying a raw material gas containing a raw material compound and oxygen to this. It can also be adopted. As the oxygen source, air is usually used, and the raw material gas may contain nitrogen, carbon dioxide, carbon monoxide, water vapor and the like as components other than the raw material compound and oxygen.

例えば、メタクロレインを原料として用いる場合、通常、原料ガス中のメタクロレイン濃度は1〜10容量%、メタクロレインに対する酸素のモル比は1〜5、空間速度は500〜5000h-1(標準状態基準)、反応温度は250〜350℃、反応圧力は0.1〜0.3MPa、の条件下に反応が行われる。なお、原料のメタクロレインは必ずしも高純度の精製品である必要はなく、例えば、イソブチレンやt−ブチルアルコールの気相接触酸化反応により得られたメタクロレインを含む反応生成ガスを用いることもできる。 For example, when methacrolein is used as a raw material, the concentration of methacrolein in the raw material gas is usually 1 to 10% by volume, the molar ratio of oxygen to methacrolein is 1 to 5, and the space velocity is 500 to 5000 h −1 (standard condition standard ), The reaction temperature is 250 to 350 ° C., and the reaction pressure is 0.1 to 0.3 MPa. The raw material methacrolein is not necessarily a highly purified product, and for example, a reaction product gas containing methacrolein obtained by a gas phase catalytic oxidation reaction of isobutylene or t-butyl alcohol can be used.

また、イソブタンを原料として用いる場合、通常、原料ガス中のイソブタン濃度は1〜85容量%、水蒸気濃度は3〜30容量%、イソブタンに対する酸素のモル比は0.05〜4、空間速度は400〜5000h-1(標準状態基準)、反応温度は250〜400℃、反応圧力は0.1〜1MPa、の条件下に反応が行われる。イソ酪酸やイソブチルアルデヒドを原料として用いる場合には、通常、メタクロレインを原料として用いる場合と、ほぼ同様の反応条件が採用される。 When isobutane is used as a raw material, the isobutane concentration in the raw material gas is usually 1 to 85% by volume, the water vapor concentration is 3 to 30% by volume, the molar ratio of oxygen to isobutane is 0.05 to 4, and the space velocity is 400. The reaction is carried out under conditions of ˜5000 h −1 (standard condition standard), reaction temperature of 250 to 400 ° C., and reaction pressure of 0.1 to 1 MPa. When isobutyric acid or isobutyraldehyde is used as a raw material, generally the same reaction conditions are employed as when methacrolein is used as a raw material.

以下、本発明の実施例を示すが、本発明はこれらによって限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited thereto.

実施例1〜5、比較例1〜3
(a)触媒原料の水性混合液の乾燥
40℃に加熱したイオン交換水224kgに、硝酸セシウム[CsNO3]38.2kg、85重量%オルトリン酸24.2kg、及び70重量%硝酸25.2kgを溶解し、これをA液とした。一方、40℃に加熱したイオン交換水330kgに、モリブデン酸アンモニウム4水和物[(NH4)6Mo724・4H2O]297kgを溶解した後、メタバナジン酸アンモニウム[NH4VO3]8.19kgを懸濁させ、これをB液とした。A液とB液を40℃に調整し、攪拌下、B液にA液を滴下した後、密閉容器中で120℃にて5.8時間攪拌し、次いで、三酸化アンチモン[Sb23]10.2kg及び硝酸銅3水和物[Cu(NO3)2・3H2O]10.2kgを、イオン交換水23kgに懸濁させて添加した後、密封容器中で120℃にて5時間攪拌した。こうして得られたスラリーを、該スラリー1Lに対し15Nm3の熱風(加熱空気)と共にスプレードライヤーに供給し、乾燥粉末を得た。熱風のスプレードライヤー入口での温度、及び乾燥粉末のb値を色差計[日本電色工業(株)製、SQ−2000]で測定した結果を表1に示す。
Examples 1-5, Comparative Examples 1-3
(A) Drying of aqueous mixture of catalyst raw material To 224 kg of ion-exchanged water heated to 40 ° C., 38.2 kg of cesium nitrate [CsNO 3 ], 24.2 kg of 85 wt% orthophosphoric acid, and 25.2 kg of 70 wt% nitric acid It melt | dissolved and this was made into the A liquid. On the other hand, after dissolving 297 kg of ammonium molybdate tetrahydrate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] in 330 kg of ion-exchanged water heated to 40 ° C., ammonium metavanadate [NH 4 VO 3 ] 8.19 kg was suspended and this was used as B liquid. The liquid A and liquid B were adjusted to 40 ° C., and the liquid A was added dropwise to the liquid B with stirring. The liquid was stirred in a sealed container at 120 ° C. for 5.8 hours, and then antimony trioxide [Sb 2 O 3 ] 10.2 kg and 10.2 kg of copper nitrate trihydrate [Cu (NO 3 ) 2 .3H 2 O] were suspended in 23 kg of ion-exchanged water and then added at 120 ° C. in a sealed container. Stir for hours. The slurry thus obtained was supplied to a spray dryer together with 15 Nm 3 hot air (heated air) with respect to 1 L of the slurry to obtain a dry powder. Table 1 shows the results of measuring the temperature at the inlet of the hot air spray dryer and the b value of the dry powder with a color difference meter [manufactured by Nippon Denshoku Industries Co., Ltd., SQ-2000].

