JP2007256164A - Circumferential-directional strength measuring instrument for fuel sheath tube - Google Patents

Circumferential-directional strength measuring instrument for fuel sheath tube Download PDF

Info

Publication number
JP2007256164A
JP2007256164A JP2006082927A JP2006082927A JP2007256164A JP 2007256164 A JP2007256164 A JP 2007256164A JP 2006082927 A JP2006082927 A JP 2006082927A JP 2006082927 A JP2006082927 A JP 2006082927A JP 2007256164 A JP2007256164 A JP 2007256164A
Authority
JP
Japan
Prior art keywords
circumferential
internal pressure
cladding tube
fuel cladding
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006082927A
Other languages
Japanese (ja)
Other versions
JP4753026B2 (en
Inventor
Masafumi Nakatsuka
雅文 中司
Shinji Kashibe
信司 樫部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Nuclear Fuel Development Co Ltd
Global Nuclear Fuel Japan Co Ltd
Original Assignee
Nippon Nuclear Fuel Development Co Ltd
Global Nuclear Fuel Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Nuclear Fuel Development Co Ltd, Global Nuclear Fuel Japan Co Ltd filed Critical Nippon Nuclear Fuel Development Co Ltd
Priority to JP2006082927A priority Critical patent/JP4753026B2/en
Publication of JP2007256164A publication Critical patent/JP2007256164A/en
Application granted granted Critical
Publication of JP4753026B2 publication Critical patent/JP4753026B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a circumferential-directional strength measuring instrument for a fuel sheath tube, capable of measuring the stress/strain characteristics, when a circumferential-directional load is applied in the irradiated fuel sheath tube of a light water type nuclear reactor, using a remote operation. <P>SOLUTION: In this circumferential-directional strength measuring instrument for the fuel sheath tube, arranged with end plugs in both ends of a tubular testing object, and for measuring the mechanical characteristics of a tubular testing object material, based on the relation between the circumferential-directional stress resulting from an internal pressure, and a circumferential-directional strain generated in the tubular testing object by the circumferential-directional stress, by loading the internal pressure through the one end plug, an elastic sealing material is arranged in the both ends of the tubular testing object of a measured material; a seal compressing mechanism for compressing the sealing material is provided as a mechanism for reinforcing the sealing function for the internal pressure; and a characteristic as to the circumferential-directional strength of the fuel sheath tube material is found by the remote operation, in the radioactive fuel sheath tube material. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、原子炉内で使用されて放射能を帯びた燃料被覆管に高圧の内圧を負荷して管の材料強度・変形特性をセル内で遠隔測定する燃料被覆管の円周方向強度測定装置に関する。   The present invention measures the circumferential strength of a fuel cladding tube used in a nuclear reactor to remotely measure the material strength and deformation characteristics of the tube in a cell by applying a high internal pressure to a radioactive cladding tube. Relates to the device.

管状材料の機械的特性を測定する従来の技術は、管の長手方向に引張り荷重を負荷して応力−変形関係および破断時の応力や塑性ひずみを測定する試験方法(以降、管の引張り試験と省略)と、管の片端を溶接もしくは機械的に閉じて、他の端に内圧導入穴付きの栓を取り付け、ガスや液体を加圧媒体にして内圧を負荷し、圧力と管の膨張量との関係および破裂時の最大圧力や破裂時の塑性変形を測定するクローズドエンド内圧破裂試験方法(以降、内圧破裂試験と省略)が知られている。   The conventional technique for measuring the mechanical properties of a tubular material is a test method for measuring the stress-deformation relationship, stress at break and plastic strain by applying a tensile load in the longitudinal direction of the tube (hereinafter referred to as tube tensile test and (Omitted) and welded or mechanically closed one end of the pipe, attached a stopper with an internal pressure introduction hole to the other end, loaded the internal pressure with gas or liquid as a pressurizing medium, and the pressure and expansion amount of the pipe A closed-end internal pressure burst test method (hereinafter abbreviated as an internal pressure burst test) is known that measures the relationship between the maximum pressure at burst and the plastic deformation at burst.

機械的特性を求める際に、前記内圧破裂試験では長手方向引張りと円周方向引張りの多軸応力状態が生じるために単軸応力状態での材料の基本的な特性である応力−変形関係を求めることができない。しかし、一般の産業用材料の場合には、単軸応力状態での管材料の応力−変形関係等の基本的な材料特性は、引張り試験から求めることが一般的である。それは多くの場合、変形挙動は等方的であるので、妥当な試験方法である。   When determining mechanical properties, the internal pressure rupture test generates a multiaxial stress state of longitudinal tension and circumferential tension, so the stress-deformation relationship, which is the basic property of the material in the uniaxial stress state, is determined. I can't. However, in the case of a general industrial material, basic material properties such as a stress-deformation relationship of a pipe material in a uniaxial stress state are generally obtained from a tensile test. It is a reasonable test method because in many cases the deformation behavior is isotropic.

ところで、材料の変形特性に異方性が強く、特に燃料被覆管の特性評価のためには円周方向の材料特性に関する知見が重要であり、管の長手方向引張り試験だけから求めた応力−変形関係ではその挙動を十分に把握できない場合があった。また、円周方向に応力が生じる内圧破裂試験では上述のように長手方向応力にも同時に応力が重畳する多軸応力下での応力−変形関係になり、単軸応力状態ではないので基本的な材料特性は得られず、計算機コード等の入力材料特性としては利用が限定されたデータしかならなかった。   By the way, the anisotropy of the deformation characteristics of the material is strong, and in particular the knowledge of the material characteristics in the circumferential direction is important for evaluating the characteristics of the fuel cladding. Stress-deformation obtained only from the longitudinal tensile test of the pipe There were cases where the behavior could not be fully understood. In the internal pressure rupture test in which stress is generated in the circumferential direction, the stress-deformation relationship occurs under the multiaxial stress in which stress is simultaneously superimposed on the longitudinal stress as described above, and is not a uniaxial stress state. Material characteristics could not be obtained, and input data characteristics such as computer codes were limited in data to be used.

そこで、材料の機械的特性に異方性が考えられる軽水型原子炉用の燃料被覆管について円周方向単軸負荷時の機械的特性を得るためには、被覆管に長手方向の引張り力が発生せず、円周方向の単軸応力のみが発生する、例えばQuantum Technology AB社の公開資料TR03-008等で開示されているオープンエンド型の内圧負荷試験方法がある。   Therefore, in order to obtain the mechanical characteristics at the time of the uniaxial load in the circumferential direction for the fuel cladding tube for light water reactors where the mechanical properties of the material are considered to be anisotropic, a tensile force in the longitudinal direction is applied to the cladding tube. There is an open end type internal pressure load test method disclosed in, for example, a published document TR03-008 of Quantum Technology AB, in which only a uniaxial stress in the circumferential direction is generated without being generated.

このオープンエンド型の内圧負荷試験方法では、管の少なくとも一端において、溶接端栓や機械的な締め付け力による端栓で内圧を閉じるのではなく、管の長手方向に内圧に起因する引張り力が作用しないように、管と圧力シール用端栓機構間の相互の動きが自由である構造にする必要がある。   In this open-end type internal pressure load test method, at least one end of the pipe is not closed with a welded end plug or an end plug by mechanical clamping force, but a tensile force due to the internal pressure acts in the longitudinal direction of the pipe. Therefore, it is necessary to provide a structure in which the movement between the pipe and the end plug mechanism for pressure seal is free.

このような構造とするためには、例えばJIS B2401に開示されているように、通常はOリングによるシール方法が用いられている。また、当該技術分野の試験においては高温高圧条件下が必要であり、そのための高内圧用シールの例としては、Oリング溝部の嵌め合い寸法を狭くする方法や、外力によりOリングに圧縮力を加える方法や、内外圧力差を用いたブリッジマンシールの原理によりOリングに圧縮力を加える方法等は特許文献1や特許文献2に開示されている。また、Oリングの断面形状を略K字形に改良して高機能にした例は特許文献3に開示されているが、加圧媒体をOリングでシールする方法において、遠隔操作で端栓を簡便に着脱可能にし、かつ放射線を遮蔽したセルと称呼される小部屋に収容可能な小型装置とする必要がある。
特開平8−201124号公報 特許第2636195号公報 特許第2630634号公報
In order to obtain such a structure, for example, as disclosed in JIS B2401, a sealing method using an O-ring is usually used. In addition, high-temperature and high-pressure conditions are required in the tests in the technical field, and examples of high internal pressure seals for this purpose include a method of narrowing the fitting size of the O-ring groove and a compressive force applied to the O-ring by external force. Patent Document 1 and Patent Document 2 disclose a method of applying, a method of applying a compressive force to the O-ring based on the Bridgeman seal principle using an internal and external pressure difference, and the like. In addition, an example in which the cross-sectional shape of the O-ring is improved to a substantially K-shape and is made highly functional is disclosed in Patent Document 3, but in the method of sealing the pressurized medium with the O-ring, the end plug can be easily operated by remote control. It is necessary to make it a small device that can be detachably attached and can be accommodated in a small room called a cell that shields radiation.
Japanese Patent Laid-Open No. 8-201124 Japanese Patent No. 2636195 Japanese Patent No. 2630634

上記のような従来技術でのオープンエンド型の内圧負荷試験方法は、装置に供試材をセットする際には、一般の産業用の管状構造材料では作業員が手で直接的に供試材をつかむことが可能であるので、微細な動きと強力な力で試験体を装置に取り付けることが可能であった。また、装置全体の大きさに特別な制限も無かった。   The open-end type internal pressure load test method in the prior art as described above, when setting a test material in the apparatus, in the case of a general industrial tubular structure material, an operator directly by hand Therefore, it was possible to attach the test body to the apparatus with fine movement and powerful force. Moreover, there was no special restriction | limiting in the magnitude | size of the whole apparatus.

