JP2007258087A - Nonaqueous electrolytic solution secondary battery, and electrode plate therefor and its manufacturing method - Google Patents

Nonaqueous electrolytic solution secondary battery, and electrode plate therefor and its manufacturing method Download PDF

Info

Publication number
JP2007258087A
JP2007258087A JP2006083393A JP2006083393A JP2007258087A JP 2007258087 A JP2007258087 A JP 2007258087A JP 2006083393 A JP2006083393 A JP 2006083393A JP 2006083393 A JP2006083393 A JP 2006083393A JP 2007258087 A JP2007258087 A JP 2007258087A
Authority
JP
Japan
Prior art keywords
electrode plate
secondary battery
volume resistivity
coating film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006083393A
Other languages
Japanese (ja)
Other versions
JP5114857B2 (en
Inventor
Yuichi Miyazaki
祐一 宮崎
Naoyuki Mitsuyasu
直之 光安
Shiyo Kikuchi
史陽 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2006083393A priority Critical patent/JP5114857B2/en
Publication of JP2007258087A publication Critical patent/JP2007258087A/en
Application granted granted Critical
Publication of JP5114857B2 publication Critical patent/JP5114857B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode plate which has a small volume resistivity, constrains the spring-back arising at the time of immersion in an electrolytic solution, and effectively eliminates increase in the volume resistivity before and after immersion in the electrolytic solution. <P>SOLUTION: The electrode plate for a nonaqueous electrolytic solution secondary battery is composed through the pressure forming of an electrode plate where an electrode coating film is formed at least at one side of a current collector. The electrode coating film includes, at least, an active material, a conductive agent and a binding agent with at minimum its one part fused into the active material. The electrode coating film has a volume resistivity of 4 Ω cm or less at room temperature. Further, a resistivity increasing rate ΔR specified by the equation ΔR=[(R2-R1)/R1]×100 is 30% or less, wherein R1 is a volume resistivity before immersion in carbonic acid ester-based solvent, and R2 is a volume resistivity after immersion for one minute at room temperature. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、リチウムイオン二次電池に代表される非水電解液二次電池用電極板、その製造方法、そしてそれを用いた非水電解液二次電池に関する。   The present invention relates to an electrode plate for a nonaqueous electrolyte secondary battery represented by a lithium ion secondary battery, a method for producing the same, and a nonaqueous electrolyte secondary battery using the same.

リチウムイオン二次電池に代表される非水電解液二次電池は、高エネルギー密度、高電圧を有し、また充放電時におけるメモリー効果が無いことから、携帯機器、大型機器など様々な分野で用いられている。一般的な非水電解液二次電池は、正極、負極、セパレータ及び有機電解液からなり、正極及び負極は金属箔等の集電体の上に充放電可能な活物質及び結着剤、必要に応じて導電剤を混合した塗膜を形成したものが用いられている。塗膜の形成は通常、活物質と結着剤、及びその他の材料を溶媒中で混練・分散してスラリー状の塗液にし、これを集電体上に塗布・乾燥することで行なわれる(例えば、特許文献1及び2)。   Non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries have high energy density, high voltage, and no memory effect during charging / discharging, so they can be used in various fields such as portable devices and large devices. It is used. A general non-aqueous electrolyte secondary battery is composed of a positive electrode, a negative electrode, a separator, and an organic electrolyte, and the positive electrode and the negative electrode are necessary for an active material and a binder that can be charged and discharged on a current collector such as a metal foil. Depending on the type, a film formed by mixing a conductive agent is used. The coating film is usually formed by kneading and dispersing an active material, a binder, and other materials in a solvent to form a slurry-like coating liquid, which is applied to a current collector and dried ( For example, Patent Documents 1 and 2).

近年、特に電気自動車、ハイブリッド自動車、そしてパワーツール等の高出力特性が必要とされる分野に向けての開発が進んでいる。インピーダンスが高い電池は高出力充放電時にその容量を十分に生かすことができない。そのため、例えば塗膜を薄膜大面積化して、電池のインピーダンスを下げる方法が用いられている。例えば、リチウムイオン二次電池は、用いる非水電解液が水系電解液に比べ一般的に抵抗が高いこともあり、その開発当初から鉛蓄電池等他の電池に比べ薄く広い面積の電極を使用し、かつ極板間距離を短くした形態となっている。
特開昭63−10456号公報 特開平3−285262号公報
In recent years, development has been progressing especially for fields that require high output characteristics such as electric vehicles, hybrid vehicles, and power tools. A battery with high impedance cannot make full use of its capacity during high output charge / discharge. Therefore, for example, a method of reducing the impedance of the battery by increasing the film area of the coating film is used. For example, lithium ion secondary batteries use non-aqueous electrolytes that generally have higher resistance than aqueous electrolytes, and have used electrodes that are thinner and wider than other batteries such as lead-acid batteries from the beginning of development. In addition, the distance between the electrode plates is shortened.
JP 63-10456 A JP-A-3-285262

塗膜が形成された集電体は、必要に応じてプレスされた後、所定形状に裁断されたり打ち抜かれて電極となる。塗膜形成後のプレスは、一般に塗膜の密度を上げ、電池の体積エネルギー密度を向上させると同時に、集電体との密着性を向上させる効果がある。また塗膜に導電剤が添加されている場合は、導電剤粒子の接触を改善し、集電体から活物質粒子への良好な電子伝導経路(導電パス)を確保する効果もある。導電パスが確保されるに伴い塗膜の体積抵抗率は低下する。   The current collector on which the coating film is formed is pressed as necessary, and then cut into a predetermined shape or punched to become an electrode. The press after the formation of the coating film is generally effective in increasing the density of the coating film and improving the volume energy density of the battery and at the same time improving the adhesion with the current collector. Moreover, when the electrically conductive agent is added to the coating film, there exists an effect which improves the contact of electrically conductive agent particle | grains and ensures the favorable electronic conduction path (conductive path) from an electrical power collector to an active material particle. As the conductive path is secured, the volume resistivity of the coating film decreases.

高出力充放電特性が必要とされる電池においては、活物質の急速な反応を阻害しないために活物質に対する導電パスを良好に保つ必要があり、すなわち塗膜の体積抵抗率を小さく保つ必要がある。しかし、塗膜の体積抵抗率を下げるため、カーボンブラックなどの導電剤を増量しても、電池のインピーダンスは期待したほど低下しないという問題が生じた。この原因を詳細に検討したところ、導電剤を増量する事によりプレス後の塗膜の体積抵抗率は小さくなるが、このような電極を電解液に浸漬すると塗膜の厚みがプレス前の厚みに近づく方向へ非可逆的に回復して(スプリングバック)導電剤粒子間の距離が増加し、結果として体積抵抗率が電解液浸漬前に比べ増加してしまう事が原因だと判った。比表面積の大きな(重量あたりの粒子数の多い)導電剤を増量すると、プレスでも潰れにくくなり、スプリングバックも大きくなる傾向にある。この体積抵抗率の増加は、プレスにより形成された導電剤の良好な接触(導電パス)が実際の電池中で分断されてしまうことを意味し、すなわち添加した導電剤が実際の電池中において効果的に作用しなくなっている事に対応する。   In batteries that require high output charge / discharge characteristics, it is necessary to maintain a good conductive path to the active material in order not to inhibit the rapid reaction of the active material, that is, to keep the volume resistivity of the coating film small. is there. However, in order to reduce the volume resistivity of the coating film, there is a problem that even when the conductive agent such as carbon black is increased, the impedance of the battery does not decrease as expected. When this cause was examined in detail, the volume resistivity of the coated film after pressing was reduced by increasing the conductive agent, but when such an electrode was immersed in the electrolyte, the thickness of the coated film became the thickness before pressing. It was found that the cause was that the distance between the conductive agent particles increased irreversibly in the approaching direction (springback), and as a result, the volume resistivity increased compared to before the immersion of the electrolyte. When the amount of the conductive agent having a large specific surface area (a large number of particles per weight) is increased, it becomes difficult to be crushed even in a press and the spring back tends to increase. This increase in volume resistivity means that good contact (conductive path) of the conductive agent formed by pressing is broken in the actual battery, that is, the added conductive agent is effective in the actual battery. Corresponds to the fact that it no longer works.

そこで、本発明は、上記の問題を解決し、電解液に浸漬した際のスプリングバックを抑制し、電解液浸漬前後で実質的に体積抵抗率に変化のない、低体積抵抗率の電極を提供することを目的とした。   Therefore, the present invention provides an electrode with a low volume resistivity that solves the above problems, suppresses springback when immersed in an electrolyte, and has substantially no change in volume resistivity before and after immersion in the electrolyte. Aimed to do.

本発明者らは、スプリングバックの原因について検討し、電極塗膜に導電剤を増量するとスプリングバックが大きくなるのは、もともと潰れにくい塗膜をプレスするため、プレス後の塗膜内部に応力が残存し易いためと考えた。さらに、この内部応力は結着剤の弾性変形に由来するもので、これが電解液による膨潤により解放されてしまうと考えた。そこで、電極塗膜の製造条件について鋭意検討した結果、所定の条件で熱プレスした電極塗膜は、電解液浸漬後のスプリングバックが大きく抑制されることを見出して本発明を完成させたものである。
すなわち、本発明の非水電解液二次電池用電極板は、集電体の少なくとも一面に電極塗膜を形成した電極板を加圧成型してなる非水電解液二次電池用電極板であって、上記電極塗膜は、少なくとも、活物質と、導電剤と、結着剤とを含み、室温における体積抵抗率が4Ω・cm以下であり、炭酸エステル系溶媒に浸漬前の体積抵抗率R1と室温で1分間浸漬後の体積抵抗率R2とを用い、式ΔR=[(R2−R1)/R1]×100で規定される抵抗増加率ΔRが30%以下であることを特徴とする。
The present inventors examined the cause of spring back, and when the conductive agent was increased in the electrode coating film, the spring back was increased because the coating film that was not easily crushed was originally pressed. We thought that it was easy to remain. Furthermore, this internal stress originates from the elastic deformation of the binder, and it was considered that this internal stress was released by swelling with the electrolyte. Therefore, as a result of intensive investigations on the production conditions of the electrode coating film, the electrode coating film that was hot-pressed under predetermined conditions was found to greatly suppress the spring back after immersion in the electrolyte solution, and completed the present invention. is there.
That is, the electrode plate for a non-aqueous electrolyte secondary battery according to the present invention is an electrode plate for a non-aqueous electrolyte secondary battery formed by pressure-molding an electrode plate having an electrode coating film formed on at least one surface of a current collector. The electrode coating film includes at least an active material, a conductive agent, and a binder, has a volume resistivity of 4 Ω · cm or less at room temperature, and has a volume resistivity before being immersed in a carbonate ester solvent. Using R1 and volume resistivity R2 after immersion for 1 minute at room temperature, the resistance increase rate ΔR defined by the formula ΔR = [(R2−R1) / R1] × 100 is 30% or less. .

本発明の電極板には、電極塗膜の厚さが10μm〜100μmであるものを用いることができる。   As the electrode plate of the present invention, an electrode plate having a thickness of 10 μm to 100 μm can be used.

また、導電剤を上記活物質100重量部に対し12重量部以上用いることができる。   Further, the conductive agent can be used in an amount of 12 parts by weight or more based on 100 parts by weight of the active material.

また、結着剤には、フッ素系樹脂を用いることができる。   Moreover, a fluorine resin can be used for the binder.

また、炭酸エステル系溶媒には、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートからなる群から選択された少なくとも1種を用いることができる。   The carbonate ester solvent may be at least one selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.

本発明の非水電解液二次電池用電極板は、以下の方法を用いて製造することができる。すなわち、本発明の非水電解液二次電池用電極板の製造方法は、少なくとも、活物質と、導電剤と、結着剤とを含み、室温における体積抵抗率が4Ω・cm以下であり、ジエチルカーボネートに浸漬前の体積抵抗率R1と1分間浸漬後の体積抵抗率R2とを用い、式ΔR=[(R2−R1)/R1]×100で規定される抵抗増加率ΔRが30%以下である電極膜を、少なくとも一面に有してなる非水電解液二次電池用電極板の製造方法であって、上記電極塗膜を、電解液に含浸させるに先立って、上記結着剤の融点の60%以上の温度であって上記結着剤の熱分解温度未満の温度で熱プレスする工程を含むことを特徴とする。但し、ここでの温度スケールは摂氏(℃)とする。   The electrode plate for a non-aqueous electrolyte secondary battery of the present invention can be produced using the following method. That is, the method for producing an electrode plate for a non-aqueous electrolyte secondary battery of the present invention includes at least an active material, a conductive agent, and a binder, and has a volume resistivity of 4 Ω · cm or less at room temperature, Using the volume resistivity R1 before immersion in diethyl carbonate and the volume resistivity R2 after immersion for 1 minute, the resistance increase rate ΔR defined by the formula ΔR = [(R2−R1) / R1] × 100 is 30% or less. A method for producing an electrode plate for a non-aqueous electrolyte secondary battery comprising at least one electrode film, wherein the electrode coating film is impregnated with the binder before impregnating the electrode coating film with the electrolyte solution. It includes a step of hot pressing at a temperature of 60% or more of the melting point and lower than the thermal decomposition temperature of the binder. However, the temperature scale here is Celsius (° C).

また、熱プレスする工程の温度は、結着剤の融点の60〜150%の温度とすることができる。   Moreover, the temperature of the hot pressing step can be 60 to 150% of the melting point of the binder.

本発明の非水電解液二次電池は、少なくとも正極板、負極板及び電解質を含む非水電解液二次電池であって、該正極板及び負極板の少なくとも一方に、上記の本発明の非水電解液二次電池用電極板を用いてなることを特徴とするものである。   The non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte secondary battery including at least a positive electrode plate, a negative electrode plate and an electrolyte, and at least one of the positive electrode plate and the negative electrode plate is provided with the non-aqueous electrolyte secondary battery of the present invention. It is characterized by using an electrode plate for a water electrolyte secondary battery.

本発明の非水電解液二次電池用電極板は小さい体積抵抗率を有し、かつ、電解液に浸漬しても、内部応力により塗膜が元の形状に戻ろうとすること、すなわちスプリングバックを抑制できる。そのため、電解液に浸漬することにより塗膜の厚みが増加して導電剤粒子や活物質粒子間の良好な接触が分断されることが無く、プレスにより得られた小さな体積抵抗値、すなわち良好な導電パスを電解液中においても維持することが可能となる。これにより、導電剤を増量しても、その増量した導電剤を効果的に利用することができるので、インピーダンスの低い非水電解液二次電池を提供することができる。   The electrode plate for a non-aqueous electrolyte secondary battery of the present invention has a small volume resistivity, and even when immersed in the electrolyte, the coating film tends to return to its original shape due to internal stress, that is, springback. Can be suppressed. Therefore, by immersing in the electrolytic solution, the thickness of the coating film does not increase and good contact between the conductive agent particles and the active material particles is not broken, and the small volume resistance value obtained by pressing, that is, good It is possible to maintain the conductive path even in the electrolytic solution. As a result, even if the amount of the conductive agent is increased, the increased amount of the conductive agent can be used effectively, so that a non-aqueous electrolyte secondary battery with low impedance can be provided.

本発明に係る非水電解液二次電池用電極板は、集電体の少なくとも一面に電極塗膜を形成した電極板を加圧成型してなる非水電解液二次電池用電極板であって、上記電極塗膜は、少なくとも、活物質と、導電剤と、結着剤とを含み、室温における体積抵抗率が4Ω・cm以下であり、炭酸エステル系溶媒に浸漬前の体積抵抗率R1と室温で1分間浸漬後の体積抵抗率R2とを用い、式ΔR=[(R2−R1)/R1]×100で規定される抵抗増加率ΔRが30%以下である。なお、体積抵抗率の測定は、絶縁性基材上に作成した塗膜サンプルをJIS K7194に従い四探針法にて測定する方法が簡便である。導電性基材上に作成されたサンプルの場合は、所定の面積で厚み方向に抵抗を測定し、導電性基材単独の抵抗を減じて、塗膜厚み及び電極面積から体積抵抗率の定義に基づいて算出する。   An electrode plate for a non-aqueous electrolyte secondary battery according to the present invention is an electrode plate for a non-aqueous electrolyte secondary battery formed by pressure molding an electrode plate having an electrode coating film formed on at least one surface of a current collector. The electrode coating film includes at least an active material, a conductive agent, and a binder, has a volume resistivity at room temperature of 4 Ω · cm or less, and has a volume resistivity R1 before being immersed in a carbonate ester solvent. And the volume resistivity R2 after immersion for 1 minute at room temperature, the resistance increase rate ΔR defined by the formula ΔR = [(R2−R1) / R1] × 100 is 30% or less. In addition, the method of measuring the volume resistivity by the four-probe method according to JIS K7194 is simple for measuring the coating film sample formed on the insulating base material. In the case of a sample made on a conductive substrate, measure the resistance in the thickness direction at a predetermined area, subtract the resistance of the conductive substrate alone, and define the volume resistivity from the coating thickness and electrode area. Calculate based on

本発明の非水電解液二次電池電極板(以下、電極板という)は、集電体と、その集電体の少なくとも一面に形成された電極塗膜とから構成されている。電極塗膜は、少なくとも、活物質と、結着剤と、導電剤とを含み、必要により種々の添加剤を含むものである。ここで、正極用電極は活物質として正極活物質を含み、負極用電極は活物質として負極活物質を含むものである。   The non-aqueous electrolyte secondary battery electrode plate (hereinafter referred to as electrode plate) of the present invention is composed of a current collector and an electrode coating film formed on at least one surface of the current collector. The electrode coating film includes at least an active material, a binder, and a conductive agent, and includes various additives as necessary. Here, the positive electrode includes a positive electrode active material as an active material, and the negative electrode includes a negative electrode active material as an active material.

(活物質)
正極活物質としては、従来から非水電解液二次電池の正極活物質として用いられている材料を用いることができる。例えば、LiMn(マンガン酸リチウム)、LiCoO(コバルト酸リチウム)若しくはLiNiO(ニッケル酸リチウム)等のリチウム遷移金属複合酸化物、または、TiS、MnO、MoOもしくはV等のカルコゲン化合物を例示することができる。特に、LiCoOを正極用活物質として用い、炭素質材料を負極用活物質として用いることにより、4ボルト程度の高い放電電圧を有するリチウム系二次電池が得られる。
(Active material)
As a positive electrode active material, the material conventionally used as a positive electrode active material of a nonaqueous electrolyte secondary battery can be used. For example, lithium transition metal composite oxides such as LiMn 2 O 4 (lithium manganate), LiCoO 2 (lithium cobaltate) or LiNiO 2 (lithium nickelate), or TiS 2 , MnO 2 , MoO 3 or V 2 O Examples thereof include chalcogen compounds such as 5 . In particular, by using LiCoO 2 as a positive electrode active material and a carbonaceous material as a negative electrode active material, a lithium secondary battery having a high discharge voltage of about 4 volts can be obtained.

正極活物質は、塗膜中に均一に分散させるために、平均粒径が0.1〜100μmの粉体であることが好ましい。これらの正極用活物質は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、正極活物質は一般に電子伝導性が小さいため、高出力用途として用いる場合は電極反応を速やかに進行させるために平均粒径は小さい方が好ましく、例えば5μm以下であることが好ましく、2μm以下であることが更に好ましい。   The positive electrode active material is preferably a powder having an average particle size of 0.1 to 100 μm in order to uniformly disperse it in the coating film. These positive electrode active materials may be used alone or in combination of two or more. In addition, since the positive electrode active material generally has low electron conductivity, when used as a high power application, the average particle size is preferably small so that the electrode reaction proceeds rapidly, for example, preferably 5 μm or less, and preferably 2 μm or less. More preferably.

一方、負極活物質としては、従来から非水電解液二次電池の負極活物質として用いられ
ている材料を用いることができる。例えば、天然グラファイト、人造グラファイト、アモルファス炭素、カーボンブラック、または、これらの成分に異種元素を添加した炭素複合体等の炭素質材料が好んで用いられる。また、金属リチウム及びその合金、スズ、シリコン、及びそれらの合金等のリチウムイオンを吸蔵放出可能な材料が一般的に使用可能である。
On the other hand, as a negative electrode active material, the material conventionally used as a negative electrode active material of a nonaqueous electrolyte secondary battery can be used. For example, carbonaceous materials such as natural graphite, artificial graphite, amorphous carbon, carbon black, or a carbon composite obtained by adding a different element to these components are preferably used. In addition, materials capable of occluding and releasing lithium ions such as metallic lithium and its alloys, tin, silicon, and alloys thereof can be generally used.

負極活物質の粒子形状は特に限定されない。例えば、鱗片状、塊状、繊維状、球状のものが使用可能である。負極活物質は、塗工層中に均一に分散させるために、平均粒径が
0.1〜100μmの粉体であることが好ましい。これらの負極用活物質は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
The particle shape of the negative electrode active material is not particularly limited. For example, scaly, massive, fibrous, or spherical ones can be used. The negative electrode active material is preferably a powder having an average particle size of 0.1 to 100 μm in order to uniformly disperse it in the coating layer. These negative electrode active materials may be used alone or in combination of two or more.

電極塗膜の正極又は負極活物質の含有率は、溶媒を除く配合成分を基準(固形分基準)とし、70〜98重量%、より好ましくは80〜88重量%である。   The content of the positive electrode or negative electrode active material in the electrode coating film is 70 to 98% by weight, more preferably 80 to 88% by weight, based on the blending component excluding the solvent (based on solid content).

(結着剤) 結着剤としては従来から用いられているもの、例えば、熱可塑性樹脂、より具体的にはポリエステル樹脂、ポリアミド樹脂、ポリアクリル酸エステル樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、セルロース樹脂、ポリオレフィン樹脂、ポリビニル樹脂、フッ素系樹脂またはポリイミド樹脂等を使用することができる。この際、反応性官能基を導入したアクリレートモノマーまたはオリゴマーを結着材中に混入させることも可能である。そのほかにも、ゴム系の樹脂や、アクリル樹脂、ウレタン樹脂等の熱硬化性樹脂、アクリレートモノマー、アクリレートオリゴマー或いはそれらの混合物からなる電離放射線硬化性樹脂、上記各種の樹脂の混合物を使用することもできる。好ましい結着剤は、フッ素系樹脂であり、テトラフルオロエチレンやフッ化ビニリデンの単独重合体やそれらの共重合体が含まれる。より好ましくはポリフッ化ビニリデンである。電極塗膜中の結着剤の含有率は、固形分基準で1.5〜20重量%、より好ましくは4〜12重量%である。 (Binder) Conventionally used binders, for example, thermoplastic resins, more specifically polyester resins, polyamide resins, polyacrylate resins, polycarbonate resins, polyurethane resins, cellulose resins, A polyolefin resin, a polyvinyl resin, a fluorine resin, a polyimide resin, or the like can be used. At this time, an acrylate monomer or oligomer into which a reactive functional group is introduced can be mixed in the binder. In addition, rubber resins, thermosetting resins such as acrylic resins and urethane resins, ionizing radiation curable resins made of acrylate monomers, acrylate oligomers or mixtures thereof, and mixtures of the above various resins may be used. it can. A preferred binder is a fluorine-based resin, and includes a homopolymer of tetrafluoroethylene or vinylidene fluoride or a copolymer thereof. More preferred is polyvinylidene fluoride. The content of the binder in the electrode coating is 1.5 to 20% by weight, more preferably 4 to 12% by weight, based on the solid content.

また、結着剤に融点の異なる2種以上のフッ素系樹脂を用いることもできる。低融点のフッ素系樹脂、例えばフッ素系共重合体エラストマーを用いることにより、そのエラストマーが低温で軟化することにより、塗膜内部の残留応力をさらに低減することができる。
例えばフッ素系樹脂にポリフッ化ビニリデンを用いる場合、フッ素系共重合体エラストマーには、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体やフッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体を用いることが好ましい。この場合、ポリフッ化ビニリデンとエラストマーの配合比は、重量比で4.5:5.5〜9.5:0.5、より好ましくは5:5〜9:1である。
In addition, two or more types of fluororesins having different melting points can be used for the binder. By using a low melting point fluorine-based resin, for example, a fluorine-based copolymer elastomer, the residual stress inside the coating film can be further reduced by softening the elastomer at a low temperature.
For example, when polyvinylidene fluoride is used for the fluorine-based resin, a vinylidene fluoride-hexafluoropropylene copolymer or a vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer may be used as the fluorine-based copolymer elastomer. preferable. In this case, the blending ratio of the polyvinylidene fluoride and the elastomer is 4.5: 5.5 to 9.5: 0.5, more preferably 5: 5 to 9: 1 by weight.

また、結着剤の一部に代えて、イオン導電性ポリマーを用いることもできる。イオン導電性ポリマーには、ポリアルキレンオキサイドやその部分架橋体等の高分子固体電解質や、ポリアクリロニトリル及び/又はその共重合体、ポリメチルメタクリレート及び/又はその共重合体等の高分子ゲル電解質が含まれる。好ましくは高分子ゲル電解質であり、さらに好ましくはポリアクリロニトリル及び/又はその共重合体である。電解液の保持能が大きいからである。これらイオン導電性ポリマーを結着剤と併用することにより、電極塗膜の成膜性を確保しながら、電極塗膜のイオン導電性を向上させることが可能となる。イオン導電性ポリマーと結着剤の配合比は、重量比で0.1:9.9〜5:5、より好ましくは0.1:9.9〜4:6である。ゲル化する樹脂は一般的に電解液中での膨潤が大きいため、多量に添加するとスプリングバックが軽減されない恐れがあるからである。   Further, an ion conductive polymer can be used instead of a part of the binder. The ion conductive polymer includes a polymer solid electrolyte such as polyalkylene oxide and a partially crosslinked product thereof, and a polymer gel electrolyte such as polyacrylonitrile and / or a copolymer thereof, polymethyl methacrylate and / or a copolymer thereof. included. A polymer gel electrolyte is preferable, and polyacrylonitrile and / or a copolymer thereof is more preferable. This is because the electrolyte retention capacity is large. By using these ion conductive polymers in combination with a binder, it is possible to improve the ion conductivity of the electrode coating film while ensuring the film formability of the electrode coating film. The blending ratio of the ion conductive polymer and the binder is 0.1: 9.9 to 5: 5, more preferably 0.1: 9.9 to 4: 6, by weight. This is because the resin that gels generally swells in the electrolyte, and if added in a large amount, the springback may not be reduced.

(導電剤)
導電剤としては、天然及び人造のグラファイト、カーボンブラック、炭素繊維等の炭素質材料を用いることができる。ここで、カーボンブラックには、アセチレンブラック、ファーネスブラック、サーマルブラック等が含まれる。より好ましくは、アセチレンブラックである。さらに、必要に応じてグラファイトや炭素繊維を添加することもできる。ここで、炭素繊維には気相成長炭素繊維(VGCF)を用いることが好ましい。VGCFの添加は、体積抵抗率をさらに低減できるとともに、電極塗膜への電解液の染み込みを向上させる効果を有する。VGCFの添加量は、アセチレンブラック10重量部に対し、1〜10重量部、より好ましくは1〜5重量部である。1重量部より少ないと体積抵抗率を低減させる効果が十分でなく、10重量部を超えると、スプリングバックを抑制する効果が十分でなくなるからである。
(Conductive agent)
As the conductive agent, carbonaceous materials such as natural and artificial graphite, carbon black, and carbon fiber can be used. Here, carbon black includes acetylene black, furnace black, thermal black, and the like. More preferred is acetylene black. Furthermore, graphite and carbon fiber can also be added as needed. Here, it is preferable to use vapor grown carbon fiber (VGCF) as the carbon fiber. The addition of VGCF has an effect of further reducing the volume resistivity and improving the penetration of the electrolytic solution into the electrode coating film. The addition amount of VGCF is 1 to 10 parts by weight, more preferably 1 to 5 parts by weight with respect to 10 parts by weight of acetylene black. This is because if the amount is less than 1 part by weight, the effect of reducing the volume resistivity is not sufficient, and if it exceeds 10 parts by weight, the effect of suppressing the spring back is not sufficient.

導電剤の粒子形状、大きさ等は特に限定されないが、電解液に含まれるイオンと活物質層に含まれる活物質によって電池反応が起きるため、電解液が活物質層に染み込み可能な空隙(導電剤等が存在しない空間)が、保液層中に確保できる範囲内で、例えば、粒子状、繊維状、ポーラスシート状などのものが使用可能である。導電剤が粒子状の場合、平均粒径は0.01〜20μm、好ましくは0.03〜5μmである。また、高出力化のためには、活物質粒子表面を導電剤粒子が効果的に網羅して導電パスを形成する必要があるため、活物質の平均粒径よりも粒径が小さい導電剤を含むことが好ましく、活物質の平均粒径の1/10以下の平均粒径を持つ導電剤を含むことがより好ましい。電極塗膜中の導電剤の含有率は、活物質100重量部に対して1.5〜30重量部、より好ましくは1.5〜20重量部、さらに好ましくは12〜20重量部である。   The particle shape, size, etc. of the conductive agent are not particularly limited. However, since the battery reaction occurs due to the ions contained in the electrolytic solution and the active material contained in the active material layer, voids (conductivity that allows the electrolytic solution to penetrate into the active material layer) For example, particles, fibers, porous sheets, and the like can be used as long as the space in which no agent or the like is present can be secured in the liquid retaining layer. When the conductive agent is particulate, the average particle size is 0.01 to 20 μm, preferably 0.03 to 5 μm. In order to increase the output, it is necessary to effectively cover the surface of the active material particles with the conductive agent particles to form a conductive path. Therefore, a conductive agent having a particle size smaller than the average particle size of the active material is required. It is preferable to include, and it is more preferable to include a conductive agent having an average particle size of 1/10 or less of the average particle size of the active material. The content rate of the electrically conductive agent in an electrode coating film is 1.5-30 weight part with respect to 100 weight part of active materials, More preferably, it is 1.5-20 weight part, More preferably, it is 12-20 weight part.

電極塗膜の厚さは、抵抗を小さくするため、10〜100μm以下であることが好ましい。なお、電極塗膜は、体積エネルギー密度を高めると同時に、粒子間の良好な接触を保つため、高密度に充填する必要がある一方、電解液に含まれるイオンと活物質によって電池反応は起きるため、電解液が電極塗膜の内部に染み込めるような空隙を確保する必要がある。そのため、電極塗膜の空隙率は、細孔径30nm以上1μm以下の範囲において6〜40%、より好ましくは10〜35%とする必要がある。空隙率が大きすぎると、粒子同士の良好な接触が保たれず反応に関与する電子移動が阻害される。また空隙率が小さすぎると、電極反応に必要なイオンの速やかな移動が阻害され、高出力を出すことは難しくなる。   The thickness of the electrode coating film is preferably 10 to 100 μm or less in order to reduce the resistance. In addition, the electrode coating film needs to be packed at a high density in order to increase the volume energy density and at the same time maintain good contact between the particles. On the other hand, the battery reaction occurs due to ions and active materials contained in the electrolyte. It is necessary to secure a space that allows the electrolytic solution to penetrate into the electrode coating film. Therefore, the porosity of the electrode coating film needs to be 6 to 40%, more preferably 10 to 35%, in the pore diameter range of 30 nm to 1 μm. When the porosity is too large, good contact between particles is not maintained, and electron transfer involved in the reaction is hindered. On the other hand, if the porosity is too small, the rapid movement of ions necessary for the electrode reaction is hindered, making it difficult to produce a high output.

電極板の集電体には、正極板にはアルミニウム箔を用いることができ、負極板には電解銅箔や圧延銅箔等の銅箔を用いることができる。集電体の厚さは5〜50μmが好ましい。   For the current collector of the electrode plate, an aluminum foil can be used for the positive electrode plate, and a copper foil such as an electrolytic copper foil or a rolled copper foil can be used for the negative electrode plate. The thickness of the current collector is preferably 5 to 50 μm.

(電極板の作製方法)
電極板は、活物質や導電剤や結着剤等を含む塗工液を、コーティング法により集電体上に塗布して塗膜を形成することにより作製することができる。すなわち、本発明の電極板の製造法は、少なくとも、活物質と導電剤と結着剤と溶媒とを含む塗工液を集電体上に塗布して電極塗膜を形成する工程と、その電極塗膜を乾燥して溶媒を除去して電極板を得る工程と、その電極板を熱プレスして圧延する工程とを少なくとも含むものである。
(Production method of electrode plate)
The electrode plate can be produced by applying a coating liquid containing an active material, a conductive agent, a binder and the like onto a current collector by a coating method to form a coating film. That is, the method for producing an electrode plate of the present invention includes a step of applying an application liquid containing at least an active material, a conductive agent, a binder, and a solvent on a current collector to form an electrode coating film, It includes at least a step of drying the electrode coating film to remove the solvent to obtain an electrode plate, and a step of hot-pressing and rolling the electrode plate.

正極塗膜及び負極塗膜を形成するための塗工液を調製する溶媒としては、トルエン、メチルエチルケトン、N−メチル−2−ピロリドン或いはこれらの混合物、又はイオン交換水のような、結着剤を溶解及び分散可能な溶媒を用いることができる。塗工液中の溶媒の割合は、30〜65重量%、好ましくは45〜60重量%とし、塗工液をスラリー状に調製する。適宜選択した正極又は負極活物質、結着剤及び導電剤を適切な溶媒中に加え、ホモジナイザー、ボールミル、サンドミル、ロールミルまたはプラネタリーミキサー等の分散機により混合分散して、スラリー状に調製できる。なお、必要に応じて、増粘剤、分散剤等を添加することもできる。   As a solvent for preparing a coating liquid for forming a positive electrode coating film and a negative electrode coating film, a binder such as toluene, methyl ethyl ketone, N-methyl-2-pyrrolidone or a mixture thereof, or ion-exchanged water is used. Soluble and dispersible solvents can be used. The ratio of the solvent in the coating liquid is 30 to 65% by weight, preferably 45 to 60% by weight, and the coating liquid is prepared in a slurry form. An appropriately selected positive or negative electrode active material, binder and conductive agent are added to a suitable solvent, and mixed and dispersed by a disperser such as a homogenizer, ball mill, sand mill, roll mill or planetary mixer to prepare a slurry. In addition, a thickener, a dispersing agent, etc. can also be added as needed.

塗布方法は、特に限定されないが、例えば、ダイコート、コンマコート等を用いることができる。塗工液の粘度が低い場合には、グラビアコート、スプレーコート、ディップコート等によって塗布することもできる。塗布形状は、必要に応じて間欠塗工などパターンを形成してもよい。尚、塗膜は複数回塗工、乾燥を繰り返すことにより形成してもよく、3層以上を塗工した後、その3層以上を一度に乾燥させてもよい。なお、電極膜の塗工量は、正極の場合20〜300g/m(片面あたり)、好ましくは30〜200g/m(片面あたり)であり、負極の場合は10〜200g/m(片面あたり)、好ましくは20〜150g/m(片面あたり)である。 The application method is not particularly limited, and for example, die coating, comma coating, or the like can be used. When the viscosity of the coating liquid is low, it can be applied by gravure coating, spray coating, dip coating, or the like. The application shape may form a pattern such as intermittent coating as necessary. The coating film may be formed by repeating coating and drying a plurality of times, or after coating three or more layers, the three or more layers may be dried at once. Incidentally, the coating amount of the electrode film in the case of the positive electrode 20 to 300 g / m 2 (per side) is preferably 30 to 200 g / m 2 (per side), in the case of anode 10 to 200 g / m 2 ( Per side), preferably 20 to 150 g / m 2 (per side).

塗工後、塗膜中の溶媒を除去するために、電極塗膜を乾燥する。溶媒の除去方法は特に限定されないが、温風乾燥、遠赤外線乾燥、接触乾燥、減圧乾燥、フリーズドライ乾燥などの一般的な手法の中から適宜選択し又はこれらのいくつかを組み合わせて用いることができる。   After coating, the electrode coating film is dried to remove the solvent in the coating film. The method for removing the solvent is not particularly limited, but may be appropriately selected from general techniques such as hot air drying, far infrared drying, contact drying, reduced pressure drying, freeze drying drying, or a combination of these. it can.

このように形成された電極板をさらに熱プレスにより圧延する。本発明で用いる熱プレスは、加熱とプレスを同時に行う方法である。加熱とプレスを同時に行うことにより、プレス時にかかる力を結着剤の弾性変形ではなく、加熱により軟化した結着剤の塑性変形として逃がすことができ、プレス時の塗膜中に発生する内部応力を抑制することができる。これにより、電解液に浸漬してもスプリングバックを抑制できるのみならず、電極塗膜の密度、電極塗膜の集電体に対する密着性、均質性を向上させることができる。   The electrode plate thus formed is further rolled by hot pressing. The hot press used in the present invention is a method in which heating and pressing are performed simultaneously. By simultaneously performing heating and pressing, the force applied during pressing can be released not as elastic deformation of the binder but as plastic deformation of the binder softened by heating, and internal stress generated in the coating film during pressing Can be suppressed. Thereby, not only can the springback be suppressed even when immersed in the electrolytic solution, but also the density of the electrode coating film, the adhesion of the electrode coating film to the current collector, and the homogeneity can be improved.

プレスは、例えば、金属ロール、弾性ロールなどを用いたロールプレス機、平板プレス機等を用いて行う。これらプレス装置は電極と直接接触する部位の温度を制御できることが必要であり、「プレス時の温度」という場合、ロールプレスであればロール表面温度、平板プレスの場合はプレス板の表面温度のことを言う。実際の塗膜中においては結着剤は大きな塊ではなく微細に分布している為、融点よりも低い温度で軟化が始まり塑性変形をさせることができる。実際の樹脂の軟化の程度は、プレス部の温度および電極との接触時間で決まるが、このときプレス温度が低すぎると軟化による塑性変形は起きずスプリングバックは改善されない。逆にプレス温度が高すぎると、接触時間を短くしても、溶融した結着剤が塗膜中の空隙を塞いだり、塗膜の表面がプレス部に付着してしまう恐れがある。プレス時の温度は、結着剤の融点の60%以上の温度であって結着剤の熱分解温度未満の温度で行うことが好ましい。より好ましくは、結着剤の融点の60〜150%、さらに好ましくは70〜110%の温度である。例えば、結着剤にポリフッ化ビニリデンを用いる場合、ポリフッ化ビニリデンの融点は約170℃、熱分解温度は約360℃であるので、熱プレスの好ましい温度は、100〜360℃、より好ましくは100〜250℃、さらに好ましくは、120〜190℃である。   The press is performed using, for example, a roll press machine using a metal roll, an elastic roll, a flat plate press machine, or the like. These press devices need to be able to control the temperature of the part that is in direct contact with the electrode. In the case of “temperature during pressing”, it means the roll surface temperature in the case of a roll press, and the surface temperature of the press plate in the case of a flat plate press. Say. In the actual coating film, the binder is not a large lump but is finely distributed. Therefore, softening starts at a temperature lower than the melting point and plastic deformation can be caused. The actual degree of softening of the resin is determined by the temperature of the press part and the contact time with the electrode, but if the pressing temperature is too low at this time, plastic deformation due to softening does not occur and the springback is not improved. On the other hand, if the press temperature is too high, even if the contact time is shortened, the melted binder may block the voids in the coating film, or the surface of the coating film may adhere to the press portion. The pressing temperature is preferably 60% or more of the melting point of the binder and lower than the thermal decomposition temperature of the binder. More preferably, the temperature is 60 to 150%, more preferably 70 to 110% of the melting point of the binder. For example, when polyvinylidene fluoride is used as the binder, the melting point of polyvinylidene fluoride is about 170 ° C. and the thermal decomposition temperature is about 360 ° C. Therefore, the preferred temperature of the hot press is 100 to 360 ° C., more preferably 100 It is -250 degreeC, More preferably, it is 120-190 degreeC.

なお、一般的に電極板の熱伝導性は良好である為、予め加熱してからプレスする方法では加熱部からプレス機までの間で放冷により電極温度が下がりやすく、プレス機との接触によっても容易に温度が変化するため、加圧時の温度制御が難しく好ましい方法ではない。しかしながら、連続で大量の電極を熱プレスする場合など、熱プレス機から電極への熱移動によりプレス機の温度が低下してしまうような場合には、プレス機に投入する直前で電極板を予備加熱する方法を用いることもできる。   In general, since the thermal conductivity of the electrode plate is good, in the method of pressing after heating in advance, the electrode temperature is likely to drop due to cooling between the heating part and the press machine, and due to contact with the press machine However, since the temperature easily changes, temperature control during pressurization is difficult and is not a preferable method. However, if the temperature of the press machine decreases due to heat transfer from the hot press machine to the electrode, such as when a large number of electrodes are hot pressed continuously, reserve the electrode plate immediately before putting it into the press machine. A heating method can also be used.

また、ロールプレスは、ロングシート状の電極板を連続的にプレス加工することができる。ロールプレスを行う場合には定位プレス、定圧プレスのいずれを行ってもよい。プレスのライン速度に特に制限は無いが、通常は1〜50m/minとする。線圧は電極が破断しない圧力範囲であれば良い。もし装置能力の制限などにより1回のプレスで目標厚みまたは密度に到達しない場合は、複数回プレスを行なっても良い。   Moreover, the roll press can continuously press a long sheet-like electrode plate. When performing a roll press, either a stereotaxic press or a constant pressure press may be performed. Although there is no restriction | limiting in particular in the line speed of a press, Usually, you may be 1-50 m / min. The linear pressure may be in a pressure range where the electrode does not break. If the target thickness or density is not reached with a single press due to device capacity limitations, multiple presses may be performed.

また、シートプレスを行う場合には、圧力は電極が破断しない範囲であれば良い。もし装置能力の制限などにより1回のプレスで目標厚みまたは密度に到達しない場合は、複数回プレスを行なっても良い。   Moreover, when performing a sheet press, the pressure should just be a range which does not fracture | rupture an electrode. If the target thickness or density is not reached with a single press due to device capacity limitations, multiple presses may be performed.

以上のようにして作製した電極板は、電解液に浸漬してもスプリングバックが抑制されるので、浸漬後の密度変化も抑制し、かつ電極塗膜の体積抵抗率の増加を抑制することができる。具体的には、本発明の電極板は、炭酸エステル系溶媒に浸漬前の体積抵抗率をR1、室温で1分間浸漬し乾燥した後の体積抵抗率をR2とし、式ΔR=[(R2−R1)/R1]×100で規定される体積抵抗増加率ΔRが30%以下、好ましくは20%以下、より好ましくは10%以下、さらに好ましくは2%以下である。変化率は小さい方が好ましいが、体積抵抗率の絶対値が十分に小さい場合は、30%以下の変化率であればスプリングバックによる導電パス分断の影響は小さい。電解質を含まない溶媒は、電解質を含む電解液に比べ、一般に溶質に対する溶解力が大きく塗膜に対する膨潤効果も大きい。しかしながら、本発明の電極板は溶媒を用いた場合においても、塗膜の膨潤に伴って起きる非可逆的なスプリングバックを抑制することが可能であり、結果として導電パスの分断による体積抵抗率の増加を顕著に抑制することができる。   Since the electrode plate produced as described above suppresses springback even when immersed in an electrolyte, it suppresses density changes after immersion and suppresses an increase in volume resistivity of the electrode coating film. it can. Specifically, in the electrode plate of the present invention, the volume resistivity before being immersed in a carbonate ester solvent is R1, and the volume resistivity after being immersed and dried at room temperature for 1 minute is R2, and the formula ΔR = [(R2− R1) / R1] × 100, the volume resistivity increasing rate ΔR is 30% or less, preferably 20% or less, more preferably 10% or less, and even more preferably 2% or less. A smaller change rate is preferable, but when the absolute value of the volume resistivity is sufficiently small, if the change rate is 30% or less, the influence of the conductive path division by the springback is small. Solvents that do not contain an electrolyte generally have a greater ability to dissolve solutes and a greater swelling effect on the coating film than electrolytes that contain electrolytes. However, the electrode plate of the present invention can suppress the irreversible springback that occurs as the coating film swells even when a solvent is used, and as a result, the volume resistivity of the conductive path is divided. The increase can be remarkably suppressed.

上記の炭酸エステル系溶媒には、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートからなる群から選択された1種、より好ましくはジエチルカーボネートを用いることができる。   As the carbonate ester solvent, one selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, more preferably diethyl carbonate can be used.

また、作製した電極板の電極塗膜の室温(25℃)における体積抵抗率は、4Ω・cm以下、より好ましくは2.5Ω・cm以下、さらに好ましくは1Ω・cm以下である。   Moreover, the volume resistivity at room temperature (25 degreeC) of the electrode coating film of the produced electrode plate is 4 ohm * cm or less, More preferably, it is 2.5 ohm * cm or less, More preferably, it is 1 ohm * cm or less.

(電池の作製)
作製した電極板を用い、以下の方法により非水電解液二次電池を作製することができる。なお、本発明における非水電解液二次電池用電極板は、正極板及び負極板の少なくとも一方が、上記非水電解液二次電池用電極板であれば良いが、特に正極板に用いることが好ましい。正極板の場合、正極活物質の導電性が負極活物質に比べ低いため、急速充放電時においては集電体から活物質への導電剤による導通パス確保が重要であり、電解液浸漬に伴うスプリングバックによる抵抗増大(導電パス分断)の影響が大きく、本発明の電極板を正極板に用いることにより、電解液に浸漬しても効果的に導電パスが確保された状態に保つ事ができる。
(Production of battery)
Using the produced electrode plate, a non-aqueous electrolyte secondary battery can be produced by the following method. The electrode plate for a non-aqueous electrolyte secondary battery according to the present invention may be any electrode plate for at least one of the positive electrode plate and the negative electrode plate as long as it is the electrode plate for a non-aqueous electrolyte secondary battery. Is preferred. In the case of the positive electrode plate, since the conductivity of the positive electrode active material is lower than that of the negative electrode active material, it is important to secure a conduction path by a conductive agent from the current collector to the active material during rapid charging / discharging. The increase in resistance due to the springback (division of the conductive path) is large, and by using the electrode plate of the present invention for the positive electrode plate, the conductive path can be effectively maintained even when immersed in the electrolyte. .

正極板及び負極板を、ポリエチレン製多孔質フィルムのようなセパレータを介して渦巻状に捲回し、外装容器に挿入する。または、所定の形状に切り出した正極板及び負極板をセパレータを介して積層して固定し、外装容器に挿入する。挿入後、正極板に取り付けられたリード線を外装容器に設けた正極端子に接続し、一方、負極板に取り付けられたリード線を外装容器に設けた負極端子に接続し、外装容器に非水電解液を充填し、密封することによって、本発明に係る電極板を備えた非水電解液二次電池が完成する。   The positive electrode plate and the negative electrode plate are spirally wound through a separator such as a polyethylene porous film and inserted into an outer container. Alternatively, the positive electrode plate and the negative electrode plate cut out in a predetermined shape are stacked and fixed via a separator, and inserted into an outer container. After the insertion, the lead wire attached to the positive electrode plate is connected to the positive electrode terminal provided in the outer container, while the lead wire attached to the negative electrode plate is connected to the negative electrode terminal provided in the outer container, By filling and sealing the electrolyte, a non-aqueous electrolyte secondary battery equipped with the electrode plate according to the present invention is completed.

リチウム系二次電池を作製する場合には、溶質であるリチウム塩を有機溶媒に溶かした非水電解液を用いる。リチウム塩としては、例えば、LiClO、LiBF、LiPF、LiAsF、LiCl、LiBr等の無機リチウム塩、又はLiB(C、LiN(SOCF、LiC(SOCF、LiOSOCF、LiOSO、LiOSO、LiOSO、LiOSO11、LiOSO13、LiOSOF1等の有機リチウム塩を1種以上用いることができる。 When producing a lithium secondary battery, a nonaqueous electrolytic solution in which a lithium salt as a solute is dissolved in an organic solvent is used. Examples of the lithium salt include inorganic lithium salts such as LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCl, LiBr, or LiB (C 6 H 5 ) 4 , LiN (SO 2 CF 3 ) 2 , LiC (SO 2 CF 3) 3, LiOSO 2 CF 3, LiOSO 2 C 2 F 5, LiOSO 2 C 3 F 7, LiOSO 2 C 4 F 9, LiOSO 2 C 5 F 11, LiOSO 2 C 6 F 13, LiOSO 2 C 7 organic lithium salt F1 5 or the like can be used alone or more.

リチウム塩を溶解するための有機溶媒としては、環状エステル系や鎖状エステル系を含む炭酸エステル系溶媒、環状エーテル系溶媒、鎖状エーテル系溶媒等を用いることができる。   As an organic solvent for dissolving the lithium salt, a carbonate ester solvent including a cyclic ester group or a chain ester group, a cyclic ether solvent, a chain ether solvent, or the like can be used.

環状エステル系溶媒としては、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、ビニレンカーボネート、2−メチル−γ−ブチロラクトン、アセチル−γ−ブチロラクトン、γ−バレロラクトン等を例示できる。   Examples of the cyclic ester solvent include propylene carbonate, butylene carbonate, γ-butyrolactone, vinylene carbonate, 2-methyl-γ-butyrolactone, acetyl-γ-butyrolactone, and γ-valerolactone.

鎖状エステル系溶媒としては、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、メチルブチルカーボネート、メチルプロピルカーボネート、エチルブチルカーボネート、エチルプロピルカーボネート、ブチルプロピルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル等を例示できる。   As chain ester solvents, dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, methyl butyl carbonate, methyl propyl carbonate, ethyl butyl carbonate, ethyl propyl carbonate, butyl propyl carbonate, propionic acid alkyl ester, Examples include malonic acid dialkyl esters and acetic acid alkyl esters.

環状エーテル系溶媒としては、テトラヒドロフラン、アルキルテトラヒドロフラン、ジアルキルテトラヒドロフラン、アルコキシテトラヒドロフラン、ジアルコキシテトラヒドロフラン、1,3−ジオキソラン、アルキル−1,3−ジオキソラン、1,4−ジオキソラン等を例示できる。   Examples of the cyclic ether solvent include tetrahydrofuran, alkyltetrahydrofuran, dialkyltetrahydrofuran, alkoxytetrahydrofuran, dialkoxytetrahydrofuran, 1,3-dioxolane, alkyl-1,3-dioxolane, 1,4-dioxolane and the like.

鎖状エーテル系溶媒としては、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジエチルエーテル、エチレングリコールジアルキルエーテル、ジエチレングリコールジアルキルエーテル、トリエチレングリコールジアルキルエーテル、テトラエチレングリコールジアルキルエーテル等を例示することができる。   Examples of chain ether solvents include 1,2-dimethoxyethane, 1,2-diethoxyethane, diethyl ether, ethylene glycol dialkyl ether, diethylene glycol dialkyl ether, triethylene glycol dialkyl ether, and tetraethylene glycol dialkyl ether. be able to.

実験方法.
1.スラリー作製
活物質としてコバルト酸リチウム、導電剤としてアセチレンブラック、バインダーとしてポリフッ化ビニリデン(PVDF)を80/10/10の重量比でN−メチル−2−ピロリドン溶液中で分散させ、電極活物質層塗工用のスラリーを得た。
experimental method.
1. Slurry preparation Lithium cobaltate as active material, acetylene black as conductive agent, polyvinylidene fluoride (PVDF) as binder in a weight ratio of 80/10/10 in N-methyl-2-pyrrolidone solution, and electrode active material layer A slurry for coating was obtained.

2.体積抵抗率測定用サンプル作製
厚さ100μmのPETシート上に1で作製したスラリーを塗布し、オーブン中で乾燥させ電極活物質層を形成した。塗工量は約120g/mであった。
2. Sample preparation for volume resistivity measurement The slurry prepared in 1 was applied onto a PET sheet having a thickness of 100 μm and dried in an oven to form an electrode active material layer. The coating amount was about 120 g / m 2 .

3.電池評価用サンプル作製
厚さ15μmのアルミ箔上に1で作成したスラリーを塗布し、オーブン中で乾燥させ電極活物質層を形成した。塗工量は約120g/mであった。
3. Preparation of Sample for Battery Evaluation The slurry prepared in 1 was applied onto an aluminum foil having a thickness of 15 μm and dried in an oven to form an electrode active material layer. The coating amount was about 120 g / m 2 .

4.熱プレス
表面温度を200℃まで制御可能な熱ロールプレス機にて、2及び3で作成した電極を所定の密度までプレスした。プレス温度は130℃〜190℃とした。
4). Hot pressing The electrodes prepared in 2 and 3 were pressed to a predetermined density with a hot roll press capable of controlling the surface temperature to 200 ° C. The press temperature was 130 ° C to 190 ° C.

5.体積抵抗率測定
4で作成したプレス後の体積抵抗率測定用サンプルの体積抵抗率を、JIS K7194に従い四探針法にて測定した。また該サンプルをジエチルカーボネート(DEC)に1分間浸漬した後乾燥させ、同様に体積抵抗率を測定した。
5). Volume resistivity measurement The volume resistivity of the sample for volume resistivity measurement after pressing prepared in 4 was measured by a four-probe method according to JIS K7194. The sample was dipped in diethyl carbonate (DEC) for 1 minute and then dried, and the volume resistivity was measured in the same manner.

6.電池評価
4で作成したプレス後の電池評価用電極を15mmφの円盤状に打ち抜き、三極式セルを作成した。対極及び参照極には金属リチウムを用い、セパレータは多孔質のポリエチレンシート、電解液はLiPFのエチレンカーボネート/ジメチルカーボネート(1:1)1M溶液を使用した。また、活物質の理論容量(mAh/g)と実際の活物質量(g)から放電レート1Cを算出した。なお、満充電状態から1時間で放電完了する電流値を1Cという。例えば電池の容量が100mAhの場合、1Cの電流値は100mAとなる。この電池を25℃の環境下にて1Cの定電流で充電し、参照極に対し4.2Vに到達した後そのままその電位に保ち、充電電流が減少し0.05C以下となった時点で充電を完了した。その後、10分間休止した後、1Cの定電流で放電し、参照極に対して3.0Vになった時点で放電完了とした。その後、1Cの電流値で再度充電し、10分休止後、20C(1Cの20倍の電流値)で放電し、横軸に放電容量(mAh/g)、縦軸に放電電位(V)のグラフをプロットし、放電電位と容量を確認した。
6). Battery Evaluation The electrode for battery evaluation after pressing created in 4 was punched into a 15 mmφ disk shape to produce a tripolar cell. Lithium metal was used for the counter electrode and the reference electrode, the separator was a porous polyethylene sheet, and the electrolyte was an LiPF 6 ethylene carbonate / dimethyl carbonate (1: 1) 1M solution. Further, the discharge rate 1C was calculated from the theoretical capacity (mAh / g) of the active material and the actual active material amount (g). The current value that completes the discharge in 1 hour from the fully charged state is referred to as 1C. For example, when the capacity of the battery is 100 mAh, the current value of 1C is 100 mA. This battery was charged at a constant current of 1C in an environment of 25 ° C, and after reaching 4.2V with respect to the reference electrode, it was kept at that potential, and charged when the charging current decreased to 0.05C or less. Completed. Then, after resting for 10 minutes, the battery was discharged at a constant current of 1 C, and the discharge was completed when the voltage reached 3.0 V with respect to the reference electrode. After that, it is charged again with a current value of 1C, and after 10 minutes of rest, it is discharged at 20C (current value 20 times that of 1C). The horizontal axis indicates the discharge capacity (mAh / g), and the vertical axis indicates the discharge potential (V). A graph was plotted to confirm the discharge potential and capacity.

実施例1.
熱プレス温度を130℃で実施し、密度2.3g/cmのサンプルを作製した。プレス後の体積抵抗率は0.7Ω・cmであった。
Example 1.
The hot pressing temperature was 130 ° C., and a sample with a density of 2.3 g / cm 3 was produced. The volume resistivity after pressing was 0.7 Ω · cm.

実施例2.
熱プレス温度を160℃で実施し、密度2.3g/cmのサンプルを作製した。プレス後の体積抵抗率は0.7Ω・cmであった。
Example 2
The hot press temperature was implemented at 160 degreeC and the sample of density 2.3g / cm < 3 > was produced. The volume resistivity after pressing was 0.7 Ω · cm.

実施例3.
熱プレス温度を190℃で実施し、密度2.3g/cmのサンプルを作製した。プレス後の体積抵抗率は0.7Ω・cmであった。
Example 3
The hot pressing temperature was 190 ° C., and a sample with a density of 2.3 g / cm 3 was produced. The volume resistivity after pressing was 0.7 Ω · cm.

実施例4.
塗膜の配合比を、コバルト酸リチウム/アセチレンブラック/VGCF/PVDF=80/10/4/6とした以外は実施例1と同様の方法により塗膜を作製し、その塗膜に対し熱プレスを130℃で実施し、密度2.3g/cmのサンプルを作製した。プレス後の体積抵抗率は0.5Ω・cmであった。
Example 4
A coating film was prepared in the same manner as in Example 1 except that the blending ratio of the coating film was lithium cobaltate / acetylene black / VGCF / PVDF = 80/10/4/6. Was performed at 130 ° C. to prepare a sample having a density of 2.3 g / cm 3 . The volume resistivity after pressing was 0.5 Ω · cm.

実施例5.
実施例4と同様の方法により作製した塗膜に対し、熱プレスを100℃で実施し、密度2.3g/cmのサンプルを作製した。プレス後の体積抵抗率は0.5Ω・cmであった。
Example 5 FIG.
The coating film produced by the same method as in Example 4 was hot pressed at 100 ° C. to produce a sample having a density of 2.3 g / cm 3 . The volume resistivity after pressing was 0.5 Ω · cm.

比較例1.
実施例1と同様の方法により作製した塗膜に対し、プレスを室温25℃で実施し、密度2.3g/cmのサンプルを作製した。プレス後の体積抵抗率は0.8Ω・cmであった。
Comparative Example 1
The coating film produced by the same method as in Example 1 was pressed at room temperature of 25 ° C. to produce a sample having a density of 2.3 g / cm 3 . The volume resistivity after pressing was 0.8 Ω · cm.

比較例2.
実施例4と同様の方法により作製した塗膜に対し、プレスを室温25℃で実施し、密度2.3g/cmのサンプルを作製した。プレス後の体積抵抗率は0.5Ω・cmであった。
Comparative Example 2
The coating film produced by the same method as in Example 4 was pressed at room temperature of 25 ° C. to produce a sample having a density of 2.3 g / cm 3 . The volume resistivity after pressing was 0.5 Ω · cm.

結果.
DECに浸漬後の密度変化と体積抵抗率の変化を図1、図2と表1に示す。ここで、浸漬後の密度変化は、浸漬前の密度に対する浸漬後の密度の比率(%)で表している。
result.
Changes in density and volume resistivity after immersion in DEC are shown in FIGS. Here, the density change after immersion is represented by the ratio (%) of the density after immersion to the density before immersion.

Figure 2007258087
Figure 2007258087

実施例1〜3について、体積抵抗率はDECに浸漬した前後でほとんど変わらないのに対し、比較例1では約1.5倍となった。また実施例4及び5の体積抵抗率変化は実施例1〜3に比べ若干大きいが、浸漬後でも実施例1〜3と同程度の体積抵抗率の値を示していた。また、実施例1〜3及び実施例4〜5の20C放電初期における放電電位は、それぞれ比較例1及び2に対し約0.1V高く、電圧降下が抑制されていた。   In Examples 1 to 3, the volume resistivity hardly changed before and after being immersed in DEC, whereas in Comparative Example 1, the volume resistivity was about 1.5 times. Moreover, although the volume resistivity change of Example 4 and 5 was a little large compared with Examples 1-3, the value of volume resistivity comparable as Examples 1-3 was shown even after immersion. Moreover, the discharge potential in the early stage of 20C discharge of Examples 1-3 and Examples 4-5 was about 0.1 V higher than Comparative Examples 1 and 2, respectively, and the voltage drop was suppressed.

本発明の実施例1〜3における、ジエチルカーボネートに浸漬後の電極塗膜の密度変化及び体積抵抗率の変化と、プレス温度の関係を示すグラフである。It is a graph which shows the change of the density change of the electrode coating film after immersion in diethyl carbonate and the change of volume resistivity, and the press temperature in Examples 1-3 of this invention. 本発明の実施例4〜5における、ジエチルカーボネートに浸漬後の電極塗膜の密度変化及び体積抵抗率の変化と、プレス温度の関係を示すグラフである。It is a graph which shows the change of the density change of the electrode coating film after immersion in diethyl carbonate and the change of volume resistivity, and the press temperature in Examples 4-5 of this invention.

Claims (8)

集電体の少なくとも一面に電極塗膜を形成した電極板を加圧成型してなる非水電解液二次電池用電極板であって、
上記電極塗膜は、少なくとも、活物質と、導電剤と、結着剤とを含み、
室温における体積抵抗率が4Ω・cm以下であり、
炭酸エステル系溶媒に浸漬前の体積抵抗率R1と室温で1分間浸漬後の体積抵抗率R2とを用い、式ΔR=[(R2−R1)/R1]×100で規定される抵抗増加率ΔRが30%以下である、非水電解液二次電池用電極板。
An electrode plate for a non-aqueous electrolyte secondary battery formed by pressure molding an electrode plate having an electrode coating film formed on at least one surface of a current collector,
The electrode coating film includes at least an active material, a conductive agent, and a binder,
The volume resistivity at room temperature is 4 Ω · cm or less,
Using a volume resistivity R1 before immersion in a carbonate ester solvent and a volume resistivity R2 after immersion for 1 minute at room temperature, a resistance increase rate ΔR defined by the formula ΔR = [(R2-R1) / R1] × 100 Is an electrode plate for a non-aqueous electrolyte secondary battery.
上記電極塗膜の厚さが10μm〜100μmである請求項1記載の非水電解液二次電池用電極板。   The electrode plate for a non-aqueous electrolyte secondary battery according to claim 1, wherein the electrode coating film has a thickness of 10 μm to 100 μm. 上記導電剤を上記活物質100重量部に対し12重量部以上を含む請求項1記載の非水電解液二次電池用電極板。   The electrode plate for a non-aqueous electrolyte secondary battery according to claim 1, wherein the conductive agent contains 12 parts by weight or more with respect to 100 parts by weight of the active material. 上記結着剤が、フッ素系樹脂である請求項1記載の非水電解液二次電池用電極板。   The electrode plate for a non-aqueous electrolyte secondary battery according to claim 1, wherein the binder is a fluororesin. 上記炭酸エステル系溶媒が、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートからなる群から選択された少なくとも1種である請求項1記載の非水電解液二次電池用電極板。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the carbonate ester solvent is at least one selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. Electrode plate. 少なくとも、活物質と、導電剤と、結着剤とを含み、室温における体積抵抗率が4Ω・cm以下であり、炭酸エステル系溶媒に浸漬前の体積抵抗率R1と室温で1分間浸漬後の体積抵抗率R2とを用い、式ΔR=[(R2−R1)/R1]×100で規定される抵抗増加率ΔRが30%以下である電極膜を、少なくとも一面に有してなる非水電解液二次電池用電極板の製造方法であって、
上記電極塗膜を、電解液に含浸させるに先立って、上記結着剤の融点の60%以上の温度であって上記結着剤の熱分解温度未満の温度で熱プレスする工程を含む、非水電解液二次電池用電極板の製造方法。
At least the active material, the conductive agent, and the binder are included, the volume resistivity at room temperature is 4 Ω · cm or less, and the volume resistivity R1 before immersion in the carbonate ester solvent and after immersion for 1 minute at room temperature. Nonaqueous electrolysis comprising an electrode film having a resistance increase rate ΔR defined by the formula ΔR = [(R2−R1) / R1] × 100 of 30% or less on at least one surface, using the volume resistivity R2. A method for producing an electrode plate for a liquid secondary battery, comprising:
Prior to impregnating the electrode coating film with the electrolytic solution, including a step of hot pressing at a temperature of 60% or more of the melting point of the binder and less than the thermal decomposition temperature of the binder, Manufacturing method of electrode plate for water electrolyte secondary battery.
上記の熱プレスする工程の温度が、上記結着剤の融点の60〜150%の温度である請求項6記載の製造方法。   The manufacturing method according to claim 6, wherein the temperature of the hot pressing step is 60 to 150% of the melting point of the binder. 少なくとも正極板、負極板及び電解質を含む非水電解液二次電池であって、該正極板及び負極板の少なくとも一方に、請求項1から5のいずれか一つに記載の非水電解液二次電池用電極板を用いてなる非水電解液二次電池。


A non-aqueous electrolyte secondary battery including at least a positive electrode plate, a negative electrode plate and an electrolyte, wherein at least one of the positive electrode plate and the negative electrode plate is provided with the non-aqueous electrolyte solution 2 according to any one of claims 1 to 5. A nonaqueous electrolyte secondary battery using a secondary battery electrode plate.


JP2006083393A 2006-03-24 2006-03-24 Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery Expired - Fee Related JP5114857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006083393A JP5114857B2 (en) 2006-03-24 2006-03-24 Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006083393A JP5114857B2 (en) 2006-03-24 2006-03-24 Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2007258087A true JP2007258087A (en) 2007-10-04
JP5114857B2 JP5114857B2 (en) 2013-01-09

Family

ID=38632096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006083393A Expired - Fee Related JP5114857B2 (en) 2006-03-24 2006-03-24 Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5114857B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015092463A (en) * 2013-09-30 2015-05-14 株式会社Gsユアサ Power-storage device
US20170005331A1 (en) * 2014-03-19 2017-01-05 Toppan Printing Co., Ltd. Electrode for non-aqueous electrolyte secondary battery
CN107490764A (en) * 2016-06-13 2017-12-19 宁德时代新能源科技股份有限公司 Method for detecting internal pressure of battery and method for detecting volume of battery
KR20180057345A (en) * 2016-11-22 2018-05-30 주식회사 엘지화학 Evaluation method of electrode

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180006360A (en) * 2015-05-14 2018-01-17 세키스이가가쿠 고교가부시키가이샤 Carbon material, carbon material-active material composite, electrode material for lithium-ion secondary battery, and lithium-ion secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203500A (en) * 1995-01-20 1996-08-09 Japan Storage Battery Co Ltd Manufacture of electrode plate for nonaqueous electrolyte battery
JP2000348710A (en) * 1999-06-07 2000-12-15 Japan Energy Corp Electrode for nonaqueous secondary battery and its manufacture
JP2001216965A (en) * 2000-02-02 2001-08-10 Toyota Central Res & Dev Lab Inc Positive electrode for lithium secondary battery
JP2001357888A (en) * 2000-06-14 2001-12-26 Shin Kobe Electric Mach Co Ltd Cylindrical lithium secondary battery
JP2003183029A (en) * 2001-10-11 2003-07-03 Mitsubishi Chemicals Corp Method for purifying lithium transition metal complex oxide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203500A (en) * 1995-01-20 1996-08-09 Japan Storage Battery Co Ltd Manufacture of electrode plate for nonaqueous electrolyte battery
JP2000348710A (en) * 1999-06-07 2000-12-15 Japan Energy Corp Electrode for nonaqueous secondary battery and its manufacture
JP2001216965A (en) * 2000-02-02 2001-08-10 Toyota Central Res & Dev Lab Inc Positive electrode for lithium secondary battery
JP2001357888A (en) * 2000-06-14 2001-12-26 Shin Kobe Electric Mach Co Ltd Cylindrical lithium secondary battery
JP2003183029A (en) * 2001-10-11 2003-07-03 Mitsubishi Chemicals Corp Method for purifying lithium transition metal complex oxide

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015092463A (en) * 2013-09-30 2015-05-14 株式会社Gsユアサ Power-storage device
US9455091B2 (en) 2013-09-30 2016-09-27 Gs Yuasa International Ltd. Electric storage device
US20170005331A1 (en) * 2014-03-19 2017-01-05 Toppan Printing Co., Ltd. Electrode for non-aqueous electrolyte secondary battery
KR101784646B1 (en) * 2014-03-19 2017-10-11 도판 인사츠 가부시키가이샤 Electrode for non-aqueous electrolyte secondary battery
CN107490764A (en) * 2016-06-13 2017-12-19 宁德时代新能源科技股份有限公司 Method for detecting internal pressure of battery and method for detecting volume of battery
CN107490764B (en) * 2016-06-13 2019-07-30 宁德时代新能源科技股份有限公司 Method for detecting internal pressure of battery and method for detecting volume of battery
KR20180057345A (en) * 2016-11-22 2018-05-30 주식회사 엘지화학 Evaluation method of electrode
KR102071919B1 (en) 2016-11-22 2020-01-31 주식회사 엘지화학 Evaluation method of electrode

Also Published As

Publication number Publication date
JP5114857B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
JP5882516B2 (en) Lithium secondary battery
US11581566B2 (en) Secondary battery and method for manufacturing the same
JP4081895B2 (en) Gel electrolyte for lithium ion secondary battery and gel electrolyte lithium ion secondary battery
JP4834030B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery using the same
KR102024889B1 (en) Semi-Interpenetrating Polymer Networks Polymer Electrolyte and All-Solid-State Battery comprising The Same
JP5070721B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US11764358B2 (en) Method for manufacturing all solid-state battery comprising polymeric solid electrolyte and all solid-state battery obtained thereby
JP2013012410A (en) Cathode material for nonaqueous electrolyte secondary battery and method for producing the same
JP2019212619A (en) Manufacturing method of electrode active material layer, manufacturing method of electrode for lithium ion battery, and manufacturing method for lithium ion battery
JP5114857B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5200329B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US20210043916A1 (en) Method for Manufacturing Electrode Comprising Polymeric Solid Electrolyte and Electrode Obtained Thereby
JP2007265890A (en) Electrode plate for nonaqueous electrolytic solution secondary battery, and its manufacturing method as well as nonaqueous electrolytic solution secondary battery
JP2007103041A (en) Electrode plate for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN112136233B (en) Method for producing electrode containing polymer-based solid electrolyte and electrode produced by the method
JP2004281234A (en) Slurry for electrode mixture layer, and electrode plate, and nonaqueous electrolyte solution battery
JP2007265889A (en) Electrode plate for nonaqueous electrolytic solution secondary battery, and its manufacturing method as well as nonaqueous electrolytic solution secondary battery
KR20190088330A (en) Manufacturing methods for carbon nano tube-electrode composite powder and electrode for solid electrolyte battery including the same
JP5181607B2 (en) Method for producing electrode plate for negative electrode of non-aqueous electrolyte secondary battery
CN108539198B (en) Solvent for coating positive electrode active material for secondary battery, positive electrode active material slurry containing same, and secondary battery manufactured therefrom
CN114586199A (en) Negative electrode active material, method of preparing the same, and negative electrode and secondary battery including the same
JP4527423B2 (en) Coating composition for active material layer, electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2015151145A1 (en) All-solid lithium secondary cell
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery
CN104396057A (en) Nonaqueous electrolyte secondary battery and method of manufacturing nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121001

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees