JP5846409B2 - Conductive structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell - Google Patents

Conductive structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell Download PDF

Info

Publication number
JP5846409B2
JP5846409B2 JP2011117572A JP2011117572A JP5846409B2 JP 5846409 B2 JP5846409 B2 JP 5846409B2 JP 2011117572 A JP2011117572 A JP 2011117572A JP 2011117572 A JP2011117572 A JP 2011117572A JP 5846409 B2 JP5846409 B2 JP 5846409B2
Authority
JP
Japan
Prior art keywords
conductive
polymer electrolyte
fuel cell
layer
electrolyte fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011117572A
Other languages
Japanese (ja)
Other versions
JP2012246518A (en
Inventor
宮澤 篤史
篤史 宮澤
友克 姫野
友克 姫野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2011117572A priority Critical patent/JP5846409B2/en
Publication of JP2012246518A publication Critical patent/JP2012246518A/en
Application granted granted Critical
Publication of JP5846409B2 publication Critical patent/JP5846409B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、種々の電気電子部品、とりわけ燃料電池における電気的接続部分に適用され、接触抵抗を低減することができる導性構に関するものである。 The present invention, various electric and electronic parts, is especially applicable to put that electrical connection portion to the fuel cell, to a conductive structure body that can be reduced contact resistance.

地球環境保護や化石燃料の枯渇問題の観点から、燃料電池を電源とする電動自動車の開発が進められ、近年では、その実用段階に来ている。
このような燃料電池は、単独のセルだけでは発電量が小さいため、実用的な電力を取り出すためには、多数のセルを積層した燃料電池スタックとして稼働させる必要がある。
From the viewpoint of global environmental protection and fossil fuel depletion problems, the development of electric vehicles powered by fuel cells has been promoted, and in recent years, it has reached its practical stage.
Since such a fuel cell has a small amount of power generation with only a single cell, it is necessary to operate as a fuel cell stack in which a large number of cells are stacked in order to extract practical power.

例えば、100℃以下での比較的低温で作動し、発電効率が高いとされている固体高分子形燃料電池(PEFC:Polymer Electrolyte Fuel Cell、PEMFC:Proton Exchange Membrane Fuel Cell)において、単セルは、固体高分子電解質膜の両側に、空気極と燃料極を接合した膜電極接合体(MEA:Membrane−Electorode Assembly)を備え、この接合体のさらに両側にセパレータが配置されている。
なお、上記空気極及び燃料極は、それぞれガス拡散層と触媒層を備えた2層構造を有し、両触媒層がそれぞれ固体高分子電解質膜に接触している。
For example, in a polymer electrolyte fuel cell (PEFC) that operates at a relatively low temperature below 100 ° C. and has high power generation efficiency, a single cell is: A membrane electrode assembly (MEA) in which an air electrode and a fuel electrode are joined is provided on both sides of the solid polymer electrolyte membrane, and separators are arranged on both sides of the joined body.
The air electrode and the fuel electrode each have a two-layer structure including a gas diffusion layer and a catalyst layer, and both catalyst layers are in contact with the solid polymer electrolyte membrane.

このような単セルは、複数個が積層され、両端部をエンドフランジで挟んだ状態で締結ボルトにより加圧保持されて一体化され、燃料電池スタックとなる。
こうして組み立てられた燃料電池スタックにおいて、上記セパレータは単セル間を電気的に接続する機能を有することから、このようなセパレータには、電気伝導性に優れると共に、隣接するセパレータやガス拡散層等の構成材料との接触抵抗が低いことが要求されることになる。
A plurality of such single cells are stacked, and are pressed and held by fastening bolts with both end portions sandwiched between end flanges to form a fuel cell stack.
In the fuel cell stack assembled in this way, since the separator has a function of electrically connecting single cells, such a separator is excellent in electrical conductivity, and has an adjacent separator, gas diffusion layer, etc. A low contact resistance with the constituent material is required.

このような観点から、例えば特許文献1には、電極との接触面や隣接するセパレータとの接触面の表面粗さを、JIS B0601(2001)に規定される算術平均粗さRaで0.9〜3.0、負荷長さ率Rmr(50)で50以上としたセパレータが記載されている。   From this point of view, for example, Patent Document 1 discloses that the surface roughness of the contact surface with the electrode and the contact surface with the adjacent separator is 0.9 as the arithmetic average roughness Ra defined in JIS B0601 (2001). A separator with a load length ratio Rmr (50) of 50 or more is described.

特開2009−218170号公報JP 2009-218170 A

しかしながら、接触抵抗は接点を構成する材料種と、接触面圧で一意的に決まってしまい、例えば貴金属である金をメッキした材料と比べて、接触抵抗を大幅に低減することはできないという問題があった。また、上記文献以外にも、Raに代表される粗さパラメータなど、表面粗さの調整によって、電気的な接点を増加させようとする試みもあるが、接触抵抗の低減には限度があるという問題があった。   However, the contact resistance is uniquely determined by the type of material constituting the contact and the contact surface pressure. For example, the contact resistance cannot be significantly reduced as compared with a material plated with gold, which is a noble metal. there were. In addition to the above documents, there are attempts to increase the number of electrical contacts by adjusting the surface roughness, such as roughness parameters represented by Ra, but there is a limit to reducing contact resistance. There was a problem.

本発明は、燃料電池を始めとする各種電気部品における電気的接続に関する上記課題を解決すべくなされたものであって、その目的とするところは、接触面圧が低い場合にも接触抵抗を低減することができる固体高分子形燃料電池用の導電性構造体及び固体高分子形燃料電池を提供することにある。 The present invention has been made to solve the above-mentioned problems related to electrical connection in various electrical components such as fuel cells, and its purpose is to reduce contact resistance even when contact surface pressure is low. It is an object to provide a conductive structure for a polymer electrolyte fuel cell and a polymer electrolyte fuel cell.

本発明者らは、上記目的の達成に向けて、鋭意検討を重ねた結果、固体高分子形燃料電池に適用され、導電性多孔質部材であるガス拡散層と、ガス拡散層に接触する導電性部材であるセパレータとからなり、セパレータが、ガス拡散層との接触面に導電性凹凸層を有し、導電性凹凸層は、その先端が鋭角をなす無数の針状又は錐状突起が配列されて成り、突起は、高さが1000nm以上9000nm以下であり、少なくとも突起の一部が、ガス拡散層に食い込んでいる構成とすることによって、上記目的が達成できることを見出し、本発明を完成するに到った。 As a result of intensive studies aimed at achieving the above object, the present inventors have applied to a polymer electrolyte fuel cell, and are a conductive porous member , a gas diffusion layer, and a conductive material in contact with the gas diffusion layer. consists of a separator is a sexual member, the separator has a conductive uneven layer on the contact surface between the gas diffusion layer, the conductive uneven layer, the myriad of its tip forms an acute needle-like or cone-shaped projections arranged The protrusion has a height of 1000 nm or more and 9000 nm or less, and it is found that the above object can be achieved by setting at least a part of the protrusion to bite into the gas diffusion layer , thereby completing the present invention. It reached.

すなわち、本発明は上記知見に基づくものであって、本発明の固体高分子形燃料電池用の導電性構造体は、固体高分子形燃料電池に適用され、導電性多孔質部材であるガス拡散層と、ガス拡散層に接触する導電性部材であるセパレータとからなり、セパレータが、ガス拡散層との接触面に導電性凹凸層を有し、導電性凹凸層は、その先端が鋭角をなす無数の針状又は錐状突起が配列されて成り、突起は、高さが1000nm以上9000nm以下であり、少なくとも突起の一部が、ガス拡散層に食い込んでいることを特徴とする。 That is, the present invention is based on the above knowledge, and the conductive structure for a polymer electrolyte fuel cell of the present invention is applied to a polymer electrolyte fuel cell, and is a gas diffusion material that is a conductive porous member. consists of a layer, a separator which is a conductive member in contact with the gas diffusion layer, the separator has a conductive uneven layer on the contact surface between the gas diffusion layer, the conductive irregular layer has its tip forms an acute angle An infinite number of needle-like or cone-like protrusions are arranged, the protrusions have a height of 1000 nm to 9000 nm, and at least a part of the protrusions bites into the gas diffusion layer .

本発明によれば、固体高分子形燃料電池に適用され、導電性多孔質部材であるガス拡散層と、ガス拡散層に接触する導電性部材であるセパレータとからなる固体高分子形燃料電池用の導電性構造体であって、セパレータが、ガス拡散層との接触面に導電性凹凸層を有し、導電性凹凸層は、その先端が鋭角をなす無数の針状又は錐状突起が配列されて成り、突起は、高さが1000nm以上9000nm以下であり、少なくとも突起の一部が、ガス拡散層に食い込んでいる構成とすることによって、低面圧下でも、接触抵抗を低減することができる。 According to the present invention, for a polymer electrolyte fuel cell, which is applied to a polymer electrolyte fuel cell, comprising a gas diffusion layer as a conductive porous member and a separator as a conductive member in contact with the gas diffusion layer . The separator has a conductive concavo-convex layer on the contact surface with the gas diffusion layer, and the conductive concavo-convex layer has innumerable needle-like or conical projections arranged at an acute angle. Thus, the protrusion has a height of 1000 nm or more and 9000 nm or less, and at least a part of the protrusion bites into the gas diffusion layer , so that the contact resistance can be reduced even under a low surface pressure. .

(a)(b)は本発明の導電性構における接触抵抗低減メカニズムを示す概略断面図である。(A) (b) is a schematic sectional view showing a contact resistance reducing mechanism in the conductive structure of the present invention. (a)(b)は従来の導電性部材間における接触抵抗発生のメカニズムを示す概略断面図である。(A) (b) is a schematic sectional drawing which shows the mechanism of contact resistance generation | occurrence | production between the conventional electroconductive members. 本発明の導電性構における接触抵抗に及ぼす突起高さの影響を示すグラフである。Is a graph showing the effect of the projection height on the contact resistance in the conductive structure of the present invention. 電性凹凸層における突起の形状例を示す電子顕微鏡画像である。It is an electron microscope image which shows the example of the shape of the processus | protrusion in a conductive uneven | corrugated layer. 電性凹凸層における突起の他の形状例を示す電子顕微鏡画像である。It is an electron microscope image which shows the other shape example of the processus | protrusion in a conductive uneven | corrugated layer. 本発明の導電性凹凸層を備えた導電性構における接触面圧と接触抵抗の関係を導電性凹凸層を備えていない場合と比較して示すグラフである。It is a graph comparing with the case where no the relationship the contact resistance with the contact surface pressure in the conductive structure body provided with a conductive uneven layer present invention comprises a conductive uneven layer. 面に二次突起を有する突起を備えた導電性凹凸層の表面形状例を示す電子顕微鏡画像である。On the side surface is an electron microscope image showing the surface shape of the electric conduction uneven layer having a protrusion having a secondary projections. 二次突起を備えた導電性凹凸層を備えた本発明の導電性構における接触抵抗を二次突起がない場合及び凹凸層自体がない場合と比較して示すグラフである。It is a graph comparing with the case where there is no case and uneven layer itself no secondary projections the contact resistance in the conductive structure of the present invention with a conductive uneven layer having a secondary projections. 電性凹凸層による接触抵抗を機械的加工による同じ表面粗さを備えた表面の場合と比較して示すグラフである。It is a graph which shows the contact resistance by a conductive uneven | corrugated layer compared with the case of the surface provided with the same surface roughness by mechanical processing. 電性凹凸層によるマイクロポーラス層との接触抵抗を凹凸層がない場合と比較して示すグラフである。It is a graph which shows the contact resistance with the microporous layer by a conductive uneven | corrugated layer compared with the case where there is no uneven | corrugated layer.

以下、導電性凹凸層及び本発明の導電性構について、さらに具体的、詳細に説明する。なお、本明細書において、「%」は特記しない限り質量百分率を意味するものとする。 Hereinafter, the conductive uneven layer and the conductive structure of the present invention, more specifically, will be described in detail. In the present specification, “%” means mass percentage unless otherwise specified.

導電性凹凸層は、例えば、電気的な接続がなされる導電性部材の一方の接触面に形成されるものであって、上記したように、先端が鋭角をなす針状又は錐状突起が無数に配列された構造を有する凹凸層である。
そして、本発明の固体高分子形燃料電池用の導電性構造体は、固体高分子形燃料電池に適用され、導電性多孔質部材であるガス拡散層と、ガス拡散層に接触する導電性部材であるセパレータとからなり、セパレータが、ガス拡散層との接触面に導電性凹凸層を有し、導電性凹凸層は、その先端が鋭角をなす無数の針状又は錐状突起が配列されて成り、突起は、高さが1000nm以上9000nm以下であり、少なくとも突起の一部が、ガス拡散層に食い込んでいるものである。
The conductive concavo-convex layer is formed, for example, on one contact surface of a conductive member to be electrically connected, and as described above, there are innumerable needle-like or cone-like projections having a sharp tip. It is an uneven | corrugated layer which has the structure arranged in this.
The conductive structure for a polymer electrolyte fuel cell of the present invention is applied to a polymer electrolyte fuel cell, and includes a gas diffusion layer that is a conductive porous member , and a conductive member that contacts the gas diffusion layer. consists separator as is, the separator has a conductive uneven layer on the contact surface between the gas diffusion layer, the conductive irregular layer has its tip a myriad of needle-like or cone-like projection forming an acute angle are arranged The protrusion has a height of 1000 nm or more and 9000 nm or less, and at least a part of the protrusion bites into the gas diffusion layer .

したがって、このような導電性凹凸層を接触面に設ければ、相手部材との接点数を増すことができ、突起の先端が鋭角をなしていることによって、相手部材に食い込み易くなり、さほど接触面圧を増加することなく相手部材との接触面積を増すことができ、接触抵抗の低減が可能となる。   Therefore, if such a conductive concavo-convex layer is provided on the contact surface, the number of contacts with the mating member can be increased, and since the tip of the protrusion forms an acute angle, the mating member is easily bited, and the contact is much The contact area with the mating member can be increased without increasing the surface pressure, and the contact resistance can be reduced.

図1は、本発明の導電性構を模式的に示す断面図であって、図1(a)に示すように、導電性凹凸層1は、基材としての導電性部材2の相手部材、この例ではカーボンペーパー(導電性多孔質部材)3との接触面に形成されており、無数の錐状突起1aを備えている。
そして、図1(b)に、矢印で示すように圧縮荷重を付与し、若干の接触面圧を加えることによって、上記突起1aが導電性多孔質部材3に食い込むことによって、部材3との接点を大幅に増加させ、より低荷重で接点数や接触面積を増加させることができる。
1, the conductive structure of the present invention a cross-sectional view schematically showing, as shown in FIG. 1 (a), the conductive uneven layer 1, the conductive member 2 as a substrate The contact member is formed on the contact surface with the carbon paper (conductive porous member) 3 in this example, and includes innumerable conical protrusions 1a.
Then, a compressive load is applied as shown by an arrow in FIG. 1B, and a slight contact surface pressure is applied so that the protrusion 1a bites into the conductive porous member 3, thereby causing contact with the member 3. The number of contacts and the contact area can be increased with a lower load.

このような導性構を例えば燃料電池に適用すること、すなわち、導電性凹凸層1をセパレータに形成し、ガス拡散層との接触面に適用することによって、スタッキング荷重を減らすことができる。したがって、エンドプレートやテンションプレートといった締結材などの部材強度がさほど必要ではなくなり、材料コストの削減が可能になると共に、燃料電池の単位重量当たりの発電量が向上することになり、車載用の燃料電池により好適なものとなる。 Applying such conductive structure body to the fuel cell for example, i.e., a conductive irregular layer 1 was formed in the separator, by applying the contact surface between the gas diffusion layer, to reduce the stacking load it can. Accordingly, the strength of the members such as the fastening materials such as the end plate and the tension plate is not required so much, the material cost can be reduced, and the power generation amount per unit weight of the fuel cell is improved. The battery is more suitable.

これに対して、図2は、Raに代表される粗さパラメータによって表面粗さを規定した従来の凹凸層10による接触構造例の模式的断面図であって、図2(a)に示すように、部分的には鋭角状の凸部があったとしても、他の部位では先端面がなだらかであったり、凹部幅が狭かったりしている。したがって、平坦な材料面の表面積を増やすことはできるものの、相手部材に食い込むことはできず、図2(b)に示すように圧縮荷重を付与し、接触面圧を高めたとしても、接触面積はさほど変わらず、接触抵抗を効果的に低減させることはできない。   On the other hand, FIG. 2 is a schematic cross-sectional view of an example of a contact structure with a conventional uneven layer 10 in which the surface roughness is defined by a roughness parameter represented by Ra, as shown in FIG. In addition, even if there is an acute-angled convex part in part, the tip surface is gentle or the concave part width is narrow in other parts. Therefore, although the surface area of the flat material surface can be increased, it cannot be bitten into the mating member, and even if a compressive load is applied and the contact surface pressure is increased as shown in FIG. The contact resistance cannot be effectively reduced.

導電性凹凸層は、上記のように、先端が鋭角をなす針状又は錐状突起が無数に配列された構造のものであるが、これら突起の少なくとも一部の突起について、当該突起の側面からさらに同様の突起(2次突起)を延出させることによって樹状の突起とすることもできる。
これによって、単位面積当たりの突起(一次突起)数が少ない場合であっても、相手部材との接点数、接触面積を増すことができ、接触抵抗を減らすことができる。
The conductive concavo-convex layer has a structure in which an infinite number of needle-like or cone-like protrusions having an acute angle as described above are arranged, but at least some of these protrusions are formed from the side surfaces of the protrusions. It can also be a dendritic protrusions by further extending the same projection (secondary projections).
Thereby, even when the number of protrusions (primary protrusions) per unit area is small, the number of contacts and the contact area with the mating member can be increased, and the contact resistance can be reduced.

このような凹凸層は、例えば、金属基材にNi−Fe合金めっき処理を施すことによって得ることができる。
なお、機械加工などによって針状の凹凸をつけることも可能であるが、高さがサブミクロンレベルの構造を複数形成する場合は、コストをも鑑みるとメッキ処理が最適であると考えられる。また、本メッキでは集中的に過度の電流を供給することでその形状を形成することができる。したがって、電解メッキが好ましく、無電解では十分な形状が得られない。
Such a concavo-convex layer can be obtained, for example, by performing a Ni—Fe alloy plating process on a metal substrate.
Although it is possible to make needle-like irregularities by machining or the like, when a plurality of submicron-level structures are formed, it is considered that the plating process is optimal in view of cost. Moreover, in this plating, the shape can be formed by supplying an excessive current intensively. Therefore, electrolytic plating is preferable, and a sufficient shape cannot be obtained without electrolysis.

上記したNi−Fe合金めっき処理の場合、ニッケルイオンと鉄イオンが共存するめっき浴を用い、メッキ浴の温度やpH値、電流密度、通電(処理)時間、パルス電流波形などを調整することによって、突起の高さや密度を変えることができる。
例えば、通常の平滑な表面メッキを施す場合に比べて十分大きな電流を流すことで針状又は錐状の構造が形成され、その処理時間によって、高さを増やすことができる。さらに、電流供給を継続することで針状の壁面から2次突起を延出させた樹枝状の構造を形成することができる。突起の高さの限界はメッキ初期の条件によっても変化し、樹枝状構造の形成要因は必ずしも明らかではないが、時間と電流によってコントロールできることが確認されている。
In the case of the Ni—Fe alloy plating treatment described above, a plating bath in which nickel ions and iron ions coexist is used, and by adjusting the temperature and pH value of the plating bath, current density, energization (treatment) time, pulse current waveform, etc. The height and density of the protrusions can be changed.
For example, a needle-like or cone-like structure is formed by passing a sufficiently large current as compared with the case of applying normal smooth surface plating, and the height can be increased depending on the processing time. Further, by continuing the current supply, a dendritic structure in which the secondary protrusions are extended from the needle-like wall surface can be formed. The limit of the height of the protrusion changes depending on the initial plating conditions, and although the formation factor of the dendritic structure is not necessarily clear, it has been confirmed that it can be controlled by time and current.

電性凹凸層において、上記突起は、当該突起と同じ組成を有し、少なくとも1つの島状に分布する下地層の上に形成されており、島状領域内に無数に配列されていることが望ましい。 In the conductive uneven layer, the protrusions have the same composition as the protrusions, are formed on at least one base layer distributed in an island shape, and are arranged innumerably in the island region. Is desirable.

下地層が基材上に被覆されている割合は導電性と耐食性によって適宜決めることができる。すなわち、突起材料自身の導電性によって必要な数が決まり、突起を形成する島状の下地層の基材上の被覆率の上限及び下限が計算もしくは実験的に決まる。
一方、被覆率が100%でない場合、基材が表層に露出する。被覆率は、例えば基材自体の燃料電池作動環境下における耐食性によっても決定され得る。すなわち、耐食性に乏しい基材金属では、極力基材露出を抑制する必要がある。
The proportion of the base layer coated on the substrate can be appropriately determined depending on the conductivity and the corrosion resistance. That is, the required number is determined by the conductivity of the projection material itself, and the upper limit and the lower limit of the coverage of the island-shaped base layer forming the projection on the base material are calculated or experimentally determined.
On the other hand, when the coverage is not 100%, the substrate is exposed to the surface layer. The coverage can also be determined, for example, by the corrosion resistance of the substrate itself under the fuel cell operating environment. That is, it is necessary to suppress the exposure of the base material as much as possible with the base metal having poor corrosion resistance.

また、上記突起の表面は、その材料よりも電導性や耐食性に優れた機能性膜によって覆われていることが望ましく、これによって長期に亘って良好な電気伝導性を確保して、相手部材との接触抵抗を低減することができる。なお、上記機能性膜としては、例えばAu(金)、Ag(銀)、Sn(錫)、C(炭素)、Pt(白金)、Ru(ルテニウム)、Pa(パラジウム)などの金属から成るものを挙げることができる。   In addition, the surface of the protrusion is preferably covered with a functional film having better conductivity and corrosion resistance than the material, thereby ensuring good electrical conductivity over a long period of time, The contact resistance can be reduced. The functional film is made of a metal such as Au (gold), Ag (silver), Sn (tin), C (carbon), Pt (platinum), Ru (ruthenium), and Pa (palladium). Can be mentioned.

電性構造体は、上記のように導電性多孔質部材と接触する導電性部材の接触面に、上記導電性凹凸層を形成した構造のものであるが、上記導電性凹凸層の突起の高さとしては、接触抵抗を低くする観点から、0.1μm以上であって、接触相手である導電性多孔質部材の厚さ以下であることが望ましい。
The conductive structure has a structure in which the conductive uneven layer is formed on the contact surface of the conductive member that contacts the conductive porous member as described above. From the viewpoint of reducing contact resistance, the height is preferably 0.1 μm or more and less than the thickness of the conductive porous member that is the contact partner.

なお、本発明において、突起の高さとは、基材又は下地層から突起先端までの平均値と定義される。
すなわち、突起の高さは、断面観察による計測や、下地層と同一の組成で、表面処理条件を変えることで突起を形成する場合は、あらかじめ、条件を変える前で処理を中止し、基材+下地の厚さを計測することで、最終的に突起層が形成された状態における見かけ厚さを複数点計測することにより、平均値として算出することができる。
In the present invention, the height of the protrusion is defined as an average value from the base material or the base layer to the tip of the protrusion.
In other words, the height of the protrusion is measured by cross-sectional observation, and when the protrusion is formed by changing the surface treatment conditions with the same composition as the underlayer, the treatment is stopped before changing the conditions in advance. + By measuring the thickness of the base, it is possible to calculate an average value by measuring a plurality of apparent thicknesses in a state in which the protruding layer is finally formed.

また、導電性構においては、上記導電性部材と導電性凹凸層の間に中間層を形成することが望ましい。
このような中間層は、基材金属が燃料電池作動環境下において十分な耐食性を有していない際に、基材の防錆を行う場合や、基材と機能性膜(凹凸層)との熱膨張率などが大きく異なり、燃料電池の起動停止時の熱変動によって剥離してしまう場合に、両材料の中間的な材料を使用することで、剥離を抑える役割としても果たす。
In the conductive structure body, it is desirable to form an intermediate layer between the conductive member and the conductive uneven layer.
Such an intermediate layer is used when the base metal does not have sufficient corrosion resistance under the fuel cell operating environment, and when the base metal is rust-prevented or the base material and the functional film (uneven layer). In the case where the thermal expansion coefficient is greatly different and peeling occurs due to thermal fluctuations at the time of starting and stopping of the fuel cell, an intermediate material between both materials is used to serve as a role to suppress peeling.

こうした中間層の材料としては、例えばAu,Ag,Sn,Crなどを用いることができ、中間層自体はそれらの金属で形成されていることが望ましいが、基材との界面や、凹凸層との界面においては、それぞれの材料が混ざり合った混合層を作っても構わない。   As a material for such an intermediate layer, for example, Au, Ag, Sn, Cr or the like can be used, and the intermediate layer itself is preferably formed of those metals. At the interface, a mixed layer in which the respective materials are mixed may be formed.

上記したFe−Niメッキ層では、基材にステンレス鋼を用いた場合、その主要成分がFeであるため、熱膨張については考慮する必要が無く、中間層を介在させることなく、ステンレス鋼表面の酸化皮膜を除去した後に形成することができる。
ステンレス鋼のような耐食性の高い材料を用いない場合、例えば炭素鋼などの場合には、中間層としてNiやCrなどを用いることも可能である。
In the above-described Fe—Ni plating layer, when stainless steel is used as the base material, the main component is Fe, so there is no need to consider thermal expansion, and the stainless steel surface surface is not required without interposing an intermediate layer. It can be formed after removing the oxide film.
When a material having high corrosion resistance such as stainless steel is not used, for example, in the case of carbon steel, Ni or Cr can be used as an intermediate layer.

そして、本発明の導電性構は、燃料電池における電気的な接続部分に好適に用いられることは、先に記載したとおりであるが、具体的な配置部位としては、導電性凹凸層はセパレータといった導電性部材に適用することができる。
このとき、これら部材の接触相手となる導電性多孔質部材としては、ガス拡散層ということになり、接触抵抗を大幅に少なくすることができ、電池重量当たりの発電出力を大幅に向上させることができる。
Then, the conductive structure of the present invention, it is suitably used for electric connection portion in the fuel cell, but is as previously described, as a specific placement site, conductive uneven layer it can be applied to the conductive member say Se Pared data.
In this case, as the conductive porous member as the contact mating of these members, will be referred to as gas diffusion layer, the contact resistance can be significantly reduced, significantly improve the power generation output per battery weight be able to.

以下に、本発明を実施例に基づいて、さらに具体的に説明する。なお、本発明はこれらの実施例のみに限定されないことは言うまでもない。   Hereinafter, the present invention will be described more specifically based on examples. Needless to say, the present invention is not limited to these examples.

実施例1
〔めっき処理〕
基材金属として、厚さ0.1mm、1辺100mmの正方形をなすオーステナイト系ステンレス鋼SUS316Lを用い、電気化学的に表層の酸化皮膜を除去した後、めっき処理を施すことによって、上記基材金属の両面に、Ni−Fe合金から成り、それぞれ高さの異なる錐状突起を備えた導電性凹凸層を形成した。
めっき浴組成としては、公知の組成比として、FeSO・7HO=35、NiSO・6HO=240、NiCl・6HO=45、HBO=25、サッカリン=1.5(いずれもg/L)を準備し、pHを3に設定した。
Example 1
[Plating treatment]
As the base metal, austenitic stainless steel SUS316L having a square with a thickness of 0.1 mm and a side of 100 mm is used, and after removing the oxide film on the surface layer electrochemically, the base metal is subjected to plating treatment. On both sides, conductive concavo-convex layers made of a Ni—Fe alloy and having conical projections with different heights were formed.
As the plating bath composition, known composition ratios are FeSO 4 · 7H 2 O = 35, NiSO 4 · 6H 2 O = 240, NiCl 2 · 6H 2 O = 45, H 3 BO 3 = 25, saccharin = 1. 5 (both g / L) were prepared, and the pH was set to 3.

Ni−Feめっき自体は、既に知られたものであり、液温:65℃、pH:3のめっき浴中に、上記金属基板を陰極に接続し、アノード極としてNi−Fe合金板を用い、攪拌子によって攪拌しながら、5〜12A/cmの電流密度で通電することを基本的な条件とした。
なお、錐状突起を備えためっき層は、処理面の各部に電流を集中させることによって得られる。メッキの種類によっては非直流電流によるパルスメッキにより、錐状突起成長の基点を形成することも可能である。この際も、パルス電流密度を大きく取ることが有効である。
Ni-Fe plating itself is already known, and the above metal substrate is connected to the cathode in a plating bath of liquid temperature: 65 ° C. and pH: 3, and a Ni—Fe alloy plate is used as the anode electrode. The basic condition was to energize at a current density of 5 to 12 A / cm 2 while stirring with a stirrer.
In addition, the plating layer provided with the conical protrusion is obtained by concentrating current on each part of the processing surface. Depending on the type of plating, it is also possible to form a base point for the growth of conical protrusions by pulse plating with a non-direct current. Also in this case, it is effective to increase the pulse current density.

ここでは、めっき浴温度を59〜60℃に保持し、電流密度を初期に5A/cmから増加させ10A/cmを流すことによって、200〜9000nmの高さの錐状突起を有する導電性凹凸層をそれぞれに備えた7種類の試料(発明例1〜7)を得た。
なお、上記導電性凹凸層はNi−Fe合金から成るものであって、耐食性が十分ではないため、得られた導電性凹凸層の表面に金めっきを0.02μmの厚さに施したのち、以下の接触抵抗の測定に供した。
Here, the conductivity having a cone-shaped projection having a height of 200 to 9000 nm is maintained by maintaining the plating bath temperature at 59 to 60 ° C., increasing the current density from 5 A / cm 2 in the initial stage, and flowing 10 A / cm 2 . Seven types of samples (Invention Examples 1 to 7) each having an uneven layer were obtained.
In addition, since the said conductive uneven | corrugated layer consists of a Ni-Fe alloy and corrosion resistance is not enough, after giving gold plating to the thickness of 0.02 micrometer on the surface of the obtained conductive uneven | corrugated layer, The following contact resistance was measured.

金メッキは公知の技術として、メッキ浴に酸性、中性、アルカリ性のものが存在するが、ここでは、燃料電池内の作動下における環境が酸性であることを考慮し、酸性浴を用いた。すなわち、KAu(CN)=10g/Lに対して、クエン酸=90g/L前後を加えてpH4とし、浴温度40℃にて1A/dmの電流密度のもとに、上記の厚さとなるように通電時間を制御した。 As for the gold plating, there are acidic, neutral, and alkaline plating baths as well-known techniques, but here, an acidic bath was used in consideration of the acidic environment in the operation of the fuel cell. That is, with respect to KAu (CN) 2 = 10 g / L, citric acid = 90 g / L is added to adjust the pH to 4, and the above thickness is obtained under a current density of 1 A / dm 2 at a bath temperature of 40 ° C. The energization time was controlled so that

〔接触抵抗測定〕
上記によって、両面にそれぞれ高さの異なる導電性凹凸層を形成したそれぞれの試料を厚さ200μmの2枚のカーボンペーパーの間に挟み、さらにその両側を20mm径の銅電極間に挟持し、ここでは1MPaで加圧することによって、試料とカーボンペーパーの間に接触面圧を付与した。この状態で銅電極間に1Aの直流電流を流し、このときの電圧降下から接触抵抗を算出した。
なお、導電性凹凸層を備えたそれぞれの発明例試料と比較するため、上記ステンレス鋼基材の表面をRzで0.05μmの粗さに仕上げたのち、上記同様の金めっきを施した試料(比較例1)を用意し、これを用いて接触抵抗を上記同様に測定した。これらの結果を図3に示す。
(Contact resistance measurement)
As described above, each sample having conductive uneven layers of different heights formed on both sides is sandwiched between two carbon papers having a thickness of 200 μm, and both sides are sandwiched between 20 mm diameter copper electrodes. Then, a contact surface pressure was applied between the sample and the carbon paper by pressurizing at 1 MPa. In this state, a direct current of 1 A was passed between the copper electrodes, and the contact resistance was calculated from the voltage drop at this time.
In addition, in order to compare with each invention example sample provided with the conductive uneven | corrugated layer, after finishing the surface of the said stainless steel base material to the roughness of 0.05 micrometer by Rz, the sample which gave the same gold plating as the above ( Comparative Example 1) was prepared, and the contact resistance was measured in the same manner as described above. These results are shown in FIG.

このとき、各発明例における錐状突起の高さについては、各試料の縦断面をSEM観察することによって測定した。
一方、突起の先端角度については、上部から確認すると、各突起は正確な角錐や円錐ではないため、突起の側面からの観察方向によっては先端角度が異なることになる。
At this time, the height of the conical protrusions in each invention example was measured by SEM observation of the longitudinal section of each sample.
On the other hand, when the tip angle of the protrusion is confirmed from the top, each protrusion is not an accurate pyramid or cone, and therefore the tip angle differs depending on the observation direction from the side surface of the protrusion.

発明例2及び発明例3について、同様の断面観察を行った結果から、形成された突起の先端角度は、それぞれ10〜60度、30〜60度前後であり、他の発明例においてもそれぞれ鋭角をなす先端を備えた突起が形成されていることが確認された。   As a result of performing the same cross-sectional observation on Invention Example 2 and Invention Example 3, the tip angles of the formed protrusions are about 10 to 60 degrees and about 30 to 60 degrees, respectively, and in each of the other invention examples, an acute angle is obtained. It was confirmed that a projection having a tip forming

図3に示した結果から明らかなように、導電性凹凸層における錐状突起の高さが大きくなるにしたがって、接触抵抗が減少し、1200nm付近で極小値となり、高さが1200nmを超えてからは、その増加と共に緩やかに接触抵抗が上昇する傾向が認められた。
なお、上記のカーボンペーパーは、同面圧において1mΩcm程度の電気抵抗を有していることから、実際の接触抵抗は、図3に示した数値から1mΩcmを差し引いた値となり、例えば高さ1000nmの発明例3の試料における一方のカーボンペーパーとの接触抵抗は、0.5mΩcm程度ということになる。なお、基材金属や銅板の抵抗値は極めて小さいので、無視することができる。
As is clear from the results shown in FIG. 3, the contact resistance decreases as the height of the conical protrusions in the conductive uneven layer increases, reaches a minimum value near 1200 nm, and after the height exceeds 1200 nm. The contact resistance tended to increase gradually with the increase.
Since the above carbon paper has an electrical resistance of about 1 mΩcm 2 at the same surface pressure, the actual contact resistance is a value obtained by subtracting 1 mΩcm 2 from the value shown in FIG. The contact resistance with one carbon paper in the sample of Invention Example 3 of 1000 nm is about 0.5 mΩcm 2 . In addition, since the resistance value of a base metal or a copper plate is very small, it can be disregarded.

上記実施例により得られた導電性凹凸層形状の代表例として、発明例2及び3の電子顕微鏡画像を図4及び5にそれぞれ示す。   As representative examples of the shape of the conductive uneven layer obtained by the above examples, electron microscope images of Invention Examples 2 and 3 are shown in FIGS. 4 and 5, respectively.

実施例2
上記実施例1で得られた発明例3(錐状突起高さ:1000nm)と、比較例1(凹凸層なし)の試料を用いて、接触抵抗に及ぼす面圧の影響を調査した。その結果を表1及び図6に示す。
本発明によれば、低面圧の領域から接触抵抗の低減傾向が認められる。また、接触抵抗は、面圧が高くなるにしたがって減少し、同一接触面圧下では、発明例3の試料における接触抵抗は、導電性凹凸層が形成されていない比較例1の場合の概ね半分程度に低減することが判明した。
Example 2
Using the samples of Invention Example 3 (conical protrusion height: 1000 nm) obtained in Example 1 and Comparative Example 1 (without the uneven layer), the influence of surface pressure on contact resistance was investigated. The results are shown in Table 1 and FIG.
According to the present invention, a tendency to reduce the contact resistance is recognized from the low surface pressure region. In addition, the contact resistance decreases as the surface pressure increases. Under the same contact surface pressure, the contact resistance in the sample of Invention Example 3 is approximately half that of Comparative Example 1 in which the conductive uneven layer is not formed. It was found to be reduced.

Figure 0005846409
Figure 0005846409

実施例3
上記発明例3と同様の条件で、上記ステンレス鋼基材の両面に1000nmの高さの錐状突起を形成した後、さらに電流を付与し続けて、上記突起の側面から、さらに2次突起を成長させた樹枝状突起を有する導電性凹凸層を備えた試料(発明例8)を得た。そして、その表面に同様の方法によって金めっきを施した。
当該試料における導電性凹凸層表面の電子顕微鏡画像を図7に示す。
Example 3
After forming conical protrusions with a height of 1000 nm on both surfaces of the stainless steel base material under the same conditions as in Invention Example 3, further applying a current, further forming secondary protrusions from the side surfaces of the protrusions A sample (Invention Example 8) provided with a conductive uneven layer having dendritic protrusions grown was obtained. And the gold plating was given to the surface by the same method.
An electron microscope image of the surface of the conductive uneven layer in the sample is shown in FIG.

また、上記により得られた試料を用いて、接触面圧1MPaの下での接触抵抗を同様に測定し、上記発明例3及び比較例1と比較した。この結果を図8に示す。
この結果、錐状突起の側面から延出する2次突起が形成されることによって、カーボンペーパーとの接点がさらに増加することから、発明例3の試料と較べて、接触抵抗のさらなる低減が確認された。
In addition, using the sample obtained as described above, the contact resistance under a contact pressure of 1 MPa was measured in the same manner, and compared with those of Invention Example 3 and Comparative Example 1. The result is shown in FIG.
As a result, since the secondary protrusion extending from the side surface of the conical protrusion is formed, the contact point with the carbon paper is further increased. Therefore, it is confirmed that the contact resistance is further reduced as compared with the sample of Invention Example 3. It was done.

実施例4
上記したステンレス鋼基材の両面をサンドペーパーによって粗らし、Rzで0.5μmの粗さとしたのち、上記同様に厚さ0.02μmの金めっきを施した試料(比較例2)を作製した。
これを用いて、接触面圧0.2MPaと1MPaにおける接触抵抗を上記同様に測定し、Rzで0.5μmの表面粗さに相当する0.5μmの高さの錐状突起を有する導電性凹凸層を備えた発明例2の試料における接触抵抗と比較した。その結果を図9に示す。なお、図9における接触抵抗値は、カーボンペーパーと金属基材の固有抵抗値を控除した値で示した。
Example 4
After both surfaces of the stainless steel substrate described above were roughened with sandpaper and made to have a roughness of 0.5 μm with Rz, a sample (Comparative Example 2) on which gold plating with a thickness of 0.02 μm was applied in the same manner as described above was produced.
Using this, the contact resistance at contact pressures of 0.2 MPa and 1 MPa was measured in the same manner as described above, and conductive irregularities having cone-shaped protrusions with a height of 0.5 μm corresponding to a surface roughness of Rz of 0.5 μm. It compared with the contact resistance in the sample of the invention example 2 provided with the layer. The result is shown in FIG. In addition, the contact resistance value in FIG. 9 was shown by the value which subtracted the specific resistance value of carbon paper and a metal base material.

図9から明らかなように、錐状突起から成る凹凸層を備えた本発明の導電性構においては、Rzとして同等の表面粗さであっても、機械加工による粗面を備えた表面に較べてより低い接触抵抗を示し、特に高面圧の場合には、機械加工粗面の半分以下の抵抗値となることが確認された。 As it is apparent from FIG. 9, the surface in the conductive structure of the present invention having a relief layer consisting of cone-shaped projections, even comparable surface roughness as Rz, having a rough surface by machining It was confirmed that the resistance value was lower than that of the machined rough surface, particularly in the case of a high contact pressure.

実施例5
上記各実施例においては、カーボンペーパーとの間の接触抵抗を測定したが、ここでは、固体高分子形燃料電池に用いられるマイクロポーラス層(MPL)との間の接触抵抗を発明例3(錐状突起高さ:1000nm)の試料について測定し、凹凸層のない比較例1の試料と比較した。
すなわち、10%のフッ素樹脂と90%のカーボン粉から成り、厚さ30μm、気孔率80%のフィルムをMPLとして使用した。
Example 5
In each of the above embodiments, the contact resistance with the carbon paper was measured. Here, the contact resistance with the microporous layer (MPL) used in the polymer electrolyte fuel cell is measured as the invention example 3 (cone). The height of the protrusions: 1000 nm) was measured and compared with the sample of Comparative Example 1 having no uneven layer.
That is, a film composed of 10% fluororesin and 90% carbon powder, having a thickness of 30 μm and a porosity of 80% was used as MPL.

そして、上記カーボンペーパーに替えて、このフィルムによって発明例3及び比較例1で得られた試料をそれぞれ挟持した上で、さらにその両側を銅電極で挟み、1MPaの面圧を負荷した状態で、接触抵抗を同様に測定し、その結果を図10に示す。なお、図10においては、比較例1の試料による接触抵抗を「1」とする相対値で表した。
その結果、図に示すように、接触相手がMPLであっても、カーボンペーパーの場合と同様に、本発明の導電性構によって、接触抵抗が減少することが確認された。
Then, instead of the carbon paper, after sandwiching the samples obtained in Invention Example 3 and Comparative Example 1 with this film, both sides were further sandwiched with copper electrodes, and a surface pressure of 1 MPa was applied, The contact resistance was measured in the same manner, and the result is shown in FIG. In FIG. 10, the contact resistance of the sample of Comparative Example 1 is expressed as a relative value with “1”.
As a result, as shown in FIG contact partner even MPL, as in the case of carbon paper, a conductive structure of the present invention, the contact resistance was confirmed to be reduced.

1 導電性凹凸層
1a 錐状突起
2 導電性部材
3 カーボンペーパー(導電性多孔質部材)
DESCRIPTION OF SYMBOLS 1 Conductive uneven | corrugated layer 1a Conical protrusion 2 Conductive member 3 Carbon paper (conductive porous member)

Claims (4)

固体高分子形燃料電池に適用され、導電性多孔質部材であるガス拡散層と、該ガス拡散層に接触する導電性部材であるセパレータとからなり、
上記セパレータが、上記ガス拡散層との接触面に導電性凹凸層を有し、
上記導電性凹凸層は、その先端が鋭角をなす無数の針状又は錐状突起が配列されて成り、
上記突起は、高さが1000nm以上9000nm以下であり、
少なくとも上記突起の一部が、上記ガス拡散層に食い込んでいる
ことを特徴とする固体高分子形燃料電池用の導電性構造体。
A gas diffusion layer that is applied to a polymer electrolyte fuel cell and is a conductive porous member, and a separator that is a conductive member in contact with the gas diffusion layer,
The separator has a conductive uneven layer on the contact surface with the gas diffusion layer,
The conductive concavo-convex layer is composed of an array of innumerable needle-like or conical projections whose tips form an acute angle,
The protrusion has a height of 1000 nm to 9000 nm,
A conductive structure for a polymer electrolyte fuel cell, wherein at least a part of the protrusion bites into the gas diffusion layer.
上記突起の表面が該突起の材料よりも導電性及び/又は耐食性に優れた機能性膜によって覆われていることを特徴とする請求項1に記載の固体高分子形燃料電池用の導電性構造体。 2. The conductive structure for a polymer electrolyte fuel cell according to claim 1 , wherein the surface of the protrusion is covered with a functional film having better conductivity and / or corrosion resistance than the material of the protrusion. body. 上記突起の少なくとも一部が当該突起の側面から延出した2次突起を備えた樹状をなしていることを特徴とする請求項1又は2に記載の固体高分子形燃料電池用の導電性構造体。 Conductive for a polymer electrolyte fuel cell according to claim 1 or 2, characterized in that at least a portion of the projection forms a side dendritic provided with a secondary protrusion extending from the protrusion Sex structure. 請求項1〜3のいずれか1つの項に記載の固体高分子形燃料電池用の導電性構造体を適用した固体高分子形燃料電池であって、
固体高分子電解質膜の両側に、空気極と燃料極を接合した膜電極接合体と、
上記膜電極接合体の両側に配置されたセパレータと、を備え、
上記空気極及び上記燃料極は、それぞれ触媒層とガス拡散層とを有し、
上記触媒層が、固体高分子電解質膜に接触しており、
上記ガス拡散層と上記セパレータが、上記導電性構造体からなる
ことを特徴とする固体高分子形燃料電池。
A polymer electrolyte fuel cell to which the conductive structure for a polymer electrolyte fuel cell according to any one of claims 1 to 3 is applied,
A membrane electrode assembly in which an air electrode and a fuel electrode are bonded to both sides of a solid polymer electrolyte membrane;
Separators disposed on both sides of the membrane electrode assembly,
The air electrode and the fuel electrode each have a catalyst layer and a gas diffusion layer,
The catalyst layer is in contact with the solid polymer electrolyte membrane;
The polymer electrolyte fuel cell, wherein the gas diffusion layer and the separator are made of the conductive structure.
JP2011117572A 2011-05-26 2011-05-26 Conductive structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell Active JP5846409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011117572A JP5846409B2 (en) 2011-05-26 2011-05-26 Conductive structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011117572A JP5846409B2 (en) 2011-05-26 2011-05-26 Conductive structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2012246518A JP2012246518A (en) 2012-12-13
JP5846409B2 true JP5846409B2 (en) 2016-01-20

Family

ID=47467252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011117572A Active JP5846409B2 (en) 2011-05-26 2011-05-26 Conductive structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP5846409B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101447435B1 (en) 2013-05-14 2014-10-08 (주)에이치엔티 Battery jig busbar and busbar surface treatment method
JP2017010843A (en) * 2015-06-24 2017-01-12 京セラ株式会社 Cell stack, module and module housing device
WO2022065455A1 (en) * 2020-09-24 2022-03-31 国立大学法人筑波大学 Structure, method for producing structure, and electrochemical device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3265993D1 (en) * 1981-06-30 1985-10-10 Ibm Electric circuit connecting devices
DE68913823T2 (en) * 1988-06-21 1994-09-22 Ibm Detachable electrical connection.
JPH10125348A (en) * 1996-10-21 1998-05-15 Japan Storage Battery Co Ltd Battery
JPH11211376A (en) * 1998-01-27 1999-08-06 Mitsubishi Materials Corp Heat transfer member and manufacture thereof
IL145390A0 (en) * 1999-03-15 2002-06-30 Univ Case Western Reserve Metal sponges for rapid surface-chemical reactions
JP2002083917A (en) * 2000-06-28 2002-03-22 Noge Denki Kogyo:Kk Lead frame having protrusions on surface, method of manufacturing the same, semiconductor device and manufacturing method thereof
JP5035571B2 (en) * 2003-07-24 2012-09-26 日産自動車株式会社 Current collecting structure for fuel cell and solid oxide fuel cell stack
JP4492119B2 (en) * 2003-07-24 2010-06-30 日産自動車株式会社 Current collecting structure for fuel cell and solid oxide fuel cell stack
JP2005197187A (en) * 2004-01-09 2005-07-21 Toyota Motor Corp Separator for fuel cell and its manufacturing method
JP4662418B2 (en) * 2004-02-18 2011-03-30 株式会社デンソー Lead frame
KR100712837B1 (en) * 2004-04-29 2007-05-02 엘지전자 주식회사 Heat Sink and the Finishing Method for the Same
JP2006303215A (en) * 2005-04-21 2006-11-02 Denso Corp Resin-sealed semiconductor device
EP2113960B1 (en) * 2006-11-16 2011-07-13 Panasonic Corporation Electricity storage device
JP4906886B2 (en) * 2009-05-18 2012-03-28 日産自動車株式会社 Composite electrode for power storage device, manufacturing method thereof, and power storage device
JP2010103051A (en) * 2008-10-27 2010-05-06 Nissan Motor Co Ltd Composite electrode for power storage device, its manufacturing method, and power storage device
CA2759813A1 (en) * 2009-06-01 2010-12-09 Rmit University Electrodeposited gold nanostructures
WO2013052456A1 (en) * 2011-10-05 2013-04-11 Nanosys, Inc. Silicon nanostructure active materials for lithium ion batteries and processes, compositions, components, and devices related thereto

Also Published As

Publication number Publication date
JP2012246518A (en) 2012-12-13

Similar Documents

Publication Publication Date Title
JP4327489B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP2008204876A (en) Fuel cell separator, manufacturing method of fuel cell separator and fuel cell
JP2013020939A (en) Gas diffusion layer for fuel cell
WO2015093225A1 (en) Porous catalytic layer, method for manufacturing same, membrane electrode bonded body, and electrochemical cell
JP2010027262A (en) Fuel cell separator and fuel cell
JP2017054797A (en) Metal porous body, fuel cell, and method for manufacturing metal porous body
JP2008153082A (en) Material for fuel cell separator
JP5846409B2 (en) Conductive structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP2019133838A (en) Fuel cell separator
JP2010272429A (en) Separator for fuel cell and its manufacturing method
JP2007257883A (en) Fuel cell separator and its manufacturing method
JP5369497B2 (en) Fuel cell separator
JP5292578B2 (en) Metal separator for fuel cell, method for producing metal separator for fuel cell, and fuel cell
KR101420561B1 (en) Separator material for fuel cell, and separator for fuel cell and fuel cell stack each comprising same
JP4485613B2 (en) Polymer electrolyte fuel cell
JP4066154B2 (en) Porous metal gas diffusion sheet for polymer electrolyte fuel cell that exhibits excellent contact surface conductivity over a long period of time
WO2017043365A1 (en) Metal porous body, fuel cell, and method for manufacturing metal porous body
KR102080472B1 (en) Stainless steel sheet for fuel cell separators and method for producing the same
JP2007128908A (en) Cell unit of solid polymer electrolyte fuel cell
JP7035665B2 (en) Separator, cell, and fuel cell
JP3991701B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP5271067B2 (en) Stacked fuel cell
JP2009224151A (en) Fuel cell separator
JP6753165B2 (en) Titanium material for separators of polymer electrolyte fuel cells, and separators using it
CN107210455B (en) Stainless steel plate for separator of solid polymer fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151111

R151 Written notification of patent or utility model registration

Ref document number: 5846409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151