しかしながら、強い放射能を有する燃料被覆管を供試材にする場合には、セルと称呼される小部屋内に収納可能な小型装置で、かつ、微力な締め付け力しか発生しない遠隔操作で試験体の組み立てを可能にする必要があった。   However, when using a fuel cladding tube with strong radioactivity as a test material, it is a small device that can be stored in a small chamber called a cell, and it is a remote control that generates only a slight clamping force. It was necessary to enable assembly.

本発明は、上記状況に鑑みてなされたもので、その課題は照射された軽水型原子炉用の燃料被覆管の円周方向負荷時の応力−ひずみ特性を遠隔操作によって測定できる燃料被覆管の円周方向強度測定装置を提供することにある。   The present invention has been made in view of the above situation, and the problem thereof is that of a fuel cladding tube capable of remotely measuring stress-strain characteristics at the time of circumferential load of a fuel cladding tube for an irradiated light water reactor. The object is to provide a circumferential strength measuring device.

前記課題を解決するために、本発明の燃料被覆管の円周方向強度測定装置は、請求項1〜4に記載の通りに構成されている。すなわち、
請求項1に記載の燃料被覆管の円周方向強度測定装置は、管状試験体の両端に端栓を配置し、一方の端栓を経由して内圧を負荷し、この内圧に起因する円周方向応力と、この同円周方向応力によって前記管状試験体に発生する円周方向ひずみとの関係から当該管状試験体材料の機械的特性を測定する測定装置において、被測定材料である管状試験体の両端に弾性を有するシール材を配置し、かつ内圧のシール機能を強化する機構としてシール材を圧縮するシール圧縮機構を具備している。
In order to solve the above problems, the circumferential strength measuring device for a fuel cladding tube of the present invention is configured as described in claims 1 to 4. That is,
The circumferential direction strength measuring device for a fuel cladding tube according to claim 1, wherein end plugs are arranged at both ends of the tubular test body, an internal pressure is applied through one end plug, and the circumference caused by the internal pressure is measured. In a measuring apparatus for measuring the mechanical properties of the tubular test specimen material from the relationship between the directional stress and the circumferential strain generated in the tubular test specimen by the same circumferential stress, the tubular test specimen that is the material to be measured A seal compression mechanism for compressing the seal material is provided as a mechanism for arranging a sealing material having elasticity at both ends and reinforcing the sealing function of the internal pressure.

一方の端栓は端栓受けおよび端栓受け支持機構によって支えられており、加圧媒体導入穴付き端栓は基盤ブロックを介して図示していない圧力発生装置に結合されている。   One end plug is supported by an end plug receiver and an end plug receiver support mechanism, and the end plug with a pressurizing medium introduction hole is connected to a pressure generator (not shown) through a base block.

また、試験体である燃料被覆管の両端には管膨張抑制治具が管外側に嵌め込んであり、試験体加熱用炉が試験体の外套体として設置されている。電気炉制御のために温度検出用の熱電対が試験体外表面に接触させて配置してある。被覆管の長さ方向中央部には管直径測定用の伸び計が配置してあり、基盤ブロック中の圧力導入穴には加圧媒体の圧力検出器を配管で結合されて構成されている。   In addition, pipe expansion suppression jigs are fitted on both ends of the fuel cladding tube, which is a test body, and a test body heating furnace is installed as an outer shell of the test body. A thermocouple for temperature detection is arranged in contact with the outer surface of the specimen for electric furnace control. An extensometer for measuring the diameter of the tube is arranged at the central portion in the length direction of the cladding tube, and a pressure detector for the pressurized medium is connected to the pressure introducing hole in the base block by piping.

請求項2に記載の燃料被覆管の円周方向強度測定装置は、内圧シール部材に管長手方向圧縮力を負荷してシール機能を強化するためのシール圧縮機構として、試験体の内部に挿入する圧力媒体通過穴付き挿入円筒と、両端栓および端栓受けに連結しているネジ式の圧縮機構から成り、ネジによる圧縮力が前記挿入円筒に伝わり、内圧シールが嵌合している両端部でのシール用の溝の幅を狭め、シール材を試験体の内表面に押し出し、シール機能を倍増することにより、シール機能が強化されるように構成されている。   An apparatus for measuring the strength in the circumferential direction of a fuel cladding tube according to claim 2 is inserted into the specimen as a seal compression mechanism for applying a compressive force in the longitudinal direction of the pipe to the internal pressure sealing member to enhance the sealing function. It consists of an insertion cylinder with a pressure medium passage hole and a screw-type compression mechanism connected to both end plugs and end plug receivers. The compression force by the screw is transmitted to the insertion cylinder and the both ends where the internal pressure seal is fitted The sealing groove is narrowed, the sealing material is pushed out to the inner surface of the test specimen, and the sealing function is doubled to enhance the sealing function.

請求項3に記載の燃料被覆管の円周方向強度測定装置は、弾性シール部材は、断面が円形および矩形等の各種の断面形状と弾性力を有するシリコンゴム、フッ素ゴム、カルレッツ等の軟質樹脂の他に、金属またはポリイミド樹脂製のOリングもしくはガスケットで構成されている。また、複数のシール部材を両端栓に装着する際には、バックアップリングと組み合わせて使用する場合もある。   The circumferential direction strength measuring device for a fuel cladding tube according to claim 3, wherein the elastic seal member is a soft resin such as silicon rubber, fluororubber, Kalrez or the like having various cross-sectional shapes such as circular and rectangular in cross section and elastic force. In addition, it is composed of an O-ring or gasket made of metal or polyimide resin. In addition, when a plurality of seal members are attached to both end plugs, they may be used in combination with a backup ring.

請求項4に記載の燃料被覆管の円周方向強度測定装置は、試験体は原子炉で燃料棒として使用された後に、放射線を遮蔽された部屋(セル)の中で例えば6cmの短尺に切り出された管を用いて構成されており、セル内での遠隔操作によって装置内に組み立てられている。   The apparatus for measuring the circumferential strength of a fuel cladding tube according to claim 4, wherein after the specimen is used as a fuel rod in a nuclear reactor, the specimen is cut into a short length of, for example, 6 cm in a room (cell) shielded from radiation. It is constructed using a pipe, and is assembled in the apparatus by remote control within the cell.

(作用)
本実施形態は、原子炉で使用された結果、放射性材料になった原子炉用燃料被覆管の円周方向材料特性をセルと称呼される部屋の中で遠隔操作により測定する燃料被覆管の円周方向強度測定装置に適用したものである。
(Function)
This embodiment is a circle of a fuel cladding tube that is used to remotely measure the circumferential material properties of a nuclear reactor fuel cladding tube that has become a radioactive material as a result of being used in a nuclear reactor in a room called a cell. This is applied to a circumferential strength measuring device.

基盤ブロックに固定されている加圧媒体導入穴付き端栓に、OリングとOリング圧縮用円筒を装着し、試験体である燃料被覆管を被せる。該被覆管の片端には圧力封じ用の片端栓を挿入し、ネジ式機構および端栓支え機構で端栓受けを基盤ブロックに固定する。この機構によって小型の試験装置内に試験体を組み立てることが可能である。   An O-ring and an O-ring compression cylinder are attached to an end plug with a pressurized medium introduction hole fixed to the base block, and a fuel cladding tube as a test body is covered. One end plug for pressure sealing is inserted into one end of the cladding tube, and the end plug receiver is fixed to the base block by a screw type mechanism and an end plug support mechanism. By this mechanism, it is possible to assemble a test body in a small test apparatus.

加圧媒体導入穴付き端栓を通じて試験体内に例えば水もしくはシリコン油等の加圧媒体が導入されると、内圧に起因する円周方向の応力が発生する。この内圧によって、端栓を管から押し出す方向の力が作用するが、片端栓支え機構の作用で端栓押し出し力は基盤ブロックで支えられている。   When a pressurized medium such as water or silicone oil is introduced into the test body through the end plug with the pressurized medium introduction hole, circumferential stress caused by the internal pressure is generated. This internal pressure causes a force in the direction of pushing the end plug out of the tube, but the end plug pushing force is supported by the base block by the action of the one-end plug support mechanism.

また内圧が増加すると、試験体である管の両端が膨張し加圧媒体の漏洩が生じ易いが、管両端部に嵌め込んだ膨張抑制治具の作用で漏洩を防止されている。試験体の外から円周方向の伸びを測定し、発生している円周方向応力を負荷している内圧から算出し、応力−ひずみ関係を求めることができる。   Further, when the internal pressure increases, both ends of the test tube are expanded and the pressurized medium is likely to leak, but the leakage is prevented by the action of the expansion suppressing jig fitted to both ends of the tube. The elongation in the circumferential direction is measured from the outside of the test body, the generated circumferential stress is calculated from the internal pressure applied, and the stress-strain relationship can be obtained.

試験体は外套体として組み込まれている円筒状加熱炉で所定の温度まで昇温される。高温高圧になるとOリングから加圧媒体が漏洩し易くなるので試験の途中にネジ式機構に直結しているOリング圧縮用円筒の作用でOリングを追加的に圧縮する。   The test body is heated to a predetermined temperature in a cylindrical heating furnace incorporated as a mantle. Since the pressurized medium is likely to leak from the O-ring at high temperature and high pressure, the O-ring is additionally compressed by the action of the O-ring compression cylinder directly connected to the screw type mechanism during the test.