(b)触媒の製造
上記(a)で得た乾燥粉末100重量部に対して、セラミックファイバー[東芝モノフラックス(株)製、FIBERFRAX RFC400SL]4重量部、硝酸アンモニウム13重量部、及びイオン交換水9.7重量部を加えて混練し、直径5mm、高さ6mmの円柱状に押出成形した。この成形体を、温度90℃、湿度30%RHにて3時間乾燥した後、空気気流中で220℃にて22時間、空気気流中で250℃にて1時間の順に熱処理して、ケギン型ヘテロポリ酸塩からなる触媒前駆体を得た。この前駆体を、窒素気流中で435℃にて3時間、空気(水分2容量%)気流中で390℃にて3時間の順に焼成し、触媒を得た。この触媒は、リン、モリブデン、バナジウム、アンチモン、銅及びセシウムをそれぞれ1.5、12、0.5、0.5、0.3及び1.4の原子比で含むケギン型ヘテロポリ酸の酸性塩からなるものであった。
(B) Production of catalyst 4 parts by weight of ceramic fiber [manufactured by Toshiba Monoflux Co., Ltd., FIBERFRAX RFC400SL], 13 parts by weight of ammonium nitrate, and 9 parts of ion-exchanged water with respect to 100 parts by weight of the dry powder obtained in (a) above. .7 parts by weight was added and kneaded and extruded into a cylindrical shape having a diameter of 5 mm and a height of 6 mm. This molded body was dried at a temperature of 90 ° C. and a humidity of 30% RH for 3 hours, and then heat-treated in an air stream at 220 ° C. for 22 hours and in an air stream at 250 ° C. for 1 hour in order. A catalyst precursor comprising a heteropolyacid salt was obtained. This precursor was calcined in an order of 3 hours at 435 ° C. in a nitrogen stream and 3 hours at 390 ° C. in an air (water 2% by volume) stream to obtain a catalyst. This catalyst is an acid salt of a Keggin type heteropolyacid containing phosphorus, molybdenum, vanadium, antimony, copper and cesium in atomic ratios of 1.5, 12, 0.5, 0.5, 0.3 and 1.4, respectively. It consisted of.

(c)触媒の活性試験
上記(b)で得た触媒9gを、内径15mmのガラス製マイクロリアクターに充填し、この中に、メタクロレイン、空気、スチーム及び窒素を混合して調製したメタクロレイン4容量%、分子状酸素12容量%、水蒸気17容量%の組成の原料ガスを、空間速度670h-1で供給して、炉温(マイクロリアクターを加熱するための炉の温度)355℃にて反応を行い、触媒を強制劣化させた後、上記と同じ組成の原料ガスを、上記と同じ空間速度で供給して、炉温280℃にて反応を行い、この反応開始から1時間経過時のメタクロレイン転化率を求めた。この結果を表1に示す。
(C) Catalyst activity test 9 g of the catalyst obtained in (b) above was charged into a glass microreactor having an inner diameter of 15 mm, and methacrolein 4 prepared by mixing methacrolein, air, steam and nitrogen. A raw material gas having a composition of volume%, molecular oxygen 12 volume%, and water vapor 17 volume% is supplied at a space velocity of 670 h −1 and reacted at a furnace temperature (furnace temperature for heating the microreactor) of 355 ° C. After forcibly degrading the catalyst, a raw material gas having the same composition as described above is supplied at the same space velocity as described above, and the reaction is performed at a furnace temperature of 280 ° C. Rain conversion was determined. The results are shown in Table 1.

