JP2007254843A - Molten iron desulfurization treatment method - Google Patents

Molten iron desulfurization treatment method Download PDF

Info

Publication number
JP2007254843A
JP2007254843A JP2006082370A JP2006082370A JP2007254843A JP 2007254843 A JP2007254843 A JP 2007254843A JP 2006082370 A JP2006082370 A JP 2006082370A JP 2006082370 A JP2006082370 A JP 2006082370A JP 2007254843 A JP2007254843 A JP 2007254843A
Authority
JP
Japan
Prior art keywords
metal
desulfurization
mass
iron
hot metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006082370A
Other languages
Japanese (ja)
Other versions
JP4977863B2 (en
Inventor
Akitoshi Matsui
章敏 松井
Seiji Nabeshima
誠司 鍋島
Naoki Kikuchi
直樹 菊池
Yoshiyuki Tanaka
芳幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006082370A priority Critical patent/JP4977863B2/en
Publication of JP2007254843A publication Critical patent/JP2007254843A/en
Application granted granted Critical
Publication of JP4977863B2 publication Critical patent/JP4977863B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for desulfurizing molten iron by which molten iron can be stably desulfurized to the sulfur content of extra-low sulfur steel level at the step of melting iron. <P>SOLUTION: Metallic Mg of 5-30 mass%, metallic Al of 5-30 mass% and CaO-based flux of ≥40 mass% are blended and mixed to obtain a granular and/or powdery desulfurizing agent. A iron-coated wire 4 for desulfurizing obtained by coating the above granular and/or powdery desulfurizing agent with iron-base hoop material is supplied into the molten iron 2 through a wire-feeder 5 to perform the desulfurization treatment. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、脱硫剤を鉄系帯材で被覆した鉄被覆脱硫用ワイヤーを用いて溶銑中の硫黄を除去する脱硫処理方法に関するものである。   The present invention relates to a desulfurization treatment method for removing sulfur in hot metal using an iron-coated desulfurization wire in which a desulfurizing agent is coated with an iron-based strip.

高炉から出銑された溶銑は、珪素、燐、硫黄などの不純物を比較的多量に含んでいる。近年、高級鋼製造のニーズ増大に伴ない、転炉での脱炭精錬に先立って、脱珪、脱燐、脱硫の各種処理が行われるようになった。特に、鋼中の硫黄は、鋼材の加工性や耐食性を損なう要因となるため、硫黄濃度の低い低硫鋼が求められている。   The hot metal discharged from the blast furnace contains a relatively large amount of impurities such as silicon, phosphorus and sulfur. In recent years, with increasing needs for high-grade steel production, various processes such as desiliconization, dephosphorization, and desulfurization have been performed prior to decarburization and refining in converters. In particular, since sulfur in steel is a factor that impairs the workability and corrosion resistance of steel materials, low sulfur steel with a low sulfur concentration is required.

低硫鋼のうちで硫黄濃度が0.001質量%以下の極低硫鋼の製造においては、酸化精錬である転炉の前に機械攪拌式脱硫法などによって溶銑段階での脱硫処理が行われ、更に転炉精錬を経た出鋼後、二次精錬工程で仕上げ脱硫処理を行うことが広く採用されている。しかし、二次精錬工程では鋼中酸素濃度が高く、脱硫効率が低くなりがちである。そのために、脱硫効率を高めるべく石灰(以下「CaO」と記す)に滓化促進剤として蛍石(CaF2 )を配合したCaO−CaF2 系フラックスを用いているが、CaF2の耐火物への悪影響やコスト面を考えると、必ずしも好ましい手段とはいえない。また、二次精錬工程が煩雑になる。 Among the low-sulfur steels, in the production of extremely low-sulfur steel having a sulfur concentration of 0.001% by mass or less, the desulfurization process in the hot metal stage is performed by a mechanical stirring desulfurization method or the like before the converter that is oxidative refining. In addition, after steelmaking after further converter refining, it is widely adopted to perform a final desulfurization process in the secondary refining process. However, in the secondary refining process, the oxygen concentration in the steel is high and the desulfurization efficiency tends to be low. Therefore, fluorite as slag formation accelerators lime (hereinafter referred to as "CaO") to increase the desulfurization efficiency is used the CaO-CaF 2 based flux blended with (CaF 2), the refractory of the CaF 2 Considering the adverse effects and cost, it is not necessarily a preferable means. Further, the secondary refining process becomes complicated.

そこで、溶銑段階において可能な限り低い硫黄濃度まで低下させることが有利であるとして、種々の溶銑脱硫方法が検討されている。例えば、特許文献1には、機械攪拌式脱硫法において、インペラ(「攪拌羽根」とも呼ぶ)の羽根の高さを交互に高低差をつけて脱硫処理を行う方法が開示されている。特許文献1によれば、この形状のインペラを用いることで、インペラ上部へのスラグの堆積が抑制され、脱硫剤が溶銑中へ侵入しやすくなり、脱硫効率が向上するとしている。しかし、このインペラを用いてCaO−CaF2 系フラックスで処理した実施例における処理後の硫黄濃度は0.0020〜0.0040質量%程度であり、このインペラを用いても極低硫鋼の要求に満足しうる硫黄濃度には到達していない。 Therefore, various hot metal desulfurization methods have been studied as it is advantageous to reduce the sulfur concentration to the lowest possible level in the hot metal stage. For example, Patent Document 1 discloses a method of performing a desulfurization process in a mechanical stirring type desulfurization method by alternately making a difference in height between impeller blades (also referred to as “stirring blades”). According to Patent Document 1, by using an impeller of this shape, accumulation of slag on the top of the impeller is suppressed, and the desulfurization agent easily enters the molten iron, thereby improving the desulfurization efficiency. However, the sulfur concentration after the treatment in Examples treated with CaO—CaF 2 flux using this impeller is about 0.0020 to 0.0040 mass%, and even if this impeller is used, there is a demand for extremely low sulfur steel. The sulfur concentration that satisfies the above has not been reached.

また、特許文献2や特許文献3には、CaO系フラックスにソーダ系フラックスを加えた脱硫方法が開示されている。しかし、ソーダ系フラックスを使用すると発生するスラグのNa2 O濃度が高くなるため、スラグをセメント材料や路盤材に有効利用することが難しくなる。 Patent Documents 2 and 3 disclose a desulfurization method in which a soda-based flux is added to a CaO-based flux. However, when soda-based flux is used, the concentration of Na 2 O in the generated slag increases, and it becomes difficult to effectively use the slag as a cement material or a roadbed material.

