JP2005021727A - Method for producing catalyst for producing methacrylic acid method for producing methacrylic acid - Google Patents

Method for producing catalyst for producing methacrylic acid method for producing methacrylic acid Download PDF

Info

Publication number
JP2005021727A
JP2005021727A JP2003186618A JP2003186618A JP2005021727A JP 2005021727 A JP2005021727 A JP 2005021727A JP 2003186618 A JP2003186618 A JP 2003186618A JP 2003186618 A JP2003186618 A JP 2003186618A JP 2005021727 A JP2005021727 A JP 2005021727A
Authority
JP
Japan
Prior art keywords
catalyst
methacrylic acid
producing
oxidizing gas
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003186618A
Other languages
Japanese (ja)
Inventor
Junya Yoshizawa
純也 吉沢
Koichi Nagai
功一 永井
Toshiaki Ui
利明 宇井
Satoshi Shibata
諭 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2003186618A priority Critical patent/JP2005021727A/en
Publication of JP2005021727A publication Critical patent/JP2005021727A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To produce a catalyst for producing methacylic acid which has a long life and to produce methacylic acid in good productivity over a long time. <P>SOLUTION: A catalyst precursor is baked at 360-410°C in the first step, at 420-500°C in an atmosphere of a non-oxidative gas in the second step, and at 300-400°C in an atmosphere of an oxidative gas in the third step to produce the catalyst comprising a heteropolyacid compound containing phosphorus and molybdenum. A compound selected from methacrolein, isobutyraldehyde, isobutane, and isobutylic acid is subjected to a gas phase catalytic oxidation reaction in the presence of the catalyst. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、メタクリル酸製造用触媒を製造する方法と、この方法により得られた触媒を用いて、メタクロレイン等の原料からメタクリル酸を製造する方法に関するものである。
【0002】
【従来の技術】
従来、メタクロレイン等の気相接触酸化反応によりメタクリル酸を製造する際に用いる触媒としては、ヘテロポリ酸やその塩からなるものが有効であることが知られている。この触媒は、通常、触媒原料の水性混合液を乾燥することにより得られる触媒前駆体を、焼成することにより製造され、この焼成条件としては、例えば、酸素濃度5容量%未満の不活性ガス中で400〜550℃にて焼成する方法(特許文献1参照)、0.05〜3容量%のアンモニア及び/又は水蒸気を含むガスの流通下に300〜500℃にて焼成する方法(特許文献2参照)、非酸化性ガスの雰囲気下に150〜400℃にて焼成する方法(特許文献3参照)、不活性ガス中で400〜500℃にて焼成する方法(特許文献4参照)、0.1〜10容量%の酸素を含むガスの流通下に350〜395℃にて焼成する方法(特許文献5参照)等が提案されている。
【0003】
【特許文献1】特開昭57−165040号公報
【特許文献2】特開昭58−61833号公報
【特許文献3】特開昭59−66349号公報
【特許文献4】特開平4−63139号公報
【特許文献5】特開平5−279291号公報
【0004】
【発明が解決しようとする課題】
しかしながら、これら従来の方法により得られるメタクリル酸製造用触媒は、触媒活性の持続性、すなわち触媒寿命が必ずしも十分なものではなかった。そこで、本発明の目的は、優れた触媒寿命を有するメタクリル酸製造用触媒を製造しうる方法を提供することにある。また、本発明のもう一つの目的は、こうして得られたメタクリル酸製造用触媒を用いて、長期間にわたり生産性良くメタクリル酸を製造しうる方法を提供することにある。
【課題を解決するための手段】
本発明者等は鋭意研究を行った結果、触媒前駆体を特定のガス・温度条件からなる多段焼成に付すことにより、上記目的を達成できることを見出し、本発明を完成するに至った。