Figure 2007260588
Figure 2007260588

実施例6〜9
比較例1(a)で得た乾燥粉末(b値4.9)を、表2に示す温度にて表2に示す時間、加熱処理し、表2に示すb値とした。この加熱処理後の乾燥粉末を用いて、前記(b)と同様に触媒を製造し、前記(c)と同様に活性試験を行った。この結果を比較例1の結果と共に表2に示す。
Examples 6-9
The dry powder (b value 4.9) obtained in Comparative Example 1 (a) was heat-treated at the temperature shown in Table 2 for the time shown in Table 2 to obtain the b value shown in Table 2. Using the dried powder after the heat treatment, a catalyst was produced in the same manner as in the above (b), and an activity test was conducted in the same manner as in the above (c). The results are shown in Table 2 together with the results of Comparative Example 1.

Figure 2007260588
Figure 2007260588

実施例10、比較例4、5
A液とB液を40℃に調整する代わりに、50℃に調整し、B液にA液を滴下した液を120℃にて5.8時間攪拌する代わりに、同温度にて8.5時間攪拌し、かつ、熱風のスプレードライヤー入口での温度を表3に示す温度とした以外は、前記(a)と同様に乾燥粉末を得た。この乾燥粉末のb値を表3に示した。この乾燥粉末を用いて、前記(b)と同様に触媒を製造し、前記(c)と同様に活性試験を行った。この結果を表3に示す。
Example 10, Comparative Examples 4, 5
Instead of adjusting the A and B liquids to 40 ° C, the temperature was adjusted to 50 ° C, and the liquid obtained by adding the A liquid to the B liquid was stirred at 120 ° C for 5.8 hours, but at 8.5. A dry powder was obtained in the same manner as in (a) except that the temperature at the inlet of the hot air spray dryer was changed to the temperature shown in Table 3 with stirring for a period of time. The b value of this dry powder is shown in Table 3. Using this dry powder, a catalyst was produced in the same manner as in (b), and an activity test was conducted in the same manner as in (c). The results are shown in Table 3.

比較例6
比較例4(a)で得た乾燥粉末(b値−3.3)を、120℃にて30分間、加熱処理し、b値5.2とした。この加熱処理後の乾燥粉末を用いて、前記(b)と同様に触媒を製造し、前記(c)と同様に活性試験を行った。この結果を表3に示す。
Comparative Example 6
The dry powder (b value-3.3) obtained in Comparative Example 4 (a) was heat-treated at 120 ° C. for 30 minutes to obtain a b value of 5.2. Using the dried powder after the heat treatment, a catalyst was produced in the same manner as in the above (b), and an activity test was conducted in the same manner as in the above (c). The results are shown in Table 3.

Figure 2007260588
Figure 2007260588

Claims (3)

リン及びモリブデンを含むヘテロポリ酸化合物からなるメタクリル酸製造用触媒の製造方法であって、触媒原料の水性混合液を乾燥して、b値が6.0以上である乾燥物を得、この乾燥物を成形した後、焼成することを特徴とするメタクリル酸製造用触媒の製造方法。   A method for producing a catalyst for producing methacrylic acid comprising a heteropolyacid compound containing phosphorus and molybdenum, wherein an aqueous mixed solution of catalyst raw materials is dried to obtain a dried product having a b value of 6.0 or more. A method for producing a catalyst for methacrylic acid production, characterized in that the catalyst is fired after molding. ヘテロポリ酸化合物が、さらにバナジウムと、カリウム、ルビジウム、セシウム及びタリウムから選ばれる元素と、銅、ヒ素、アンチモン、ホウ素、銀、ビスマス、鉄、コバルト、ランタン及びセリウムから選ばれる元素とを含む請求項1に記載の方法。   The heteropolyacid compound further contains vanadium, an element selected from potassium, rubidium, cesium and thallium, and an element selected from copper, arsenic, antimony, boron, silver, bismuth, iron, cobalt, lanthanum and cerium. The method according to 1. 請求項1又は2に記載の方法により触媒を製造し、この触媒の存在下に、メタクロレイン、イソブチルアルデヒド、イソブタン及びイソ酪酸から選ばれる化合物を気相接触酸化反応に付す、メタクリル酸の製造方法。
A method for producing methacrylic acid, comprising producing a catalyst by the method according to claim 1 or 2, and subjecting a compound selected from methacrolein, isobutyraldehyde, isobutane and isobutyric acid to a gas phase catalytic oxidation reaction in the presence of the catalyst. .
JP2006090552A 2006-03-29 2006-03-29 A method for producing a catalyst for producing methacrylic acid and a method for producing methacrylic acid. Active JP4848813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006090552A JP4848813B2 (en) 2006-03-29 2006-03-29 A method for producing a catalyst for producing methacrylic acid and a method for producing methacrylic acid.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006090552A JP4848813B2 (en) 2006-03-29 2006-03-29 A method for producing a catalyst for producing methacrylic acid and a method for producing methacrylic acid.

Publications (2)

Publication Number Publication Date
JP2007260588A true JP2007260588A (en) 2007-10-11
JP4848813B2 JP4848813B2 (en) 2011-12-28

Family

ID=38634107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006090552A Active JP4848813B2 (en) 2006-03-29 2006-03-29 A method for producing a catalyst for producing methacrylic acid and a method for producing methacrylic acid.

Country Status (1)

Country Link
JP (1) JP4848813B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008155126A (en) * 2006-12-22 2008-07-10 Mitsubishi Rayon Co Ltd Method for producing metal component-containing catalyst
JP2010201401A (en) * 2009-03-06 2010-09-16 Sumitomo Chemical Co Ltd Method for manufacturing extrusion catalyst molding
DE102012207811A1 (en) 2012-05-10 2012-07-12 Basf Se Heterogeneously catalyzed gas phase partial oxidation of (meth)acrolein to (meth)acrylic acid using a catalytically active multimetal oxide mass
DE102013202048A1 (en) 2013-02-07 2013-04-18 Basf Se Preparing catalytically active composition useful for preparing a catalyst, comprises e.g. thermally treating geometrical precursor bodies formed by a mixture obtained by uniformly mixing e.g. a spray-dried powder and molybdenum oxide
CN110142063A (en) * 2018-02-11 2019-08-20 中国科学院大连化学物理研究所 For iso-butane Selective Oxidation metering system acid catalyst and preparation method thereof
CN112675912A (en) * 2019-10-18 2021-04-20 万华化学集团股份有限公司 Catalyst for producing unsaturated carboxylic acid and preparation method and application thereof
WO2021199633A1 (en) 2020-04-01 2021-10-07 住友化学株式会社 Molding catalyst and method for producing halogen
WO2021213823A1 (en) 2020-04-21 2021-10-28 Basf Se Method for producing a catalytically active multi-element oxide containing the elements mo, w, v and cu
WO2022090019A1 (en) 2020-10-29 2022-05-05 Basf Se Method for producing a core-shell catalyst

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810621A (en) * 1994-06-27 1996-01-16 Mitsubishi Rayon Co Ltd Production of catalyst for producing unsaturated carboxylic acid
JPH09173852A (en) * 1995-12-27 1997-07-08 Mitsubishi Rayon Co Ltd Preparation of catalyst for manufacturing methacrylic acid
JPH09299803A (en) * 1996-05-16 1997-11-25 Mitsubishi Chem Corp Oxidation catalyst, manufacture thereof and preparation of methacrylic acid
JP2002159853A (en) * 2000-09-18 2002-06-04 Asahi Kasei Corp Method for producing oxide catalyst for oxidation or ammoxidation
JP2003010691A (en) * 2001-06-29 2003-01-14 Sumitomo Chem Co Ltd Method for manufacturing catalyst for manufacturing methacrylic acid and method for manufacturing methacrylic acid
JP2003010689A (en) * 2001-06-28 2003-01-14 Sumitomo Chem Co Ltd Method for manufacturing catalyst for manufacturing methacrylic acid and method for manufacturing methacrylic acid
JP2003093882A (en) * 2001-09-26 2003-04-02 Mitsubishi Rayon Co Ltd Catalyst for synthesizing unsaturated carboxylic acid, manufacturing method therefor and synthesizing method for unsaturated carboxylic acid using the catalyst
JP2003201261A (en) * 2001-12-28 2003-07-18 Mitsubishi Rayon Co Ltd Method for producing catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid, catalyst produced by the same method and method for synthesizing unsaturated aldehyde and unsaturated carboxylic acid by using the same catalyst
JP2004130261A (en) * 2002-10-11 2004-04-30 Mitsubishi Rayon Co Ltd Method of manufacturing catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
JP2004141823A (en) * 2002-10-28 2004-05-20 Sumitomo Chem Co Ltd Manufacturing method of catalyst for production of methacrylic acid and manufacturing method of methacrylic acid
JP2004188231A (en) * 2002-10-15 2004-07-08 Sumitomo Chem Co Ltd Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
WO2006001360A1 (en) * 2004-06-28 2006-01-05 Mitsubishi Rayon Co., Ltd. Process for producing catalyst for methacrylic acid synthesis
JP2006314923A (en) * 2005-05-12 2006-11-24 Nippon Kayaku Co Ltd Manufacturing method of catalyst for producing methacrylic acid

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810621A (en) * 1994-06-27 1996-01-16 Mitsubishi Rayon Co Ltd Production of catalyst for producing unsaturated carboxylic acid
JPH09173852A (en) * 1995-12-27 1997-07-08 Mitsubishi Rayon Co Ltd Preparation of catalyst for manufacturing methacrylic acid
JPH09299803A (en) * 1996-05-16 1997-11-25 Mitsubishi Chem Corp Oxidation catalyst, manufacture thereof and preparation of methacrylic acid
JP2002159853A (en) * 2000-09-18 2002-06-04 Asahi Kasei Corp Method for producing oxide catalyst for oxidation or ammoxidation
JP2003010689A (en) * 2001-06-28 2003-01-14 Sumitomo Chem Co Ltd Method for manufacturing catalyst for manufacturing methacrylic acid and method for manufacturing methacrylic acid
JP2003010691A (en) * 2001-06-29 2003-01-14 Sumitomo Chem Co Ltd Method for manufacturing catalyst for manufacturing methacrylic acid and method for manufacturing methacrylic acid
JP2003093882A (en) * 2001-09-26 2003-04-02 Mitsubishi Rayon Co Ltd Catalyst for synthesizing unsaturated carboxylic acid, manufacturing method therefor and synthesizing method for unsaturated carboxylic acid using the catalyst
JP2003201261A (en) * 2001-12-28 2003-07-18 Mitsubishi Rayon Co Ltd Method for producing catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid, catalyst produced by the same method and method for synthesizing unsaturated aldehyde and unsaturated carboxylic acid by using the same catalyst
JP2004130261A (en) * 2002-10-11 2004-04-30 Mitsubishi Rayon Co Ltd Method of manufacturing catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
JP2004188231A (en) * 2002-10-15 2004-07-08 Sumitomo Chem Co Ltd Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2004141823A (en) * 2002-10-28 2004-05-20 Sumitomo Chem Co Ltd Manufacturing method of catalyst for production of methacrylic acid and manufacturing method of methacrylic acid
WO2006001360A1 (en) * 2004-06-28 2006-01-05 Mitsubishi Rayon Co., Ltd. Process for producing catalyst for methacrylic acid synthesis
JP2006314923A (en) * 2005-05-12 2006-11-24 Nippon Kayaku Co Ltd Manufacturing method of catalyst for producing methacrylic acid

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008155126A (en) * 2006-12-22 2008-07-10 Mitsubishi Rayon Co Ltd Method for producing metal component-containing catalyst
JP2010201401A (en) * 2009-03-06 2010-09-16 Sumitomo Chemical Co Ltd Method for manufacturing extrusion catalyst molding
DE102012207811A1 (en) 2012-05-10 2012-07-12 Basf Se Heterogeneously catalyzed gas phase partial oxidation of (meth)acrolein to (meth)acrylic acid using a catalytically active multimetal oxide mass
US9181169B2 (en) 2012-05-10 2015-11-10 Basf Se Process for heterogeneously catalyzed gas phase partial oxidation of (meth)acrolein to (meth)acrylic acid
WO2013167405A1 (en) 2012-05-10 2013-11-14 Basf Se Process for the heterogeneously catalysed gas-phase partial oxidation of (meth)acrolein to (meth)acrylic acid
US9061988B2 (en) 2013-02-07 2015-06-23 Basf Se Process for producing a catalytically active composition being a mixture of a multielement oxide comprising the elements Mo and V and at least one oxide of molybdenum
WO2014122043A1 (en) 2013-02-07 2014-08-14 Basf Se Method for producing a catalytically active mass that is a mixture of a multi-element oxide containing the elements mo and v and at least one oxide of molybdenum
DE102013202048A1 (en) 2013-02-07 2013-04-18 Basf Se Preparing catalytically active composition useful for preparing a catalyst, comprises e.g. thermally treating geometrical precursor bodies formed by a mixture obtained by uniformly mixing e.g. a spray-dried powder and molybdenum oxide
CN110142063A (en) * 2018-02-11 2019-08-20 中国科学院大连化学物理研究所 For iso-butane Selective Oxidation metering system acid catalyst and preparation method thereof
CN110142063B (en) * 2018-02-11 2021-12-17 中国科学院大连化学物理研究所 Catalyst for preparing methacrylic acid by selective oxidation of isobutane and preparation method thereof
CN112675912A (en) * 2019-10-18 2021-04-20 万华化学集团股份有限公司 Catalyst for producing unsaturated carboxylic acid and preparation method and application thereof
WO2021199633A1 (en) 2020-04-01 2021-10-07 住友化学株式会社 Molding catalyst and method for producing halogen
WO2021213823A1 (en) 2020-04-21 2021-10-28 Basf Se Method for producing a catalytically active multi-element oxide containing the elements mo, w, v and cu
WO2022090019A1 (en) 2020-10-29 2022-05-05 Basf Se Method for producing a core-shell catalyst

Also Published As

Publication number Publication date
JP4848813B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP4848813B2 (en) A method for producing a catalyst for producing methacrylic acid and a method for producing methacrylic acid.
JP4957628B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP4954750B2 (en) Method for producing molybdenum, bismuth, iron, silica-containing composite oxide catalyst
JP4900449B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4957627B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
KR101640255B1 (en) Method for regenerating catalyst for the production of methacrylic acid and process for preparing methacrylic acid
JP2014226614A (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP4715699B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP5214500B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4595769B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4200744B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
KR101925641B1 (en) Method of producing catalyst used in the production of methacrylic acid and method of producing methacrylic acid
JP2008229515A (en) Method for manufacturing catalyst for producing methacrylic acid
JP5042658B2 (en) Method for producing catalyst for producing acrylonitrile, and method for producing acrylonitrile
JP4352856B2 (en) A method for producing a catalyst for producing methacrylic acid, a catalyst for producing methacrylic acid obtained thereby, and a method for producing methacrylic acid.
JP4207531B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2010240593A (en) Method for producing compound oxide catalyst for synthesizing acrylonitrile
JP3797146B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2008284508A (en) Production method of catalyst for methacrylic-acid production and production method of methacrylic acid
JP2005021727A (en) Method for producing catalyst for producing methacrylic acid method for producing methacrylic acid
JP2013086008A (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP2013091016A (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP4900532B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP5214499B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP2013180251A (en) Method of producing catalyst for producing methacrylic acid and method of producing methacrylic acid

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080201

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111003

R151 Written notification of patent or utility model registration

Ref document number: 4848813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350