一方、CaO系フラックスによる脱硫以外にも、金属マグネシウムを用いた脱硫方法もいくつか提案されている。一般にマグネシウムの方がCaO系よりも硫黄との親和力が強いため、低硫化にはマグネシウムの方が有利と考えられている。例えば、特許文献4には、Al:40〜95質量%、Mg:5〜60質量%を含むMg−Al合金線材からなる脱硫剤が開示されている。しかし、Mg+S→MgSの反応によって脱硫が進行するものの、MgSは極めて不安定な化合物であることから溶銑への復硫が懸念される。更に、Mgを合金化する必要があることから、経済的な制約があることも否めない。   On the other hand, besides the desulfurization using CaO-based flux, several desulfurization methods using metal magnesium have been proposed. In general, magnesium has a stronger affinity for sulfur than CaO, so magnesium is considered advantageous for low sulfidation. For example, Patent Document 4 discloses a desulfurization agent made of an Mg—Al alloy wire containing Al: 40 to 95 mass% and Mg: 5 to 60 mass%. However, although desulfurization proceeds by the reaction of Mg + S → MgS, MgS is a very unstable compound, so there is a concern about resulfurization to hot metal. Furthermore, since it is necessary to alloy Mg, it cannot be denied that there are economical restrictions.

また、特許文献5には、金属Mgを5〜25質量%配合し、残部にMgO、CaO及びCaF2 を所定の割合で配合した脱硫剤が開示されている。この方法においては、MgSはCaO+MgS→CaS+MgOとなるために復硫の懸念は無いものの、脱硫剤中にAlなどの脱酸剤が配合されていないので、Mg+S→MgSの反応が起こる以前に、Mg+O→MgOの反応が起こってしまい、脱硫反応に対するMgの利用効率低下が懸念される。
特開2004−204303号公報 特開2002−266013号公報 特開2003−253315号公報 特開平7−207317号公報 特開平9−209026号公報
Patent Document 5 discloses a desulfurization agent in which 5 to 25% by mass of metal Mg is blended and MgO, CaO, and CaF 2 are blended at a predetermined ratio in the balance. In this method, MgS becomes CaO + MgS → CaS + MgO, so there is no concern about resulfurization. → MgO reaction occurs, and there is a concern that the utilization efficiency of Mg for the desulfurization reaction may be reduced.
JP 2004-204303 A Japanese Patent Laid-Open No. 2002-266013 JP 2003-253315 A JP 7-207317 A Japanese Patent Laid-Open No. 9-209026

上記の説明のように、従来、溶銑の脱硫処理においては、極低硫鋼レベルの硫黄濃度まで安定して脱硫する手段は開発されておらず、やむなく二次精錬工程において再度の脱硫処理を実施して対処しているのが実情である。   As described above, in the past, in the hot metal desulfurization process, no means for stably desulfurizing to the sulfur concentration of ultra-low sulfur steel level has been developed, and re-desulfurization process is unavoidably performed in the secondary refining process. The fact is that we are dealing with it.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、溶銑の段階で極低硫鋼レベルの硫黄濃度まで安定して脱硫することのできる、溶銑の脱硫処理方法を提供することである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a hot metal desulfurization treatment method capable of stably desulfurizing to a sulfur concentration at an extremely low sulfur level at the hot metal stage. That is.

上記課題を解決するための第1の発明に係る溶銑の脱硫処理方法は、金属Mgの配合量を5〜30質量%、金属Alの配合量を5〜30質量%、CaO系フラックスの配合量を40質量%以上とし、金属Mgと金属AlとCaO系フラックスとを混合した粒状及び/または粉状の脱硫剤が鉄系帯材で被覆された鉄被覆脱硫用ワイヤーを、溶銑中に供給して脱硫処理することを特徴とするものである。   The hot metal desulfurization treatment method according to the first invention for solving the above-mentioned problems is that the compounding amount of metal Mg is 5 to 30% by mass, the compounding amount of metal Al is 5 to 30% by mass, and the compounding amount of CaO-based flux. The iron-coated desulfurization wire in which the granular and / or powdery desulfurizing agent mixed with metal Mg, metal Al, and CaO-based flux is coated with the iron-based strip is supplied into the hot metal. And desulfurization treatment.

第2の発明に係る溶銑の脱硫処理方法は、第1の発明において、前記脱硫剤中の金属Mgの一部または全部をMgOで代替し、且つ、金属Mgの配合量及びMgOの配合量が下記の(1)式を満足することを特徴とするものである。   In the hot metal desulfurization treatment method according to the second invention, in the first invention, part or all of the metal Mg in the desulfurizing agent is replaced with MgO, and the compounding amount of the metal Mg and the compounding amount of MgO are The following expression (1) is satisfied.

Figure 2007254843
Figure 2007254843

第3の発明に係る溶銑の脱硫処理方法は、第1または第2の発明において、前記脱硫剤中の金属Alの一部または全部を炭化水素系の固体物質で代替し、且つ、金属Alの配合量及び炭化水素系固体物質の配合量が下記の(2)式を満足することを特徴とするものである。   The hot metal desulfurization treatment method according to the third invention is the first or second invention, wherein a part or all of the metal Al in the desulfurizing agent is replaced with a hydrocarbon-based solid substance, and the metal Al The blending amount and the blending amount of the hydrocarbon-based solid substance satisfy the following formula (2).

Figure 2007254843
Figure 2007254843

第4の発明に係る溶銑の脱硫処理方法は、第1ないし第3の発明の何れかにおいて、前記鉄被覆脱硫用ワイヤーの供給速度を溶銑トン当たり0.10〜0.50kg/minとすることを特徴とするものである。   The hot metal desulfurization treatment method according to the fourth invention is any one of the first to third inventions, wherein the supply rate of the iron-coated desulfurization wire is 0.10 to 0.50 kg / min per ton of hot metal. It is characterized by.

本発明によれば、組成を所定の範囲に調整した、金属Mg、金属Al及びCaO系フラックスを含有する脱硫剤を薄鉄系帯材の内部に充填した鉄被覆脱硫用ワイヤーを溶銑中へ投入して脱硫するので、Mgと溶銑とが効率的に接触し、従来と比較して高効率且つ安定的に極低硫溶銑を製造することが可能となる。その結果、溶銑段階において、極低硫鋼で要求される硫黄濃度レベルまで低減可能になるため、二次精錬工程における脱硫処理が不要になるなど、工業上有益な効果がもたらされる。   According to the present invention, an iron-coated desulfurization wire filled with a desulfurization agent containing metal Mg, metal Al, and CaO-based flux, whose composition is adjusted to a predetermined range, is put into hot metal. Therefore, Mg and hot metal come into efficient contact with each other, and it becomes possible to produce an ultra-low sulfur hot metal with higher efficiency and stability than in the prior art. As a result, in the hot metal stage, it is possible to reduce to a sulfur concentration level required for ultra-low sulfur steel, and therefore an industrially beneficial effect is brought about such that the desulfurization treatment in the secondary refining process becomes unnecessary.

以下、本発明について具体的に説明する。   Hereinafter, the present invention will be specifically described.

本発明者等は、溶銑の段階で極低硫鋼レベルの硫黄濃度まで安定して脱硫することのできる脱硫方法の開発を目的として、溶銑の脱硫挙動を詳細に調査・解析した。その結果、Mgを利用して溶銑を脱硫処理することで、極低硫鋼レベルの硫黄濃度まで安定して脱硫できることを知見した。以下に、本発明に至った経緯を説明する。   The present inventors have investigated and analyzed in detail the desulfurization behavior of hot metal for the purpose of developing a desulfurization method that can stably desulfurize to a sulfur concentration at an extremely low sulfur level at the hot metal stage. As a result, it has been found that by desulfurizing the hot metal using Mg, it is possible to stably desulfurize even to a sulfur concentration at an extremely low sulfur level. Hereinafter, the background to the present invention will be described.

先述のとおり、CaO系フラックスよりも金属マグネシウムの方が硫黄との親和力が強いので、脱硫反応は金属マグネシウムを用いた方が有利である。しかし、生成するMgSは非常に不安定であることから復硫が懸念された。また、金属マグネシウムは雰囲気中や溶銑中の酸素、水分などとの反応によりMgOとなりやすいため、マグネシウムの利用効率は低下していた。そこで、本発明者等は、復硫を防止し且つマグネシウムの利用効率を高めるべく、金属Mg粉と金属Al粉とCaO系フラックス粉とを混合し、この混合物を鉄系帯材で被覆した鉄被覆脱硫用ワイヤーを作製し、この鉄被覆脱硫用ワイヤーを用いて脱硫処理することを検討し、種々の実験を行った。   As described above, metallic magnesium has a stronger affinity for sulfur than CaO-based flux, so it is advantageous to use metallic magnesium for the desulfurization reaction. However, since the MgS produced is very unstable, there has been a concern about sulfation. Moreover, since magnesium metal tends to become MgO by reaction with oxygen, moisture, etc. in the atmosphere or hot metal, the utilization efficiency of magnesium has been reduced. Therefore, the present inventors mixed metal Mg powder, metal Al powder, and CaO-based flux powder in order to prevent sulfurization and increase the utilization efficiency of magnesium, and this mixture was coated with iron-based strip material. Coated desulfurization wire was prepared, and it was studied to desulfurize using this iron-coated desulfurization wire, and various experiments were conducted.

検討を進めるうちに、金属Mg、金属Al、CaO系フラックスの配合に最適な範囲があることを見出した。即ち、金属Mgが少なすぎると、当然ながら脱硫は進行しにくくなり、また、金属Alが少なすぎると、金属Mgが十分に配合されていても、Mgの酸化を防止できなくなるために脱硫効率が悪化することが分かった。一方、金属Mg及び金属Alを多量に配合しすぎると、CaO系フラックスが相対的に減少するために復硫を防止できず、結果として脱硫効率が低下することも分かった。また、金属Mg及び金属Alを多量に使用することは経済的にも好ましいことではない。これらの検討の結果から、最適な脱硫剤の配合組成は、金属Mgを5〜30質量%、金属Alを5〜30質量%、CaO系フラックスを40質量%以上とすることが最適であることが分かった。   As the study proceeded, it was found that there was an optimum range for the blending of metal Mg, metal Al, and CaO-based flux. That is, if the amount of metal Mg is too small, naturally, desulfurization does not proceed easily. If the amount of metal Al is too small, even if the metal Mg is sufficiently blended, the oxidation of Mg cannot be prevented and the desulfurization efficiency is reduced. It turns out that it gets worse. On the other hand, when too much metal Mg and metal Al were blended in a large amount, it was also found that CaO-based flux is relatively reduced, so that resulfurization cannot be prevented, and as a result, desulfurization efficiency decreases. Moreover, it is not economically preferable to use a large amount of metal Mg and metal Al. From the results of these studies, the optimal composition of the desulfurizing agent is 5-30% by mass of metal Mg, 5-30% by mass of metal Al, and 40% by mass or more of CaO flux. I understood.

更に実験を進めるうちに、金属Mgの一部或いは全部をMgO(酸化マグネシウム)で代替できる可能性を見出した。MgOはAlと共存することにより、4MgO+2Al→3Mg+MgO・Al23 の反応が起こり、Mgが生成して、このMgにより金属Mgを添加した場合と同様に脱硫が進行する。この反応におけるMgOとMgの当量比は4:3であるので、1モルのMgOから生成するMgは3/4モルであり、MgOの分子量は40、Mgの分子量は24であるので、「MgO質量=(4/3)×(40/24)×Mg質量≒2.2×Mg質量」の関係が成立する。これは金属Mgを代替するにはその2.2倍のMgOが必要なことを示している。 As the experiment proceeded further, we found the possibility that some or all of the metal Mg could be replaced with MgO (magnesium oxide). When MgO coexists with Al, a reaction of 4MgO + 2Al → 3Mg + MgO.Al 2 O 3 occurs, Mg is generated, and desulfurization proceeds in the same manner as when metal Mg is added by this Mg. Since the equivalent ratio of MgO to Mg in this reaction is 4: 3, Mg generated from 1 mol of MgO is 3/4 mol, the molecular weight of MgO is 40, and the molecular weight of Mg is 24. The relationship of “mass = (4/3) × (40/24) × Mg mass≈2.2 × Mg mass” is established. This indicates that 2.2 times as much MgO is required to replace metallic Mg.

従って、金属Mgの代替としてMgOを配合する場合には、Mg源の必要最小配合量として、金属Mgの配合量(質量%)とMgOの配合量(質量%)とが、下記の(1)式の範囲を満足する必要のあることが分かった。また、この場合もCaO系フラックスの質量が相対的に減少した場合には脱硫率が悪化するので、CaO系フラックスの配合量は40質量%以上必要であることが分かった。   Therefore, when MgO is blended as an alternative to metal Mg, the blending amount (mass%) of metal Mg and the blending quantity (mass%) of MgO are the following minimum (1) as the necessary minimum blending amount of the Mg source. It turns out that the range of the formula needs to be satisfied. Also in this case, it was found that the desulfurization rate deteriorates when the mass of the CaO-based flux is relatively reduced, so that the blending amount of the CaO-based flux needs to be 40% by mass or more.

Figure 2007254843
Figure 2007254843

上記(1)式の関係に基づいて、脱硫剤中の金属Mgの一部或いは全部をMgOで代替した脱硫処理を行ったが、Mg源として金属Mgのみを用いた場合の脱硫処理と変わらない脱硫率を得られることが分かった。   Based on the relationship of the above formula (1), desulfurization treatment was performed in which part or all of the metal Mg in the desulfurizing agent was replaced with MgO, but this was not different from the desulfurization treatment in the case of using only metal Mg as the Mg source. It was found that a desulfurization rate can be obtained.

更に、脱酸剤である金属Alを他の脱酸剤で代替することについても種々検討を行った。高価な金属Alを安価な物質で代替できれば経済的にも有益である。検討の結果、優れた脱硫効率を維持し、且つ安価な物質として炭化水素系の固体物質が適していることを見出した。炭化水素系固体物質は高温下において炭素と水素とに分解し、炭素及び水素はそれぞれ酸素との結合が強いため、十分に脱酸剤として活用できることが分かった。一般的な炭化水素系固体物質としては、ポリエチレンやポリプロピレンなどのプラスチックが挙げられる。ポリエチレンやポリプロピレンなどは硫黄を含有しておらず、約87質量%程度が炭素、残り13質量%程度が水素である。   Furthermore, various investigations were also conducted on the replacement of metal Al, which is a deoxidizer, with another deoxidizer. It is economically beneficial if expensive metal Al can be replaced with an inexpensive material. As a result of the study, it was found that a hydrocarbon-based solid material is suitable as an inexpensive material that maintains excellent desulfurization efficiency. It was found that the hydrocarbon-based solid material decomposes into carbon and hydrogen at high temperatures, and the carbon and hydrogen have strong bonds with oxygen, and can be sufficiently used as a deoxidizer. Common hydrocarbon solid materials include plastics such as polyethylene and polypropylene. Polyethylene, polypropylene, and the like do not contain sulfur, and about 87% by mass is carbon and the remaining 13% by mass is hydrogen.

プラスチックを金属Alの代替として考えた場合、1kgの金属Alが脱酸しうる酸素量は約0.62Nm3 である。プラスチック中の炭素濃度を87質量%、水素濃度を13質量%と考えると、0.62Nm3の酸素を脱酸するために必要なプラスチック量は約0.4kgとなる。即ち、金属Alの代替としてプラスチックからなる炭化水素系固体物質を配合する場合には、脱酸剤の必要最小配合量として、金属Alの配合量(質量%)と炭化水素系固体物質の配合量(質量%)とが、下記の(2)式の範囲を満足する必要のあることが分かった。また、この場合もCaO系フラックスの質量が相対的に減少した場合には脱硫率が悪化するので、CaO系フラックスの配合量は40質量%以上必要であることが分かった。 When plastic is considered as a substitute for metal Al, the amount of oxygen that 1 kg of metal Al can deoxidize is about 0.62 Nm 3 . Assuming that the carbon concentration in the plastic is 87% by mass and the hydrogen concentration is 13% by mass, the amount of plastic required to deoxidize 0.62 Nm 3 of oxygen is about 0.4 kg. That is, when blending a hydrocarbon-based solid material made of plastic as an alternative to metallic Al, the blending amount (mass%) of metal Al and the blending amount of hydrocarbon-based solid material as the minimum required blending amount of deoxidizer It was found that (mass%) must satisfy the range of the following formula (2). Also in this case, it was found that the desulfurization rate deteriorates when the mass of the CaO-based flux is relatively reduced, so that the blending amount of the CaO-based flux needs to be 40% by mass or more.

Figure 2007254843
Figure 2007254843

上記(2)式の関係に基づいて、脱硫剤中の金属Alの一部或いは全部を炭化水素系の固体物質で代替した脱硫処理を行ったが、脱硫剤として金属Alのみを用いた場合の脱硫処理と変わらない脱硫率を得られることが分かった。但し、炭化水素系固体物質は分解時の吸熱量が大きいので、溶銑温度の低下を招く。従って、これを防止するために、炭化水素系固体物質の配合量は10質量%以下とするのが好ましい。また、炭化水素系固体物質として廃プラスチックを利用することは、廃プラスチックにおいてはリサイクル体制も整備されており、逆有償で入手可能なことから経済性の面でも非常に優れている。   Based on the relationship of the above formula (2), desulfurization treatment was performed in which a part or all of the metal Al in the desulfurization agent was replaced with a hydrocarbon-based solid substance. However, when only metal Al was used as the desulfurization agent, It was found that a desulfurization rate that is the same as the desulfurization treatment can be obtained. However, since the hydrocarbon-based solid substance has a large endothermic amount at the time of decomposition, the hot metal temperature is lowered. Therefore, in order to prevent this, the blending amount of the hydrocarbon-based solid substance is preferably 10% by mass or less. In addition, the use of waste plastic as a hydrocarbon-based solid material is very excellent in terms of economy because waste plastic has a recycling system and is available for a reverse charge.

更に、試験を進めた結果、鉄被覆脱硫用ワイヤーの供給速度にも最適範囲があることが明らかになった。鉄被覆脱硫用ワイヤーの添加速度が遅すぎると、鉄被覆脱硫用ワイヤーの鉄系被覆材の溶解が浴中の浅い位置で起こり、鉄被覆脱硫用ワイヤー中のMgが溶銑の浅い位置でMg蒸気となるため、溶銑中の硫黄と反応する時間が短くなり、脱硫効率が低下する。逆に、鉄被覆脱硫用ワイヤーの供給速度を速くしすぎると、溶銑飛散が激しくなり操業安全性に問題がある。これらから、鉄被覆脱硫用ワイヤーの供給速度は溶銑トン当たり0.10〜0.50kg/min(以下「kg/min・t」と記す)に制御することが好ましいことが分かった。   Furthermore, as a result of further testing, it has become clear that there is an optimum range for the supply rate of the iron-coated desulfurization wire. If the rate of addition of the iron-coated desulfurization wire is too slow, dissolution of the iron-based coating material of the iron-coated desulfurization wire occurs at a shallow position in the bath, and Mg in the iron-coated desulfurization wire is Mg vapor at a shallow position of the hot metal. Therefore, the time for reacting with sulfur in the hot metal is shortened, and the desulfurization efficiency is lowered. On the other hand, if the supply speed of the iron-coated desulfurization wire is made too high, hot metal scattering becomes severe and there is a problem in operational safety. From these, it was found that the supply rate of the iron-coated desulfurization wire is preferably controlled to 0.10 to 0.50 kg / min (hereinafter referred to as “kg / min · t”) per ton of molten iron.

本発明は、これらの試験結果に基づいてなされたものであり、金属Mgの配合量を5〜30質量%、金属Alの配合量を5〜30質量%、CaO系フラックスの配合量を40質量%以上とし、金属Mgと金属AlとCaO系フラックスとを混合した粒状及び/または粉状の脱硫剤が鉄系帯材で被覆された鉄被覆脱硫用ワイヤーを、溶銑中に供給して脱硫処理することを特徴としている。以下、添付図面を参照して本発明の具体的な方法を説明する。   The present invention has been made based on these test results. The amount of metal Mg is 5 to 30% by mass, the amount of metal Al is 5 to 30% by mass, and the amount of CaO-based flux is 40% by mass. % Or more, desulfurizing treatment by supplying iron-coated desulfurization wire coated with iron-based strip material with granular and / or powdery desulfurization agent mixed with metal Mg, metal Al and CaO-based flux It is characterized by doing. Hereinafter, a specific method of the present invention will be described with reference to the accompanying drawings.

図1は、脱硫処理設備で本発明に係る脱硫方法を実施する例を示す概略図である。図1に示すように、脱硫処理設備1には、鉄被覆脱硫用ワイヤー4のコイル4aと、コイル4aを巻き戻して鉄被覆脱硫用ワイヤー4を溶銑2に供給するためのワイヤーフィーダー5とが配置されている。ワイヤーフィーダー5の出口側には、鉄被覆脱硫用ワイヤー4をガイドするための供給導管6が設置されている。鉄被覆脱硫用ワイヤー4はワイヤーフィーダー5によって送り出され、供給導管6を介して転炉装入鍋7に収容された溶銑2に添加される。図1では、溶銑2は転炉装入鍋7に収容された例を示しているが、本発明を実施する際に溶銑2を収容する容器は転炉装入鍋7に限る訳ではなく、ある程度の溶銑深さが確保できるならば容器形状は問わず、例えば溶銑鍋などでも構わない。   FIG. 1 is a schematic view showing an example of carrying out the desulfurization method according to the present invention in a desulfurization treatment facility. As shown in FIG. 1, the desulfurization treatment facility 1 includes a coil 4 a of an iron-coated desulfurization wire 4 and a wire feeder 5 for rewinding the coil 4 a and supplying the iron-coated desulfurization wire 4 to the hot metal 2. Has been placed. A supply conduit 6 for guiding the iron-coated desulfurization wire 4 is installed on the outlet side of the wire feeder 5. The iron-coated desulfurization wire 4 is sent out by the wire feeder 5 and added to the hot metal 2 accommodated in the converter charging pan 7 through the supply conduit 6. In FIG. 1, although the hot metal 2 shows the example accommodated in the converter charging pan 7, the container which accommodates the hot metal 2 when implementing this invention is not necessarily restricted to the converter charging pan 7, As long as a certain level of hot metal depth can be secured, the shape of the container is not limited, and for example, a hot metal ladle may be used.

鉄被覆脱硫用ワイヤー4は、金属Mg及び/またはMgOと、金属Al及び/または炭化水素系固体物質と、CaO系フラックスとを、上記の配合割合で混合した脱硫剤を鉄系帯材で被覆したものである。   The iron-coated desulfurization wire 4 is coated with a desulfurizing agent obtained by mixing metal Mg and / or MgO, metal Al and / or hydrocarbon-based solid substance, and CaO-based flux in the above-described mixing ratio with an iron-based band material. It is a thing.

溶銑2に送り込まれた鉄被覆脱硫用ワイヤー4の鉄被覆材が溶解し、内部の脱硫剤が溶銑中に分散して、溶銑2の脱硫反応が進行する。即ち、脱硫剤中の金属MgまたはMgOが還元されて生成するMgと溶銑中の硫黄とが反応してMgSが形成し、形成したMgSは脱硫剤中のCaO系フラックスと反応して安定型のCaSとなり、溶銑2の脱硫反応が進行する。また、脱硫剤に含まれるCaO自体も溶銑中の硫黄と反応して脱硫反応に貢献する。脱硫剤は浮上してスラグ3が形成される。この場合、鉄被覆脱硫用ワイヤー4を添加することにより発生するMgガスによって、溶銑2は攪拌されるので、別途溶銑2の攪拌装置は不要であるが、脱硫生成物の浮上分離促進の観点からインジェクションランスなどから吹き込む攪拌用ガスで、或いはインペラを用いて攪拌しても構わない。   The iron covering material of the iron covering desulfurization wire 4 fed into the hot metal 2 is dissolved, the internal desulfurizing agent is dispersed in the hot metal, and the desulfurization reaction of the hot metal 2 proceeds. That is, Mg produced by reduction of metal Mg or MgO in the desulfurizing agent reacts with sulfur in the hot metal to form MgS, and the formed MgS reacts with the CaO-based flux in the desulfurizing agent to form a stable type. It becomes CaS, and the desulfurization reaction of the hot metal 2 proceeds. Moreover, CaO itself contained in the desulfurizing agent also reacts with sulfur in the hot metal and contributes to the desulfurization reaction. The desulfurizing agent floats and slag 3 is formed. In this case, since the hot metal 2 is stirred by the Mg gas generated by adding the iron-coated desulfurization wire 4, a separate stirring device for the hot metal 2 is unnecessary, but from the viewpoint of promoting the floating separation of the desulfurized product. The stirring gas may be blown from an injection lance or the like, or may be stirred using an impeller.

用いる溶銑2としてはどのような組成であっても処理することができ、本発明に係る脱硫処理の前に脱珪処理や脱燐処理などが施されていても構わない。因みに、脱硫処理前の溶銑2の主な化学成分は、炭素:3.8〜5.0質量%、珪素:0.3質量%以下、硫黄:0.05質量%以下、燐:0.2質量%以下程度である。また、溶銑温度は1200℃以上であれば問題なく脱硫処理することができる。   The hot metal 2 to be used can be treated with any composition, and may be subjected to desiliconization treatment or dephosphorization treatment before the desulfurization treatment according to the present invention. Incidentally, the main chemical components of the hot metal 2 before the desulfurization treatment are carbon: 3.8 to 5.0% by mass, silicon: 0.3% by mass or less, sulfur: 0.05% by mass or less, phosphorus: 0.2 It is about mass% or less. Further, if the hot metal temperature is 1200 ° C. or higher, the desulfurization treatment can be performed without any problem.

脱硫剤として使用するCaO系フラックスは、CaOを主体とするものであり、生石灰や炭酸カルシウム、水酸化カルシウムなどが挙げられるが何れを用いても構わない。また、蛍石やAl23 系フラックスなどの滓化促進剤が混入しても構わないが、本発明においてはスラグ3の滓化性はさほど問題にならない。特に、スラグ3からのフッ素溶出量を抑えて環境を保護する観点から、蛍石は使用しないことが望ましい。但し、フッ素が不純物成分として不可避的に混入した物質については使用しても構わない。また、ドロマイトは、CaO源とMgO源の両者を兼ね備えており、安価であることからも有効なフラックスである。 The CaO-based flux used as the desulfurizing agent is mainly composed of CaO, and examples thereof include quick lime, calcium carbonate, and calcium hydroxide, and any of them may be used. Further, hatching accelerators such as fluorite and Al 2 O 3 flux may be mixed, but the hatchability of the slag 3 does not matter so much in the present invention. In particular, from the viewpoint of protecting the environment by suppressing the amount of fluorine eluted from the slag 3, it is desirable not to use fluorite. However, a substance in which fluorine is inevitably mixed as an impurity component may be used. Dolomite is an effective flux because it has both a CaO source and an MgO source and is inexpensive.

金属Al源としては、安価に入手できることから、アルミニウムスクラップを溶解再生するときに発生するアルミドロス粉末(金属Alを30〜50質量%程度含有する)が好ましいが、アルミニウム融液をガスでアトマイズして得られるアトマイズAl粉末やアルミニウム合金を研磨・切削する際に発生する切削粉などを用いることもできる。   As the metal Al source, aluminum dross powder (containing about 30 to 50% by mass of metal Al) generated when aluminum scrap is melted and regenerated is preferable because it can be obtained at low cost, but the aluminum melt is atomized with gas. Cutting powder generated when polishing / cutting the atomized Al powder or aluminum alloy obtained in this manner can also be used.

更に、これらの脱硫剤を鉄系帯材で被覆しているが、Al系帯材で被覆しても構わない。但し、Al系帯材で被覆した場合には、鉄系帯材に比べて、高価である、或いは、被覆材の溶解速度が速くなるなどのことを考慮する必要がある。   Furthermore, although these desulfurization agents are coated with an iron-based band material, they may be coated with an Al-based band material. However, when coated with an Al-based strip, it is necessary to consider that it is more expensive than an iron-based strip or the dissolution rate of the coating is increased.

脱硫剤の投入量は、溶銑中硫黄濃度や温度にもよるが、最大でも溶銑トン当たり20kg程度あれば十分である。また、鉄被覆脱硫用ワイヤー4の供給速度は、前述したように、0.10〜0.50kg/min・tとすることが好ましい。   The amount of the desulfurizing agent to be added depends on the sulfur concentration in the hot metal and the temperature, but about 20 kg per ton of hot metal is sufficient. Further, the supply rate of the iron-coated desulfurization wire 4 is preferably 0.10 to 0.50 kg / min · t as described above.

このようにして溶銑2を脱硫処理することで、Mgと溶銑とが効率的に接触し、従来と比較して高効率且つ安定的に極低硫溶銑を製造することが可能となる。また、滓化促進剤としてのCaF2 などのフッ化物を使用していなくても、高い脱硫効率で脱硫処理することができるので、転炉装入鍋7の耐火物の溶損を抑制することも可能になる。 By desulfurizing the hot metal 2 in this manner, the Mg and hot metal come into efficient contact with each other, and it becomes possible to produce an ultra-low sulfur hot metal with higher efficiency and stability than in the past. Further, even if a fluoride such as CaF 2 as a hatching accelerator is not used, desulfurization treatment can be performed with high desulfurization efficiency, so that the refractory of the refractory in the converter charging pan 7 is suppressed. Is also possible.

高炉から出銑された溶銑に対して本発明に係る脱硫処理を実施した(本発明例)。高炉で製造された溶銑に対し、脱珪処理及び脱燐処理を施し、生成したスラグを排滓した後、転炉装入鍋に溶銑を装入し、図1に示す脱硫処理設備において脱硫処理を実施した。比較のために本発明の範囲外の条件でも脱硫処理を実施した(比較例)。表1に、本発明例及び比較例における脱硫処理条件及び処理結果を示す。   The desulfurization process according to the present invention was performed on the hot metal discharged from the blast furnace (example of the present invention). The hot metal produced in the blast furnace is subjected to desiliconization treatment and dephosphorization treatment. After the generated slag is discharged, the hot metal is charged into the converter charging pan and desulfurization treatment is performed in the desulfurization treatment facility shown in FIG. Carried out. For comparison, desulfurization treatment was also performed under conditions outside the scope of the present invention (Comparative Example). Table 1 shows the desulfurization treatment conditions and treatment results in the inventive examples and the comparative examples.

Figure 2007254843
Figure 2007254843

本発明例1〜10においては、金属Mg、金属Al及びCaOが最適な割合で配合されており、処理後には硫黄濃度が低い溶銑が得られていた。本発明例11〜14は、脱硫剤中の金属Mgの一部或いは全部をMgOで代替した脱硫処理であり、金属Mgのみを配合した脱硫剤と比較しても遜色ない硫黄濃度まで低減されていた。   In Invention Examples 1 to 10, metal Mg, metal Al, and CaO were blended at an optimum ratio, and hot metal having a low sulfur concentration was obtained after the treatment. Invention Examples 11 to 14 are desulfurization treatments in which part or all of metal Mg in the desulfurization agent is replaced with MgO, and the sulfur concentration is reduced to a level comparable to that of a desulfurization agent containing only metal Mg. It was.

本発明例15〜21は、脱硫剤中の金属Alの一部或いは全部を炭化水素系のプラスチックで代替したものであり、金属Alのみを配合した脱硫剤と比較して同程度の硫黄濃度が得られていた。尚、本発明例15〜21において、プラスチックの配合量を増加させるにしたがって、温度降下が大きくなっており、プラスチックの配合割合は10質量%以下程度が望ましいことが分かった。   Invention Examples 15 to 21 are obtained by replacing part or all of the metal Al in the desulfurizing agent with a hydrocarbon-based plastic, and have a sulfur concentration comparable to that of the desulfurizing agent containing only the metal Al. It was obtained. In Examples 15 to 21 of the present invention, it was found that the temperature drop increased as the plastic content was increased, and the plastic content was preferably about 10% by mass or less.

本発明例22〜23は、金属Mg及び金属Alを、同時にMgO及びプラスチックで代替したが、硫黄濃度は十分に低下しており、なんら問題はなかった。本発明例24〜28は、金属Mgの配合量を10質量%、金属Alの配合量を10質量%、CaOの配合量を80質量%の一定とした条件において、脱硫剤の供給速度を0.10〜0.50kg/min・tの範囲で変化させて脱硫した。脱硫剤の供給速度が0.10〜0.50kg/min・tの範囲では硫黄濃度が低い溶銑が得られていた。   In Invention Examples 22 to 23, metal Mg and metal Al were replaced with MgO and plastic at the same time, but the sulfur concentration was sufficiently lowered, and there was no problem. In Examples 24 to 28 of the present invention, the desulfurization agent supply rate was 0 under the condition that the compounding amount of metal Mg was 10% by mass, the compounding amount of metal Al was 10% by mass, and the compounding amount of CaO was 80% by mass. Desulfurization was carried out by changing in the range of 10 to 0.50 kg / min · t. When the supply rate of the desulfurizing agent was in the range of 0.10 to 0.50 kg / min · t, hot metal having a low sulfur concentration was obtained.

これに対して、比較例1〜8は、金属Mg或いは金属Alが少ないかまたは過剰な配合となっているため、処理後の硫黄濃度が高くなっていた。また、比較例9〜10は、金属MgをMgOで代替した際にCaOの配合割合が相対的に少なくなってしまい、硫黄濃度は若干高いものとなってしまった。   On the other hand, since Comparative Examples 1-8 had little or excessive compounding of metal Mg or metal Al, the sulfur concentration after treatment was high. In Comparative Examples 9 to 10, when the metal Mg was replaced with MgO, the blending ratio of CaO was relatively reduced, and the sulfur concentration was slightly high.

本発明例における、脱硫剤の供給速度の硫黄濃度に及ぼす影響を図2に示す。図2に示すデータは、金属Mgの配合量を10質量%、金属Alの配合量を10質量%、CaOの配合量を80質量%とする脱硫剤の条件で揃えている。図2からも明らかなように、脱硫剤の供給速度は0.10〜0.50kg/min・tの範囲で制御することが好ましいことが分かった。   FIG. 2 shows the influence of the supply rate of the desulfurizing agent on the sulfur concentration in the example of the present invention. The data shown in FIG. 2 is prepared under the conditions of a desulfurizing agent in which the compounding amount of metal Mg is 10% by mass, the compounding amount of metal Al is 10% by mass, and the compounding amount of CaO is 80% by mass. As is apparent from FIG. 2, it was found that the supply rate of the desulfurizing agent is preferably controlled in the range of 0.10 to 0.50 kg / min · t.

以上の結果から、本発明方法を用いることで、硫黄濃度が0.0010質量%以下の極低硫溶銑を安定して製造できることが分かった。   From the above results, it was found that by using the method of the present invention, an extremely low sulfur hot metal having a sulfur concentration of 0.0010% by mass or less can be stably produced.

脱硫処理設備で本発明に係る脱硫方法を実施する例を示す概略図である。It is the schematic which shows the example which enforces the desulfurization method which concerns on this invention with a desulfurization processing equipment. 脱硫剤の供給速度と処理後の硫黄濃度との関係を示す図である。It is a figure which shows the relationship between the supply speed | rate of a desulfurization agent, and the sulfur concentration after a process.

符号の説明Explanation of symbols

1 脱硫処理設備
2 溶銑
3 スラグ
4 鉄被覆脱硫用ワイヤー
5 ワイヤーフィーダー
6 供給導管
7 転炉装入鍋
DESCRIPTION OF SYMBOLS 1 Desulfurization processing equipment 2 Hot metal 3 Slag 4 Wire for iron covering desulfurization 5 Wire feeder 6 Supply conduit 7 Converter charging pan

Claims (4)

金属Mgの配合量を5〜30質量%、金属Alの配合量を5〜30質量%、CaO系フラックスの配合量を40質量%以上とし、金属Mgと金属AlとCaO系フラックスとを混合した粒状及び/または粉状の脱硫剤が鉄系帯材で被覆された鉄被覆脱硫用ワイヤーを、溶銑中に供給して脱硫処理することを特徴とする、溶銑の脱硫処理方法。   The compounding amount of metal Mg is 5-30% by mass, the compounding amount of metal Al is 5-30% by mass, the compounding amount of CaO-based flux is 40% by mass or more, and metal Mg, metal Al, and CaO-based flux are mixed. A method for desulfurizing hot metal, which comprises supplying an iron-coated desulfurization wire, in which a granular and / or powdery desulfurizing agent is coated with an iron-based strip, into the hot metal and desulfurizing it. 前記脱硫剤中の金属Mgの一部または全部をMgOで代替し、且つ、金属Mgの配合量及びMgOの配合量が下記の(1)式を満足することを特徴とする、請求項1に記載の溶銑の脱硫処理方法。
金属Mg配合量(質量%)+[MgO配合量(質量%)/2.2]≧5 …(1)
The part or all of metal Mg in the desulfurizing agent is replaced with MgO, and the compounding amount of metal Mg and the compounding amount of MgO satisfy the following formula (1): The hot metal desulfurization processing method as described.
Metal Mg content (% by mass) + [MgO content (% by mass) /2.2] ≧ 5 (1)
前記脱硫剤中の金属Alの一部または全部を炭化水素系の固体物質で代替し、且つ、金属Alの配合量及び炭化水素系固体物質の配合量が下記の(2)式を満足することを特徴とする、請求項1または請求項2に記載の溶銑の脱硫処理方法。
金属Al配合量(質量%)+[炭化水素系固体物質配合量(質量%)/0.4]≧5 …(2)
A part or all of the metal Al in the desulfurizing agent is replaced with a hydrocarbon-based solid material, and the compounding amount of the metal Al and the compounding amount of the hydrocarbon-based solid material satisfy the following formula (2): The hot metal desulfurization treatment method according to claim 1 or 2, characterized in that:
Metal Al content (mass%) + [Hydrocarbon-based solid material content (mass%) / 0.4] ≧ 5 (2)
前記鉄被覆脱硫用ワイヤーの供給速度を溶銑トン当たり0.10〜0.50kg/minとすることを特徴とする、請求項1ないし請求項3の何れか1つに記載の溶銑の脱硫処理方法。   The hot metal desulfurization treatment method according to any one of claims 1 to 3, wherein a supply rate of the iron-coated desulfurization wire is set to 0.10 to 0.50 kg / min per ton of hot metal. .
JP2006082370A 2006-03-24 2006-03-24 Hot metal desulfurization treatment method Active JP4977863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006082370A JP4977863B2 (en) 2006-03-24 2006-03-24 Hot metal desulfurization treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006082370A JP4977863B2 (en) 2006-03-24 2006-03-24 Hot metal desulfurization treatment method

Publications (2)

Publication Number Publication Date
JP2007254843A true JP2007254843A (en) 2007-10-04
JP4977863B2 JP4977863B2 (en) 2012-07-18

Family

ID=38629367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006082370A Active JP4977863B2 (en) 2006-03-24 2006-03-24 Hot metal desulfurization treatment method

Country Status (1)

Country Link
JP (1) JP4977863B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133490A (en) * 2006-11-27 2008-06-12 Jfe Steel Kk Method for desulfurizing molten pig iron
JP2012026012A (en) * 2010-07-26 2012-02-09 Nippon Steel Corp Method for desulfurizing molten iron
JP2022053706A (en) * 2020-09-25 2022-04-06 Jfeスチール株式会社 Hot metal desulfurization facility and hot metal desulfurization process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06330128A (en) * 1993-05-17 1994-11-29 Kawasaki Steel Corp Desulfurizing agent for molten iron and desulfurizing method using the same
JPH07207316A (en) * 1994-01-20 1995-08-08 Nisshin Steel Co Ltd Wire for desulfurization of molten iron having high desulfurization efficiency
JPH07207318A (en) * 1994-01-20 1995-08-08 Nisshin Steel Co Ltd Molten iron desulfurization method using mg-al alloy wire and wire for desulfurization
JPH09209026A (en) * 1996-02-06 1997-08-12 Nisshin Steel Co Ltd Simultaneous deoxidizing and desulfurizing agent for molten steel and method for simultaneously deoxidizing and desulfurizing molten steel using it
JPH10317035A (en) * 1997-05-19 1998-12-02 Nkk Corp Desulphurization method of ferrous molten alloy, and desulphurizing agent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06330128A (en) * 1993-05-17 1994-11-29 Kawasaki Steel Corp Desulfurizing agent for molten iron and desulfurizing method using the same
JPH07207316A (en) * 1994-01-20 1995-08-08 Nisshin Steel Co Ltd Wire for desulfurization of molten iron having high desulfurization efficiency
JPH07207318A (en) * 1994-01-20 1995-08-08 Nisshin Steel Co Ltd Molten iron desulfurization method using mg-al alloy wire and wire for desulfurization
JPH09209026A (en) * 1996-02-06 1997-08-12 Nisshin Steel Co Ltd Simultaneous deoxidizing and desulfurizing agent for molten steel and method for simultaneously deoxidizing and desulfurizing molten steel using it
JPH10317035A (en) * 1997-05-19 1998-12-02 Nkk Corp Desulphurization method of ferrous molten alloy, and desulphurizing agent

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133490A (en) * 2006-11-27 2008-06-12 Jfe Steel Kk Method for desulfurizing molten pig iron
JP2012026012A (en) * 2010-07-26 2012-02-09 Nippon Steel Corp Method for desulfurizing molten iron
JP2022053706A (en) * 2020-09-25 2022-04-06 Jfeスチール株式会社 Hot metal desulfurization facility and hot metal desulfurization process
JP7342829B2 (en) 2020-09-25 2023-09-12 Jfeスチール株式会社 Hot metal desulfurization equipment and hot metal desulfurization method

Also Published As

Publication number Publication date
JP4977863B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
KR101276921B1 (en) Method for removing copper in steel scraps
JP6693536B2 (en) Converter steelmaking method
JP4977863B2 (en) Hot metal desulfurization treatment method
JP4998691B2 (en) Metal band covering desulfurization wire and method for desulfurization of molten iron
JP5061598B2 (en) Hot metal desulfurization method
JP5268019B2 (en) How to remove hot metal
JP4765374B2 (en) Desulfurization treatment method for chromium-containing hot metal
JP5200324B2 (en) Desulfurization method for molten steel
JP5333542B2 (en) Desulfurization method for molten steel and molten iron alloy
JP4082365B2 (en) Steel manufacturing method
UA73898C2 (en) A method for direct steel alloying
JP4714655B2 (en) Desulfurization method for chromium-containing molten iron
JP4984928B2 (en) Hot metal desulfurization method
JP3769875B2 (en) Desulfurization method and desulfurization agent for iron-based molten alloy
JP2007262511A (en) Method for recycling desulfurization slag
JP2000345224A (en) Method for desulfurizing molten iron
JP2006241561A (en) Method for preventing development of dust from transporting vessel for molten iron
JP6273947B2 (en) Desulfurization treatment method for molten steel
JP4360239B2 (en) Method for desulfurization of molten steel in vacuum degassing equipment
JP3728870B2 (en) Desulfurization method and desulfurization agent for iron-based molten alloy
JP5803866B2 (en) Desulfurizing agent for molten steel and desulfurization method using the same
JP5481899B2 (en) Hot metal desulfurization agent and desulfurization treatment method
JP2004250745A (en) Method for preventing slopping
JP5326591B2 (en) Hot metal manufacturing method using steel scrap as iron source
JP2014031562A (en) Dephosphorization processing method of hot pig iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120326

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4977863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250