JP2007257883A - Fuel cell separator and its manufacturing method - Google Patents

Fuel cell separator and its manufacturing method Download PDF

Info

Publication number
JP2007257883A
JP2007257883A JP2006077424A JP2006077424A JP2007257883A JP 2007257883 A JP2007257883 A JP 2007257883A JP 2006077424 A JP2006077424 A JP 2006077424A JP 2006077424 A JP2006077424 A JP 2006077424A JP 2007257883 A JP2007257883 A JP 2007257883A
Authority
JP
Japan
Prior art keywords
metal
oxide film
separator
noble metal
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006077424A
Other languages
Japanese (ja)
Inventor
Katsuhiro Mizuno
勝宏 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Takaoka Co Ltd
Original Assignee
Aisin Takaoka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Takaoka Co Ltd filed Critical Aisin Takaoka Co Ltd
Priority to JP2006077424A priority Critical patent/JP2007257883A/en
Publication of JP2007257883A publication Critical patent/JP2007257883A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell separator capable of achieving the reduction of contact resistance and the prevention of the elution of substrate constituting metal, even if a noble metal layer formed on the surface of the metal substrate of ferrous metal is formed thinner than a conventional one, and its manufacturing method. <P>SOLUTION: Anode oxidation is applied in an alkaline solution on the metal substrate of iron ferrous metal (for example, stainless steel), and then, noble metal plating (for example, gold plating) is applied. The fuel cell separator obtained thereby is provided with the metal substrate of ferrous metal (for example, stainless steel), an oxidized film of an average thickness of 5-30 nm formed on the surface of the metal substrate, and a noble metal layer (for example, gold plating) formed on the oxidized film. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、燃料電池構成部品の一種である燃料電池セパレータと、燃料電池セパレータの製造方法とに関する。   The present invention relates to a fuel cell separator which is a kind of fuel cell component and a method for manufacturing the fuel cell separator.

一般に固体高分子型燃料電池は、電池セルとセパレータとを交互に配置・積層したものを端子板及び絶縁板を介して一対のエンドプレート間に挟着保持してなる燃料電池スタックから構成されている。電池セルは、プロトン透過性の高分子膜を一対の電極(触媒層)で挟んでなる膜−電極アセンブリ(MEA)として構成されている。セパレータは、MEA間に介在する導電性仕切部材としての役割を担うだけでなく、MEAの両側に位置して燃料ガスや酸化剤ガスの供給通路を区画するガス流路区画部材としての役割を担う。なお、MEAとセパレータとの間には、通常、触媒層へのガス拡散を良好にするための拡散層が設けられる。   In general, a polymer electrolyte fuel cell is composed of a fuel cell stack in which battery cells and separators are alternately arranged and stacked and held between a pair of end plates via a terminal plate and an insulating plate. Yes. The battery cell is configured as a membrane-electrode assembly (MEA) in which a proton-permeable polymer membrane is sandwiched between a pair of electrodes (catalyst layers). The separator not only plays a role as a conductive partition member interposed between the MEAs, but also serves as a gas flow path partition member that is located on both sides of the MEA and partitions the supply passage for fuel gas and oxidant gas. . A diffusion layer is usually provided between the MEA and the separator to improve gas diffusion into the catalyst layer.

従来、セパレータの構成材料としては緻密質カーボンが多用されていた。しかし、カーボン製セパレータは、材料コスト及び材料加工コストが割高であるだけでなく、カーボン自体の脆さを補ってスタック構成時の割れを防止するためには厚肉化する必要があり、燃料電池の低コスト化及び小型化には不利であった。それ故、セパレータの構成材料としては、汎用の金属材料のうちでも比較的耐食性が良好なステンレス鋼が注目されている。   Conventionally, dense carbon has been frequently used as a constituent material of the separator. However, the carbon separator not only has a high material cost and material processing cost, but also needs to be thickened to compensate for the brittleness of the carbon itself and prevent cracking in the stack configuration. It was disadvantageous for cost reduction and size reduction. Therefore, as a constituent material of the separator, stainless steel having a relatively good corrosion resistance among general-purpose metal materials has attracted attention.

但し、ステンレス鋼の素材表面には通常、不動態皮膜(主に金属成分の酸化物の皮膜、膜厚2〜3nm)が自然形成されており、この不動態皮膜が金属製セパレータの接触抵抗を高める原因になる。また、燃料電池の動作環境で生成される腐食性物質(強い酸)の影響によって、例えばステンレス鋼製のセパレータといえども、金属がイオン化して溶出するという欠点がある。それ故、金属製セパレータにあっては、接触抵抗を低減すると共に金属溶出を抑制するために、セパレータの表面に貴金属(例えば金)の皮膜を形成することが必須となっている(例えば特許文献1)。なお、特許文献1は、下地処理(例えばニッケルめっき)を施していないステンレス鋼板の表面に金めっきを直接施して所定面積率の金皮膜を形成することを特徴とする金属製セパレータ及びその製造方法を開示する。   However, a passive film (mainly an oxide film of metal components, film thickness of 2 to 3 nm) is normally formed on the surface of the stainless steel material, and this passive film reduces the contact resistance of the metal separator. Causes to increase. In addition, due to the influence of corrosive substances (strong acids) generated in the operating environment of the fuel cell, for example, even a stainless steel separator has a drawback that the metal is ionized and eluted. Therefore, in a metal separator, in order to reduce contact resistance and suppress metal elution, it is essential to form a noble metal (eg, gold) film on the surface of the separator (eg, patent document). 1). Patent Document 1 discloses a metal separator and a method of manufacturing the metal separator, in which a gold film having a predetermined area ratio is formed by directly performing gold plating on the surface of a stainless steel plate not subjected to a base treatment (for example, nickel plating). Is disclosed.

貴金属は材料コストが高いため、その使用量を低減する必要があり、そのためには貴金属皮膜の膜厚を極力薄くする必要がある。しかしながら、貴金属皮膜をあまり薄膜化すると、貴金属皮膜におけるピンホール(あるいは結晶粒の隙間)が増加して基材の露出面積が増大し、その結果、基材を構成する金属の溶出量が増大するという問題がある。このため、貴金属皮膜の薄膜化にも限界があり、十分なコスト低減を図ることが難しい状況にあった。本発明はかかる事情に鑑みてなされたものである。   Since the precious metal has a high material cost, it is necessary to reduce the amount of the precious metal used. For this purpose, it is necessary to make the film thickness of the precious metal film as thin as possible. However, if the noble metal film is made too thin, pinholes (or crystal grain gaps) in the noble metal film are increased and the exposed area of the base material is increased. As a result, the amount of the metal constituting the base material is increased. There is a problem. For this reason, there is a limit to the thinning of the noble metal film, and it has been difficult to achieve sufficient cost reduction. The present invention has been made in view of such circumstances.

特開2004−296381号公報(要約など)JP 2004-296281 A (summary etc.)

本発明の目的は、鉄系金属製の金属基材の表面に形成される貴金属層を従来以上に薄膜化しても、接触抵抗の低減と基材構成金属の溶出防止とを図ることが可能な燃料電池セパレータ及びその製造方法を提供することにある。   The object of the present invention is to reduce contact resistance and prevent elution of base metal components even if the noble metal layer formed on the surface of a metal base made of iron-based metal is made thinner than before. It is an object of the present invention to provide a fuel cell separator and a manufacturing method thereof.

本発明の燃料電池セパレータの製造方法は、鉄系金属製の金属基材に対しアルカリ溶液中で陽極酸化を施すことにより、前記金属基材の表面に酸化皮膜を形成する陽極酸化工程と、陽極酸化が施された前記金属基材に対し貴金属のめっき又はスパッタリングを施すことにより、前記酸化皮膜の上に貴金属層を形成する貴金属層形成工程とを備えることを特徴とするものである。   The method for producing a fuel cell separator of the present invention comprises an anodizing step of forming an oxide film on the surface of a metal base by subjecting the metal base made of iron-based metal to anodization in an alkaline solution, and an anode A noble metal layer forming step of forming a noble metal layer on the oxide film by performing plating or sputtering of the noble metal on the oxidized metal base material.

より好ましくは、本発明の燃料電池セパレータの製造方法は、鉄系金属製の金属基材に対しアルカリ溶液中で陽極酸化を施し、その後、陽極酸化が施された前記金属基材に対し貴金属のめっきを施すことにより、鉄系金属製の金属基材の表面に平均膜厚が5〜30nmの酸化皮膜が形成され、且つその酸化皮膜の上に貴金属層が形成された燃料電池セパレータを得ることを特徴とするものである。   More preferably, in the method for producing a fuel cell separator according to the present invention, the metal base material made of iron-based metal is anodized in an alkaline solution, and then the anodized metal base material is subjected to noble metal. Obtaining a fuel cell separator in which an oxide film having an average film thickness of 5 to 30 nm is formed on the surface of a metal base made of iron-based metal by plating and a noble metal layer is formed on the oxide film It is characterized by.

また、本発明の燃料電池セパレータは、鉄系金属製の金属基材と、前記金属基材の表面に形成された平均膜厚が5〜30nmの酸化皮膜と、前記酸化皮膜の上に形成された貴金属層とを備えることを特徴とするものである。   The fuel cell separator of the present invention is formed on a metal base made of an iron-based metal, an oxide film having an average film thickness of 5 to 30 nm formed on the surface of the metal base, and the oxide film. And a noble metal layer.

[作用]
本発明では、鉄系金属製の金属基材の表面に対する陽極酸化により、基材表面における酸化皮膜の生成を積極的に促して、酸化皮膜の平均膜厚を、自然発生時の膜厚(通常2〜3nm)よりも厚い平均膜厚(好ましくは5〜30nm)に形成している。それ故、仮に貴金属層が従来以上に薄膜化されてピンホール等が増加し基材の露出面積が増大することがあっても、比較的厚い陽極酸化皮膜が貴金属層の下地層として存在することにより、燃料電池運転時の強い酸性環境下でも基材構成金属の溶出が極力防止される。なお、金属基材と貴金属層との間に酸化皮膜が介在したとしても、陽極酸化によって形成される程度の膜厚であれば、貴金属層が最表面に存在することによる接触抵抗の低減効果の方が大きいため、セパレータ全体として接触抵抗の低減が図られる。このように本発明によれば、接触抵抗の低減と基材構成金属の溶出防止とを両立させることができる。
[Action]
In the present invention, the anodic oxidation of the surface of the metal base made of iron-based metal actively promotes the formation of an oxide film on the surface of the base material, and the average film thickness of the oxide film is determined as the film thickness at the time of natural occurrence (usually normal 2 to 3 nm) and an average film thickness (preferably 5 to 30 nm). Therefore, even if the noble metal layer is made thinner than before, pinholes etc. increase and the exposed area of the base material may increase, a relatively thick anodic oxide film must exist as the underlayer of the noble metal layer Thus, the elution of the base metal is prevented as much as possible even in a strong acidic environment during fuel cell operation. Even if an oxide film is interposed between the metal substrate and the noble metal layer, the contact resistance can be reduced due to the presence of the noble metal layer on the outermost surface as long as it is formed by anodization. Therefore, the contact resistance is reduced as a whole separator. Thus, according to the present invention, it is possible to achieve both reduction in contact resistance and prevention of elution of the base metal.

なお、酸化皮膜が厚膜化すると、その上の層(本発明では貴金属層)の密着性が悪化すると一般的には考えられている。しかし、本発明における酸化皮膜は、陽極酸化によって作られることに起因して表面の粗さ(つまり微細な凹凸構造)を有している。このため、比較的厚い陽極酸化皮膜となっていても、微細な凹凸構造によるアンカー効果によって、酸化皮膜に対する貴金属層の良好な密着性が確保される。   Note that it is generally considered that when the oxide film is thickened, the adhesion of the layer above it (the noble metal layer in the present invention) deteriorates. However, the oxide film in the present invention has a surface roughness (that is, a fine concavo-convex structure) due to being formed by anodic oxidation. For this reason, even if it becomes a comparatively thick anodic oxide film, the favorable adhesiveness of the noble metal layer with respect to an oxide film is ensured by the anchor effect by a fine uneven structure.

本発明の燃料電池セパレータ及びその製造方法によれば、鉄系金属製の金属基材の表面に形成される貴金属層を従来以上に薄膜化しても、接触抵抗の低減と基材構成金属の溶出防止とを図ることができる。また、陽極酸化によって作られた酸化皮膜に対する貴金属層のアンカー効果に基づき、貴金属層の良好な密着性を確保することができる。   According to the fuel cell separator and the manufacturing method thereof of the present invention, even if the noble metal layer formed on the surface of the metal base made of ferrous metal is made thinner than before, the contact resistance is reduced and the metal constituting the base material is eluted. Can be prevented. Moreover, it is possible to ensure good adhesion of the noble metal layer based on the anchor effect of the noble metal layer on the oxide film formed by anodic oxidation.

本発明の好ましい実施態様や追加的構成要件について更に詳細に説明する。   Preferred embodiments and additional components of the present invention will be described in further detail.

本発明の燃料電池セパレータは、金属基材に対して陽極酸化を施した後、基材表面に貴金属層を形成することにより製造される。ここで、燃料電池セパレータとは、燃料電池スタックの積層方向への通電経路を構築するための通電回路としての機能、及び、燃料ガスや酸化剤ガスの流通路を区画形成するための流路区画材又はガス分離材としての機能を併せ持った燃料電池構成部品である。   The fuel cell separator of the present invention is manufactured by forming a noble metal layer on the surface of the base material after anodizing the metal base material. Here, the fuel cell separator is a function as an energization circuit for constructing an energization path in the stacking direction of the fuel cell stack, and a flow path section for forming a flow path for fuel gas and oxidant gas. It is a fuel cell component having a function as an art material or a gas separation material.

セパレータの本体を構成する基材は鉄系金属製の金属基材である。鉄系金属としては、例えばステンレス鋼があげられる。   The base material constituting the main body of the separator is a metal base made of iron-based metal. An example of the iron-based metal is stainless steel.

金属基材の陽極酸化は、金属基材及び対向電極をアルカリ溶液中に浸漬した状態で金属基材を陽極とする電解処理を行うことにより達成される。陽極酸化を施すことで金属基材の表面における酸化皮膜の形成が促進される。陽極酸化によって金属基材の表面に平均膜厚が5〜30nm(ナノメートル)、より好ましくは10〜20nmの酸化皮膜を形成することが好ましい。酸化皮膜の平均膜厚が5nm未満では、大気下で自然形成される基材表面の酸化膜の膜厚(通常2〜3nm)との有意差がなく、基材構成金属の溶出防止効果をあまり期待できない。他方、酸化皮膜の平均膜厚が30nmを超えると、セパレータの接触抵抗が大きくなって目的を達成できなくなる、又、電解めっき処理によって貴金属層を形成する際に導通抵抗が高くなって貴金属元素の酸化皮膜表面への付着が悪くなる(つまり、めっきが乗らない)等の不都合を生じる。   Anodization of the metal substrate is achieved by performing an electrolytic treatment using the metal substrate as an anode while the metal substrate and the counter electrode are immersed in an alkaline solution. The formation of an oxide film on the surface of the metal substrate is promoted by applying anodization. It is preferable to form an oxide film having an average film thickness of 5 to 30 nm (nanometer), more preferably 10 to 20 nm, on the surface of the metal substrate by anodic oxidation. If the average film thickness of the oxide film is less than 5 nm, there is no significant difference from the film thickness of the oxide film on the surface of the base material that is naturally formed in the atmosphere (usually 2 to 3 nm), and the effect of preventing the dissolution of the metal constituting the base material I can't expect it. On the other hand, if the average film thickness of the oxide film exceeds 30 nm, the contact resistance of the separator becomes large and the object cannot be achieved. Also, when the noble metal layer is formed by electrolytic plating, the conduction resistance becomes high and Inconveniences such as poor adhesion to the oxide film surface (that is, no plating).

陽極酸化が施された金属基材に対し貴金属のめっき又はスパッタリングを施すことにより、前記酸化皮膜の上に貴金属層が形成される。めっき方法としては、無電解めっき又は電解めっき(電解めっきの一種であるストライクめっきを含む)があげられるが、金属の酸化皮膜に対する付着性のよさという点では、無電解めっきよりも電解めっきの方が好ましい。   A noble metal layer is formed on the oxide film by plating or sputtering a noble metal on the anodized metal substrate. Examples of plating methods include electroless plating or electrolytic plating (including strike plating, which is a type of electrolytic plating). Is preferred.

酸化皮膜の上の貴金属層を構成する貴金属としては、金(Au)、白金(Pt)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、イリジウム(Ir)等があげられる。これらの貴金属は、酸などの腐食性物質に侵されにくい耐食性金属である。これら貴金属の中でも金(Au)又は白金(Pt)が好ましく、特に金(Au)は最も好ましい。金は高い耐食性と低い電気抵抗とを兼ね備えた貴金属であり、燃料電池セパレータにおける導電部の表面被覆金属として非常に適している。   Gold (Au), platinum (Pt), ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), etc. are used as the noble metal constituting the noble metal layer on the oxide film. can give. These noble metals are corrosion resistant metals that are not easily attacked by corrosive substances such as acids. Among these noble metals, gold (Au) or platinum (Pt) is preferable, and gold (Au) is particularly preferable. Gold is a noble metal having both high corrosion resistance and low electrical resistance, and is very suitable as a surface coating metal for a conductive portion in a fuel cell separator.

上記のような製造手順を経て得られる燃料電池セパレータは、図1に示すように、鉄系金属製の金属基材と、その金属基材の表面に形成された平均膜厚が5〜30nm(より好ましくは10〜20nm)の酸化皮膜と、その酸化皮膜の上に形成された貴金属層とを備えている。   As shown in FIG. 1, the fuel cell separator obtained through the manufacturing procedure as described above has a metal base made of iron-based metal and an average film thickness formed on the surface of the metal base of 5 to 30 nm ( More preferably, it has an oxide film of 10 to 20 nm) and a noble metal layer formed on the oxide film.

本発明の燃料電池セパレータ及びその製造方法には、以下に列挙するような種々の利点や長所がある。   The fuel cell separator and the method for producing the same of the present invention have various advantages and advantages as listed below.

酸化皮膜は金属基材そのものの露出表面を酸化させてできる皮膜なので、基材に対する酸化皮膜の密着性(又は一体性)は極めて高い。それ故、金属基材と酸化皮膜との境界で界面剥離が生ずることはほとんどなく、従って酸化皮膜ごと貴金属層が金属基材から剥離することもない(金属基材に対する酸化皮膜の高密着性)。   Since the oxide film is a film formed by oxidizing the exposed surface of the metal substrate itself, the adhesion (or integrity) of the oxide film to the substrate is extremely high. Therefore, there is almost no interfacial delamination at the boundary between the metal substrate and the oxide film, and therefore the noble metal layer does not peel from the metal substrate together with the oxide film (high adhesion of the oxide film to the metal substrate). .

酸化皮膜は金属基材の陽極酸化によって作られたものであるため、陽極酸化に特有の表面の粗さ(つまり微細な凹凸構造)を伴っている。この酸化皮膜表面の粗さは、特にめっき処理によって付着・形成される貴金属層に対してアンカー効果を生じさせ、酸化皮膜に対する貴金属層(特に貴金属めっき層)の良好な密着性を確保できる。この意味で金属基材の陽極酸化の後にめっき処理によって貴金属層を形成することは非常に相性がよい。   Since the oxide film is formed by anodic oxidation of a metal substrate, it has a surface roughness (that is, a fine concavo-convex structure) peculiar to anodic oxidation. This roughness of the oxide film surface causes an anchor effect particularly on the noble metal layer deposited and formed by the plating process, and can ensure good adhesion of the noble metal layer (particularly the noble metal plating layer) to the oxide film. In this sense, it is very compatible to form a noble metal layer by plating after the anodic oxidation of the metal substrate.

貴金属層の下地層としての酸化皮膜は、金属基材そのものの表面を酸化させてできる皮膜なので、金属基材と貴金属層との間に別元素の中間層(例えばニッケル中間層)を形成するような場合(従来例)に比して、製造コストを大幅に低減することができる。   The oxide film as the base layer of the noble metal layer is a film formed by oxidizing the surface of the metal substrate itself, so that an intermediate layer of another element (for example, a nickel intermediate layer) is formed between the metal substrate and the noble metal layer. Compared to the case (conventional example), the manufacturing cost can be greatly reduced.

貴金属層の下地層としての酸化皮膜は、酸に対する耐食性に優れている。それ故、仮に貴金属層が従来以上に薄膜化(例えば貴金属層の膜厚が約10nm程度に薄膜化)され、貴金属層のピンホール等が増加し基材の露出面積が増大することがあったとしても、酸化皮膜の存在により、燃料電池運転時の強い酸による基材構成金属の溶出が極力防止又は抑制される。   An oxide film as an underlayer of the noble metal layer has excellent corrosion resistance against acids. Therefore, the noble metal layer may be made thinner than before (for example, the noble metal layer is thinned to about 10 nm), pinholes and the like of the noble metal layer may increase, and the exposed area of the base material may increase. Even so, the presence of the oxide film prevents or suppresses the elution of the metal constituting the base material by a strong acid during operation of the fuel cell as much as possible.

なお、金属基材と貴金属層との間に酸化皮膜が介在したとしても、陽極酸化によって形成される最大でも30nm程度の膜厚の酸化皮膜であれば、セパレータ全体として接触抵抗の低減が図られる。即ち、セパレータ面直方向(スタッキング方向)の抵抗は、酸化皮膜の固有抵抗、貴金属層の固有抵抗、及び、セパレータ表面と拡散層との接触抵抗をあわせたものであるが、このうち、セパレータ面直方向抵抗の主たる部分を占めるのは、セパレータ表面と拡散層との間の接触抵抗であり、5〜30nm程度の厚みの酸化皮膜の固有抵抗がセパレータ面直方向の総抵抗に占める割合は非常に小さい。もし仮に貴金属層を設けることなく酸化皮膜を拡散層に直接接触させた場合には接触抵抗は非常に大きくなるところであるが、貴金属層を設けることで拡散層との接触抵抗が大幅に低減し、セパレータ全体としての接触抵抗は非常に小さくなる。このように本発明によれば、適度に厚みのある酸化皮膜が金属基材の表面に介在しても、貴金属層が最表面(即ち拡散層と直接接する位置)に存在することによる接触抵抗の低減効果の方が大きい。それ故、本発明によれば、接触抵抗の低減と基材構成金属の溶出防止とを両立させることができる。   Even if an oxide film is interposed between the metal substrate and the noble metal layer, the contact resistance can be reduced as a whole if the oxide film is formed by anodic oxidation and has a film thickness of about 30 nm at the maximum. . That is, the resistance in the direction perpendicular to the separator surface (stacking direction) is a combination of the specific resistance of the oxide film, the specific resistance of the noble metal layer, and the contact resistance between the separator surface and the diffusion layer. The main part of the direct resistance is the contact resistance between the separator surface and the diffusion layer, and the ratio of the specific resistance of the oxide film having a thickness of about 5 to 30 nm to the total resistance in the direction perpendicular to the separator surface is very high. Small. If the oxide film is brought into direct contact with the diffusion layer without providing a noble metal layer, the contact resistance is very large, but the contact resistance with the diffusion layer is greatly reduced by providing the noble metal layer, The contact resistance of the separator as a whole is very small. As described above, according to the present invention, even if an appropriately thick oxide film is interposed on the surface of the metal substrate, the contact resistance due to the presence of the noble metal layer on the outermost surface (that is, the position in direct contact with the diffusion layer) is reduced. The reduction effect is greater. Therefore, according to the present invention, it is possible to achieve both reduction of contact resistance and prevention of elution of the metal constituting the base material.

本発明の具体例である実施例1を比較例1と対比しつつ説明する。   Example 1 which is a specific example of the present invention will be described in comparison with Comparative Example 1.

[実施例1]
ステンレス鋼(SUS316L)の薄板を成形して、試験用の燃料電池セパレータ基材(縦100mm×横50mm×厚さ0.3mm)を作製した。このセパレータ基材に対し、以下に述べるような条件でアルカリ陽極酸化、それに続く後処理及び金めっき処理を施して、実施例1のセパレータを得た。
[Example 1]
A thin plate of stainless steel (SUS316L) was molded to prepare a fuel cell separator base material for testing (length 100 mm × width 50 mm × thickness 0.3 mm). The separator substrate of Example 1 was obtained by subjecting this separator base material to alkali anodization under the conditions described below, followed by post-treatment and gold plating treatment.

(1)アルカリ陽極酸化
アルカリ溶液としての10%水酸化ナトリウム水溶液に少量の界面活性剤を加えてなる電解浴を準備し、その電解浴中に上記セパレータ基材(SUS316L)と、対向電極(SUS316L)とを浸漬した。そして、セパレータ基材を直流電源の陽極(+極)に、対向電極を直流電源の陰極(−極)にそれぞれ接続し、両極間に20ボルトの電圧を30分間印加して陽極酸化を行った。この陽極酸化により、セパレータ基材の表面には、膜厚が20〜40nmの酸化皮膜が形成された。
(1) Alkaline anodization An electrolytic bath is prepared by adding a small amount of a surfactant to a 10% aqueous sodium hydroxide solution as an alkaline solution. In the electrolytic bath, the separator base material (SUS316L) and the counter electrode (SUS316L) are prepared. And soaked. Then, the separator substrate was connected to the anode (+ electrode) of the DC power supply, the counter electrode was connected to the cathode (−electrode) of the DC power supply, and a voltage of 20 volts was applied between the electrodes for 30 minutes to perform anodization. . By this anodic oxidation, an oxide film having a thickness of 20 to 40 nm was formed on the surface of the separator substrate.

(2)後処理(めっき処理に先んずる前処理)
上記陽極酸化後のセパレータ基材についてはその後、水洗(水洗1とする)、酸浸漬、水洗(水洗2とする)、酸中和、水洗(水洗3とする)という一連の後処理工程を経て、次の金めっき処理工程に移行した。ここで「酸浸漬」とは、陽極酸化を施した基材の表面を活性化してめっき処理液との親和性を向上させるための前処理であって、本実施例ではセパレータ基材を、硫酸、硝酸及びフッ酸の混合酸水溶液中に約1分間浸漬することにより行った。なお、この酸浸漬によってセパレータ基材表面の酸化皮膜の一部が溶け出し、その膜厚は若干減少する。また、「酸中和」とは、酸浸漬で使用した酸の残留物がめっき処理液に悪影響を及ぼすのを未然防止するための洗浄処理であって、本実施例ではセパレータ基材を5%硫酸水溶液中に約1分間浸漬することにより行った。
(2) Post-processing (pre-processing prior to plating)
The separator substrate after the anodization is then subjected to a series of post-treatment steps of washing with water (referred to as water-wash 1), acid immersion, washing with water (referred to as water-wash 2), acid neutralization, and washing with water (referred to as water-wash 3). Then, the next gold plating process was started. Here, “acid dipping” is a pretreatment for activating the surface of the base material that has been subjected to anodization to improve the affinity with the plating treatment solution. This was carried out by immersing in a mixed acid aqueous solution of nitric acid and hydrofluoric acid for about 1 minute. Note that a part of the oxide film on the surface of the separator base material is dissolved by this acid immersion, and the film thickness is slightly reduced. “Acid neutralization” is a cleaning treatment for preventing the acid residue used in the acid immersion from adversely affecting the plating treatment solution. In this embodiment, 5% of the separator substrate is used. It was performed by immersing in an aqueous sulfuric acid solution for about 1 minute.

(3)金めっき処理
シアン化金を主成分とするめっき処理液からなるめっき浴を準備し、そのめっき浴中に上記アルカリ陽極酸化及びそれに続く後処理を施したセパレータ基材と、対向電極とを浸漬した。そして、セパレータ基材を直流電源の陰極(−極)に、対向電極を直流電源の陽極(+極)にそれぞれ接続し、数アンペア程度の電流を数十秒間通電して電解めっきを行った。この電解めっきにより、表面に金めっきが施されたセパレータを得た。
(3) Gold plating treatment A plating bath made of a plating treatment solution containing gold cyanide as a main component is prepared. Soaked. Then, the separator substrate was connected to the cathode (-electrode) of the DC power supply, the counter electrode was connected to the anode (+ electrode) of the DC power supply, and a current of about several amperes was applied for several tens of seconds to perform electroplating. By this electrolytic plating, a separator having a surface plated with gold was obtained.

上記一連の工程を経て得られた実施例1の燃料電池セパレータは、ステンレス鋼(SUS316L)製の基材の表面に膜厚が10〜20nmの酸化皮膜が形成され、更にその酸化皮膜の上に膜厚が約10nmの金めっき層が形成されたものである。なお、実施例1の金属基材はステンレス鋼製であることから、酸化皮膜は主に酸化クロムからなる。   In the fuel cell separator of Example 1 obtained through the above-described series of steps, an oxide film having a thickness of 10 to 20 nm is formed on the surface of a stainless steel (SUS316L) base material, and further on the oxide film. A gold plating layer having a thickness of about 10 nm is formed. In addition, since the metal base material of Example 1 is a product made from stainless steel, an oxide film consists mainly of chromium oxide.

[比較例1]
上記実施例1と同様に、ステンレス鋼(SUS316L)の薄板を成形して、試験用の燃料電池セパレータ基材(縦100mm×横50mm×厚さ0.3mm)を作製した。このセパレータ基材に対し、アルカリ電解脱脂、実施例1と同様の上記(2)後処理及び上記(3)金めっき処理を施して、比較例1のセパレータを得た。つまり、比較例1とは、実施例1における上記(1)アルカリ陽極酸化に代えて、下記(4)のアルカリ電解脱脂を施した事例である。
[Comparative Example 1]
In the same manner as in Example 1, a thin plate of stainless steel (SUS316L) was formed to prepare a test fuel cell separator substrate (length 100 mm × width 50 mm × thickness 0.3 mm). The separator substrate of Comparative Example 1 was obtained by subjecting this separator substrate to alkaline electrolytic degreasing, (2) post-treatment similar to Example 1, and (3) gold plating treatment. That is, the comparative example 1 is an example in which the alkaline electrolytic degreasing of the following (4) is performed instead of the (1) alkaline anodization in the first embodiment.

(4)アルカリ電解脱脂
アルカリ溶液としての10%水酸化ナトリウム水溶液に少量の界面活性剤を加えてなる電解浴を準備し、その電解浴中に上記セパレータ基材(SUS316L)と、対向電極(SUS316L)とを浸漬した。そして、セパレータ基材を直流電源の陽極(+極)に、対向電極を直流電源の陰極(−極)にそれぞれ接続し、両極間に4ボルトの電圧を5分間印加して電解脱脂を行った。この電解脱脂処理により、セパレータ基材の表面に付着していた油分や脂肪分が除去された。
(4) Alkaline electrolytic degreasing An electrolytic bath is prepared by adding a small amount of a surfactant to a 10% aqueous sodium hydroxide solution as an alkaline solution. In the electrolytic bath, the separator base material (SUS316L) and the counter electrode (SUS316L) are prepared. And soaked. Then, the separator substrate was connected to the anode (+ electrode) of the DC power supply, the counter electrode was connected to the cathode (−electrode) of the DC power supply, and a voltage of 4 volts was applied between the electrodes for 5 minutes to perform electrolytic degreasing. . By this electrolytic degreasing treatment, oils and fats adhering to the surface of the separator substrate were removed.

比較例1では、上記アルカリ電解脱脂後のセパレータ基材に対して、上記実施例1と同様、水洗1、酸浸漬、水洗2、酸中和及び水洗3という一連の後処理工程を施した。なお、酸浸漬により、セパレータ基材表面の自然酸化によって自然形成されていた酸化皮膜のほとんどが除去された。そしてその後に、セパレータ基材に対して、上記実施例1と同様の金めっき処理を施した。   In Comparative Example 1, the separator substrate after the alkaline electrolytic degreasing was subjected to a series of post-treatment steps of water washing 1, acid dipping, water washing 2, acid neutralization and water washing 3 as in Example 1. In addition, most of the oxide film naturally formed by the natural oxidation of the separator base material surface was removed by the acid immersion. After that, the same gold plating treatment as in Example 1 was performed on the separator base material.

上記一連の工程を経て得られた比較例1の燃料電池セパレータは、ステンレス鋼(SUS316L)製の基材の表面に膜厚が約10nmの金めっき層が形成されたものであり、金めっき層の下地層にあたる酸化皮膜がほとんど存在しないセパレータである。   The fuel cell separator of Comparative Example 1 obtained through the above series of steps is obtained by forming a gold plating layer having a thickness of about 10 nm on the surface of a stainless steel (SUS316L) base material. This separator is almost free of an oxide film corresponding to the underlayer.

実施例1及び比較例1のセパレータにつき、以下のような種々の試験を行った。   The separators of Example 1 and Comparative Example 1 were subjected to the following various tests.

[密着性評価試験]
JIS−H8504のめっきの密着性試験方法にかかる引きはがし試験方法(テープ試験方法)に基づいて、金めっき層の密着性を評価した。その結果を表1に示す。
[Adhesion evaluation test]
Based on the peel test method (tape test method) according to the JIS-H8504 plating adhesion test method, the adhesion of the gold plating layer was evaluated. The results are shown in Table 1.

表1からわかるように、金めっき層の下地層として酸化皮膜を有する実施例1のセパレータでも、金めっき層だけを有する比較例1のセパレータと同程度に、その金めっき層は良好な密着性を示した。   As can be seen from Table 1, even in the separator of Example 1 having an oxide film as the underlayer of the gold plating layer, the gold plating layer has good adhesion as well as the separator of Comparative Example 1 having only the gold plating layer. showed that.

[耐食性評価試験]
溶出試験方法に基づいて試験片(試作セパレータ等)の耐食性を評価した。即ち、図2に示すように、燃料電池運転時の環境を模擬した酸性水溶液(pH2の硫酸水溶液)の浴中に試験片を浸漬する。そして、酸性水溶液の温度を80℃に保ち約100時間試験片を漬け置いた後、浴中の溶液を一部採取し、ICP(誘導結合プラズマ発光分析法)により酸性水溶液中に溶出した基材構成金属(Fe,Cr,Ni等)のイオン量を定量した。
[Corrosion resistance evaluation test]
The corrosion resistance of the test piece (trial separator, etc.) was evaluated based on the dissolution test method. That is, as shown in FIG. 2, the test piece is immersed in a bath of an acidic aqueous solution (pH 2 sulfuric acid aqueous solution) that simulates the environment during fuel cell operation. Then, after maintaining the temperature of the acidic aqueous solution at 80 ° C. and leaving the test piece for about 100 hours, a part of the solution in the bath was collected and eluted into the acidic aqueous solution by ICP (inductively coupled plasma emission spectrometry). The amount of ions of constituent metals (Fe, Cr, Ni, etc.) was quantified.

試験片としては、実施例1のセパレータ、比較例1のセパレータ、及び、これらのセパレータの基材と同じものである無処理のステンレス鋼(SUS316L)製の基材(縦100mm×横50mm×厚さ0.3mm)を使用し、それぞれについて溶出試験を行い、ICPにより基材構成金属の溶出量を定量した。無処理のステンレス鋼製基材での金属溶出量を1とした場合の金属溶出量(即ち溶出量の相対値)を表1に示す。   As test specimens, the separator of Example 1, the separator of Comparative Example 1, and the base material made of untreated stainless steel (SUS316L) which is the same as the base material of these separators (length 100 mm × width 50 mm × thickness) 0.3 mm) was used for each, and the dissolution test was performed for each, and the dissolution amount of the metal constituting the base material was quantified by ICP. Table 1 shows the metal elution amount (that is, the relative value of the elution amount) when the metal elution amount in an untreated stainless steel substrate is 1.

表1からわかるように、実施例1の金属溶出量は0.04であり、無処理のステンレス鋼製基材の金属溶出量の1/25に過ぎなかった。また、比較例1の金属溶出量(0.07)と比較しても、セパレータ基材からの金属溶出は、実施例1が比較例1の約57%程度に過ぎず、金めっき層の下地層としての酸化皮膜を形成することによる耐食性の向上が確認された。   As can be seen from Table 1, the metal elution amount of Example 1 was 0.04, which was only 1/25 of the metal elution amount of the untreated stainless steel substrate. In addition, even when compared with the metal elution amount (0.07) of Comparative Example 1, the metal elution from the separator base material was only about 57% of Comparative Example 1 in Example 1, and was below the gold plating layer. It was confirmed that the corrosion resistance was improved by forming an oxide film as the formation.

[接触抵抗試験]
図3に示すような接触抵抗試験を行った。即ち、試験片(試作セパレータ等)をカーボンペーパー(燃料電池の拡散層に相当するもの)を介在させて上下二つの極板で挟むと共に、燃料電池スタック構成時の面圧にほぼ匹敵する面圧:1MPaを付与した状態で、両極板間に5アンペアの電流Iを通電した。そして、通電時における試験片とカーボンペーパーとの間の電圧値Vを測定し、オームの法則(R=V/I,この場合I=5(A))に基づいて接触抵抗値Rを求めた。
[Contact resistance test]
A contact resistance test as shown in FIG. 3 was performed. In other words, a test piece (prototype separator, etc.) is sandwiched between two upper and lower electrode plates with carbon paper (corresponding to the diffusion layer of a fuel cell) interposed, and the surface pressure approximately equal to the surface pressure when the fuel cell stack is configured. In a state where 1 MPa was applied, a current I of 5 amperes was passed between both electrode plates. And the voltage value V between the test piece at the time of electricity supply and carbon paper was measured, and contact resistance value R was calculated | required based on Ohm's law (R = V / I, I = 5 (A) in this case). .

試験片としては、実施例1のセパレータ、比較例1のセパレータ、及び、これらのセパレータの基材と同じものである無処理のステンレス鋼(SUS316L)製の基材(縦100mm×横50mm×厚さ0.3mm)を使用し、それぞれについて上記電圧値Vから接触抵抗値Rを求めた。なお、各試験片につき、上記耐食性評価試験を行う前(「腐食前」と称す)と、上記耐食性評価試験を行った後(「腐食後」と称す)の接触抵抗値を求めた。無処理のステンレス鋼製基材の接触抵抗値を1とした場合の接触抵抗値(即ち接触抵抗の相対値)を表1に示す。   As test specimens, the separator of Example 1, the separator of Comparative Example 1, and the base material made of untreated stainless steel (SUS316L) which is the same as the base material of these separators (length 100 mm × width 50 mm × thickness) The contact resistance value R was determined from the voltage value V for each. For each test piece, the contact resistance value before the corrosion resistance evaluation test (referred to as “before corrosion”) and after the corrosion resistance evaluation test (referred to as “after corrosion”) was determined. Table 1 shows the contact resistance value (that is, the relative value of the contact resistance) when the contact resistance value of the untreated stainless steel substrate is 1.

表1からわかるように、実施例1及び比較例1ともに、それらの接触抵抗(相対値)は腐食前及び腐食後ともに0.003であった。つまり、実施例1も比較例1も、無処理のステンレス鋼板の接触抵抗の約1/333に過ぎなかった。この結果から、金めっき層の下地層としての酸化皮膜を形成した実施例1のセパレータでも、金めっき層だけを形成した比較例1のセパレータとほぼ同等の接触抵抗の低さを示すことが確認された。   As can be seen from Table 1, in both Example 1 and Comparative Example 1, their contact resistance (relative value) was 0.003 both before and after corrosion. That is, both Example 1 and Comparative Example 1 were only about 1/333 of the contact resistance of the untreated stainless steel plate. From this result, it was confirmed that the separator of Example 1 in which the oxide film as the underlayer of the gold plating layer was formed exhibited a low contact resistance substantially equivalent to that of the separator of Comparative Example 1 in which only the gold plating layer was formed. It was done.

Figure 2007257883
Figure 2007257883

このように実施例1の燃料電池セパレータによれば、ステンレス鋼製基材及び酸化皮膜に対する金めっき層の良好な密着性を確保できると共に、優れた耐食性能と低い接触抵抗とを両立させることができる。   Thus, according to the fuel cell separator of Example 1, it is possible to ensure good adhesion of the gold plating layer to the stainless steel substrate and the oxide film, and to achieve both excellent corrosion resistance and low contact resistance. it can.

燃料電池セパレータの表面付近の拡大断面図。The expanded sectional view near the surface of a fuel cell separator. 耐食性評価試験の方法の概要を示す図。The figure which shows the outline | summary of the method of a corrosion resistance evaluation test. 接触抵抗の測定方法の概要を示す図。The figure which shows the outline | summary of the measuring method of contact resistance.

Claims (4)

鉄系金属製の金属基材に対しアルカリ溶液中で陽極酸化を施すことにより、前記金属基材の表面に酸化皮膜を形成する陽極酸化工程と、
陽極酸化が施された前記金属基材に対し貴金属のめっき又はスパッタリングを施すことにより、前記酸化皮膜の上に貴金属層を形成する貴金属層形成工程と
を備えることを特徴とする燃料電池セパレータの製造方法。
Anodizing step of forming an oxide film on the surface of the metal substrate by anodizing the metal substrate made of iron-based metal in an alkaline solution;
And a noble metal layer forming step of forming a noble metal layer on the oxide film by plating or sputtering of the noble metal on the anodized metal base material. Method.
鉄系金属製の金属基材に対しアルカリ溶液中で陽極酸化を施し、その後、陽極酸化が施された前記金属基材に対し貴金属のめっきを施すことにより、
鉄系金属製の金属基材の表面に平均膜厚が5〜30nmの酸化皮膜が形成され、且つその酸化皮膜の上に貴金属層が形成された燃料電池セパレータを得ることを特徴とする燃料電池セパレータの製造方法。
Anodizing in an alkaline solution for a metal base made of iron-based metal, and then plating the noble metal on the metal base that has been anodized,
A fuel cell characterized in that an oxide film having an average film thickness of 5 to 30 nm is formed on the surface of a metal base made of iron-based metal, and a noble metal layer is formed on the oxide film. Separator manufacturing method.
鉄系金属製の金属基材と、前記金属基材の表面に形成された平均膜厚が5〜30nmの酸化皮膜と、前記酸化皮膜の上に形成された貴金属層とを備えることを特徴とする燃料電池セパレータ。   It comprises a metal base made of iron-based metal, an oxide film having an average film thickness of 5 to 30 nm formed on the surface of the metal base, and a noble metal layer formed on the oxide film. Fuel cell separator. 前記貴金属層を構成する貴金属は、金(Au)又は白金(Pt)であることを特徴とする請求項3に記載の燃料電池セパレータ。   The fuel cell separator according to claim 3, wherein the noble metal constituting the noble metal layer is gold (Au) or platinum (Pt).
JP2006077424A 2006-03-20 2006-03-20 Fuel cell separator and its manufacturing method Pending JP2007257883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006077424A JP2007257883A (en) 2006-03-20 2006-03-20 Fuel cell separator and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006077424A JP2007257883A (en) 2006-03-20 2006-03-20 Fuel cell separator and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007257883A true JP2007257883A (en) 2007-10-04

Family

ID=38631918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006077424A Pending JP2007257883A (en) 2006-03-20 2006-03-20 Fuel cell separator and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007257883A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054488A1 (en) * 2007-10-24 2009-04-30 Toyota Jidosha Kabushiki Kaisha Fuel cell separator and method for producing the same
WO2012005112A1 (en) 2010-07-09 2012-01-12 Jx日鉱日石金属株式会社 Separator material for fuel cell, and separator for fuel cell and fuel cell stack each comprising same
DE112010003187T5 (en) 2009-08-05 2012-06-28 Daido Steel Co., Ltd. Fuel cell separator material and fuel cell stack using the same
WO2012098689A1 (en) * 2011-01-17 2012-07-26 Jfeスチール株式会社 Method for producing stainless steel for fuel cell separators, stainless steel for fuel cell separators, fuel cell separator, and fuel cell
WO2013150947A1 (en) * 2012-04-04 2013-10-10 新日鐵住金株式会社 Cr-containing austenitic alloy
US9136545B2 (en) 2008-02-27 2015-09-15 GM Global Technology Operations LLC Low cost fuel cell bipolar plate and process of making the same
JP2019133869A (en) * 2018-02-01 2019-08-08 住友電気工業株式会社 Twisted wire for wire harness and wire harness

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054488A1 (en) * 2007-10-24 2009-04-30 Toyota Jidosha Kabushiki Kaisha Fuel cell separator and method for producing the same
JP2009104932A (en) * 2007-10-24 2009-05-14 Toyota Motor Corp Fuel cell separator and its manufacturing method
US9136545B2 (en) 2008-02-27 2015-09-15 GM Global Technology Operations LLC Low cost fuel cell bipolar plate and process of making the same
DE102009010279B4 (en) * 2008-02-27 2020-08-20 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Inexpensive fuel cell bipolar plate and method of making the same
DE112010003187T5 (en) 2009-08-05 2012-06-28 Daido Steel Co., Ltd. Fuel cell separator material and fuel cell stack using the same
WO2012005112A1 (en) 2010-07-09 2012-01-12 Jx日鉱日石金属株式会社 Separator material for fuel cell, and separator for fuel cell and fuel cell stack each comprising same
WO2012098689A1 (en) * 2011-01-17 2012-07-26 Jfeスチール株式会社 Method for producing stainless steel for fuel cell separators, stainless steel for fuel cell separators, fuel cell separator, and fuel cell
US9653738B2 (en) 2011-01-17 2017-05-16 Jfe Steel Corporation Method for producing stainless steel for fuel cell separator, stainless steel for fuel cell separator, fuel cell separator, and fuel cell
WO2013150947A1 (en) * 2012-04-04 2013-10-10 新日鐵住金株式会社 Cr-containing austenitic alloy
JP5561431B2 (en) * 2012-04-04 2014-07-30 新日鐵住金株式会社 Chromium-containing austenitic alloy
US9493860B2 (en) 2012-04-04 2016-11-15 Nippon Steel & Sumitomo Metal Corporation Chromium-containing austenitic alloy
JP2019133869A (en) * 2018-02-01 2019-08-08 住友電気工業株式会社 Twisted wire for wire harness and wire harness

Similar Documents

Publication Publication Date Title
JP5614861B2 (en) Process for manufacturing electrodes used in fuel cells
US8211495B2 (en) Noble metal plating of titanium components
JP2007257883A (en) Fuel cell separator and its manufacturing method
JP5133466B2 (en) Fuel cell separator and method for producing the same
JP2004296381A (en) Metal separator for fuel cell and its manufacturing method
WO2009072665A1 (en) Method of manufacturing fuel cell separator, fuel cell separator and fuel cell
JP2010027262A (en) Fuel cell separator and fuel cell
JP2005133169A (en) Silver-coated stainless steel strip for movable contact, and its production method
JP2008153082A (en) Material for fuel cell separator
US20230008403A1 (en) Electrolysis electrode
JP5590008B2 (en) Current collecting plate for fuel cell and manufacturing method thereof
JP2010097840A (en) Fuel cell separator and method for manufacturing thereof
JP5244078B2 (en) Fuel cell separator and method for producing the same
JP6587848B2 (en) Fuel cell energization member, fuel cell, fuel cell stack, and fuel cell energization member manufacturing method
JP3930393B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP5846409B2 (en) Conductive structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP2009087909A (en) Manufacturing method of separator for fuel cell
JP4040008B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP5342482B2 (en) Fuel cell separator and method for producing the same
JP2006302529A (en) Manufacturing method of separator for solid polymer fuel cell
JP6015880B1 (en) Stainless steel plate for separator of polymer electrolyte fuel cell
JP5466269B2 (en) Fuel cell separator and fuel cell
JP2005243595A (en) Separator for solid polymer fuel cell, and the solid polymer fuel cell using the same
JP2005302669A (en) Manufacturing method of aluminum separator for fuel cell
JP2003105564A (en) Method of manufacturing corrosion resistant metallic member and corrosion resistant metallic member

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070628

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070830

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20071009