JP2008153082A - Material for fuel cell separator - Google Patents

Material for fuel cell separator Download PDF

Info

Publication number
JP2008153082A
JP2008153082A JP2006340418A JP2006340418A JP2008153082A JP 2008153082 A JP2008153082 A JP 2008153082A JP 2006340418 A JP2006340418 A JP 2006340418A JP 2006340418 A JP2006340418 A JP 2006340418A JP 2008153082 A JP2008153082 A JP 2008153082A
Authority
JP
Japan
Prior art keywords
titanium
fuel cell
cell separator
noble metal
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006340418A
Other languages
Japanese (ja)
Inventor
Yoshitaka Shibuya
義孝 澁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Kinzoku KK
Original Assignee
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Kinzoku KK filed Critical Nikko Kinzoku KK
Priority to JP2006340418A priority Critical patent/JP2008153082A/en
Publication of JP2008153082A publication Critical patent/JP2008153082A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material for a fuel cell separator having corrosion resistance and conductivity and excellent in strength in a separator forming a film of a noble metal on a base material made of titanium. <P>SOLUTION: The material for the fuel cell separator consists of an oxide layer between a titanium material and a conductive film formed by at least one or more kinds of noble metal selected from a group of Ru, Rh, Pd, Ir, Os and Pt, the oxide layer made of titanium oxide and noble metal oxide. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、固体高分子型電解質燃料電池用金属セパレータに用いられる材料に関する。   The present invention relates to a material used for a metal separator for a solid polymer electrolyte fuel cell.

固体高分子型燃料電池用セパレータは、複数の単セルが積層された燃料電池スタックを構成する部材であって、十分なガス不透過性と、セル同士を導通するための電気伝導性が必要である。更には、酸性雰囲気に対しては高い耐食性も要求される。従来、このような燃料電池セパレータには、炭素材料あるいは金属材料が用いられてきた。炭素材料は金属材料よりも強度が低いため、炭素材料の厚みを金属材料と同レベルの厚みにすることが困難であり、また、加工費も高いため、近年は金属材料が広く検討されている。   A polymer electrolyte fuel cell separator is a member that constitutes a fuel cell stack in which a plurality of single cells are stacked, and requires sufficient gas impermeability and electrical conductivity for electrical connection between cells. is there. Furthermore, high corrosion resistance is also required for an acidic atmosphere. Conventionally, carbon materials or metal materials have been used for such fuel cell separators. Since carbon materials have lower strength than metal materials, it is difficult to make the thickness of carbon materials the same level as metal materials, and the processing costs are high, so metal materials have been widely studied in recent years. .

燃料電池用金属セパレータとして金属材料を用いた場合の問題点は、耐食性と導電性の両立である。例えばステンレス鋼の場合、一般的には耐食性がよいと言われているが、燃料電池スタック内の酸性雰囲気に対しては耐食性が十分ではなく、ステンレス鋼の成分が溶出するという問題がある。一方、ステンレス鋼よりも高い耐食性があるチタンの場合、表面に数nmの厚みの非常に強固な酸化膜が存在しているため、接触抵抗が高くなる問題がある。
燃料電池用金属セパレータの特性に、耐食性と導電性を両立させる手法として、ステンレス鋼などの基材に貴金属めっきする技術(特許文献1、2、3)が開示されている。
A problem when a metal material is used as a metal separator for a fuel cell is compatibility between corrosion resistance and conductivity. For example, in the case of stainless steel, it is generally said that the corrosion resistance is good, but there is a problem that the corrosion resistance is not sufficient for the acidic atmosphere in the fuel cell stack, and the components of the stainless steel are eluted. On the other hand, in the case of titanium having higher corrosion resistance than stainless steel, a very strong oxide film having a thickness of several nanometers is present on the surface, so that there is a problem that contact resistance increases.
As a technique for achieving both corrosion resistance and conductivity in the characteristics of a metal separator for a fuel cell, techniques (Patent Documents 1, 2, and 3) for plating a noble metal on a base material such as stainless steel are disclosed.

特開2001−006713号公報JP 2001-006713 A 特開2004−185998号公報JP 2004-185998 A 特開2006−278172号公報JP 2006-278172 A

しがしながら、金属材料としてチタンを用い、貴金属メッキを施したセパレータ用材料には、以下のような問題点を抱えている。
1)燃料極セパレータには、燃料として水素ガスが流れる。チタンは水素を吸収しやすい金属であるため、例えば、貴金属の膜に覆われず、露出したチタンの部分があるとその部分から水素が吸収され、機械的強度が劣化する場合がある。
2)チタンは高価な金属であるため、セパレータ用としてのチタン材はコスト面で可能な限り薄くしたいが、チタン材の厚みを薄くした場合には材料強度の問題が発生する。
3)燃料電池で発電すると、単セルは約80〜90℃の熱を持つ。貴金属は熱によりチタン基材中に拡散し、チタン表面の貴金属層が徐々に失われるため、長期の発電を行うと接触抵抗が増加し、発電時の出力低下などの劣化が起きる可能性がある。
However, separator materials using titanium as a metal material and plated with noble metal have the following problems.
1) Hydrogen gas flows as fuel in the fuel electrode separator. Since titanium is a metal that easily absorbs hydrogen, for example, if there is an exposed portion of titanium that is not covered with a noble metal film, hydrogen may be absorbed from that portion, and mechanical strength may deteriorate.
2) Since titanium is an expensive metal, it is desirable to make the titanium material for the separator as thin as possible in terms of cost. However, when the thickness of the titanium material is reduced, a problem of material strength occurs.
3) When generating electricity with a fuel cell, the single cell has a heat of about 80-90 ° C. Precious metal diffuses into the titanium base material due to heat, and the noble metal layer on the titanium surface is gradually lost, so long-term power generation may increase contact resistance, which may cause degradation such as power reduction during power generation. .

上記の問題点を鑑みて、本発明の課題は、チタン基材に貴金属を成膜したセパレータにおいて耐食性・導電性を有しつつ強度に優れる燃料電池セパレータ用材料を提供することにある。   In view of the above problems, an object of the present invention is to provide a material for a fuel cell separator that has corrosion resistance and conductivity and is excellent in strength in a separator in which a noble metal is formed on a titanium substrate.

本発明者らは、基材としてチタン材、導電性膜としてRu、Rh、Pd、Ir、Os及びPtからなる群より選択される少なくとも1種類以上の貴金属からなるセパレータ用材料の耐食性・導電性及び強度について鋭意研究した結果、本発明に至った。   The present inventors have developed a corrosion resistance / conductivity of a separator material made of at least one kind of noble metal selected from the group consisting of titanium material as a base material and Ru, Rh, Pd, Ir, Os and Pt as a conductive film. As a result of intensive studies on strength and strength, the present invention has been achieved.

