JP2007255785A - Heat exchanger with fin and air conditioner - Google Patents

Heat exchanger with fin and air conditioner Download PDF

Info

Publication number
JP2007255785A
JP2007255785A JP2006080286A JP2006080286A JP2007255785A JP 2007255785 A JP2007255785 A JP 2007255785A JP 2006080286 A JP2006080286 A JP 2006080286A JP 2006080286 A JP2006080286 A JP 2006080286A JP 2007255785 A JP2007255785 A JP 2007255785A
Authority
JP
Japan
Prior art keywords
heat transfer
refrigerant
heat exchanger
heat
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006080286A
Other languages
Japanese (ja)
Inventor
Shigeto Yamaguchi
成人 山口
Shoichi Yokoyama
昭一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006080286A priority Critical patent/JP2007255785A/en
Publication of JP2007255785A publication Critical patent/JP2007255785A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger with a fin, having high heat exchange efficiency. <P>SOLUTION: This heat exchanger includes: heat transfer pipes 41a to 42c penetrating the fin 2 substantially at right angles, allowing a refrigerant to circulate through the interior, and having three or more kinds of outside diameters (D), wherein in the windward area, the heat transfer pipes 41a to 41a gradually increased in outside diameter within the range of 5.0≤D≤7.0 mm as it goes from the upstream of the refrigerant to the downstream, and in the leeward area, the heat transfer pipes 42a to 42c in the range of 7.0≤D≤9.6 mm are disposed, when the heat transfer pipes 42a to 42c are utilized as a condenser or a gas cooler, two or more columns are constructed in the same column direction as the gas flowing direction as the heat transfer pipes rather closer to the refrigerant inlet, when they are utilized as an evaporator, they are constructed similarly as the heat transfer pipe rather closer to the refrigerant outlet, and in the case of using those as the evaporator, while lowering of heat transfer coefficient due to a sudden drop of flow velocity is restrained, the flow velocity of the refrigerant is increased and also increasing internal friction loss of the heat transfer pipes 41a to 42c can be gently reduced to exhibit high heat exchange capacity. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ヒートポンプ式空気調和機などに利用されるフィン付き熱交換器及びそれを用いた空気調和機に関するものである。   TECHNICAL FIELD The present invention relates to a finned heat exchanger used for a heat pump type air conditioner and the like and an air conditioner using the same.

空気調和機の冷凍サイクルを構成している室外ユニットの中に組み込まれた従来のフィン付き熱交換器は、熱交換器能力が小さい場合には、冷媒の循環量が少なく、伝熱管内の圧力損失が小さい為、冷媒が流通する伝熱管のパス数を減らして比較的外径の小さい伝熱管を用い、逆に熱交換器能力が大きく、循環量が大きくなる場合には、伝熱管内の圧力損失が大きくなり、複数の冷媒通路が必要である為に多パス化したり、もしくは外径の大きい伝熱管が必要となってくる。   The conventional finned heat exchanger incorporated in the outdoor unit constituting the refrigeration cycle of the air conditioner has a small amount of refrigerant circulation when the heat exchanger capacity is small, and the pressure in the heat transfer tube Since the loss is small, the number of heat transfer tube paths through which the refrigerant flows is reduced and heat transfer tubes with a relatively small outer diameter are used. Conversely, when the heat exchanger capacity is large and the circulation rate is large, Since the pressure loss becomes large and a plurality of refrigerant passages are necessary, a multi-pass or a heat transfer tube having a large outer diameter is required.

ここで、図4を用いて、熱交換効率を向上させる為に工夫された室外用のフィン付き熱交換器であり、空気と冷媒がフィン付き熱交換器1のフィン2を介して効率良く熱交換できるように送風機7が設けられており、また、伝熱管41の外径が空気の流入方向に対する方向である1列目の熱交換器11と2列目の熱交換器12で異なるように、伝熱管41、42が組み合わされた室外用のフィン付き熱交換器1台を蒸発器として使用した場合について説明する。   Here, FIG. 4 shows an outdoor finned heat exchanger devised to improve the heat exchange efficiency. Air and refrigerant are efficiently heated via the fins 2 of the finned heat exchanger 1. The blower 7 is provided so that it can be exchanged, and the outer diameter of the heat transfer tube 41 is different between the heat exchanger 11 in the first row and the heat exchanger 12 in the second row, which is the direction with respect to the air inflow direction. A case where one outdoor finned heat exchanger combined with the heat transfer tubes 41 and 42 is used as an evaporator will be described.

図4に示すような従来のフィン付き熱交換器1が蒸発器として使用される場合、冷媒が流入する分岐管3が空気の上流側となる右側に接合されている。分岐管3に流入した冷媒は1列目の熱交換器11に連通するヘアピン形状の伝熱管41をU字管51で繋いて冷媒流通路を形成して、この冷媒流通路の中を通過しながら、各伝熱管41に密着したフィン2を介して空気と熱交換を行い、更にガス化した冷媒は、空気の下流側となる2列目の熱交換器12に連通するヘアピン形状の伝熱管42をU字管52で繋いだ冷媒流路を通過して分岐管6から流出する。この時、冷媒のガス化と共に増加して生じる伝熱管42内部での摩擦による圧力損失をできるだけ少なくなるように1列目の伝熱管41よりも2列目の伝熱管42の外径を大きくしている。   When the conventional finned heat exchanger 1 as shown in FIG. 4 is used as an evaporator, the branch pipe 3 into which the refrigerant flows is joined to the right side which is the upstream side of the air. The refrigerant flowing into the branch pipe 3 forms a refrigerant flow path by connecting a hairpin-shaped heat transfer pipe 41 communicating with the heat exchanger 11 in the first row by a U-shaped pipe 51, and passes through the refrigerant flow path. However, the heat exchange with the air is performed through the fins 2 that are in close contact with the heat transfer tubes 41, and the gasified refrigerant further communicates with the heat exchanger 12 in the second row on the downstream side of the air. The refrigerant flows out of the branch pipe 6 through a refrigerant flow path in which 42 is connected by a U-shaped pipe 52. At this time, the outer diameter of the heat transfer tube 42 in the second row is made larger than that of the heat transfer tube 41 in the first row so that the pressure loss due to friction inside the heat transfer tube 42, which increases as the refrigerant gasifies, is minimized. ing.

また、フィン付き熱交換器1を凝縮器として使用した場合は、図示しない冷凍サイクル中の四方弁の切換えにより圧縮機より吐出された冷媒の流れる方向が異なり、図4に示すフィン付き熱交換器1の場合、圧縮機より吐出された高温高圧の単相の過熱冷媒ガスが空気の下流側となる2列目の熱交換器12の分岐管6より流入し、各冷媒流路を形成するU字管52を通過しながら、2列目のヘアピン形状の伝熱管42から1列目のヘアピン形状の伝熱管41へ流れ、各ヘアピン形状の伝熱管41、42に密着したフィン2を介して空気と熱交換を行い、凝縮液化した冷媒は分岐管3より流出する。   When the finned heat exchanger 1 is used as a condenser, the flow direction of the refrigerant discharged from the compressor is changed by switching a four-way valve in a refrigeration cycle (not shown), and the finned heat exchanger shown in FIG. In the case of 1, the high-temperature and high-pressure single-phase superheated refrigerant gas discharged from the compressor flows in from the branch pipe 6 of the heat exchanger 12 in the second row on the downstream side of the air to form each refrigerant flow path. While passing through the tube 52, the air flows from the hairpin-shaped heat transfer tube 42 in the second row to the hairpin-shaped heat transfer tube 41 in the first row, and the air passes through the fins 2 that are in close contact with the hairpin-shaped heat transfer tubes 41, 42. The refrigerant that is condensed and liquefied flows out of the branch pipe 3.

従来のこのような空気調和機用の2列以上の熱交換器の熱交換効率を良好にした構成例としては、1列目から4列目の間の熱交換器の伝熱管の外径を列ごとに変化させて(例えば、特許文献1参照)室外熱交換器として利用したものや、また、1列目と2列目の伝熱管の外径を空気の流入上流部の方が大きくなるように構成して、空気調和機の室内ユニットに搭載し、熱交換器全体が効率良く運転できるようにしたものもある(例えば、特許文献2参照)。
特開2003−21485号公報(7頁、第6図) 実開平2−128015号公報(3頁、第1図)
As an example of a configuration in which the heat exchange efficiency of the conventional heat exchanger of two or more rows for such an air conditioner is improved, the outer diameter of the heat exchanger tube of the heat exchanger between the first row to the fourth row is set as follows. Changed for each row (for example, refer to Patent Document 1) and used as an outdoor heat exchanger, and the outer diameter of the heat transfer tubes in the first row and the second row becomes larger in the upstream portion of the air inflow There is also a configuration in which the heat exchanger is installed in an indoor unit of an air conditioner so that the entire heat exchanger can be operated efficiently (for example, see Patent Document 2).
JP 2003-21485 (page 7, FIG. 6) Japanese Utility Model Publication No. 2-128015 (page 3, Fig. 1)

しかしながら、上記特許文献1、2に開示されたフィン付き熱交換器では、蒸発器として利用した場合に、列ごとに伝熱管の外径を変化させている為に、冷媒が蒸発してガス化と共に大きく増加する伝熱管の内部の管壁の摩擦抵抗を徐々に減少させるには限界があった。更には、空気の風下となる2列目全てに外径の大きい伝熱管を配置しているために、空気が通過する際に通風抵抗が大きくなり性能を大きく低下させる要因になっていた。   However, in the finned heat exchangers disclosed in Patent Documents 1 and 2, when used as an evaporator, the outer diameter of the heat transfer tube is changed for each row, so that the refrigerant evaporates and gasifies. There was a limit to gradually reducing the frictional resistance of the tube wall inside the heat transfer tube, which increased with the increase. Furthermore, since the heat transfer tubes having a large outer diameter are arranged in all the second rows that are leeward of the air, the airflow resistance increases when the air passes, causing a significant decrease in performance.

また、フィン付き熱交換器を凝縮器として利用した場合では、冷媒が凝縮して単相の過冷却液となった場合に冷媒の熱伝達率が大きく低下するので、凝縮器の出口付近で過冷却液の取れる箇所での部分細径ができないために、蒸発器および凝縮器の性能を大きく低下させてしまうという課題があった。   When a finned heat exchanger is used as a condenser, the heat transfer coefficient of the refrigerant is greatly reduced when the refrigerant condenses into a single-phase supercooled liquid. There is a problem in that the performance of the evaporator and the condenser is greatly deteriorated because the diameter of the portion where the coolant can be taken cannot be reduced.

本発明はこのような従来の課題を解決するもので、蒸発器では摩擦抵抗の変化に応じて徐々に細管化したり、凝縮器では冷媒流速を上げて熱伝達率を向上させるなどの工夫をして最適化を図り、蒸発器および凝縮器としての性能を向上させることができるフィン付き熱交換器を提供することを目的とするものである。   The present invention solves such a conventional problem, and the evaporator is gradually reduced according to the change of the frictional resistance, and the condenser is devised to increase the heat flow rate by increasing the refrigerant flow rate. It is an object of the present invention to provide a finned heat exchanger that can be optimized and improve the performance as an evaporator and a condenser.

上記従来の課題を解決するために、本発明のフィン付き熱交換器は、所定の間隔で平行に並べられた複数のフィンと、前記フィンに略直角に貫通して冷媒が内部を流通すると共に外径寸法(D)が3種類以上の伝熱管とを備え、風上側に、前記冷媒の上流から下流にかけて順次、5.0≦D≦7.0mmの範囲で外径寸法が大きくなる伝熱管を配置し、風下側に、7.0≦D≦9.6mmの範囲の伝熱管を配置し、風下側の前記伝熱管を、フィン付き熱交換器を凝縮器またはガスクーラーとして利用する場合は、冷媒入口寄りの伝熱管とし、蒸発器として利用する場合は、冷媒出口寄りの伝熱管とし、前記フィンを通る気体の主流方向と同方向の列方向に2列以上で構成したもので、蒸発器として利用する場合には、急激な流速の低下に伴う熱伝達率の低下を抑えながら冷媒の流速の増加と共に増大する伝熱管の内部の管壁との摩擦損失を緩やかに低減でき、高い熱交換能力を発揮することができる上に、通風抵抗を余り上げることなく、高い空気側の熱伝達率を得ることがで、同一騒音時の風量を向上させて高い熱交換能力を発揮することができる。又、風下側に、7.0≦D≦9.6mmの範囲の伝熱管を配置し、当該熱交換器を凝縮器またはガスクーラーとして利用する場合は冷媒入口寄りの伝熱管として、蒸発器として利用する場合は冷媒出口寄りの伝熱管として、気体の主流方向に沿う方向となる列方向に2列以上で構成したことにより熱交換能力を向上させることが可能となる。   In order to solve the above-described conventional problems, a heat exchanger with fins according to the present invention includes a plurality of fins arranged in parallel at a predetermined interval, and a refrigerant that passes through the fins at a substantially right angle and flows through the fins. A heat transfer tube having three or more types of outer diameter dimensions (D), and the outer diameter dimension increases in the range of 5.0 ≦ D ≦ 7.0 mm sequentially from the upstream side to the downstream side of the refrigerant on the windward side. When a heat transfer tube in the range of 7.0 ≦ D ≦ 9.6 mm is disposed on the leeward side, and the heat exchanger tube on the leeward side is used as a condenser or gas cooler with a finned heat exchanger When using as a heat transfer tube near the refrigerant inlet and as an evaporator, the heat transfer tube near the refrigerant outlet is composed of two or more rows in the same row direction as the main flow direction of the gas passing through the fins. When using as a vacuum vessel, it is accompanied by a sudden drop in flow velocity. Friction loss with the inner wall of the heat transfer tube, which increases as the flow rate of the refrigerant increases, while suppressing a decrease in the transfer rate, can be gradually reduced, and high heat exchange capability can be demonstrated. Without obtaining a high heat transfer coefficient on the air side, it is possible to improve the air volume during the same noise and to exhibit a high heat exchange capability. In addition, a heat transfer tube in the range of 7.0 ≦ D ≦ 9.6 mm is arranged on the leeward side. When the heat exchanger is used as a condenser or a gas cooler, as a heat transfer tube near the refrigerant inlet, as an evaporator When used, the heat transfer tubes closer to the refrigerant outlet can be improved in heat exchange capacity by being configured in two or more rows in the row direction along the main gas flow direction.

また、本発明の空気調和機は、請求項1〜5のいずれか1項に記載のフィン付き熱交換器を用いたもので、フィン付き熱交換器の熱交換効率が高いので、小型で、空調効率に優れた空気調和機を提供することができる。   Moreover, the air conditioner of the present invention uses the heat exchanger with fins according to any one of claims 1 to 5, and the heat exchange efficiency of the heat exchanger with fins is high. An air conditioner having excellent air conditioning efficiency can be provided.

本発明のフィン付き熱交換器は、熱交換効率が非常に高いものである。   The finned heat exchanger of the present invention has a very high heat exchange efficiency.

第1の発明は、所定の間隔で平行に並べられた複数のフィンと、前記フィンに略直角に貫通して冷媒が内部を流通すると共に外径寸法(D)が3種類以上の伝熱管とを備え、風上側に、前記冷媒の上流から下流にかけて順次、5.0≦D≦7.0mmの範囲で外径寸法が大きくなる伝熱管を配置し、風下側に、7.0≦D≦9.6mmの範囲の伝熱管を配置し、風下側の前記伝熱管を、フィン付き熱交換器を凝縮器またはガスクーラーとして利用する場合は、冷媒入口寄りの伝熱管とし、蒸発器として利用する場合は、冷媒出口寄りの伝熱管とし、前記フィンを通る気体の主流方向と同方向の列方向に2列以上で構成した
もので、蒸発器として利用する場合には、急激な流速の低下に伴う熱伝達率の低下を抑えながら冷媒の流速の増加と共に増大する伝熱管の内部の管壁との摩擦損失を緩やかに低減でき、高い熱交換能力を発揮することができる上に、通風抵抗を余り上げることなく、高い空気側の熱伝達率を得ることがで、同一騒音時の風量を向上させて高い熱交換能力を発揮することができる。又、風下側に、7.0≦D≦9.6mmの範囲の伝熱管を配置し、当該熱交換器を凝縮器またはガスクーラーとして利用する場合は冷媒入口寄りの伝熱管として、蒸発器として利用する場合は冷媒出口寄りの伝熱管として気体の主流方向に沿う方向となる列方向に2列以上で構成したことにより熱交換能力を向上させることが可能となる。
According to a first aspect of the present invention, there are provided a plurality of fins arranged in parallel at predetermined intervals, a heat transfer tube having three or more kinds of outer diameter dimensions (D) passing through the fins at a substantially right angle and circulating through the inside. A heat transfer tube whose outer diameter increases in a range of 5.0 ≦ D ≦ 7.0 mm in order from the upstream side to the downstream side of the refrigerant, and 7.0 ≦ D ≦ When a heat transfer tube in the range of 9.6 mm is arranged, and the finned heat exchanger is used as a condenser or a gas cooler, the leeward heat transfer tube is used as an evaporator near the refrigerant inlet and as an evaporator. In this case, the heat transfer tube is close to the refrigerant outlet, and is composed of two or more rows in the same row direction as the main flow direction of the gas passing through the fins. Along with the increase in refrigerant flow velocity while suppressing the accompanying decrease in heat transfer coefficient Friction loss with the tube wall inside the larger heat transfer tube can be reduced gently, high heat exchange capability can be demonstrated, and high air side heat transfer coefficient can be obtained without excessively increasing ventilation resistance However, it is possible to improve the air volume at the time of the same noise and to exhibit a high heat exchange capability. In addition, a heat transfer tube in the range of 7.0 ≦ D ≦ 9.6 mm is arranged on the leeward side. When the heat exchanger is used as a condenser or a gas cooler, as a heat transfer tube near the refrigerant inlet, as an evaporator When used, the heat exchange capacity near the refrigerant outlet can be improved by having two or more rows in the row direction along the main flow direction of the gas.

第2の発明は、特に、第1の発明の小能力で低循環量の熱交換器の構成を必要とする場合は、2パス以下にして冷媒を流すようにして構成したもので、伝熱管内の熱伝達率を向上させるとともに空気と冷媒の温度差に関し対向流的な配置となるので、熱交換能力を増大させることができ、冷媒の流速を上げて冷媒側の熱伝達率を上げて熱交換能力を向上させることが可能となる。   The second invention is configured to flow the refrigerant with two or less passes, particularly when the configuration of the low capacity and low circulation amount heat exchanger of the first invention is required. Since the heat transfer coefficient in the pipe is improved and the counterflow arrangement is made with respect to the temperature difference between the air and the refrigerant, the heat exchange capacity can be increased, and the flow rate of the refrigerant is increased to increase the heat transfer coefficient on the refrigerant side. It becomes possible to improve heat exchange capability.

第3の発明は、特に、第1の発明の大能力で高循環量の熱交換器の構成を必要とする場合は、3パス以上にして冷媒を流すようにして構成したもので、蒸発器として利用する場合に冷媒の流速の増加と共に増大する伝熱管の内部の管壁との摩擦損失を低減させることができ、循環量が大きい場合でも高い管内熱伝達率と低い冷媒流通抵抗を両立させて、熱交換能力を増大させることができる。   The third aspect of the invention is configured so that the refrigerant flows through three or more passes, particularly when the configuration of the high capacity and high circulation amount heat exchanger of the first aspect of the invention is required. The friction loss with the tube wall inside the heat transfer tube, which increases as the refrigerant flow rate increases, can be reduced, and even when the amount of circulation is large, both high pipe heat transfer coefficient and low refrigerant flow resistance are achieved. Thus, the heat exchange capacity can be increased.

第4の発明は、特に、第1〜3のいずれか一つの発明の気体の主流方向と直交する方向における伝熱管の段ピッチP1を2.5D≦P1≦6.0Dになるようにしたもので、通風抵抗をあまり上げることなく、高い空気側の熱伝達率を得ることができ、同一騒音時の風量を向上させて高い熱交換能力を発揮することができる。   In the fourth aspect of the invention, in particular, the step pitch P1 of the heat transfer tube in the direction orthogonal to the main flow direction of the gas of any one of the first to third aspects of the invention is 2.5D ≦ P1 ≦ 6.0D. Therefore, a high heat transfer rate on the air side can be obtained without increasing the ventilation resistance so much, and the air volume at the same noise level can be improved to exhibit a high heat exchange capability.

第5の発明は、特に、第1〜4のいずれか一つの発明の気体の主流方向と同方向における伝熱管の列ピッチP2を1.5D≦P2≦5.0Dになるようにしたもので、通風抵抗をあまり上げることなく、伝熱管内部を流れる冷媒と空気とを効率よく熱交換し、能力の高い熱交換能力を発揮することできる。   In the fifth aspect of the invention, in particular, the row pitch P2 of the heat transfer tubes in the same direction as the main flow direction of the gas of any one of the first to fourth aspects of the invention is set to 1.5D ≦ P2 ≦ 5.0D. It is possible to efficiently exchange heat between the refrigerant flowing in the heat transfer tube and the air without increasing the ventilation resistance so much that a high heat exchange capability can be exhibited.

第6の発明は、特に、第1〜5のいずれか一つの発明の伝熱管内を流動する冷媒として、HFC冷媒、HC冷媒および二酸化炭素のいずれか一つを用いたもので、地球環境の保護に貢献することができる。特に、HC冷媒や二酸化炭素は地球温暖化係数が小さい冷媒であるため、より地球環境の保護に貢献することができる。   In particular, the sixth invention uses any one of HFC refrigerant, HC refrigerant, and carbon dioxide as the refrigerant flowing in the heat transfer tube of any one of the first to fifth inventions. Can contribute to protection. In particular, since HC refrigerant and carbon dioxide are refrigerants having a small global warming potential, they can further contribute to the protection of the global environment.

第7の発明は、空気調和機に、請求項1〜5のいずれか1項に記載のフィン付き熱交換器を用いたもので、フィン付き熱交換器の熱交換効率が高いので、小型で、空調効率に優れた空気調和機を提供することができる。   7th invention uses the heat exchanger with a fin of any one of Claims 1-5 for an air conditioner, Since the heat exchange efficiency of a heat exchanger with a fin is high, it is small. An air conditioner having excellent air conditioning efficiency can be provided.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
以下に、本発明の第1の実施の形態におけるフィン付き熱交換器について、図1、2を用いて説明する。なお、上記従来のフィン付き熱交換器と同一部分、同一機能を示す部分については同一符号を付してその説明を省略する。
(Embodiment 1)
Below, the heat exchanger with a fin in the 1st Embodiment of this invention is demonstrated using FIG. In addition, the same code | symbol is attached | subjected about the part which shows the same part as the said conventional finned heat exchanger, and the same function, and the description is abbreviate | omitted.

図1は、本実施の形態におけるフィン付き熱交換器の断面図である。   FIG. 1 is a cross-sectional view of a finned heat exchanger in the present embodiment.

本実施の形態では、熱交換効率を向上させる為に工夫された室外用のフィン付き熱交換器1が、空気の流入方向に対する方向である1列目の熱交換器11と2列目の熱交換器12の2列で構成され、更には、4パスの冷媒流路を形成し、1列当たり12本のヘアピン形状の伝熱管41a〜41c、42a〜42cを使用したものであり、24段の2列構成となるものである。   In the present embodiment, the outdoor finned heat exchanger 1 devised in order to improve the heat exchange efficiency includes the heat exchanger 11 in the first row and the heat in the second row in the direction with respect to the air inflow direction. The heat exchanger tubes 41a to 41c and 42a to 42c are formed in two rows of the exchanger 12 and further use four hair flow passages 41a to 41c and 42a to 42c per row. This is a two-column configuration.

また、フィン付き熱交換器1において、破線で囲まれる上部A領域は2列6段であり、4パス中の1パスの冷媒経路を構成し、フィン付き熱交換器1の中央に位置する破線Cよりも上部にある破線で囲まれるB領域は、上部のA領域を略水平方向を基準として180回転したものであり、領域Aと領域Bは水平方向に対し、対を成して12段の2パスを形成する。同様に破線Cより下部にある12段の熱交換器も同形態を成して、24段のフィン付き熱交換器1を形成している。   Further, in the heat exchanger 1 with fins, the upper A region surrounded by the broken line has two rows and six stages, constitutes one-pass refrigerant path in four passes, and is a broken line located at the center of the finned heat exchanger 1. The area B surrounded by a broken line above C is obtained by rotating the upper area A 180 degrees with respect to the substantially horizontal direction, and the area A and the area B form a pair of 12 steps in the horizontal direction. Two passes are formed. Similarly, the 12-stage heat exchanger below the broken line C also has the same form, and the 24-stage finned heat exchanger 1 is formed.

また、フィン付き熱交換器1に流入する空気と冷媒が、フィン付き熱交換器1のフィン2を介して効率良く熱交換できるように送風機7が設けられている。図2は、図1におけるフィン付き熱交換器1の破線で囲まれる上部A領域の2列6段で構成された部分の拡大図である。   Moreover, the air blower 7 is provided so that the air and refrigerant which flow in into the heat exchanger 1 with a fin can heat-exchange efficiently through the fin 2 of the heat exchanger 1 with a fin. FIG. 2 is an enlarged view of a portion constituted by two rows and six stages in the upper A region surrounded by a broken line of the finned heat exchanger 1 in FIG.

図2に、示すように外径寸法(D)が3種類のヘアピン形状の伝熱管41a(例えばφ5.0mm)、41b、41c(例えばφ7.0mm)、42a、42b、42c(例えばφ9.6mm)が組み合わされてフィン付き熱交換器1全体の4パスのうち1パスの冷媒経路を構成し、空気の流れに対する通風抵抗を抑えながら、フィン付き熱交換器1の性能を高く維持できる段方向のピッチP1を、2.5D≦P1≦6.0D(例えば12.5〜57.6mmの範囲)になるようにし、且つ列方向のピッチP2を、1.5D≦P2≦5.0D(例えば、7.5〜48.0mmの範囲)となるようにしたものであり、高い空気側熱伝達率を得ることができ、またフィン付き熱交換器1全体としての通風抵抗の差異を少なくして風速分布を改善することができるので、同一騒音時の風量を向上させて優れた熱交換能力を発揮させることができる。   As shown in FIG. 2, the outer diameter dimension (D) has three types of hairpin-shaped heat transfer tubes 41a (for example, φ5.0 mm), 41b, 41c (for example, φ7.0 mm), 42a, 42b, and 42c (for example, φ9.6 mm). ) Are combined to form a refrigerant path of one path out of the four paths of the finned heat exchanger 1, and the performance of the finned heat exchanger 1 can be maintained at a high level while suppressing the resistance to air flow. The pitch P1 is 2.5D ≦ P1 ≦ 6.0D (for example, a range of 12.5 to 57.6 mm), and the pitch P2 in the column direction is 1.5D ≦ P2 ≦ 5.0D (for example, 7.5 to 48.0 mm)), a high air-side heat transfer coefficient can be obtained, and the difference in ventilation resistance of the finned heat exchanger 1 as a whole is reduced. Improve wind speed distribution Since bets can, it is possible to exhibit excellent heat exchange capacity to improve the air volume at the same noise.

ここで、上記フィン付き熱交換器1を、室外熱交換器用の蒸発器に使用した場合について図1を用いて説明する。   Here, the case where the said heat exchanger 1 with a fin is used for the evaporator for outdoor heat exchangers is demonstrated using FIG.

図1および図2に示すように、伝熱管41a、41b、41c、42a、42b、42cは気体(空気である)の主流方向(流れ方向)と直交する方向に配置され、フィン付き熱交換器1の中央Cを境にして冷媒が流入する上部2パスの入口の分岐管31と下部2パスの入口の分岐管32の4パスが空気の上流側となる右側に接合されている。分岐管31、32に流入した冷媒は、1列目の熱交換器11に連通するヘアピン形状の伝熱管41aをU字管51aで繋いて冷媒流通路を流れ、下流側の伝熱管41bとU字管51b、更には伝熱管41cを経て、U字管52aを通過して2列目の伝熱管42aへ流れる。また2列目では、U字管52b、伝熱管42b、U字管52c、伝熱管42cを経て1パスの冷媒出口となる分岐管61、62から流出する。   As shown in FIGS. 1 and 2, the heat transfer tubes 41a, 41b, 41c, 42a, 42b, and 42c are arranged in a direction orthogonal to the main flow direction (flow direction) of gas (air), and have a finned heat exchanger. The four paths of the upper two-pass inlet branch pipe 31 and the lower two-pass inlet branch pipe 32 through which the refrigerant flows in from the center C of 1 are joined to the right side on the upstream side of the air. The refrigerant flowing into the branch pipes 31 and 32 flows through the refrigerant flow passage by connecting the hairpin-shaped heat transfer pipe 41a communicating with the heat exchanger 11 in the first row through the U-shaped pipe 51a, and the downstream heat transfer pipe 41b and U It passes through the U-tube 52a through the character tube 51b and further the heat transfer tube 41c, and flows to the heat transfer tube 42a in the second row. In the second row, the refrigerant flows out from the branch pipes 61 and 62 serving as the refrigerant outlet of one pass through the U-shaped tube 52b, the heat transfer tube 42b, the U-shaped tube 52c, and the heat transfer tube 42c.

この時、冷媒のガス化と共に増加して生じる伝熱管内部での摩擦による圧力損失をできるだけ少なくなるように1列目の伝熱管41a、41b、41cの外径を下流側に流れるにつれてφ5.0〜φ7.0の範囲で徐々に大きくし、更には1列目の伝熱管41cと同等以上の外径(φ7〜φ9.6mmの範囲)の伝熱管42a、42b、42cを2列目に配置している。   At this time, φ5.0 as the outer diameter of the heat transfer tubes 41a, 41b, 41c in the first row flows downstream so as to minimize pressure loss due to friction inside the heat transfer tube, which increases as the refrigerant gasifies. Heat transfer tubes 42a, 42b, and 42c having outer diameters (range of φ7 to φ9.6 mm) equal to or greater than those of the first row of heat transfer tubes 41c are arranged in the second row. is doing.

また、凝縮器として使用した場合は、図示しない冷凍サイクル中の四方弁の切換えによ
り圧縮機より吐出された冷媒の流れる方向が逆になり、図1に示すフィン熱交換器1の場合、圧縮機より吐出された高温高圧の単相の過熱冷媒ガスが空気の下流側となる2列目の熱交換器12の分岐管61、62より流入し、各冷媒流路を形成するヘアピン形状の伝熱管42cからU字管52cへと順次通過しながら、U字管52aより1列目の熱交換器11へ流れ、各ヘアピン形状の伝熱管41a、41b、41c、42a、42b、42cに密着したフィン2を介して空気と熱交換を行い、凝縮液化して過冷却が取れた冷媒は分岐管31、32より流出して図示しない冷凍サイクルへ戻るものである。
When used as a condenser, the direction of the flow of refrigerant discharged from the compressor is reversed by switching a four-way valve in a refrigeration cycle (not shown). In the case of the fin heat exchanger 1 shown in FIG. The high-temperature and high-pressure single-phase superheated refrigerant gas discharged from the air flows from the branch pipes 61 and 62 of the heat exchanger 12 in the second row on the downstream side of the air, and forms hairpin-shaped heat transfer tubes that form the respective refrigerant flow paths. The fins that flow from the U-shaped tube 52a to the heat exchanger 11 in the first row while sequentially passing from the 42c to the U-shaped tube 52c and are in close contact with the hairpin-shaped heat transfer tubes 41a, 41b, 41c, 42a, 42b, 42c The refrigerant that has exchanged heat with air through 2 and has been condensed and liquefied and has been supercooled flows out of the branch pipes 31 and 32 and returns to a refrigeration cycle (not shown).

また、図3は、図1に示す4パスを構成したフィン付き熱交換器1と同形態を示すものであるが、集合分流器33、63より冷媒が流出入し、図1に示すフィン熱交換器1のA領域の熱交換器と同じ2列6が1パスの冷媒経路を構成し、上に凸の形態で4パスを組んでいるものとなっているが、基本的には図1のフィン付き熱交換器1と同様の効果を示すものである。   FIG. 3 shows the same form as the finned heat exchanger 1 having the four paths shown in FIG. 1, but the refrigerant flows in and out of the collecting shunts 33 and 63, and the fin heat shown in FIG. The two rows 6 that are the same as the heat exchangers in the A region of the exchanger 1 constitute a one-pass refrigerant path, and four passes are formed in an upwardly convex form. The effect similar to that of the finned heat exchanger 1 is shown.

また、上記実施の形態では、例として図1、図3に示すようなフィン付き熱交換器1について説明したが、これらに特に限定されるものでなく、伝熱管41a、41b、41c、42a、42b、42cの太さも4種類以上使用しても構わない。   Moreover, in the said embodiment, although the finned heat exchanger 1 as shown to FIG. 1, FIG. 3 was demonstrated as an example, it is not specifically limited to these, Heat-transfer tube 41a, 41b, 41c, 42a, Four or more types of thicknesses 42b and 42c may be used.

更に、小能力(例えば冷凍能力2.2kW以下)で冷媒循環量が小さくなる冷凍サイクルに使用するフィン付き熱交換器として利用する場合には、図示しない2パスで冷媒経路を構成して、冷媒流速を増加させて熱伝達率を向上させて熱交換器としての能力を向上させても上記実施の形態と同様の効果を得るものである。   Further, when used as a finned heat exchanger used in a refrigeration cycle with a small capacity (for example, refrigeration capacity of 2.2 kW or less) and a small amount of refrigerant circulation, a refrigerant path is configured by two paths (not shown) Even if the flow rate is increased to improve the heat transfer rate and the capacity as a heat exchanger is improved, the same effect as in the above embodiment can be obtained.

また、上記実施の形態では、伝熱管41a、41b、41c、42a、42b、42cの外径は全て、拡管加工前のφ5.0〜φ9.6mmの伝熱管を用いて説明しているが、通常は、フィン2と伝熱管41a、41b、41c、42a、42b、42cの密着性を向上させるのに1%〜10%の範囲で外形を大きくしているので、その場合でも同じ効果が得られるものであり、外径の数値はその変化した分も範囲に含むものである。   Moreover, in the said embodiment, although the outer diameter of all the heat exchanger tubes 41a, 41b, 41c, 42a, 42b, 42c is demonstrated using the φ5.0-φ9.6 mm heat exchanger tube before a pipe expansion process, Usually, the outer shape is enlarged in the range of 1% to 10% in order to improve the adhesion between the fin 2 and the heat transfer tubes 41a, 41b, 41c, 42a, 42b, 42c. The numerical value of the outer diameter includes the changed amount in the range.

また、熱交換器1の伝熱管内部を流れる(流動する)冷媒としては、HFC冷媒、HC冷媒および二酸化炭素のいずれか一つが用いられオゾン破壊係数の小さいHFC冷媒、HC冷媒および二酸化炭素のいずれか1つを用いることにより、地球環境の保護に貢献することができる。   Further, as the refrigerant flowing (flowing) inside the heat transfer tube of the heat exchanger 1, any one of HFC refrigerant, HC refrigerant and carbon dioxide is used, and any of HFC refrigerant, HC refrigerant and carbon dioxide having a small ozone destruction coefficient is used. By using one of these, it is possible to contribute to the protection of the global environment.

なお、空気調和機に、上記実施の形態に詳述したフィン付き熱交換器1を搭載するようにすれば、フィン付き熱交換器1の熱交換効率が非常に高いので、小型で、空調効率に優れた空気調和機を提供することができる。   If the finned heat exchanger 1 described in detail in the above embodiment is mounted on the air conditioner, the heat exchange efficiency of the finned heat exchanger 1 is very high. It is possible to provide an excellent air conditioner.

このように、本発明にかかるフィン付き熱交換器は、優れた熱交換特性を有するもので、空気調和機の室内外ユニットに限らず、伝熱管内を流れる冷媒と外部を流れる空気との間で熱交換を行う機能部品を使用する各種機器に広く適用することができる。   As described above, the finned heat exchanger according to the present invention has excellent heat exchange characteristics, and is not limited to an indoor / outdoor unit of an air conditioner, but between a refrigerant flowing in a heat transfer tube and air flowing outside. It can be widely applied to various devices that use functional parts that perform heat exchange.

本発明の実施の形態1におけるフィン付き熱交換器の断面図Sectional drawing of the heat exchanger with a fin in Embodiment 1 of this invention 同フィン付き熱交換器の部分拡大図Partial enlarged view of the finned heat exchanger 他の例を示すフィン付き熱交換器の断面図Cross-sectional view of finned heat exchanger showing another example 従来のフィン付き熱交換器の断面図Cross section of conventional finned heat exchanger

符号の説明Explanation of symbols

1 熱交換器
2 フィン
3、31、32、6、61、62 分岐管
7 送風機
11、12 熱交換器
33、63 集合分岐管
41、41a、41b、41c、42、42a、42b、42c 伝熱管
51、51a、51b、52、52a、52b、52c U字管
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2 Fin 3, 31, 32, 6, 61, 62 Branch pipe 7 Blower 11, 12 Heat exchanger 33, 63 Collective branch pipe 41, 41a, 41b, 41c, 42, 42a, 42b, 42c 51, 51a, 51b, 52, 52a, 52b, 52c U-shaped tube

Claims (7)

所定の間隔で平行に並べられた複数のフィンと、前記フィンに略直角に貫通して冷媒が内部を流通すると共に外径寸法(D)が3種類以上の伝熱管とを備え、風上側に、前記冷媒の上流から下流にかけて順次、5.0≦D≦7.0mmの範囲で外径寸法が大きくなる伝熱管を配置し、風下側に、7.0≦D≦9.6mmの範囲の伝熱管を配置し、風下側の前記伝熱管を、フィン付き熱交換器を凝縮器またはガスクーラーとして利用する場合は、冷媒入口寄りの伝熱管とし、蒸発器として利用する場合は、冷媒出口寄りの伝熱管とし、前記フィンを通る気体の主流方向と同方向の列方向に2列以上で構成したことを特徴とするフィン付き熱交換器。 A plurality of fins arranged in parallel at predetermined intervals, a refrigerant passing through the fins at a substantially right angle and flowing through the inside, and three or more types of heat transfer tubes having an outer diameter (D) are provided on the windward side. In order from the upstream to the downstream of the refrigerant, a heat transfer tube having an outer diameter that increases in a range of 5.0 ≦ D ≦ 7.0 mm is disposed, and on the leeward side, a heat transfer tube in a range of 7.0 ≦ D ≦ 9.6 mm A heat transfer tube is arranged, and when the finned heat exchanger is used as a condenser or a gas cooler, it is a heat transfer tube near the refrigerant inlet, and when it is used as an evaporator, it is close to the refrigerant outlet. A heat exchanger with fins, comprising two or more rows in the row direction in the same direction as the main flow direction of the gas passing through the fins. 小能力で低循環量の熱交換器の構成を必要とする場合は、2パス以下にして冷媒を流すようにして構成したことを特徴とする請求項1に記載のフィン付き熱交換器。 2. The finned heat exchanger according to claim 1, wherein when a configuration of a heat exchanger with a small capacity and a low circulation amount is required, the refrigerant is made to flow in two paths or less. 大能力で高循環量の熱交換器の構成を必要とする場合は、3パス以上にして冷媒を流すようにして構成したことを特徴とする請求項1に記載のフィン付き熱交換器。 2. The finned heat exchanger according to claim 1, wherein when a configuration of a heat exchanger having a large capacity and a high circulation rate is required, the refrigerant flows through three or more passes. 気体の主流方向と直交する方向における伝熱管の段ピッチP1を、2.5D≦P1≦6.0Dになるようにしたことを特徴とする請求項1〜3のいずれか1項に記載のフィン付き熱交換器。 The fin according to any one of claims 1 to 3, wherein a step pitch P1 of the heat transfer tubes in a direction orthogonal to a gas main flow direction is set to 2.5D ≦ P1 ≦ 6.0D. With heat exchanger. 気体の主流方向と同方向における伝熱管の列ピッチP2を1.5D≦P2≦5.0Dになるようにしたことを特徴とする請求項1〜4のいずれか1項に記載のフィン付き熱交換器。 The finned heat according to any one of claims 1 to 4, wherein the row pitch P2 of the heat transfer tubes in the same direction as the main flow direction of the gas is 1.5D≤P2≤5.0D. Exchanger. 伝熱管内を流動する冷媒として、HFC冷媒、HC冷媒および二酸化炭素のいずれか一つを用いたことを特徴とする請求項1〜5のいずれか1項に記載のフィン付き熱交換器。 The finned heat exchanger according to any one of claims 1 to 5, wherein any one of an HFC refrigerant, an HC refrigerant, and carbon dioxide is used as the refrigerant flowing in the heat transfer tube. 請求項1〜5のいずれか1項に記載のフィン付き熱交換器を備えた空気調和機。 The air conditioner provided with the heat exchanger with a fin of any one of Claims 1-5.
JP2006080286A 2006-03-23 2006-03-23 Heat exchanger with fin and air conditioner Pending JP2007255785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006080286A JP2007255785A (en) 2006-03-23 2006-03-23 Heat exchanger with fin and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006080286A JP2007255785A (en) 2006-03-23 2006-03-23 Heat exchanger with fin and air conditioner

Publications (1)

Publication Number Publication Date
JP2007255785A true JP2007255785A (en) 2007-10-04

Family

ID=38630205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006080286A Pending JP2007255785A (en) 2006-03-23 2006-03-23 Heat exchanger with fin and air conditioner

Country Status (1)

Country Link
JP (1) JP2007255785A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150574A (en) * 2007-12-19 2009-07-09 Mitsubishi Electric Corp Distributor, and heat exchanger and air conditioner loading the same
JP2011038729A (en) * 2009-08-12 2011-02-24 Hoshizaki Electric Co Ltd Refrigeration apparatus
JP2011112315A (en) * 2009-11-30 2011-06-09 Mitsubishi Electric Corp Fin tube type heat exchanger and air conditioner using the same
US8040524B2 (en) * 2007-09-19 2011-10-18 Fujifilm Corporation Optical tomography imaging system, contact area detecting method and image processing method using the same, and optical tomographic image obtaining method
WO2012147336A1 (en) * 2011-04-25 2012-11-01 パナソニック株式会社 Refrigeration cycle device
JPWO2015059832A1 (en) * 2013-10-25 2017-03-09 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus using the heat exchanger
WO2022237164A1 (en) * 2021-05-08 2022-11-17 青岛海尔空调器有限总公司 Split type air conditioner

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8040524B2 (en) * 2007-09-19 2011-10-18 Fujifilm Corporation Optical tomography imaging system, contact area detecting method and image processing method using the same, and optical tomographic image obtaining method
JP2009150574A (en) * 2007-12-19 2009-07-09 Mitsubishi Electric Corp Distributor, and heat exchanger and air conditioner loading the same
JP2011038729A (en) * 2009-08-12 2011-02-24 Hoshizaki Electric Co Ltd Refrigeration apparatus
JP2011112315A (en) * 2009-11-30 2011-06-09 Mitsubishi Electric Corp Fin tube type heat exchanger and air conditioner using the same
WO2012147336A1 (en) * 2011-04-25 2012-11-01 パナソニック株式会社 Refrigeration cycle device
CN103518107A (en) * 2011-04-25 2014-01-15 松下电器产业株式会社 Refrigeration cycle device
CN103518107B (en) * 2011-04-25 2015-08-26 松下电器产业株式会社 Refrigerating circulatory device
JPWO2015059832A1 (en) * 2013-10-25 2017-03-09 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus using the heat exchanger
WO2022237164A1 (en) * 2021-05-08 2022-11-17 青岛海尔空调器有限总公司 Split type air conditioner

Similar Documents

Publication Publication Date Title
CN107429975B (en) Heat exchanger and air conditioner
WO2007017969A1 (en) Air conditioner and method of producing air conditioner
JP2005055108A (en) Heat exchanger
JP2007255785A (en) Heat exchanger with fin and air conditioner
JP2006284134A (en) Heat exchanger
JP4659779B2 (en) Heat exchanger and air conditioner equipped with the heat exchanger
JP6214670B2 (en) Heat exchanger and refrigeration cycle apparatus using the heat exchanger
JP5951475B2 (en) Air conditioner and outdoor heat exchanger used therefor
JP4845987B2 (en) Air conditioning system
JP2007147221A (en) Heat exchanger with fin
JP2005127529A (en) Heat exchanger
JP2014137177A (en) Heat exchanger and refrigerator
JP4785670B2 (en) Air conditioner indoor unit
JP5627635B2 (en) Air conditioner
JPH11337104A (en) Air conditioner
JP3177302U (en) Air conditioning unit
WO2019130394A1 (en) Heat exchanger and refrigeration cycle device
JP5864030B1 (en) Heat exchanger and refrigeration cycle apparatus equipped with the heat exchanger
JP2009127882A (en) Heat exchanger, indoor unit, and air conditioner
JP4624146B2 (en) Air conditioner indoor unit
JP2015014397A (en) Heat exchanger
JP2005090805A (en) Heat exchanger
WO2021131038A1 (en) Heat exchanger and refrigeration cycle device
JP2013076485A (en) Air conditioner
JP2010230300A (en) Heat exchanger and air conditioner having the same