【0005】
すなわち、本発明は、リン及びモリブデンを含むヘテロポリ酸化合物からなるメタクリル酸製造用触媒の製造方法であって、触媒前駆体を360〜410℃で第一段焼成した後、非酸化性ガスの雰囲気下に420〜500℃で第二段焼成し、次いで酸化性ガスの雰囲気下に300〜400℃で第三段焼成することを特徴とするメタクリル酸製造用触媒の製造方法に係るものである。
【0006】
また、本発明は、上記の方法によって得られる触媒の存在下に、メタクロレイン、イソブチルアルデヒド、イソブタン及びイソ酪酸から選ばれる化合物を気相接触酸化反応に付すことを特徴とするメタクリル酸の製造方法に係るものである。
【0007】
【発明の実施の形態】
以下、本発明を詳細に説明する。本発明が製造の対象とするメタクリル酸製造用触媒は、リン及びモリブデンを必須とするヘテロポリ酸化合物からなるものであり、遊離のヘテロポリ酸からなるものであってもよいし、ヘテロポリ酸の塩からなるものであってもよい。中でも、ヘテロポリ酸の酸性塩(部分中和塩)からなるものが好ましく、さらに好ましくはケギン型ヘテロポリ酸の酸性塩からなるものである。
【0008】
上記触媒には、リン及びモリブデン以外の元素として、バナジウムが含まれるのが望ましく、また、カリウム、ルビジウム、セシウム及びタリウムから選ばれる少なくとも1種の元素(以下、X元素ということがある)や、銅、ヒ素、アンチモン、ホウ素、銀、ビスマス、鉄、コバルト、ランタン及びセリウムから選ばれる少なくとも1種の元素(以下、Y元素ということがある)が含まれるのが望ましい。通常、モリブデン12原子に対して、リン、バナジウム、X元素及びY元素が、それぞれ3原子以下の割合で含まれる触媒が、好適に用いられる。
【0009】
上記触媒の原料としては、通常、上記触媒に含まれる各元素を含む化合物、例えば、各元素のオキソ酸、オキソ酸塩、酸化物、硝酸塩、炭酸塩、水酸化物、ハロゲン化物等が、所望の原子比を満たすような割合で用いられる。例えば、リンを含む化合物としては、リン酸、リン酸塩等が用いられ、モリブデンを含む化合物としては、モリブデン酸、モリブデン酸塩、酸化モリブデン、塩化モリブデン等が用いられ、バナジウムを含む化合物としては、バナジン酸、バナジン酸塩、酸化バナジウム、塩化バナジウム等が用いられる。また、X元素を含む化合物としては、酸化物、硝酸塩、炭酸塩、水酸化物、ハロゲン化物等が用いられ、Y元素を含む化合物としては、オキソ酸、オキソ酸塩、硝酸塩、炭酸塩、水酸化物、ハロゲン化物等が用いられる。
【0010】
本発明の触媒の製造方法は、上記の触媒原料から調製される触媒前駆体を、特定のガス・温度条件からなる多段焼成に付すことにより行われる。この触媒前駆体は、通常、触媒原料を水中で混合して水溶液又は水性スラリーを得、次いでこの水性混合液を乾燥することにより調製することができ、例えば、該乾燥物を成形したものであってもよいし、該乾燥物を熱処理(前焼成)した後、成形したものであってもよいし、該乾燥物を成形した後、熱処理したものであってもよい。ここで、水性混合液の乾燥は、スプレードライヤー等を用いた噴霧乾燥により行うのが好ましく、乾燥物の成形は、必要に応じて成形助剤を用いて、円柱状、球状、リング状等にするのが好ましい。また、乾燥物の熱処理は、酸化性ガス又は非酸化性ガスの雰囲気下に、180〜300℃程度の温度で行うのが望ましい。
【0011】
触媒前駆体の調製方法としては、触媒原料としてアンモニウム化合物を用いたり、アンモニアやアンモニウム塩を添加したりして、アンモニウム根を含む水性混合液を得、これを乾燥した後、熱処理してから成形するか、成形してから熱処理するのが望ましい。これらの処方によれば、乾燥物としてドーソン型ヘテロポリ酸塩からなる触媒前駆体を得ることができ、次いでその熱処理により、ドーソン型からケギン型への転移反応が起こって、ケギン型ヘテロポリ酸塩からなる触媒前駆体を得ることができる。こうして得られた触媒前駆体は、本発明による多段焼成に対し、特に好適な対象となる。
【0012】
以上のようにして得られる触媒前駆体を、酸化性ガス又は非酸化性ガスの雰囲気下に、特定温度で第一段焼成した後、非酸化性ガスの雰囲気下に、特定温度で第二段焼成し、次いで、酸化性ガスの雰囲気下に、特定温度で第三段焼成する。このような多段焼成により、優れた触媒寿命を有するメタクリル酸製造用触媒を製造することができる。
【0013】
第一段焼成は、酸化性ガスの雰囲気下に行ってもよいし、非酸化性ガスの雰囲気下に行ってもよいが、酸化性ガスの雰囲気下に行うのが、触媒寿命をより向上させることができて、好ましい。酸化性ガスとしては、例えば、酸素を1〜21容量%の濃度で含む酸素含有ガスが挙げられ、この酸素源としては、通常、空気や純酸素が用いられる。また、非酸化性ガスとしては、例えば、窒素、二酸化炭素、ヘリウム、アルゴン等の不活性ガスが挙げられる。
【0014】
第一段焼成の温度は、360〜410℃であり、好ましくは370〜410℃である。第一段焼成の温度が360℃未満であると、得られる触媒の活性が十分にならないことがあり、一方でその温度が410℃を越えると、酸化性ガスの雰囲気下で行った場合、触媒が分解・焼結しやすいため、得られる触媒の活性が十分にならないことがある。
【0015】
第二段焼成は、非酸化性ガスの雰囲気下に行われ、この非酸化性ガスとしては、前記第一段焼成で用いうる非酸化性ガス同様、例えば、窒素、二酸化炭素、ヘリウム、アルゴン等の不活性ガスが挙げられる。
【0016】
第二段焼成の温度は、420〜500℃であり、好ましくは420〜450℃である。第二段焼成の温度が420℃未満であると、表面酸点の発現が十分でないため、得られる触媒の活性が十分にならないことがあり、一方でその温度が500℃を越えると、触媒が分解・焼結しやすいため、得られる触媒の活性が十分にならないことがある。
【0017】
第三段焼成は、酸化性ガスの雰囲気下に行われ、この酸化性ガスとしては、前記第一段焼成で用いうる酸化性ガス同様、例えば、酸素を1〜21容量%の濃度で含む酸素含有ガスが挙げられ、この酸素源としては、通常、空気や純酸素が用いられる。
【0018】
第三段焼成の温度は、300〜400℃、好ましくは370〜400℃である。第三段焼成の温度が300℃未満であると、得られる触媒の活性が十分にならなかったり、触媒寿命の向上効果が十分でなかったりすることがあり、一方でその温度が400℃を越えると、触媒が分解・焼結しやすいため、得られる触媒の活性が十分にならないことがある。
【0019】
なお、第一段焼成、第二段焼成、第三段焼成の時間は、それぞれ適宜調整されるが、通常それぞれ、1〜20時間程度である。また、これら各焼成は、雰囲気ガスとして使用されるガスを流通させながら行うのが望ましい。
【0020】
以上のようにして得られた触媒は、メタクリル酸製造用の触媒として優れた触媒寿命を有し、該触媒を用いて、メタクロレイン、イソブチルアルデヒド、イソブタン、イソ酪酸等の原料化合物を気相接触酸化反応させることにより、メタクリル酸を長期間にわたり生産性良く製造することができる。メタクリル酸の製造は、通常、固定床多管式反応器に触媒を充填し、これに原料化合物と酸素を含む原料ガスを供給することにより行われるが、流動床や移動床のような反応形式を採用することもできる。酸素源としては、通常、空気が用いられ、また原料ガス中には、原料化合物及び酸素以外の成分として、窒素、二酸化炭素、一酸化炭素、水蒸気等が含まれうる。
【0021】
例えば、メタクロレインを原料として用いる場合、通常、原料ガス中のメタクロレイン濃度は1〜10容量%、メタクロレインに対する酸素のモル比は1〜5、空間速度は500〜5000h−1(標準状態基準)、反応温度は250〜350℃、反応圧力は0.1〜0.3MPa、の条件下に反応が行われる。なお、原料のメタクロレインは必ずしも高純度の精製品である必要はなく、例えば、イソブチレンやt−ブチルアルコールの気相接触酸化反応により得られたメタクロレインを含む反応生成ガスを用いることもできる。
【0022】
また、イソブタンを原料として用いる場合、通常、原料ガス中のイソブタン濃度は1〜85容量%、水蒸気濃度は3〜30容量%、イソブタンに対する酸素のモル比は0.05〜4、空間速度は400〜5000h−1(標準状態基準)、反応温度は250〜400℃、反応圧力は0.1〜1MPa、の条件下に反応が行われる。イソ酪酸やイソブチルアルデヒドを原料として用いる場合には、通常、メタクロレインを原料として用いる場合と、ほぼ同様の反応条件が採用される。
【0023】
【実施例】
以下、本発明の実施例を示すが、本発明はこれらによって限定されるものではない。
【0024】
実施例1、2
(a)触媒前駆体の調製
40℃に加熱したイオン交換水224kgに、硝酸セシウム[CsNO]38.2kg、85重量%オルトリン酸24.2kg、及び70重量%硝酸25.2kgを溶解し、これをA液とした。一方、40℃に加熱したイオン交換水330kgに、モリブデン酸アンモニウム4水和物[(NHMo24・4HO]297kgを溶解した後、メタバナジン酸アンモニウム[NHVO]8.19kgを懸濁させ、これをB液とした。A液とB液を52.5℃に調整し、攪拌下、B液にA液を滴下した後、密閉容器中で120℃にて9時間攪拌し、次いで、三酸化アンチモン[Sb]10.2kg及び硝酸銅3水和物[Cu(NO・3HO]10.2kgを、イオン交換水23kgに懸濁させて添加した後、密封容器中で120℃にて5時間攪拌した。こうして得られたスラリーをスプレードライヤーにて乾燥し、ドーソン型ヘテロポリ酸塩からなる触媒前駆体粉末を得た。この粉末100重量部に対して、セラミックファイバー[東芝モノフラックス(株)製、FIBERFRAX RFC400SL]4重量部、硝酸アンモニウム13重量部、及びイオン交換水9.7重量部を加えて混練し、直径5mm、高さ5mmの円柱状に押出成形した。この成形体を、温度90℃、湿度30%RHにて3時間乾燥した後、空気気流中で220℃にて22時間、空気気流中で250℃にて1時間の順に熱処理(前焼成)して、ケギン型ヘテロポリ酸塩からなる触媒前駆体とした。
【0025】
(b)触媒の製造
この前駆体を、空気又は窒素の気流中で390℃にて3時間(第一段焼成)、窒素の気流中で435℃にて3時間(第二段焼成)、空気の気流中で390℃にて3時間(第三段焼成)の順に焼成して、触媒を得た。この触媒は、リン、モリブデン、バナジウム、アンチモン、銅及びセシウムをそれぞれ1.5、12、0.5、0.5、0.3及び1.4の原子比で含むケギン型ヘテロポリ酸の酸性塩からなるものであった。
【0026】
(c)触媒の活性試験
以上のようにして得られた触媒9gを、内径15mmのガラス製マイクロリアクターに充填し、この中に、メタクロレイン、空気、スチーム及び窒素を混合して調製したメタクロレイン4容量%、分子状酸素12容量%、水蒸気17容量%の組成の原料ガスを、空間速度670h−1で供給して、炉温(マイクロリアクターを加熱するための炉の温度)280℃にて反応を行い、反応開始から1時間経過時のメタクロレイン転化率とメタクリル酸選択率を求めた。次に、上記と同じ組成の原料ガスを、上記と同じ空間速度で供給して、炉温355℃にて反応を行い、触媒を強制劣化させた後、再度、上記と同じ組成の原料ガスを、上記と同じ空間速度で供給して、炉温280℃にて反応を行い、この反応開始から1時間経過時のメタクロレイン転化率とメタクリル酸選択率を求めた。強制劣化前後でのメタクロレイン転化率とメタクリル酸選択率を表1に示す。
【0027】
比較例1
触媒前駆体の焼成の際、第一段焼成を行わなかった以外は、実施例1と同様の操作を行った。強制劣化前後でのメタクロレイン転化率とメタクリル酸選択率を表1に示す。
【0028】
【表1】

Figure 2005021727
【0029】
実施例3〜6
A液とB液を52.5℃に調整する代わりに、50℃に調整し、A液とB液の混合液を120℃にて9時間攪拌する代わりに、同温度にて8.5時間攪拌した以外は、実施例1(a)と同様の操作を行い、ケギン型ヘテロポリ酸塩からなる触媒前駆体を得た。この前駆体を、空気の気流中で表2に示す温度にて3時間(第一段焼成)、窒素の気流中で435℃にて3時間(第二段焼成)、空気の気流中で390℃にて3時間(第三段焼成)の順に焼成して、触媒を得た。この触媒は、リン、モリブデン、バナジウム、アンチモン、銅及びセシウムをそれぞれ1.5、12、0.5、0.5、0.3及び1.4の原子比で含むケギン型ヘテロポリ酸の酸性塩からなるものであった。この触媒について、実施例1(c)と同様の活性試験を行った。強制劣化前後でのメタクロレイン転化率とメタクリル酸選択率を表2に示す。
【0030】
比較例2
触媒前駆体の焼成の際、第一段焼成を行わなかった以外は、実施例3と同様の操作を行った。強制劣化前後でのメタクロレイン転化率とメタクリル酸選択率を表2に示す。
【0031】
【表2】
Figure 2005021727
【0032】
【発明の効果】
本発明によれば、触媒活性の持続性、すなわち触媒寿命の点で優れるメタクリル酸製造用触媒を製造することができ、こうして得られる触媒を用いることにより、メタクリル酸を長期間にわたり生産性良く製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a catalyst for producing methacrylic acid and a method for producing methacrylic acid from raw materials such as methacrolein using the catalyst obtained by this method.
[0002]
[Prior art]
Conventionally, as a catalyst used when producing methacrylic acid by a gas phase catalytic oxidation reaction such as methacrolein, it is known that a catalyst comprising a heteropolyacid or a salt thereof is effective. This catalyst is usually produced by calcining a catalyst precursor obtained by drying an aqueous mixture of catalyst raw materials. Examples of the calcining conditions include an inert gas having an oxygen concentration of less than 5% by volume. A method of firing at 400 to 550 ° C. (see Patent Document 1), a method of firing at 300 to 500 ° C. under a gas flow containing 0.05 to 3% by volume of ammonia and / or water vapor (Patent Document 2) A method of firing at 150 to 400 ° C. in a non-oxidizing gas atmosphere (see Patent Document 3), a method of firing at 400 to 500 ° C. in an inert gas (see Patent Document 4), 0. A method of firing at 350 to 395 ° C. under the flow of a gas containing 1 to 10% by volume of oxygen (see Patent Document 5) has been proposed.
[0003]
[Patent Document 1] JP-A-57-165040 [Patent Document 2] JP-A-58-61833 [Patent Document 3] JP-A-59-66349 [Patent Document 4] JP-A-4-63139 [Patent Document 5] Japanese Patent Laid-Open No. 5-279291 [0004]
[Problems to be solved by the invention]
However, the catalyst for producing methacrylic acid obtained by these conventional methods does not always have sufficient catalyst activity, that is, catalyst life. Then, the objective of this invention is providing the method which can manufacture the catalyst for methacrylic acid manufacture which has the outstanding catalyst lifetime. Another object of the present invention is to provide a method for producing methacrylic acid with high productivity over a long period of time using the methacrylic acid production catalyst thus obtained.
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have found that the above object can be achieved by subjecting the catalyst precursor to multistage calcination comprising specific gas and temperature conditions, and have completed the present invention.
[0005]
That is, the present invention is a method for producing a catalyst for producing methacrylic acid comprising a heteropolyacid compound containing phosphorus and molybdenum, wherein the catalyst precursor is first-stage baked at 360 to 410 ° C., and then the atmosphere of non-oxidizing gas The method according to the present invention relates to a method for producing a catalyst for methacrylic acid production, characterized in that the second calcination is performed at 420 to 500 ° C. and the third calcination is performed at 300 to 400 ° C. in an oxidizing gas atmosphere.
[0006]
The present invention also provides a process for producing methacrylic acid, characterized by subjecting a compound selected from methacrolein, isobutyraldehyde, isobutane and isobutyric acid to a gas phase catalytic oxidation reaction in the presence of the catalyst obtained by the above process. It is related to.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. The catalyst for methacrylic acid production to be produced by the present invention is composed of a heteropolyacid compound essentially containing phosphorus and molybdenum, and may be composed of a free heteropolyacid or from a salt of a heteropolyacid. It may be. Especially, what consists of an acidic salt (partially neutralized salt) of heteropolyacid is preferable, More preferably, it consists of an acidic salt of Keggin type heteropolyacid.
[0008]
The catalyst preferably contains vanadium as an element other than phosphorus and molybdenum, and at least one element selected from potassium, rubidium, cesium and thallium (hereinafter sometimes referred to as X element), It is desirable that at least one element selected from copper, arsenic, antimony, boron, silver, bismuth, iron, cobalt, lanthanum and cerium (hereinafter sometimes referred to as Y element) is included. Usually, a catalyst containing phosphorus, vanadium, X element and Y element at a ratio of 3 atoms or less to 12 atoms of molybdenum is preferably used.
[0009]
As the raw material of the catalyst, a compound containing each element contained in the catalyst, for example, an oxo acid, an oxo acid salt, an oxide, a nitrate, a carbonate, a hydroxide, a halide, or the like of each element is desired. It is used at a ratio that satisfies the atomic ratio of For example, phosphoric acid, phosphate, etc. are used as the compound containing phosphorus, and molybdic acid, molybdate, molybdenum oxide, molybdenum chloride, etc. are used as the compound containing molybdenum, and as the compound containing vanadium, Vanadic acid, vanadate, vanadium oxide, vanadium chloride and the like are used. In addition, oxides, nitrates, carbonates, hydroxides, halides and the like are used as the compounds containing the X element, and oxo acids, oxoacid salts, nitrates, carbonates, water, and the like as the compounds containing the Y element. Oxides, halides and the like are used.
[0010]
The method for producing a catalyst of the present invention is performed by subjecting a catalyst precursor prepared from the above catalyst raw material to multistage calcination comprising specific gas and temperature conditions. This catalyst precursor can be usually prepared by mixing a catalyst raw material in water to obtain an aqueous solution or aqueous slurry, and then drying the aqueous mixture, for example, the dried product. Alternatively, the dried product may be heat-treated (pre-fired) and then molded, or the dried product may be molded and then heat-treated. Here, drying of the aqueous mixed solution is preferably performed by spray drying using a spray dryer or the like, and molding of the dried product is performed in a cylindrical shape, a spherical shape, a ring shape, or the like using a molding aid as necessary. It is preferable to do this. The heat treatment of the dried product is desirably performed at a temperature of about 180 to 300 ° C. in an oxidizing gas or non-oxidizing gas atmosphere.
[0011]
As a catalyst precursor preparation method, an ammonium compound is used as a catalyst raw material or ammonia or an ammonium salt is added to obtain an aqueous mixed solution containing ammonium roots. It is desirable to heat-treat after molding. According to these formulations, a catalyst precursor composed of a Dawson type heteropolyacid salt can be obtained as a dried product, and then the heat treatment causes a transition reaction from the Dawson type to the Keggin type, resulting in the conversion from the Keggin type heteropolyacid salt. A catalyst precursor can be obtained. The catalyst precursor thus obtained is a particularly suitable target for the multistage calcination according to the present invention.
[0012]
The catalyst precursor obtained as described above is first-stage calcined at a specific temperature in an oxidizing gas or non-oxidizing gas atmosphere, and then the second stage at a specific temperature in a non-oxidizing gas atmosphere. Baking, and then third stage baking at a specific temperature in an oxidizing gas atmosphere. By such multi-stage firing, a catalyst for producing methacrylic acid having an excellent catalyst life can be produced.
[0013]
The first stage firing may be performed in an oxidizing gas atmosphere or in a non-oxidizing gas atmosphere, but performing in an oxidizing gas atmosphere further improves the catalyst life. Can be preferable. Examples of the oxidizing gas include an oxygen-containing gas containing oxygen at a concentration of 1 to 21% by volume. As the oxygen source, air or pure oxygen is usually used. Examples of the non-oxidizing gas include inert gases such as nitrogen, carbon dioxide, helium, and argon.
[0014]
The temperature of the first stage baking is 360 to 410 ° C, preferably 370 to 410 ° C. If the temperature of the first stage calcination is less than 360 ° C., the activity of the resulting catalyst may not be sufficient. On the other hand, if the temperature exceeds 410 ° C., the catalyst is used in an oxidizing gas atmosphere. Is easily decomposed and sintered, the activity of the resulting catalyst may not be sufficient.
[0015]
The second stage baking is performed in an atmosphere of a non-oxidizing gas, and as this non-oxidizing gas, for example, nitrogen, carbon dioxide, helium, argon, etc., like the non-oxidizing gas that can be used in the first stage baking. These inert gases are mentioned.
[0016]
The temperature of the second stage baking is 420 to 500 ° C, preferably 420 to 450 ° C. If the temperature of the second stage calcination is less than 420 ° C., the surface acid sites are not sufficiently expressed, so that the activity of the resulting catalyst may not be sufficient, while if the temperature exceeds 500 ° C., the catalyst Since it is easy to decompose and sinter, the resulting catalyst may not have sufficient activity.
[0017]
The third stage baking is performed in an atmosphere of an oxidizing gas, and as this oxidizing gas, for example, oxygen containing oxygen at a concentration of 1 to 21% by volume, similar to the oxidizing gas that can be used in the first stage baking. Examples of the oxygen source include air and pure oxygen.
[0018]
The temperature of the third stage baking is 300 to 400 ° C, preferably 370 to 400 ° C. If the temperature of the third stage calcination is less than 300 ° C., the activity of the resulting catalyst may not be sufficient, or the effect of improving the catalyst life may not be sufficient, while the temperature exceeds 400 ° C. Then, since the catalyst is easily decomposed and sintered, the activity of the obtained catalyst may not be sufficient.
[0019]
In addition, although the time of 1st stage baking, 2nd stage baking, and 3rd stage baking is each adjusted suitably, it is about 1 to 20 hours normally, respectively. Moreover, it is desirable to perform each of these firings while circulating a gas used as an atmospheric gas.
[0020]
The catalyst obtained as described above has an excellent catalyst life as a catalyst for producing methacrylic acid, and using this catalyst, a raw material compound such as methacrolein, isobutyraldehyde, isobutane, isobutyric acid is contacted in a gas phase. By carrying out the oxidation reaction, methacrylic acid can be produced with good productivity over a long period of time. The production of methacrylic acid is usually carried out by filling a fixed bed multi-tubular reactor with a catalyst and supplying a raw material gas containing a raw material compound and oxygen to this. It can also be adopted. As the oxygen source, air is usually used, and the raw material gas may contain nitrogen, carbon dioxide, carbon monoxide, water vapor and the like as components other than the raw material compound and oxygen.
[0021]
For example, when methacrolein is used as a raw material, the concentration of methacrolein in the raw material gas is usually 1 to 10% by volume, the molar ratio of oxygen to methacrolein is 1 to 5, and the space velocity is 500 to 5000 h −1 (standard condition reference ), The reaction temperature is 250 to 350 ° C., and the reaction pressure is 0.1 to 0.3 MPa. The raw material methacrolein is not necessarily a highly purified product, and for example, a reaction product gas containing methacrolein obtained by a gas phase catalytic oxidation reaction of isobutylene or t-butyl alcohol can be used.
[0022]
When isobutane is used as a raw material, the isobutane concentration in the raw material gas is usually 1 to 85% by volume, the water vapor concentration is 3 to 30% by volume, the molar ratio of oxygen to isobutane is 0.05 to 4, and the space velocity is 400. The reaction is carried out under the conditions of ˜5000 h −1 (standard condition standard), reaction temperature of 250 to 400 ° C., and reaction pressure of 0.1 to 1 MPa. When isobutyric acid or isobutyraldehyde is used as a raw material, generally the same reaction conditions are employed as when methacrolein is used as a raw material.
[0023]
【Example】
Examples of the present invention will be described below, but the present invention is not limited thereto.
[0024]
Examples 1 and 2
(A) Preparation of catalyst precursor In 224 kg of ion-exchanged water heated to 40 ° C., 38.2 kg of cesium nitrate [CsNO 3 ], 24.2 kg of 85 wt% orthophosphoric acid, and 25.2 kg of 70 wt% nitric acid were dissolved. This was designated as liquid A. On the other hand, after 297 kg of ammonium molybdate tetrahydrate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] was dissolved in 330 kg of ion-exchanged water heated to 40 ° C., ammonium metavanadate [NH 4 VO 3 ]. 8.19 kg was suspended and this was used as B liquid. The liquid A and liquid B were adjusted to 52.5 ° C., and the liquid A was added dropwise to the liquid B with stirring, followed by stirring at 120 ° C. for 9 hours in a sealed container, and then antimony trioxide [Sb 2 O 3 ] 10.2 kg and 10.2 kg of copper nitrate trihydrate [Cu (NO 3 ) 2 .3H 2 O] were added in suspension in 23 kg of ion-exchanged water, and then added at 120 ° C. in a sealed container. Stir for hours. The slurry thus obtained was dried with a spray dryer to obtain a catalyst precursor powder composed of a Dawson type heteropolyacid salt. To 100 parts by weight of this powder, 4 parts by weight of ceramic fiber [manufactured by Toshiba Monoflux Co., Ltd., FIBERFRAX RFC400SL], 13 parts by weight of ammonium nitrate, and 9.7 parts by weight of ion-exchanged water were added and kneaded. It was extruded into a cylindrical shape with a height of 5 mm. The molded body was dried for 3 hours at a temperature of 90 ° C. and a humidity of 30% RH, and then heat treated (pre-fired) in the order of 22 hours at 220 ° C. in an air stream and 1 hour at 250 ° C. in an air stream. Thus, a catalyst precursor comprising a Keggin type heteropolyacid salt was obtained.
[0025]
(B) Production of catalyst This precursor was subjected to air in a stream of air or nitrogen at 390 ° C. for 3 hours (first stage firing), in a stream of nitrogen at 435 ° C. for 3 hours (second stage firing), air The catalyst was obtained by firing at 390 ° C. for 3 hours (third-stage firing) in that order. This catalyst is an acid salt of a Keggin type heteropolyacid containing phosphorus, molybdenum, vanadium, antimony, copper and cesium in atomic ratios of 1.5, 12, 0.5, 0.5, 0.3 and 1.4, respectively. It consisted of.
[0026]
(C) Catalyst activity test 9 g of the catalyst obtained as described above was charged into a glass microreactor having an inner diameter of 15 mm, and methacrolein prepared by mixing methacrolein, air, steam and nitrogen. A raw material gas having a composition of 4% by volume, molecular oxygen 12% by volume, and water vapor 17% by volume is supplied at a space velocity of 670 h −1 and the furnace temperature (the temperature of the furnace for heating the microreactor) is 280 ° C. Reaction was performed, and methacrolein conversion rate and methacrylic acid selectivity after 1 hour from the start of the reaction were determined. Next, a raw material gas having the same composition as above is supplied at the same space velocity as described above, and reacted at a furnace temperature of 355 ° C. to forcibly deteriorate the catalyst. The reaction was carried out at the same space velocity as described above, and the reaction was carried out at a furnace temperature of 280 ° C., and the methacrolein conversion rate and methacrylic acid selectivity after 1 hour from the start of the reaction were determined. Table 1 shows methacrolein conversion and methacrylic acid selectivity before and after forced deterioration.
[0027]
Comparative Example 1
During the firing of the catalyst precursor, the same operation as in Example 1 was performed except that the first stage firing was not performed. Table 1 shows methacrolein conversion and methacrylic acid selectivity before and after forced deterioration.
[0028]
[Table 1]
Figure 2005021727
[0029]
Examples 3-6
Instead of adjusting liquid A and liquid B to 52.5 ° C., adjust to 50 ° C., and instead of stirring the liquid mixture of liquid A and liquid B at 120 ° C. for 9 hours, at the same temperature for 8.5 hours Except for stirring, the same operation as in Example 1 (a) was performed to obtain a catalyst precursor comprising a Keggin type heteropolyacid salt. This precursor was subjected to a temperature shown in Table 2 in an air stream for 3 hours (first stage firing), in a nitrogen stream at 435 ° C. for 3 hours (second stage firing), and in an air stream 390 The catalyst was obtained by calcination in the order of 3 hours (third-stage calcination) at ° C. This catalyst is an acid salt of a Keggin type heteropolyacid containing phosphorus, molybdenum, vanadium, antimony, copper and cesium in atomic ratios of 1.5, 12, 0.5, 0.5, 0.3 and 1.4, respectively. It consisted of. About this catalyst, the activity test similar to Example 1 (c) was done. Table 2 shows methacrolein conversion and methacrylic acid selectivity before and after forced deterioration.
[0030]
Comparative Example 2
During the firing of the catalyst precursor, the same operation as in Example 3 was performed, except that the first stage firing was not performed. Table 2 shows methacrolein conversion and methacrylic acid selectivity before and after forced deterioration.
[0031]
[Table 2]
Figure 2005021727
[0032]
【The invention's effect】
According to the present invention, it is possible to produce a catalyst for producing methacrylic acid that is excellent in sustainability of catalyst activity, that is, in terms of catalyst life, and by using the catalyst thus obtained, it is possible to produce methacrylic acid with high productivity over a long period of time. can do.

Claims (4)

リン及びモリブデンを含むヘテロポリ酸化合物からなるメタクリル酸製造用触媒の製造方法であって、触媒前駆体を360〜410℃で第一段焼成した後、非酸化性ガスの雰囲気下に420〜500℃で第二段焼成し、次いで酸化性ガスの雰囲気下に300〜400℃で第三段焼成することを特徴とするメタクリル酸製造用触媒の製造方法。A method for producing a catalyst for producing methacrylic acid comprising a heteropolyacid compound containing phosphorus and molybdenum, wherein the catalyst precursor is first-stage baked at 360 to 410 ° C., and then 420 to 500 ° C. in an atmosphere of non-oxidizing gas. A second-stage calcination, followed by a third-stage calcination at 300 to 400 ° C. in an oxidizing gas atmosphere. 第一段焼成を酸化性ガスの雰囲気下に行う請求項1に記載の製造方法。The manufacturing method of Claim 1 which performs 1st step | paragraph baking in the atmosphere of oxidizing gas. ヘテロポリ酸化合物が、さらにバナジウムと、カリウム、ルビジウム、セシウム及びタリウムから選ばれる元素と、銅、ヒ素、アンチモン、ホウ素、銀、ビスマス、鉄、コバルト、ランタン及びセリウムから選ばれる元素とを含む請求項1又は2に記載の製造方法。The heteropolyacid compound further contains vanadium, an element selected from potassium, rubidium, cesium and thallium, and an element selected from copper, arsenic, antimony, boron, silver, bismuth, iron, cobalt, lanthanum and cerium. 3. The production method according to 1 or 2. 触媒前駆体を360〜410℃で第一段焼成した後、非酸化性ガスの雰囲気下に420〜500℃で第二段焼成し、次いで酸化性ガスの雰囲気下に300〜400℃で第三段焼成することにより、リン及びモリブデンを含むヘテロポリ酸化合物からなる触媒を製造し、この触媒の存在下に、メタクロレイン、イソブチルアルデヒド、イソブタン及びイソ酪酸から選ばれる化合物を気相接触酸化反応に付すことを特徴とするメタクリル酸の製造方法。The catalyst precursor is first-stage calcined at 360-410 ° C., then second-stage calcined at 420-500 ° C. in a non-oxidizing gas atmosphere, and then third at 300-400 ° C. in an oxidizing gas atmosphere. A catalyst comprising a heteropolyacid compound containing phosphorus and molybdenum is produced by calcination, and in the presence of this catalyst, a compound selected from methacrolein, isobutyraldehyde, isobutane and isobutyric acid is subjected to a gas phase catalytic oxidation reaction. A method for producing methacrylic acid.
JP2003186618A 2003-06-30 2003-06-30 Method for producing catalyst for producing methacrylic acid method for producing methacrylic acid Pending JP2005021727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003186618A JP2005021727A (en) 2003-06-30 2003-06-30 Method for producing catalyst for producing methacrylic acid method for producing methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003186618A JP2005021727A (en) 2003-06-30 2003-06-30 Method for producing catalyst for producing methacrylic acid method for producing methacrylic acid

Publications (1)

Publication Number Publication Date
JP2005021727A true JP2005021727A (en) 2005-01-27

Family

ID=34185701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003186618A Pending JP2005021727A (en) 2003-06-30 2003-06-30 Method for producing catalyst for producing methacrylic acid method for producing methacrylic acid

Country Status (1)

Country Link
JP (1) JP2005021727A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006104155A1 (en) * 2005-03-29 2006-10-05 Nippon Kayaku Kabushiki Kaisha Catalyst for producing methacrylic acid and method for preparation thereof
EP1880761A1 (en) * 2005-05-12 2008-01-23 Nippon Kayaku Kabushiki Kaisha Method for preparing catalyst for production of methacrylic acid
JP2011078975A (en) * 2010-11-26 2011-04-21 Nippon Kayaku Co Ltd Method for producing catalyst for producing methacrylic acid
DE102012010194A1 (en) 2011-05-25 2012-11-29 Sumitomo Chemical Co., Ltd. Preparing catalyst, useful to prepare methacrylic acid, comprises first calcination of catalyst precursor comprising heteropolyacid compound containing phosphorus and molybdenum, second calcination of obtained calcined product and cooling

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006104155A1 (en) * 2005-03-29 2006-10-05 Nippon Kayaku Kabushiki Kaisha Catalyst for producing methacrylic acid and method for preparation thereof
JP2006272151A (en) * 2005-03-29 2006-10-12 Nippon Kayaku Co Ltd Catalyst for producing methacrylic acid and method for manufacturing the catalyst
US8716523B2 (en) 2005-03-29 2014-05-06 Nippon Kayaku Kabushiki Kaisha Catalyst for use in production of methacrylic acid and method for manufacturing the same
EP1880761A1 (en) * 2005-05-12 2008-01-23 Nippon Kayaku Kabushiki Kaisha Method for preparing catalyst for production of methacrylic acid
US8017547B2 (en) 2005-05-12 2011-09-13 Nippon Kayaku Kabushiki Kaisha Method for manufacturing catalyst for use in production of methacrylic acid
US8148291B2 (en) 2005-05-12 2012-04-03 Nippon Kayaku Kabushiki Kaisha Method for manufacturing catalyst for use in production of methacrylic acid
EP1880761A4 (en) * 2005-05-12 2012-04-04 Nippon Kayaku Kk Method for preparing catalyst for production of methacrylic acid
EP2540393A1 (en) * 2005-05-12 2013-01-02 Nippon Kayaku Kabushiki Kaisha Method for preparing catalyst for production of methacrylic acid
JP2011078975A (en) * 2010-11-26 2011-04-21 Nippon Kayaku Co Ltd Method for producing catalyst for producing methacrylic acid
DE102012010194A1 (en) 2011-05-25 2012-11-29 Sumitomo Chemical Co., Ltd. Preparing catalyst, useful to prepare methacrylic acid, comprises first calcination of catalyst precursor comprising heteropolyacid compound containing phosphorus and molybdenum, second calcination of obtained calcined product and cooling

Similar Documents

Publication Publication Date Title
JP4957628B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP4715712B2 (en) A method for regenerating a catalyst for producing methacrylic acid and a method for producing methacrylic acid.
JP4900449B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4957627B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP4848813B2 (en) A method for producing a catalyst for producing methacrylic acid and a method for producing methacrylic acid.
JP5335490B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP4715699B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP4200744B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4595769B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP5214500B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP3799660B2 (en) Oxidation catalyst, method for producing the same, and method for producing methacrylic acid
JP5793345B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4352856B2 (en) A method for producing a catalyst for producing methacrylic acid, a catalyst for producing methacrylic acid obtained thereby, and a method for producing methacrylic acid.
JP3772389B2 (en) Method for producing oxidation catalyst and method for producing methacrylic acid
JP2008229515A (en) Method for manufacturing catalyst for producing methacrylic acid
JP2005021727A (en) Method for producing catalyst for producing methacrylic acid method for producing methacrylic acid
JP2012245433A (en) Method for producing catalyst for producing methacrylic acid method for producing methacrylic acid
JP2008284508A (en) Production method of catalyst for methacrylic-acid production and production method of methacrylic acid
JP4207531B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP5024183B2 (en) Method for producing shaped catalyst comprising heteropolyacid compound
JP2013086008A (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP4900532B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP5214499B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP2003010689A (en) Method for manufacturing catalyst for manufacturing methacrylic acid and method for manufacturing methacrylic acid
JP2013180251A (en) Method of producing catalyst for producing methacrylic acid and method of producing methacrylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060213

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080130

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310