即ち、本発明は以下の通りである。
(1)チタン材とRu、Rh、Pd、Ir、Os及びPtからなる群より選択される少なくとも1種類以上の貴金属によって成膜された導電性膜の間に酸化層を有することを特徴とする燃料電池セパレータ用材料。
(2)チタン材とRu、Rh、Pd、Ir、Os及びPtからなる群より選択される少なくとも1種類以上の貴金属によって成膜された導電性膜の間にチタン酸化物と貴金属酸化物からなる酸化層を有するを特徴とする燃料電池セパレータ用材料。
(3)チタン材とRu、Rh、Pd、Ir、Os及びPtからなる群より選択される少なくとも1種類以上の貴金属によって成膜された導電性膜の間に、酸素濃度が10at%以上である酸化層が、5nm〜200nmであることを特徴とする燃料電池セパレータ用材料。
(4)チタン材に成膜された導電性膜表面から測定されたビッカース硬さHvが115〜300であることを特徴とする上記(1)〜(3)に記載の燃料電池セパレータ用材料。
That is, the present invention is as follows.
(1) An oxide layer is provided between a titanium film and a conductive film formed by at least one kind of noble metal selected from the group consisting of Ru, Rh, Pd, Ir, Os, and Pt. Material for fuel cell separator.
(2) A titanium oxide and a noble metal oxide are formed between a titanium film and a conductive film formed by at least one kind of noble metal selected from the group consisting of Ru, Rh, Pd, Ir, Os, and Pt. A fuel cell separator material comprising an oxide layer.
(3) The oxygen concentration is 10 at% or more between the titanium material and the conductive film formed by at least one kind of noble metal selected from the group consisting of Ru, Rh, Pd, Ir, Os, and Pt. A material for a fuel cell separator, wherein the oxide layer has a thickness of 5 nm to 200 nm.
(4) The fuel cell separator material as described in (1) to (3) above, wherein the Vickers hardness Hv measured from the surface of the conductive film formed on the titanium material is 115 to 300.

(5)上記(1)〜(4)記載のチタン材のビッカース硬さHvが115〜300であることを特徴とする燃料電池セパレータ用材料。
(6)上記(1)〜(5)記載の導電性膜の厚みが1nm以上であることを特徴とする燃料電池用セパレータ材料。
(7)上記(1)〜(6)記載のチタン材が工業用純チタンであることを特徴とする燃料電池用セパレータ材料。
(8)上記(1)〜(7)記載のチタン材の厚みが、30μm以上であることを特徴とする燃料電池セパレータ用材料。
(5) A material for a fuel cell separator, wherein the titanium material according to (1) to (4) has a Vickers hardness Hv of 115 to 300.
(6) A separator material for a fuel cell, wherein the conductive film according to (1) to (5) has a thickness of 1 nm or more.
(7) A separator material for a fuel cell, wherein the titanium material described in the above (1) to (6) is industrial pure titanium.
(8) A material for a fuel cell separator, wherein the titanium material according to the above (1) to (7) has a thickness of 30 μm or more.

(9)酸化皮膜を有したチタン材表面に直接Ru、Rh、Pd、Ir、Os及びPtからなる群より選択される少なくとも1種類以上の貴金属を成膜することを特徴とする上記(1)〜(8)記載の燃料電池セパレータ用材料の製造方法
(10)酸素濃度が10at%以上で、厚さが、5nm以上である酸化皮膜を有したチタン材表面に直接Ru、Rh、Pd、Ir、Os及びPtからなる群より選択される少なくとも1種類以上の貴金属を成膜することを特徴とする上記(1)〜(8)記載の燃料電池セパレータ用材料の製造方法
(11)チタン材表面を酸化除去した後、反応ガス流路形成のためプレス加工し、その後に表面を酸化させ、導電性膜を成膜することを特徴とする上記(1)〜(6)に記載の燃料電池セパレータ用材料の製造方法。
(12)上記(1)〜(8)記載の燃料電池セパレータ用材料を用いた、燃料電池スタック。
(9) The above (1), wherein at least one kind of noble metal selected from the group consisting of Ru, Rh, Pd, Ir, Os and Pt is directly formed on the surface of a titanium material having an oxide film. (8) Manufacturing method of material for fuel cell separator according to (8) (10) Ru, Rh, Pd, Ir directly on titanium material surface having oxide film having oxygen concentration of 10 at% or more and thickness of 5 nm or more The method for producing a material for a fuel cell separator as described in (1) to (8) above, wherein at least one or more kinds of noble metals selected from the group consisting of Os and Pt are formed. (11) Titanium material surface The fuel cell separator as described in any one of (1) to (6) above, wherein after oxidization and removal, press working is performed to form a reaction gas flow path, and then the surface is oxidized to form a conductive film. Material production Law.
(12) A fuel cell stack using the fuel cell separator material according to (1) to (8) above.

チタン基材に貴金属を成膜した材料を用いることにより耐食性・導電性を有しつつ強度に優れる燃料電池セパレータを提供することができる。
By using a material in which a noble metal film is formed on a titanium base material, it is possible to provide a fuel cell separator having corrosion resistance and conductivity and excellent strength.

本発明は、セパレータ用材料の基板であるチタン表面に貴金属の導電性膜を成膜した燃料電池セパレータ材料において、チタンと貴金属との間に酸化層を有することを特徴とするものであり、その酸化層が、チタン酸化物と貴金属酸化物からなることを特徴とするものである。
すなわち、本発明は、上述した3つの問題点の解決にチタンと貴金属との間にチタン酸化物を存在させることが有効であることを見出したのである。即ち、以下の通りである。
1)酸化層が水素吸収を抑制する効果を利用し、チタン基材が水素吸収によりもろくなることを防止する。
2)酸化層は、チタンが主体の酸化層であるが、チタンの酸化層はチタンより硬いことから、酸化層がチタン板の強度を補う役目を果たす。
3)酸化層がチタン基材中への貴金属の拡散を抑制する効果を利用し、発電中に貴金属層が薄くなることにを防止する。
The present invention is a fuel cell separator material in which a conductive film of a noble metal is formed on the surface of titanium, which is a substrate for a separator material, and is characterized by having an oxide layer between titanium and the noble metal, The oxide layer is composed of titanium oxide and noble metal oxide.
That is, the present invention has found that the presence of titanium oxide between titanium and a noble metal is effective in solving the above three problems. That is, it is as follows.
1) The oxide layer utilizes the effect of suppressing hydrogen absorption and prevents the titanium base material from becoming brittle due to hydrogen absorption.
2) Although the oxide layer is an oxide layer mainly composed of titanium, since the oxide layer of titanium is harder than titanium, the oxide layer serves to supplement the strength of the titanium plate.
3) Utilizing the effect that the oxide layer suppresses the diffusion of the noble metal into the titanium substrate, preventing the noble metal layer from becoming thin during power generation.

以下に具体的な限定の理由を説明する。
(1)基材と導電性膜の種類
燃料電池用セパレータ用材料としては、耐食性及び導電性が共に要求される。
そのために、基材には耐食性が求められ、本発明での基材はチタンとする。
しかし、チタンは酸性雰囲気に対して高い耐食性があるが、導電性が低いことから、貴金属を導電性膜として成膜することで導電性を向上させ、耐食性と導電性を両立させることができる。
The specific reason for limitation will be described below.
(1) Types of base material and conductive film As a material for a fuel cell separator, both corrosion resistance and electrical conductivity are required.
Therefore, the substrate is required to have corrosion resistance, and the substrate in the present invention is titanium.
However, although titanium has high corrosion resistance with respect to an acidic atmosphere, since conductivity is low, it is possible to improve conductivity by forming a noble metal as a conductive film, and to achieve both corrosion resistance and conductivity.

貴金属としては、Au、Ag以外の6種類(Ru、Rh、Pd、Ir、Os及びPt)が有効である。また、成膜方法はスパッタ法が有効である。本発明は基材であるチタンと導電性膜である貴金属との間に酸化層を形成されることを特徴とし、そのためにはチタン基材表面に酸化皮膜があることが重要である。スパッタ法は、チタン基材表面に酸化皮膜があっても、密着性のある導電成膜を成膜できる。さらにチタンと導電性膜の間に形成されている酸化層は、チタン酸化物と貴金属酸化物であることを特徴としている。貴金属酸化物の存在が密着性の向上に有効に働いていると考えられ、導電性膜として貴金属のうち、酸化物を形成するRu、Rh、Pd、Ir、Os及びPtが有効であると考えられる As the noble metal, six types (Ru, Rh, Pd, Ir, Os and Pt) other than Au and Ag are effective. A sputtering method is effective as the film forming method. The present invention is characterized in that an oxide layer is formed between titanium as a base material and a noble metal as a conductive film. For this purpose, it is important that an oxide film is present on the surface of the titanium base material. The sputtering method can form a conductive film with adhesion even if there is an oxide film on the surface of the titanium substrate. Further, the oxide layer formed between the titanium and the conductive film is characterized by being a titanium oxide and a noble metal oxide. Presence of noble metal oxide is considered to work effectively to improve adhesion, and among noble metals as conductive films, Ru, Rh, Pd, Ir, Os, and Pt forming oxide are considered to be effective. Be

なお、特開2004−185998号公報では、請求項1に「表面に基材自身の酸化皮膜を有する金属の基材と前期基材の酸化皮膜の表面に形成された導電性薄膜を有する燃料電池用セパレータ」と記載されているが、記載からは、本発明のように酸化皮膜の表面に直接導電性薄膜を形成することも含むように思われる。しかし、実施の形態からは、発明例がすべて、中間層を含んでいる例であるのに対して、酸化膜の有るSUS316にAuを直接スパッタし、10nm膜を形成した例が比較例としてあることから、当該発明には、中間層は不可避の構成要件である。すなわち、請求項1は、酸化皮膜の存在のみを規定するものであって、本発明のように酸化皮膜を有するチタン表面に、直接貴金属の導電性膜を形成することを意味するものではないと解する。また、特開2004−185998号公報では貴金属酸化物の存在には全く触れておらず、その点においても本発明の動機付けとなるものではない。 In Japanese Patent Application Laid-Open No. 2004-185998, a fuel cell having a metal base material having an oxide film of the base material on the surface and a conductive thin film formed on the surface of the oxide film of the previous base material is disclosed in claim 1. From the description, it seems to include forming a conductive thin film directly on the surface of the oxide film as in the present invention. However, from the embodiments, all the inventive examples are examples including an intermediate layer, whereas an example in which Au is directly sputtered on SUS316 having an oxide film to form a 10 nm film is a comparative example. Therefore, the intermediate layer is an inevitable constituent requirement for the present invention. That is, claim 1 only defines the presence of an oxide film, and does not mean that a noble metal conductive film is directly formed on the titanium surface having the oxide film as in the present invention. To understand. Further, Japanese Patent Application Laid-Open No. 2004-185998 does not mention the existence of noble metal oxides at all and does not serve as a motivation for the present invention.

(2)導電性膜の厚み
セパレータが十分な導電性を得るためには、チタン基材にある厚み以上の導電性膜が必要であり、その厚みの下限は1nmである。導電性膜の厚みが1nmを下回ると接触抵抗が高くなる。一方、厚みの上限については、技術的な制限はない。しかしながら成分であるRu、Rh、Pd、Ir、Os及びPtは高価な貴金属であり、コストを考慮して100nm以下とすることが望ましい。
従って導電性膜の厚みは1nm以上とする。
(2) Thickness of conductive film In order for the separator to obtain sufficient conductivity, a conductive film having a thickness equal to or larger than that of the titanium base material is necessary, and the lower limit of the thickness is 1 nm. When the thickness of the conductive film is less than 1 nm, the contact resistance increases. On the other hand, there is no technical limitation on the upper limit of the thickness. However, the components Ru, Rh, Pd, Ir, Os, and Pt are expensive noble metals, and are preferably set to 100 nm or less in consideration of cost.
Therefore, the thickness of the conductive film is 1 nm or more.

(3)チタン材と導電性膜の間の酸化層の厚み
セパレータが十分な耐食性と導電性を有しつつ強度を得るためには、チタン材と導電性膜の間に酸化層がある厚み以上必要である。その厚みの下限値は5nm、好ましくは10nm、更に好ましくは20nmである。一方、厚みの上限については200nmを超えると接触抵抗が悪くなる。また、反応ガス流路を形成するためのプレス加工において、表面に割れを生じ易くなる。200nm以下とすることが望ましい。好ましくは100nmである。なお、本発明における酸化層の厚みとは、XPS(分析エリア800μmφ)により深さ方向に分析したときに検出される酸素(O)が10at%以上の範囲である。酸素(O)が10at%未満では、酸化層が存在することによる水素吸収量の抑制や、基材の強度補強の効果を確認できない。
(3) Thickness of the oxide layer between the titanium material and the conductive film In order to obtain strength while the separator has sufficient corrosion resistance and conductivity, the thickness of the oxide layer between the titanium material and the conductive film is greater than the thickness. is necessary. The lower limit of the thickness is 5 nm, preferably 10 nm, more preferably 20 nm. On the other hand, if the upper limit of the thickness exceeds 200 nm, the contact resistance deteriorates. Further, in the press working for forming the reaction gas flow path, the surface is easily cracked. It is desirable that the thickness be 200 nm or less. Preferably it is 100 nm. In addition, the thickness of the oxide layer in the present invention is a range where oxygen (O) detected when analyzed in the depth direction by XPS (analysis area 800 μmφ) is 10 at% or more. If oxygen (O) is less than 10 at%, the suppression of hydrogen absorption due to the presence of the oxide layer and the effect of reinforcing the strength of the substrate cannot be confirmed.

また、酸化層は基材であるチタンと比較すると硬さが硬いため、貴金属を成膜した材料表面の硬さは、酸化層の厚みが厚くなると硬くなり、ビッカース硬さHvが115〜300であれば、セパレータの強度の向上に寄与する。なお、硬さにおける測定荷重は500gとする。
上述したように、本発明の貴金属を成膜した材料に酸化層を形成させるためには酸化皮膜を有しているチタン基材を用いることである。酸化層が5nm〜200nmであるためには、チタン基材の酸化皮膜が5nm〜200nmであればよい。また、硬さについても酸化皮膜を有しているチタン基材表面のビッカース硬さHvが115〜300であれば、貴金属を成膜した材料は導電性膜の硬さを加味しても本発明の請求の範囲となる。
In addition, since the oxide layer is harder than titanium as a base material, the hardness of the material surface on which the noble metal is formed becomes harder as the thickness of the oxide layer increases, and the Vickers hardness Hv is 115 to 300. If it exists, it contributes to the improvement of the strength of the separator. In addition, the measurement load in hardness shall be 500 g.
As described above, in order to form an oxide layer on the material in which the noble metal of the present invention is formed, a titanium base material having an oxide film is used. In order for the oxide layer to be 5 nm to 200 nm, the oxide film of the titanium substrate may be 5 nm to 200 nm. In addition, regarding the hardness, if the Vickers hardness Hv on the surface of the titanium base material having an oxide film is 115 to 300, the material in which the noble metal is formed is not limited even if the hardness of the conductive film is taken into account. This is the scope of claims.

よって、チタン基材の酸化皮膜が5nm未満の場合には、成膜前にチタン基材表面の酸化皮膜を厚くする必要がある。その方法としては、チタン基材を酸化環境下に置いて熱処理することや陽極酸化することが挙げられる。また、上限を超える場合には機械研磨等でチタン基材の酸化皮膜を除去することができる。   Therefore, when the oxide film on the titanium base is less than 5 nm, it is necessary to thicken the oxide film on the surface of the titanium base before film formation. As the method, a titanium substrate is placed in an oxidizing environment and heat-treated or anodized. When the upper limit is exceeded, the oxide film on the titanium substrate can be removed by mechanical polishing or the like.

(4)基材の厚みと種類
基材であるチタン材の厚みは、30μm以上である。厚みが30μmを下回るチタン材を作製するには、加工コストが高くなる。チタン基材の厚みの上限ついては、技術的な制限はない。しかしながらチタン材は高価な金属であり、薄いほうが好ましく、コストを考慮して200μm以下にすることが望ましい。チタン基材の種類としては、工業用純チタンである。チタン基材は反応ガス流路形成のためのプレス加工をするため、純チタンのうちでも加工性のよいJIS1種が望ましい。
(4) Thickness and type of base material The thickness of the titanium material as the base material is 30 μm or more. In order to produce a titanium material having a thickness of less than 30 μm, the processing cost becomes high. There is no technical limitation on the upper limit of the thickness of the titanium substrate. However, the titanium material is an expensive metal, and it is preferable that the titanium material be thin, and it is desirable that the thickness be 200 μm or less in consideration of cost. The type of titanium substrate is industrial pure titanium. Since the titanium base material is pressed for forming the reaction gas flow path, among pure titanium, JIS type 1 having good workability is desirable.

(5)反応ガス流路を形成したセパレータの作製プロセス
反応ガス流路を形成したセパレータの作製プロセスは、チタン基材に導電性膜を成膜した後にプレス加工しても良いし、チタン基材をプレス加工した後に導電性膜を成膜しても良い。またチタン基材をプレス加工した後に導電性膜を成膜する場合には、プレス加工前にチタン基材の酸化被膜を除去させても良い。これは酸化皮膜を除去することによって容易にプレス加工を行うことができるからである。その後に酸化皮膜を形成し、貴金属による導電性膜を成膜することで、プレス後のチタンと貴金属間の酸化層形成が強度を向上させることができ、また耐食性も向上させる。
(5) Separator manufacturing process in which a reaction gas flow path is formed A separator manufacturing process in which a reaction gas flow path is formed may be performed after a conductive film is formed on a titanium base material, or may be pressed. A conductive film may be formed after pressing. Further, when the conductive film is formed after pressing the titanium base material, the oxide film on the titanium base material may be removed before the press processing. This is because the press working can be easily performed by removing the oxide film. After that, an oxide film is formed, and a conductive film made of a noble metal is formed, so that the formation of an oxide layer between titanium and the noble metal after pressing can improve the strength and also improve the corrosion resistance.

実施例には、工業用純チタン板(JIS1種)について表1の厚みのものを基材として用いた。用いたチタン基板の酸化皮膜は、60nmであった。そこで、貴金属成膜前に表1に示すような処理をチタン基板表面に施し、酸化膜の厚みの異なるチタン基板を準備した。その後、チタン基材表面をアルゴンガスを用いたイオンエッチングを30秒行い、Au、Ru、Rh、Pd、Ir、Os及びPtを膜厚0.5〜100nmの範囲で成膜した。なお、イオンエッチングはチタン表面を洗浄することが目的であり、30秒では酸化皮膜を取り去る効果は少ない。
導電性膜を成膜した材料の構造を図1に示す。導電性膜を成膜した材料の密着性と耐食試験前後の接触抵抗は以下の条件で評価した。
In the examples, industrial pure titanium plates (JIS type 1) having the thicknesses shown in Table 1 were used as the base material. The titanium substrate used had an oxide film of 60 nm. Therefore, before the noble metal film was formed, a treatment as shown in Table 1 was performed on the surface of the titanium substrate to prepare titanium substrates having different oxide film thicknesses. Thereafter, ion etching using an argon gas was performed on the titanium substrate surface for 30 seconds, and Au, Ru, Rh, Pd, Ir, Os, and Pt were formed in a film thickness range of 0.5 to 100 nm. The purpose of ion etching is to clean the surface of titanium, and the effect of removing the oxide film is small in 30 seconds.
The structure of the material on which the conductive film is formed is shown in FIG. The adhesion of the material on which the conductive film was formed and the contact resistance before and after the corrosion resistance test were evaluated under the following conditions.

イオンエッチング及び成膜条件
スパッタ装置:株式会社アルバック製
イオンエッチング条件: 出力 RF100W
アルゴン圧力 0.2Pa
成膜条件: 出力 DC50W
アルゴン圧力 0.2Pa
Ion etching and film formation conditions Sputtering device: manufactured by ULVAC, Inc. Ion etching conditions: output RF100W
Argon pressure 0.2Pa
Film formation conditions: Output DC50W
Argon pressure 0.2Pa

チタンと導電性膜との間の酸化層の厚み
チタン基材表面に成膜した導電性膜表面から深さ方向にX線光電子分光分析(XPS、アルバック・ファイ株式会社製型式5600MCスパッタ速度:SiO換算で7nm/min)を行い、導電性膜とチタン界面にある酸素(O)が検出される深さ方向の距離から評価した。酸素(O)が10at.%以上の範囲を酸化層の厚みとした。なお、図2は、発明例No.3のチタン材表面に成膜した導電性膜表面から深さ方向のX線光電子分光分析により検出されるチタン、酸素、貴金属(ここではRu)濃度を示すものである。
Thickness of oxide layer between titanium and conductive film X-ray photoelectron spectroscopic analysis (XPS, model 5600MC sputter rate: SiO) 7 nm / min in terms of 2 ) and evaluated from the distance in the depth direction where oxygen (O) at the interface between the conductive film and the titanium was detected. Oxygen (O) is 10 at. % Or more was defined as the thickness of the oxide layer. Note that FIG. 3 shows the concentration of titanium, oxygen, and noble metal (Ru in this case) detected by X-ray photoelectron spectroscopy in the depth direction from the surface of the conductive film formed on the surface of the titanium material.

チタンと導電性膜との間の酸化層の確認
酸化層がチタン酸化物及び貴金属酸化物からなることの確認は、サンプルのX線光電子分光分析から得られたピークを、NIST(The National Institute of Standards and Technology)のデータベースを用いて解析することにより行った。
Confirmation of oxide layer between titanium and conductive film Confirmation that the oxide layer is made of titanium oxide and noble metal oxide is obtained by measuring the peak obtained from X-ray photoelectron spectroscopic analysis of the sample by NIST (The National Institute of The analysis was performed using a database of Standards and Technology.

チタン基材表面及び成膜した後の材料表面の硬さ
チタン基材表面の硬さ及び成膜した後の材料表面の硬さは、自動硬さ計(島津製作所製、HMV)を用いて、ビッカース硬度を測定した。測定荷重は300gである。
The hardness of the titanium substrate surface and the material surface after film formation The hardness of the titanium substrate surface and the hardness of the material surface after film formation are determined using an automatic hardness meter (manufactured by Shimadzu Corporation, HMV). Vickers hardness was measured. The measurement load is 300 g.

密着性
密着性は、各試験片の導電性膜表面に1mm間隔で碁盤の目を罫書き、テープ剥離試験(導電性膜上に粘着性のあるテープをはり付け、これを急速にかつ強く引き剥がすことにより、導電性膜の密着性を調べる方法)を行った。更に、各試験片を任意に180°曲げて元の状態に戻し、曲げ部のテープ剥離試験を行った。両方の試験で剥離が見られない場合を○、いずれかの試験で剥離のみられる場合(試験前に膜がはがれてしまう場合も含む)を×とした。
Adhesion Adhesion is determined by scoring a grid pattern at 1 mm intervals on the surface of the conductive film of each test piece, and applying a tape peeling test (sticking adhesive tape on the conductive film and pulling it rapidly and strongly. A method for examining the adhesion of the conductive film by peeling off was performed. Further, each test piece was arbitrarily bent by 180 ° to return to the original state, and a tape peeling test of the bent portion was performed. The case where peeling was not observed in both tests was marked as ◯, and the case where peeling was observed only in either test (including the case where the film was peeled off before the test) was marked as x.

接触抵抗
接触抵抗の測定はサンプル全面に荷重を加える方法にて行った。図4に示すように40×50mmのサンプルとカーボンペーパーを積層させ、サンプルとカーボンペーパーを上下から、同サイズの銅板(10mmt)に1.0μmのNi下地めっきをし、その上に0.5μmのAuめっきした材料で鋏み、試料に10kg/cmの荷重をかけ、電流密度100mA/cmの電流を流した時の電気抵抗を4端子法で測定した。
Contact resistance The contact resistance was measured by applying a load to the entire surface of the sample. As shown in FIG. 4, a 40 × 50 mm sample and carbon paper were laminated, and the sample and carbon paper were plated from the top and bottom with a 1.0 μm Ni undercoat on a copper plate (10 mmt) of the same size, and 0.5 μm thereon. The sample was rubbed with an Au-plated material, a load of 10 kg / cm 2 was applied to the sample, and the electric resistance when a current of 100 mA / cm 2 was passed was measured by the 4-terminal method.

耐食性
耐食試験は、40×50mmサイズの各試験片を、浴温90℃の硫酸水溶液(pH=2、液量350cc)に168時間(1週間)浸漬して行い、各試験片の耐食性試験前後の接触抵抗を評価した。
Corrosion resistance The corrosion resistance test was performed by immersing each test piece having a size of 40x50 mm in a sulfuric acid aqueous solution (pH = 2, liquid amount 350 cc) at a bath temperature of 90C for 168 hours (one week). The contact resistance before and after the corrosion resistance test was evaluated.

セパレータ材料の水素吸収性
水素吸収性は、各試験片を浴温90℃の硫酸水溶液(pH=2)に浸漬し、1.0mA/cmのカソード電解チャージを24時間行うことで、電解チャージ後の各試験片の水素吸収量を水素分析装置(LECO製RH−404)により分析し、評価した。水素吸収量の判定は、各試験片において試験前後の水素吸収量の増加が10%未満の場合を○、10%以上の場合を×とした。
The hydrogen absorption of the separator material is determined by immersing each test piece in a sulfuric acid aqueous solution (pH = 2) having a bath temperature of 90 ° C. and performing a cathode electrolytic charge of 1.0 mA / cm 2 for 24 hours. The hydrogen absorption amount of each subsequent test piece was analyzed by a hydrogen analyzer (RH-404 manufactured by LECO) and evaluated. In the determination of the hydrogen absorption amount, the case where the increase in the hydrogen absorption amount before and after the test was less than 10% in each test piece was evaluated as ◯, and the case where it was 10% or more was evaluated as x.

形状維持性
形状維持性は、次の方法で評価した。図5に示す形状にプレス成形したチタン材の上下をカーボンペーパーで鋏み、試料に10kg/cmの荷重を1度加える。その後チタン材に加えた荷重を解放し、荷重を加えた前後でのプレス加工したチタン材の凹凸形状の変化を顕微鏡で観察した。凹凸形状の変化が全くない場合を○とし、一部でも変形した場合には×とした。
以下の表1に結果を示す。
Shape maintenance The shape maintenance was evaluated by the following method. The top and bottom of the titanium material press-molded into the shape shown in FIG. 5 are sandwiched with carbon paper, and a load of 10 kg / cm 2 is applied to the sample once. Thereafter, the load applied to the titanium material was released, and the change in the uneven shape of the pressed titanium material before and after the load was applied was observed with a microscope. The case where there was no change in the uneven shape was marked with ◯, and the case where even a part of the shape was deformed was marked with ×.
The results are shown in Table 1 below.

Figure 2008153082
Figure 2008153082

発明例No.1〜9は、チタン材にRuを成膜した例である。チタン材とRuによる導電性膜との間には5nm以上の酸化層が存在するため、チタン材への水素吸収量は、導電性膜を施さないチタン材と同レベルであった。また、凹凸形状の変化が全くみられず、プレス加工後の強度についても問題はない。また密着性については、各試験片の導電性膜の剥離はみられなかった。   Invention Examples Nos. 1 to 9 are examples in which Ru is formed on a titanium material. Since an oxide layer of 5 nm or more exists between the titanium material and the conductive film made of Ru, the amount of hydrogen absorbed in the titanium material was the same level as that of the titanium material not provided with the conductive film. In addition, there is no change in the uneven shape, and there is no problem with the strength after press working. Moreover, about the adhesiveness, peeling of the electroconductive film of each test piece was not seen.

発明例No.10〜14は、Ru以外の貴金属Pd、Ir、Os及びPtについての例であり、Ruと同様、良好な結果が得られた。   Invention Example No. 10 to 14 are examples of noble metals Pd, Ir, Os and Pt other than Ru, and good results were obtained as in the case of Ru.

比較例No.15では貴金属による導電性膜を施さないので、接触抵抗が高かった。
比較例No.16は、酸化皮膜が30nmであるチタン材に金をスパッタした例であるが、密着性の面で、他の金属より劣ってた。比較例No.17では酸化皮膜が3nmであるチタン材に金をスパッタした例である。密着性の面では他の金属と同等であったが、酸化層が薄く、チタン材の水素吸収が見られた。
比較例No.18では酸化皮膜の厚みが薄いチタン材にRuをスパッタした例である。酸化皮膜の厚みも薄いため、密着性の面では他の金属と同等であったが、チタン材の水素吸収が見られた。
Comparative Example No. In No. 15, a conductive film made of noble metal was not applied, so that the contact resistance was high.
Comparative Example No. No. 16 is an example in which gold was sputtered onto a titanium material having an oxide film of 30 nm, but was inferior to other metals in terms of adhesion. Comparative Example No. 17 is an example in which gold is sputtered onto a titanium material having an oxide film thickness of 3 nm. Although it was the same as other metals in terms of adhesion, the oxide layer was thin and hydrogen absorption of the titanium material was observed.
Comparative Example No. No. 18 is an example in which Ru is sputtered on a titanium material having a thin oxide film. Since the thickness of the oxide film was thin, it was equivalent to other metals in terms of adhesion, but hydrogen absorption of the titanium material was observed.

比較例No.19では、板厚が薄く酸化皮膜の厚みも薄いチタン材にRuをスパッタした例である。酸化皮膜の厚みも薄いため、密着性の面では他の金属と同等であったが、水素吸収が見られた。板厚の薄い発明例No.7と比べると酸化層が薄い分、形状維持性が悪かった。
比較例No.20では、Ruの導電性膜が薄い例であるが、耐食性試験後の接触抵抗の変化が大きく、セパレータ用材料として好ましくない。
Comparative Example No. No. 19 is an example in which Ru is sputtered on a titanium material having a thin plate thickness and a thin oxide film. Since the thickness of the oxide film was thin, it was equivalent to other metals in terms of adhesion, but hydrogen absorption was observed. Invention Example No. with a small plate thickness Compared with 7, the shape maintenance was poor because the oxide layer was thin.
Comparative Example No. No. 20 is an example in which the conductive film of Ru is thin, but the change in contact resistance after the corrosion resistance test is large, which is not preferable as a separator material.

比較例No.21では、酸化皮膜の厚いチタン材にRuをスパッタした例であるが、密着性が劣っていた。また、酸化層はいずれの実施例(発明例、比較例)もチタン酸化物が存在することは確認された。一方、金をスパッタした比較例No.16〜17を除く実施例では酸化層にスパッタした各々の貴金属の酸化物が検出されたが、比較例No.16〜17では酸化層に金の酸化物は検出されなかった。   Comparative Example No. 21 is an example in which Ru was sputtered on a titanium material having a thick oxide film, but the adhesion was poor. In addition, it was confirmed that titanium oxide was present in any of the examples (invention example, comparative example) in the oxide layer. On the other hand, Comparative Example No. 1 in which gold was sputtered was used. In Examples except 16 to 17, noble metal oxides sputtered on the oxide layer were detected. In 16-17, no gold oxide was detected in the oxide layer.

本発明の燃料電池セパレータ用材料の構造を示した図である。It is the figure which showed the structure of the material for fuel cell separators of this invention. 発明例No.3のチタン材表面にた貴金属を成膜した材料表面から深さ方向のX線光電子分光分析により検出されるチタン、酸素、貴金属(ここではRu)濃度を示す図である。Invention Example No. 3 is a diagram showing titanium, oxygen, and noble metal (Ru in this case) concentrations detected by X-ray photoelectron spectroscopic analysis in the depth direction from the surface of a material on which a noble metal film is formed on the surface of 3 titanium. サンプル全面に荷重を加える導電性膜を成膜したチタン材の接触抵抗測定方法を示す図である。It is a figure which shows the contact resistance measuring method of the titanium material which formed the electroconductive film which applies a load to the sample whole surface. 形状維持性を調べるためのサンプルの凹凸形状を示す図である。It is a figure which shows the uneven | corrugated shape of the sample for investigating shape maintenance property.

Claims (12)

チタン材とRu、Rh、Pd、Ir、Os及びPtからなる群より選択される少なくとも1種類以上の貴金属によって成膜された導電性膜の間に酸化層を有することを特徴とする燃料電池セパレータ用材料。 A fuel cell separator comprising an oxide layer between a titanium film and a conductive film formed of at least one kind of noble metal selected from the group consisting of Ru, Rh, Pd, Ir, Os, and Pt Materials. チタン材とRu、Rh、Pd、Ir、Os及びPtからなる群より選択される少なくとも1種類以上の貴金属によって成膜された導電性膜の間にチタン酸化物と貴金属酸化物からなる酸化層を有することを特徴とする燃料電池セパレータ用材料。 An oxide layer made of titanium oxide and noble metal oxide is formed between the titanium material and the conductive film formed by at least one kind of noble metal selected from the group consisting of Ru, Rh, Pd, Ir, Os, and Pt. A fuel cell separator material comprising: チタン材とRu、Rh、Pd、Ir、Os及びPtからなる群より選択される少なくとも1種類以上の貴金属によって成膜された導電性膜の間に、酸素濃度が10at%以上である酸化層が、5nm〜200nmであることを特徴とする燃料電池セパレータ用材料。 An oxide layer having an oxygen concentration of 10 at% or more is formed between the titanium film and the conductive film formed of at least one kind of noble metal selected from the group consisting of Ru, Rh, Pd, Ir, Os, and Pt. A material for a fuel cell separator, which is 5 nm to 200 nm. チタン材に成膜された材料表面のビッカース硬さHvが115〜300であることを特徴とする請求項1〜3に記載の燃料電池セパレータ用材料。   4. The fuel cell separator material according to claim 1, wherein the surface of the material formed on the titanium material has a Vickers hardness Hv of 115 to 300. 請求項1〜請求項4に記載のチタン材表面のビッカース硬さHvが115〜300であることを特徴とする燃料電池セパレータ用材料。   5. A fuel cell separator material, wherein the surface of the titanium material according to claim 1 has a Vickers hardness Hv of 115 to 300. 請求項1〜請求項5記載の導電性膜の厚みが1nm以上であることを特徴とする燃料電池用セパレータ材料。 6. A fuel cell separator material, wherein the conductive film according to claim 1 has a thickness of 1 nm or more. 請求項1〜請求項6に記載のチタン材が工業用純チタンであることを特徴とする燃料電池用セパレータ材料。   A fuel cell separator material, wherein the titanium material according to claim 1 is industrial pure titanium. 請求項1〜請求項7に記載のチタン材の厚みが、30μm以上であることを特徴とする燃料電池セパレータ用材料。   8. A fuel cell separator material, wherein the titanium material according to claim 1 has a thickness of 30 [mu] m or more. 酸化皮膜を有したチタン材に直接Ru、Rh、Pd、Ir、Os及びPtからなる群より選択される少なくとも1種類以上の貴金属を成膜することを特徴とする請求項1〜8に記載の燃料電池セパレータ用材料の製造方法。 The at least one or more kinds of noble metals selected from the group consisting of Ru, Rh, Pd, Ir, Os, and Pt are directly formed on a titanium material having an oxide film. Manufacturing method of material for fuel cell separator. 酸素濃度が10at%以上で、厚さが、5nm〜200nmである酸化皮膜を有したチタン材表面に直接Ru、Rh、Pd、Ir、Os及びPtからなる群より選択される少なくとも1種類以上の貴金属を成膜することを特徴とする請求項1〜請求項6に記載の燃料電池セパレータ用材料の製造方法。 At least one or more kinds selected from the group consisting of Ru, Rh, Pd, Ir, Os and Pt directly on the surface of a titanium material having an oxide film having an oxygen concentration of 10 at% or more and a thickness of 5 to 200 nm. The method for producing a fuel cell separator material according to claim 1, wherein a noble metal film is formed. チタン材表面を酸化除去した後、反応ガス流路形成のためプレス加工し、その後に表面を酸化させ、導電性膜を成膜することを特徴とする請求項1〜6に記載の燃料電池セパレータ用材料の製造方法。   7. The fuel cell separator according to claim 1, wherein after the titanium material surface is oxidized and removed, press working is performed to form a reaction gas flow path, and then the surface is oxidized to form a conductive film. Method of manufacturing materials. 請求1〜8に記載の燃料電池セパレータ用材料を用いた、燃料電池スタック。
A fuel cell stack using the fuel cell separator material according to claim 1.
JP2006340418A 2006-12-18 2006-12-18 Material for fuel cell separator Pending JP2008153082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006340418A JP2008153082A (en) 2006-12-18 2006-12-18 Material for fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006340418A JP2008153082A (en) 2006-12-18 2006-12-18 Material for fuel cell separator

Publications (1)

Publication Number Publication Date
JP2008153082A true JP2008153082A (en) 2008-07-03

Family

ID=39655047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006340418A Pending JP2008153082A (en) 2006-12-18 2006-12-18 Material for fuel cell separator

Country Status (1)

Country Link
JP (1) JP2008153082A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041135A1 (en) * 2007-09-25 2009-04-02 Nippon Mining & Metals Co., Ltd. Fuel cell separator material and fuel cell stack
WO2009054488A1 (en) * 2007-10-24 2009-04-30 Toyota Jidosha Kabushiki Kaisha Fuel cell separator and method for producing the same
JP2009228123A (en) * 2008-02-27 2009-10-08 Kobe Steel Ltd Surface treatment method of titanium material for electrode
WO2010038544A1 (en) 2008-09-30 2010-04-08 新日本製鐵株式会社 Titanium material having low contact resistance for use in separator for solid polymer-type fuel cell and process for producing the titanium material
WO2010061694A1 (en) * 2008-11-28 2010-06-03 日鉱金属株式会社 Fuel cell separator material, fuel cell separator using same, and fuel cell stack
US9806351B2 (en) 2011-08-09 2017-10-31 Jx Nippon Mining & Metals Corporation Material fuel cell separator, fuel cell separator using same, fuel cell stack, and method of producing fuel cell separator material
JP2018181571A (en) * 2017-04-11 2018-11-15 トヨタ自動車株式会社 Fuel cell stack
KR20180136893A (en) * 2017-06-15 2018-12-26 도요타지도샤가부시키가이샤 Fuel cell stack
JP2019192570A (en) * 2018-04-27 2019-10-31 トヨタ自動車株式会社 Fuel cell separator
JP2020057488A (en) * 2018-10-01 2020-04-09 本田技研工業株式会社 Fuel cell stack

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002527875A (en) * 1998-10-08 2002-08-27 イネオス・クロール・リミテッド Bipolar plates for fuel cells
JP2006190643A (en) * 2004-12-09 2006-07-20 Kobe Steel Ltd Titanium material for electrode and its manufacturing method
JP2008004498A (en) * 2006-06-26 2008-01-10 Mitsubishi Materials Corp Composite layer-covered metal plate with less ncreases in contact resistance even if exposed to oxidative environment for long period

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002527875A (en) * 1998-10-08 2002-08-27 イネオス・クロール・リミテッド Bipolar plates for fuel cells
JP2006190643A (en) * 2004-12-09 2006-07-20 Kobe Steel Ltd Titanium material for electrode and its manufacturing method
JP2008004498A (en) * 2006-06-26 2008-01-10 Mitsubishi Materials Corp Composite layer-covered metal plate with less ncreases in contact resistance even if exposed to oxidative environment for long period

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5143842B2 (en) * 2007-09-25 2013-02-13 Jx日鉱日石金属株式会社 Fuel cell separator material and fuel cell stack
JPWO2009041135A1 (en) * 2007-09-25 2011-01-20 日鉱金属株式会社 Fuel cell separator material and fuel cell stack
WO2009041135A1 (en) * 2007-09-25 2009-04-02 Nippon Mining & Metals Co., Ltd. Fuel cell separator material and fuel cell stack
WO2009054488A1 (en) * 2007-10-24 2009-04-30 Toyota Jidosha Kabushiki Kaisha Fuel cell separator and method for producing the same
JP2009104932A (en) * 2007-10-24 2009-05-14 Toyota Motor Corp Fuel cell separator and its manufacturing method
JP2009228123A (en) * 2008-02-27 2009-10-08 Kobe Steel Ltd Surface treatment method of titanium material for electrode
WO2010038544A1 (en) 2008-09-30 2010-04-08 新日本製鐵株式会社 Titanium material having low contact resistance for use in separator for solid polymer-type fuel cell and process for producing the titanium material
US8603268B2 (en) 2008-09-30 2013-12-10 Nippon Steel & Sumitomo Metal Corporation Titanium material for solid polymer fuel cell separator having low contact resistance and method of production of same
JP5313264B2 (en) * 2008-11-28 2013-10-09 Jx日鉱日石金属株式会社 Fuel cell separator material, fuel cell separator using the same, and fuel cell stack
JPWO2010061694A1 (en) * 2008-11-28 2012-04-26 Jx日鉱日石金属株式会社 Fuel cell separator material, fuel cell separator using the same, and fuel cell stack
CN102227841A (en) * 2008-11-28 2011-10-26 Jx日矿日石金属株式会社 Fuel cell separator material, fuel cell separator using same, and fuel cell stack
WO2010061694A1 (en) * 2008-11-28 2010-06-03 日鉱金属株式会社 Fuel cell separator material, fuel cell separator using same, and fuel cell stack
US9123920B2 (en) 2008-11-28 2015-09-01 Jx Nippon Mining & Metals Corporation Fuel cell separator material, fuel cell separator using same, and fuel cell stack
US9806351B2 (en) 2011-08-09 2017-10-31 Jx Nippon Mining & Metals Corporation Material fuel cell separator, fuel cell separator using same, fuel cell stack, and method of producing fuel cell separator material
JP2018181571A (en) * 2017-04-11 2018-11-15 トヨタ自動車株式会社 Fuel cell stack
KR20180136893A (en) * 2017-06-15 2018-12-26 도요타지도샤가부시키가이샤 Fuel cell stack
JP2019003840A (en) * 2017-06-15 2019-01-10 トヨタ自動車株式会社 Fuel cell stack
US10559833B2 (en) 2017-06-15 2020-02-11 Toyota Jidosha Kabushiki Kaisha Fuel cell stack
KR102076143B1 (en) * 2017-06-15 2020-02-11 도요타지도샤가부시키가이샤 Fuel cell stack
JP2019192570A (en) * 2018-04-27 2019-10-31 トヨタ自動車株式会社 Fuel cell separator
JP7020278B2 (en) 2018-04-27 2022-02-16 トヨタ自動車株式会社 Fuel cell separator
JP2020057488A (en) * 2018-10-01 2020-04-09 本田技研工業株式会社 Fuel cell stack
JP7076350B2 (en) 2018-10-01 2022-05-27 本田技研工業株式会社 Fuel cell stack

Similar Documents

Publication Publication Date Title
JP2008153082A (en) Material for fuel cell separator
JP5325235B2 (en) FUEL CELL SEPARATOR MATERIAL, FUEL CELL SEPARATOR USING THE SAME, FUEL CELL STACK, AND METHOD FOR PRODUCING FUEL CELL SEPARATOR MATERIAL
JP4702365B2 (en) Fuel cell separator and method for producing the same
KR100707559B1 (en) Titanium material and method for manufacturing the same
KR101117417B1 (en) Corrosion resistant film for fuel cell separator and fuel cell separator
JP5175590B2 (en) Fuel cell separator and method for producing the same
CA2373344A1 (en) Corrosion-resistant metallic member, metallic separator for fuel cell comprising the same, and process for production thereof
JP5192908B2 (en) Titanium substrate for fuel cell separator, fuel cell separator, and fuel cell separator manufacturing method
KR101266097B1 (en) Fuel cell separator and method for producing the same
TWI515944B (en) Stainless steel foil for separator between solid polymer fuel cell
JP2007323988A (en) Metal separator for fuel cell, manufacturing method of the same, and fuel cell
JP5072019B2 (en) Fuel cell separator material and fuel cell separator
JP2008251297A (en) Separator material for fuel cell and separator for fuel cell
JP3991701B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP4040008B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP2006278172A (en) Separator material for fuel sell
JP5291368B2 (en) Fuel cell separator material, fuel cell separator using the same, fuel cell stack, and method for producing fuel cell separator material
KR101912612B1 (en) Separator for fuel cell
CA2955125C (en) Metallic material, and conductive component including the same
JP6102414B2 (en) Fuel cell separator and method for producing the same
JP2010238394A (en) Separator material for fuel cell and fuel cell stack using the same
JP4585760B2 (en) Method for forming noble metal thin film of polymer electrolyte fuel cell separator
JP2011249148A (en) Fuel cell separator material, fuel cell separator using the same, fuel cell stack, and method of manufacturing fuel cell separator material
JP2023122178A (en) Manufacturing method of fuel cell separator
JP2010238565A (en) Separator material of fuel cell and fuel cell stack using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120424