次に、円周方向応力と円周方向ひずみとの関係と管状試験体材料の機械的特性との関連について説明すると、管状試験体(片方に栓をして)に内圧を加えて破裂させることにより、管の機械的特性を得る場合には、(薄肉管では)円周方向に2、管の長手方向に1の割合を保ったまま、引張り応力が発生する。この応力状態は、棒状試験片での引張り試験から材料強度を求める状態とは応力比が異なる。即ち、単軸応力であるべきところが2軸応力状態での試験になり、管状試験体材料の機械的特性が正確には求まらない。ところが本試験方法のように内圧は負荷するのだが、(長手方向応力は発生しないで)円周方向だけの単軸応力状態での円周方向応力と円周方向ひずみとの関係は、棒の単軸引張りのように単軸での管状試験体材料の機械的特性が求まることになる。   Next, the relationship between the stress in the circumferential direction and the strain in the circumferential direction and the mechanical properties of the tubular specimen material will be explained. The internal pressure is applied to the tubular specimen (plugged on one side) and ruptured. Thus, when obtaining the mechanical properties of the tube, a tensile stress is generated while maintaining a ratio of 2 in the circumferential direction and 1 in the longitudinal direction of the tube (for thin-walled tubes). This stress state has a different stress ratio from the state in which the material strength is obtained from a tensile test using a rod-shaped test piece. That is, what should be uniaxial stress is a test in a biaxial stress state, and the mechanical characteristics of the tubular specimen material cannot be accurately obtained. However, the internal pressure is applied as in this test method, but the relationship between the circumferential stress and the circumferential strain in the uniaxial stress state only in the circumferential direction (without generating longitudinal stress) is As in the case of uniaxial tension, the mechanical characteristics of the uniaxial tubular specimen material are obtained.

本発明によれば、放射能を有する燃料被覆管材料を遠隔操作でその材料の円周方向の強度に関する特性を求めることが可能な燃料被覆管の円周方向強度測定装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the circumferential direction intensity | strength measuring apparatus of the fuel cladding tube which can obtain | require the characteristic regarding the intensity | strength of the circumferential direction of the fuel cladding tube material which has radioactivity by remote control can be provided. .

以下、本発明を実施するための最良の形態を図面に基づいて説明する。
図1は、本発明の一実施形態である燃料被覆管の円周方向強度測定装置の側断面図である。
Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
FIG. 1 is a side sectional view of a circumferential strength measuring apparatus for a fuel cladding tube according to an embodiment of the present invention.

図1に示すように、本実施形態の燃料被覆管の円周方向強度測定装置1は、装置全体がその上に一体的に固定されている基盤ブロック2と、装置内部に挿入された試験体である燃料被覆管3と、この試験体への加圧媒体導入穴4を備えた圧力導入穴付端栓5と、圧力媒体封じ用の片端栓6と、圧力媒体シール用Oリング7と、加圧媒体通過穴8付きの挿入円筒9とから構成されている。片端栓6はネジ式押し機構11を備えた端栓受け10で保持されており、端栓受け10は端栓受け支え機構12によって支えられる構造となっている。   As shown in FIG. 1, the circumferential strength measuring apparatus 1 of the fuel cladding tube of this embodiment includes a base block 2 in which the entire apparatus is integrally fixed thereon, and a test specimen inserted into the apparatus. A fuel cladding tube 3, an end plug 5 with a pressure introduction hole provided with a pressure medium introduction hole 4 to the test body, a single end plug 6 for pressure medium sealing, an O-ring 7 for pressure medium sealing, The insertion cylinder 9 is provided with a pressurized medium passage hole 8. The one end plug 6 is held by an end plug receiver 10 having a screw-type pushing mechanism 11, and the end plug receiver 10 is supported by an end plug receiver support mechanism 12.

このような構造により、図示しない高圧発生機で生じた高圧の加圧媒体が導入穴付き端栓5および加圧媒体通過穴8を経由して試験体内に導入される。   With such a structure, a high-pressure pressurized medium generated by a high-pressure generator (not shown) is introduced into the test body via the end plug 5 with the introduction hole and the pressurized medium passage hole 8.

また、試験体である燃料被覆管3の両端は膨張変形を抑制するために膨張抑制治具13を燃料被覆管3の外側に取り付ける必要がある。しかし、リング7の内径が試験体の外より僅かに大であるが僅かに楕円状に変形させているために遠隔操作用のマニュプレータでの弱い力でも嵌合可能であり、かつ弾性力の作用でずり落ちない状態で嵌め込んである。試験体加熱用炉14は試験体の外套体として構成配置されており、膨張抑制治具13を位置決め用の台にして遠隔操作で容易に配置可能である。   Further, it is necessary to attach an expansion suppression jig 13 to the outside of the fuel cladding tube 3 in order to suppress expansion deformation at both ends of the fuel cladding tube 3 as a test body. However, since the inner diameter of the ring 7 is slightly larger than the outside of the test body but is slightly deformed into an elliptical shape, it can be fitted even with a weak force with a manipulator for remote control and the action of elastic force. It is fitted in a state that does not slide down. The test specimen heating furnace 14 is configured and arranged as an outer casing of the test specimen, and can be easily arranged by remote operation using the expansion suppression jig 13 as a positioning table.

また、電気炉制御のために図示しない温度検出用の熱電対が試験体外表面に複数本接触させて配置してある。試験体の代表的な変形量を検出するために、当該電気炉の長さ方向中央位置には、管直径測定用の伸び計15を試験体に接触させるための貫通穴が配置してあり、伸び計15を遠隔操作で挿入することにより容易にセット可能である。さらに、基盤ブロック中の圧力導入穴4には加圧媒体の圧力検出器16を配管で結合された構成となっている。   For controlling the electric furnace, a plurality of temperature detecting thermocouples (not shown) are arranged in contact with the outer surface of the specimen. In order to detect a typical deformation amount of the test body, a through hole for bringing the extensometer 15 for measuring the tube diameter into contact with the test body is arranged at the central position in the length direction of the electric furnace. It can be easily set by inserting the extensometer 15 by remote control. Further, a pressure medium pressure detector 16 is connected to the pressure introducing hole 4 in the base block by piping.

本実施形態は上記のように構成されているので、小型の試験装置で、かつ遠隔操作で容易に試験体をセットすることが可能である。したがって、試験体である燃料被覆管の破壊までの膨張量および内圧を電気信号としてセル外で容易に記録できる。   Since the present embodiment is configured as described above, it is possible to set a test body with a small test apparatus and easily by remote control. Therefore, the expansion amount and the internal pressure until the destruction of the fuel cladding tube as the test body can be easily recorded outside the cell as an electric signal.

本発明は上記実施形態のみに限定されるものではなく、種々の応用や変形も可能である。例えば、上記実施の形態を応用した次の各形態を実施することもできる。   The present invention is not limited to the above-described embodiment, and various applications and modifications are possible. For example, each of the following embodiments to which the above embodiment is applied can be implemented.

(1)上記実施形態では、Oリングを用いて試験体である燃料被覆管内の加圧媒体をシールしているが、シール部材は高温でも弾性を有する部材であればOリングに限定されることはなく、必要に応じて各種のパッキンを選択することができる。 (1) In the above embodiment, the pressurized medium in the fuel cladding tube, which is the test body, is sealed using the O-ring. However, the sealing member is limited to the O-ring as long as it is elastic even at high temperatures. Rather, various packings can be selected as required.

(2)上記実施形態では、試験体の加熱として加熱用炉を用いているが、必要に応じて、高周波加熱用のコイルを用いることができる。 (2) In the above embodiment, a heating furnace is used for heating the specimen, but a high-frequency heating coil can be used as necessary.

(3)上記実施形態において、管直径測定用の検出器は、機械的な接触方式だけでなく、光学的、電磁学的な原理を用いた検出器も適用できる。 (3) In the above embodiment, the detector for measuring the tube diameter can be applied not only to a mechanical contact method but also to a detector using optical and electromagnetic principles.

(4)上記実施形態で用いる加圧媒体としては、水、蒸気、各種油、の他に各種のガスを用いることができる。 (4) As a pressurizing medium used in the above embodiment, various gases can be used in addition to water, steam and various oils.

本発明の一実施形態である燃料被覆管の円周方向強度測定装置の側断面図。The side sectional view of the circumference direction strength measuring device of the fuel cladding which is one embodiment of the present invention.

符号の説明Explanation of symbols

1…燃料被覆管の円周方向強度測定装置、2…基盤ブロック、3…燃料被覆管、4…加圧媒体導入穴、5…圧力導入穴付き端栓、6…片端栓、7…圧力媒体シール用Oリング、8…加圧媒体通過穴、9…圧力媒体通過穴付き挿入円筒、10…端栓受け、11…ネジ式押し機構、12…端栓受け支え機構、13…膨張抑制治具、14…試験体加熱用炉、15…伸び計、16…圧力検出器。   DESCRIPTION OF SYMBOLS 1 ... Circumferential strength measuring apparatus of fuel cladding tube, 2 ... Base block, 3 ... Fuel cladding tube, 4 ... Pressure medium introduction hole, 5 ... End plug with pressure introduction hole, 6 ... One end plug, 7 ... Pressure medium O-ring for sealing, 8 ... Pressure medium passage hole, 9 ... Insertion cylinder with pressure medium passage hole, 10 ... End plug receiver, 11 ... Screw-type push mechanism, 12 ... End plug receiver support mechanism, 13 ... Expansion suppression jig , 14 ... furnace for heating the specimen, 15 ... extensometer, 16 ... pressure detector.

Claims (4)

管状試験体の両端に端栓を配置し、一方の端栓を経由して内圧を負荷し、この内圧に起因する円周方向応力と、この同円周方向応力によって前記管状試験体に発生する円周方向ひずみとの関係から当該管状試験体材料の機械的特性を測定する燃料被覆管の円周方向強度測定装置において、被測定材料である前記管状試験体の両端に弾性を有するシール材を配置し、かつ内圧のシール機能を強化する機構として前記シール材を圧縮するシール圧縮機構を具備していることを特徴とする燃料被覆管の円周方向強度測定装置。   End plugs are arranged at both ends of the tubular test body, and an internal pressure is applied via one end plug. The circumferential stress caused by the internal pressure and the circumferential test stress are generated in the tubular test body. In a circumferential strength measuring apparatus for a fuel cladding tube that measures the mechanical characteristics of the tubular specimen material from the relationship with the circumferential strain, an elastic sealing material is provided at both ends of the tubular specimen as a material to be measured. An apparatus for measuring the strength in the circumferential direction of a fuel cladding tube, comprising: a seal compression mechanism that compresses the sealing material as a mechanism that is disposed and that enhances a sealing function of internal pressure. 内圧シール部材に管長手方向圧縮力を負荷してシール機能を強化するためのシール圧縮機構は、ネジ式の端栓受け部材および圧力媒体通過穴付き挿入円筒材を介して、内圧シールが嵌合している溝の幅を狭めることによってシール機能を強化するように構成されていることを特徴とする請求項1に記載の燃料被覆管の円周方向強度測定装置。   The seal compression mechanism for reinforcing the sealing function by applying a compressive force in the pipe longitudinal direction to the internal pressure seal member is fitted with the internal pressure seal via the screw-type end plug receiving member and the insertion cylindrical member with the pressure medium passage hole. 2. The circumferential strength measuring apparatus for a fuel cladding tube according to claim 1, wherein the sealing function is enhanced by narrowing the width of the groove. 弾性シール部材は、断面が円形および矩形等の各種の断面形状と弾性力を有する各種材料からなるOリングもしくはガスケットであることを特徴とする請求項1に記載の燃料被覆管の円周方向強度測定装置。   2. The circumferential strength of the fuel cladding tube according to claim 1, wherein the elastic seal member is an O-ring or gasket made of various cross-sectional shapes such as circular and rectangular in cross section and various elastic materials. measuring device. 供試材料が、原子力発電用の燃料被覆管から切り出された短尺の管であることを特徴とする請求項1に記載の燃料被覆管の円周方向強度測定装置。   The circumferential direction strength measuring device for a fuel cladding tube according to claim 1, wherein the test material is a short tube cut out from a fuel cladding tube for nuclear power generation.
JP2006082927A 2006-03-24 2006-03-24 Equipment for measuring the circumferential strength of fuel cladding tubes Expired - Fee Related JP4753026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006082927A JP4753026B2 (en) 2006-03-24 2006-03-24 Equipment for measuring the circumferential strength of fuel cladding tubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006082927A JP4753026B2 (en) 2006-03-24 2006-03-24 Equipment for measuring the circumferential strength of fuel cladding tubes

Publications (2)

Publication Number Publication Date
JP2007256164A true JP2007256164A (en) 2007-10-04
JP4753026B2 JP4753026B2 (en) 2011-08-17

Family

ID=38630549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006082927A Expired - Fee Related JP4753026B2 (en) 2006-03-24 2006-03-24 Equipment for measuring the circumferential strength of fuel cladding tubes

Country Status (1)

Country Link
JP (1) JP4753026B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153857A (en) * 2010-01-26 2011-08-11 Nippon Nuclear Fuel Dev Co Ltd Seal mechanism of fuel cladding tube
JP2013124866A (en) * 2011-12-13 2013-06-24 Nuclear Fuel Ind Ltd Extension jig for pipe-shaped test piece
JP2013540263A (en) * 2010-09-14 2013-10-31 コミッサリア ア レネルジ アトミック エ オー エネルジス アルテルナティヴス Equipment for creep test of tubular samples
KR101362707B1 (en) 2012-06-18 2014-02-13 한국원자력연구원 Apparatus for measurement of creep strain on irradiated fuel cladding
CN108051321A (en) * 2017-12-20 2018-05-18 广东核电合营有限公司 A kind of cladding tubes internal pressure explosion bulge test device and its test method
CN113125250A (en) * 2019-12-30 2021-07-16 中核北方核燃料元件有限公司 Tensile detection device of fuel assembly sleeve pipe expanded joint

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110828008B (en) * 2019-11-20 2021-01-05 中国核动力研究设计院 Parameter monitoring and sampling system of nuclear fuel irradiation examination device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535282A (en) * 1978-09-05 1980-03-12 Yamamoto Suiatsu Kogyosho:Kk Method and device for testing resisting pressure of steel tube
JPS5643041U (en) * 1979-09-10 1981-04-20
JPS5817531U (en) * 1981-07-28 1983-02-03 新日本製鐵株式会社 Seal packing of pipe pressure tester
JPS59208434A (en) * 1983-05-12 1984-11-26 Kawasaki Heavy Ind Ltd Apparatus for sealing tube end against liquid pressure
JPH08201124A (en) * 1995-01-31 1996-08-09 Agency Of Ind Science & Technol Electrode for high pressure vessel
JP2006010355A (en) * 2004-06-22 2006-01-12 Japan Nuclear Cycle Development Inst States Of Projects System of tagging gas enclosure to internal pressure creep test piece

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535282A (en) * 1978-09-05 1980-03-12 Yamamoto Suiatsu Kogyosho:Kk Method and device for testing resisting pressure of steel tube
JPS5643041U (en) * 1979-09-10 1981-04-20
JPS5817531U (en) * 1981-07-28 1983-02-03 新日本製鐵株式会社 Seal packing of pipe pressure tester
JPS59208434A (en) * 1983-05-12 1984-11-26 Kawasaki Heavy Ind Ltd Apparatus for sealing tube end against liquid pressure
JPH08201124A (en) * 1995-01-31 1996-08-09 Agency Of Ind Science & Technol Electrode for high pressure vessel
JP2006010355A (en) * 2004-06-22 2006-01-12 Japan Nuclear Cycle Development Inst States Of Projects System of tagging gas enclosure to internal pressure creep test piece

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153857A (en) * 2010-01-26 2011-08-11 Nippon Nuclear Fuel Dev Co Ltd Seal mechanism of fuel cladding tube
JP2013540263A (en) * 2010-09-14 2013-10-31 コミッサリア ア レネルジ アトミック エ オー エネルジス アルテルナティヴス Equipment for creep test of tubular samples
JP2013124866A (en) * 2011-12-13 2013-06-24 Nuclear Fuel Ind Ltd Extension jig for pipe-shaped test piece
KR101362707B1 (en) 2012-06-18 2014-02-13 한국원자력연구원 Apparatus for measurement of creep strain on irradiated fuel cladding
CN108051321A (en) * 2017-12-20 2018-05-18 广东核电合营有限公司 A kind of cladding tubes internal pressure explosion bulge test device and its test method
CN108051321B (en) * 2017-12-20 2023-08-25 广东核电合营有限公司 Internal pressure explosion test device and test method for cladding tube
CN113125250A (en) * 2019-12-30 2021-07-16 中核北方核燃料元件有限公司 Tensile detection device of fuel assembly sleeve pipe expanded joint
CN113125250B (en) * 2019-12-30 2023-02-21 中核北方核燃料元件有限公司 Tensile detection device of fuel assembly sleeve pipe expanded joint

Also Published As

Publication number Publication date
JP4753026B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP4753026B2 (en) Equipment for measuring the circumferential strength of fuel cladding tubes
KR100423739B1 (en) Instrumented Capsule for Materials Irradiation Tests in Research Reactor
FI80793C (en) Device for leak detection
JPH0210152A (en) Eddy current probe apparatus
CN109243639A (en) Nuclear reactor steam generator heat-transfer pipe micro-crack amount of leakage experimental provision and method
RU2289013C1 (en) Method for restoring pressurization of casing columns in well and device for realization of said method
Gilbert et al. In-reactor creep measurements
US5012672A (en) Hydrogen gas sensor and method of manufacture
US7140259B2 (en) Expanded plug method for developing circumferential mechanical properties of tubular materials
JP3202545U (en) Internal pressure loading mechanism on tubular specimen
KR100424330B1 (en) In-pile creep test system
US20040151275A1 (en) In-pile creep test system
SE433141B (en) APPLY TO APPLY A PROTECTION LAYER ON THE SURFACE OF THE CORRESPONDING CORE REACTOR FUEL RODS OF Zirconium Alloy
JP5355832B1 (en) Method for predicting the remaining creep life of a product having a bainite structure, and a method for creating a calibration curve used in this prediction method
JP5851272B2 (en) Test equipment in high pressure gas
Hamouda et al. Instrumentation Development and Validation for an Experimental Study of Steam Generator Tube Loading During Blowdown
RU2261489C2 (en) Method and device for inspecting and grading fuel elements
JP2017090181A (en) Biaxial stress loading device, and testing method for tubular test pieces
RU2244284C1 (en) Device for testing materials in nuclear reactor
RU2494480C1 (en) Test method of materials in nuclear reactor
Arrestad Fuel rod performance measurements and re-instrumentation capabilities at HALDEN project
RU2526328C1 (en) Ampoule device for in-reactor analysis
RU2392606C1 (en) Device to control material state in operation of structures loaded by pressure of fluid and/or gaseous medium
JP2011153857A (en) Seal mechanism of fuel cladding tube
RU137631U1 (en) SAMPLE FOR TESTING MATERIALS IN A NUCLEAR REACTOR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081107

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4753026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees