JP6693536B2 - Converter steelmaking method - Google Patents

Converter steelmaking method Download PDF

Info

Publication number
JP6693536B2
JP6693536B2 JP2018078912A JP2018078912A JP6693536B2 JP 6693536 B2 JP6693536 B2 JP 6693536B2 JP 2018078912 A JP2018078912 A JP 2018078912A JP 2018078912 A JP2018078912 A JP 2018078912A JP 6693536 B2 JP6693536 B2 JP 6693536B2
Authority
JP
Japan
Prior art keywords
converter
slag
hot metal
dephosphorization
iron source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018078912A
Other languages
Japanese (ja)
Other versions
JP2018178260A (en
Inventor
菊池 直樹
直樹 菊池
憲治 中瀬
憲治 中瀬
洋晴 井戸
洋晴 井戸
錦織 正規
正規 錦織
三木 祐司
祐司 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2018178260A publication Critical patent/JP2018178260A/en
Application granted granted Critical
Publication of JP6693536B2 publication Critical patent/JP6693536B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、転炉内に装入された溶銑を酸素吹錬して、溶銑から溶鋼を溶製する転炉製鋼方法に関する。   TECHNICAL FIELD The present invention relates to a converter steelmaking method for producing molten steel from molten pig iron by blowing oxygen into the molten pig iron charged in the converter.

製鋼スラグの発生量の低減、及び、溶鋼の品質向上のために、転炉で脱炭精錬する前に、溶銑に対して脱珪処理、脱燐処理、脱硫処理の予備処理が行われている。そのうちで転炉を用いた溶銑の脱燐処理では、酸素ガス供給流量(「送酸速度」ともいう)を大きくすることができ、高速処理が可能である。一方、溶鋼の生産量を増加する場合は、本来、脱炭精錬に使用する転炉を用いて予備処理を行うので、転炉を用いた溶銑の脱燐処理は困難となる。   Prior to decarburizing and refining in a converter, hot metal is subjected to desiliconization, dephosphorization, and desulfurization pretreatments to reduce the amount of steelmaking slag and improve the quality of molten steel. .. Among them, in the dephosphorization treatment of molten pig iron using a converter, the oxygen gas supply flow rate (also referred to as “acid feeding rate”) can be increased, and high-speed treatment is possible. On the other hand, when increasing the production amount of molten steel, since the preliminary treatment is originally performed using the converter used for decarburizing and refining, it is difficult to dephosphorize the hot metal using the converter.

また、製鋼工程における炭酸ガスの発生量低減のためには、鉄源として冷鉄源を配合して溶銑比率を低下することが有効である。転炉設備はスクラップシュートなどを用いて多量の冷鉄源の投入が可能であるが、冷鉄源を溶解するための熱補償が転炉での精錬で必要となる。   Further, in order to reduce the amount of carbon dioxide gas generated in the steelmaking process, it is effective to blend a cold iron source as an iron source to reduce the hot metal ratio. Although a large amount of cold iron source can be put into the converter equipment by using a scrap chute, etc., thermal compensation for melting the cold iron source is required for refining in the converter.

溶銑の脱燐処理は送酸しながら生石灰などのCaO系媒溶剤を添加して行うが、溶銑中の炭素も酸化除去され、その結果、溶銑の潜熱が低下する。したがって、転炉での脱炭精錬で高価なFe−Si合金などの発熱材の添加を行わない前提では、溶銑に対して脱燐処理を実施せずに冷鉄源の溶解を促進するか、脱燐処理の実施かの選択を行う必要がある。   The dephosphorization treatment of hot metal is carried out by adding a CaO-based solvent such as quick lime while feeding acid, but carbon in hot metal is also oxidized and removed, and as a result, the latent heat of hot metal is reduced. Therefore, on the premise of not adding an exothermic material such as an expensive Fe-Si alloy in decarburization refining in a converter, promoting the melting of the cold iron source without performing dephosphorization treatment on the hot metal, It is necessary to select whether to carry out dephosphorization treatment.

従来、転炉での溶銑脱燐と冷鉄源の溶解とを合理的に両立させる目的で、特許文献1及び特許文献2には、脱珪・脱燐処理及び脱炭精錬を、脱珪・脱燐処理で生成したスラグを排滓する排滓工程を挟んで1つの転炉で連続して行う転炉製鋼方法が提案されている。この精錬方法では脱珪・脱燐処理後に転炉を傾動させて排滓し、引き続き脱炭精錬を実施し、脱炭精錬後のスラグは炉内に残留させて次のチャージの溶銑を装入し、次のチャージの脱珪・脱燐処理を開始している。   Conventionally, for the purpose of reasonably achieving both hot metal dephosphorization in a converter and melting of a cold iron source, Patent Document 1 and Patent Document 2 describe desiliconization / dephosphorization treatment and decarburization refining. A converter steelmaking method has been proposed in which one converter is continuously used with a slag step of discharging the slag generated by the dephosphorization process interposed therebetween. In this refining method, after desiliconization and dephosphorization, the converter is tilted to remove slag, and then decarburization and refining are carried out.The slag after decarburization and refining is left in the furnace and the molten iron of the next charge is charged. Then, the next charge desiliconization / phosphorus removal process has started.

一方、特許文献3、特許文献4、特許文献5、特許文献6には、転炉を用いた溶銑の予備処理において、前半の脱珪処理後に転炉を傾動させて脱珪処理で生成したスラグを排滓し、引き続き、転炉内に残留させた脱珪処理後の溶銑及びスラグに対してCaO系媒溶剤を添加するとともに酸素ガスを吹錬して溶銑の脱燐処理を行う、溶銑の予備処理方法が提案されている。尚、炉内のスラグを一旦排出し、新たなスラグを炉内に形成する、特許文献1〜6で開示される精錬方法を、「ダブルスラグ法」とも称している。   On the other hand, in Patent Document 3, Patent Document 4, Patent Document 5, and Patent Document 6, in the hot metal pretreatment using the converter, the slag generated by the desiliconization treatment by tilting the converter after the first half desiliconization treatment Slag, and subsequently, a CaO-based medium solvent is added to the desiliconized hot metal and slag remaining in the converter, and oxygen gas is blown to dephosphorize the hot metal. Pretreatment methods have been proposed. The refining method disclosed in Patent Documents 1 to 6 in which the slag in the furnace is once discharged and a new slag is formed in the furnace is also referred to as “double slag method”.

また、特許文献7には、転炉製鋼工程における冷鉄源溶解の効率向上を目的として、転炉内に冷鉄源と溶銑を装入する第1工程と、酸素ガスを吹込んで脱珪処理及び脱炭精錬を行う第2工程と、次いで酸素ガスの吹込みを停止して転炉内に比表面積0.5〜11.0m/tonの冷鉄源を装入する第3工程と、次いで転炉内に生石灰を装入した後に酸素ガスを吹込んで脱炭精錬と同時に脱燐処理を行ない、更に、出鋼する第4工程と、を有する精錬方法が提案されている。つまり、1回の転炉精錬で、冷鉄源を転炉内に2回装入する技術が提案されている。 Further, Patent Document 7 discloses a first step of charging a cold iron source and hot metal into a converter for the purpose of improving the efficiency of melting a cold iron source in a converter steelmaking step, and a desiliconization treatment by blowing oxygen gas. And a second step of performing decarburization refining, and then a third step of stopping the blowing of oxygen gas and charging a cold iron source having a specific surface area of 0.5 to 11.0 m 2 / ton into the converter. Next, a refining method has been proposed, which comprises a fourth step in which quick lime is charged into a converter, oxygen gas is blown into the converter to perform decarburization and dephosphorization at the same time, and steel is tapped. In other words, a technique has been proposed in which the cold iron source is charged into the converter twice in one converter refining.

特開2000−328123号公報JP 2000-328123 A 特開2001−192720号公報JP 2001-192720 A 特開2013−189714号公報JP, 2013-189714, A 国際公開第2013/012039号International Publication No. 2013/012039 特開2013−231237号公報JP, 2013-231237, A 特開2013−227664号公報JP, 2013-227664, A 特開2013−133484号公報JP, 2013-133484, A

しかしながら、上記従来技術には以下の問題がある。   However, the above conventional techniques have the following problems.

即ち、特許文献1、2に開示される、転炉製鋼方法にダブルスラグ法を適用した、脱珪・脱燐処理→排滓工程→脱炭精錬の場合には、前半の脱珪・脱燐処理の段階で溶銑の燐濃度が十分に低下せず、且つ、排滓を完全に行うことはできないために、後半の脱炭精錬では溶製される溶鋼の低燐化が困難であるという問題がある。   That is, when the double slag method is applied to the converter steelmaking method disclosed in Patent Documents 1 and 2, in the case of desiliconization and dephosphorization treatment → slag process → decarburization refining, the first half of desiliconization and dephosphorization is performed. In the latter half of the decarburization refining process, it is difficult to reduce the phosphorus content of the molten steel because the phosphorus concentration in the hot metal does not decrease sufficiently at the treatment stage and the slag cannot be completely removed. There is.

一方、特許文献3〜6に開示される、溶銑予備処理にダブルスラグ法を適用した、脱珪処理→排滓→脱燐処理の場合には、脱燐処理後の溶銑の燐濃度を低くすることができ、且つ、脱炭精錬は別の転炉で行うために、溶製される溶鋼の低燐化が可能であるが、2基の転炉を用いるために生産性が低いという問題がある。   On the other hand, when the double slag method is applied to the hot metal pretreatment disclosed in Patent Documents 3 to 6, and in the case of desiliconization treatment → slag → dephosphorization treatment, the phosphorus concentration of the hot metal after dephosphorization treatment is lowered. In addition, since decarburization refining is performed in another converter, it is possible to reduce the phosphorus content of the molten steel to be melted, but the problem of low productivity due to the use of two converters is there.

特許文献7に開示される、冷鉄源を転炉内に2回装入する技術では、2回目の冷鉄源装入時に炉内に脱珪処理で生成した低塩基度で高粘性のスラグが存在するので、装入した冷鉄源が炉内のスラグでコーテイングされた状態となり、精錬中の溶解効率が低下するという問題がある。   According to the technique disclosed in Patent Document 7 in which a cold iron source is charged twice in a converter, a low basicity and highly viscous slag generated by desiliconization in the furnace at the time of the second cold iron source charging. Therefore, there is a problem that the charged cold iron source is coated with the slag in the furnace, and the melting efficiency during refining is reduced.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、1基の転炉を用い、転炉内に装入された溶銑を酸素吹錬して、溶銑から溶鋼を溶製する転炉製鋼方法において、溶製される溶鋼の燐濃度を低くすることができると同時に、転炉の生産性及び冷鉄源の溶解効率を高めることのできる転炉製鋼方法を提供することである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to melt molten steel from molten iron by blowing oxygen from the molten iron charged in the converter using one converter. By providing a converter steelmaking method capable of lowering the phosphorus concentration of molten steel to be melted, and at the same time improving the productivity of the converter and the melting efficiency of a cold iron source, is there.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]1基の転炉で溶銑を精錬して溶銑から溶鋼を溶製する転炉製鋼方法であって、転炉内に溶銑を装入する第1工程と、転炉内にCaO系媒溶剤を供給し、且つ、転炉内の溶銑を底吹きガスによって攪拌しつつ上吹きランスから酸素ガスを溶銑に供給して転炉内の溶銑を脱珪処理する第2工程と、転炉を傾動させて第2工程で生成したスラグの少なくとも一部を転炉から排滓する第3工程と、転炉を直立位置に戻し、転炉内にCaO系媒溶剤を供給し、且つ、転炉内の溶銑を底吹きガスによって攪拌しつつ上吹きランスから酸素ガスを溶銑に供給して転炉内に残留させた溶銑を脱燐処理する第4工程と、転炉を再度傾動させて第4工程で生成したスラグの少なくとも一部を転炉から排滓する第5工程と、転炉を直立位置に戻し、転炉内にCaO系媒溶剤を供給し、且つ、転炉内の溶銑を底吹きガスによって攪拌しつつ上吹きランスから酸素ガスを溶銑に供給して転炉内に残留させた溶銑を脱炭精錬する第6工程と、からなり、第6工程で発生したスラグを次のチャージ以後の第4工程の脱燐処理でCaO系媒溶剤として再利用し、且つ、第4工程で発生したスラグを次のチャージ以後の第2工程の脱珪処理でCaO系媒溶剤として再利用する転炉製鋼方法。
[2]第1工程での転炉内に溶銑を装入する前、第3工程の後、第5工程の後の期間のうちの少なくとも1つの期間で、冷鉄源を転炉内へ装入する、上記[1]に記載の転炉製鋼方法。
[3]第1工程での転炉内に溶銑を装入する前に冷鉄源を転炉内に装入し、更に、第3工程の後及び/または第5工程の後に、転炉内に冷鉄源を装入する、上記[1]に記載の転炉製鋼方法。
[4]第1工程での転炉内に溶銑を装入する前、第3工程の後、第5工程の後の各期間における冷鉄源の装入量は、いずれの期間も、転炉に装入する総鉄源の10質量%以下とする、上記[2]または上記[3]に記載の転炉製鋼方法。
The gist of the present invention for solving the above problems is as follows.
[1] A converter steelmaking method for refining hot metal in one converter to produce molten steel from the hot metal, comprising a first step of charging the hot metal into the converter and a CaO-based medium in the converter. The second step of supplying the solvent and supplying the oxygen gas from the top blowing lance to the hot metal while stirring the hot metal in the converter with the bottom blowing gas to desiliconize the hot metal in the converter; A third step in which at least a part of the slag generated in the second step is tilted and discharged from the converter, the converter is returned to the upright position, the CaO-based solvent is supplied into the converter, and the converter is The fourth step of dephosphorizing the hot metal remaining in the converter by supplying oxygen gas from the top-blowing lance to the hot metal while agitating the hot metal in the inside with the bottom-blowing gas, and tilting the converter again to the fourth step. The fifth step of discharging at least a part of the slag generated in the step from the converter, and returning the converter to the upright position, O-based medium solvent is supplied, and oxygen gas is supplied to the hot metal from the top-blowing lance while stirring the hot metal in the converter with bottom-blown gas to decarburize and refine the hot metal remaining in the converter. The slag generated in the sixth step is reused as a CaO-based solvent in the dephosphorization treatment in the fourth step after the next charge, and the slag generated in the fourth step is charged after the next charge. Converter steelmaking method of reusing as a CaO-based solvent in the second step of desiliconization treatment.
[2] Before the molten iron is charged into the converter in the first step, after the third step, and at least one of the periods after the fifth step, the cold iron source is loaded into the converter. The converter steelmaking method according to [1] above.
[3] A cold iron source is charged into the converter before charging the hot metal into the converter in the first step, and further, after the third step and / or the fifth step, inside the converter. The converter steelmaking method according to the above [1], wherein a cold iron source is charged into.
[4] Before the molten iron is charged into the converter in the first step, after the third step, and after the fifth step, the cold iron source is charged in the converter in any period. In the converter steelmaking method according to the above [2] or [3], the content is 10% by mass or less of the total iron source charged into the steel.

本発明によれば、1基の転炉で溶銑から溶鋼を溶製する転炉製鋼方法において、脱珪処理、脱燐処理及び脱炭精錬を別々に実施し、且つ、脱珪処理及び脱燐処理の後にはそれぞれ排滓を行い、炉内にスラグを3回形成させるので、溶銑に含有されていた燐の炉外への排出が促進され、脱炭精錬後の溶鋼の燐濃度を安定して低くすることが実現される。また、脱炭精錬で生成する脱炭スラグをCaO源として次のチャージ以後の脱燐処理に再利用し、且つ、脱燐処理で生成する脱燐スラグをCaO源として次のチャージ以後の脱珪処理に再利用するので、系外に排出されるスラグは脱珪スラグだけとなり、スラグの排出量が軽減されるのみならず、脱珪スラグは塩基度が低く、未溶解CaOによるスラグの膨張がないので、スラグの利材化が容易となる。更に、本発明では、1基の転炉を用いて炉内の溶湯を炉外に排出することなく精錬するので、転炉の生産性の低下が抑制される。   According to the present invention, in a converter steelmaking method for producing molten steel from molten pig iron in one converter, desiliconization treatment, dephosphorization treatment and decarburization refining are separately carried out, and desiliconization treatment and dephosphorization treatment are carried out. After the treatment, the slag is discharged to form slag three times in the furnace, which promotes the discharge of phosphorus contained in the hot metal to the outside of the furnace and stabilizes the phosphorus concentration in the molten steel after decarburization and refining. It is possible to lower it. In addition, the decarburization slag produced by decarburization refining is reused as the CaO source for the dephosphorization treatment after the next charge, and the dephosphorization slag produced by the dephosphorization treatment is used as the CaO source for the desiliconization after the next charge. Since it is reused for processing, the only slag that is discharged outside the system is desiliconized slag, which not only reduces the amount of slag discharged, but the desiliconized slag has a low basicity and expansion of slag due to undissolved CaO Since there is no slag, it is easy to use it as a material. Further, in the present invention, the molten metal in the furnace is refined by using one converter without being discharged to the outside of the furnace, so that the decrease in the productivity of the converter is suppressed.

また、本発明においては、冷鉄源を複数回に分けて添加可能であり、冷鉄源の溶解が促進され、炭酸ガス発生量の軽減に寄与する。   Further, in the present invention, the cold iron source can be added in a plurality of times, the dissolution of the cold iron source is promoted, and the carbon dioxide gas generation amount is reduced.

本発明に係る転炉製鋼方法を実施する際に用いる転炉の概略断面図である。It is a schematic sectional drawing of a converter used when implementing the converter steel making method concerning the present invention. 本発明に係る転炉製鋼方法を工程順に示す概略図である。It is a schematic diagram showing a converter steel making method concerning the present invention in order of a process.

以下、添付図面を参照して本発明を具体的に説明する。図1は、本発明に係る転炉製鋼方法を実施する際に用いる転炉の概略断面図であり、図2は、本発明に係る転炉製鋼方法を工程順に示す概略図である。尚、図1は、図2−(C)の第2工程の脱珪処理を示す図である。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic sectional view of a converter used when carrying out the converter steel making method according to the present invention, and FIG. 2 is a schematic view showing the converter steel making method according to the present invention in the order of steps. It should be noted that FIG. 1 is a diagram showing the desiliconization treatment in the second step of FIG. 2- (C).

本発明に係る転炉製鋼方法では、図1に示すような上底吹き可能な転炉1を用いる。上吹きは、転炉1の内部を昇降可能な上吹きランス2を介して、上吹きランス2の先端から酸素源として酸素含有ガスを溶銑5に向けて供給して行われる。酸素含有ガスとしては、酸素ガス、酸素富化空気、空気、酸素ガスと不活性ガスとの混合ガスを使用することができる。図1では、酸素含有ガスとして酸素ガス8を使用した例を示している。ここで、酸素ガス8とは工業用純酸素である。底吹きは、転炉1の底部に設けられた底吹き羽口3を介して行われる。底吹きガス9としては、酸素ガスを含むガスでも、或いはアルゴンガスや窒素ガスなどの不活性ガスのみでもよく、溶銑中に吹き込むことにより溶銑5の攪拌を強化して冷鉄源の溶解を促進する機能を有するものであればよい。   In the converter steelmaking method according to the present invention, the converter 1 capable of blowing the upper and lower parts as shown in FIG. 1 is used. The upper blowing is performed by supplying an oxygen-containing gas as an oxygen source toward the hot metal 5 from the tip of the upper blowing lance 2 through the upper blowing lance 2 capable of moving up and down inside the converter 1. As the oxygen-containing gas, oxygen gas, oxygen-enriched air, air, or a mixed gas of oxygen gas and an inert gas can be used. FIG. 1 shows an example in which oxygen gas 8 is used as the oxygen-containing gas. Here, the oxygen gas 8 is industrial pure oxygen. Bottom blowing is performed via a bottom blowing tuyere 3 provided at the bottom of the converter 1. The bottom blown gas 9 may be a gas containing oxygen gas or only an inert gas such as argon gas or nitrogen gas. By blowing it into the hot metal, the stirring of the hot metal 5 is enhanced to promote the dissolution of the cold iron source. What has the function of

本発明においては、溶銑5の精錬に1基の転炉1を使用し、溶銑予備処理のうちの脱珪処理、脱燐処理を実施し、且つ、脱珪処理後及び脱燐処理後に排滓を実施し、更に、脱燐処理を施した溶銑に対して脱炭精錬を実施して、溶銑から溶鋼を溶製する。   In the present invention, one converter 1 is used for refining the hot metal 5, the desiliconization treatment and the dephosphorization treatment of the hot metal pretreatment are performed, and the slag is removed after the desiliconization treatment and the dephosphorization treatment. Further, decarburization refining is performed on the dephosphorized hot metal to produce molten steel from the hot metal.

本発明に係る転炉製鋼方法では、図2−(A)に示すように、転炉1にスクラップシュート10を介して冷鉄源7を装入する。尚、冷鉄源7の転炉1への装入は本発明を実施する上で必須条件ではないが、製鋼工程における炭酸ガスの発生量を低減するために、冷鉄源7の転炉1への装入を行うことが好ましい。   In the converter steelmaking method according to the present invention, as shown in FIG. 2- (A), the cold iron source 7 is charged into the converter 1 via the scrap chute 10. It should be noted that charging of the cold iron source 7 into the converter 1 is not an essential condition for carrying out the present invention, but in order to reduce the amount of carbon dioxide gas generated in the steelmaking process, the converter 1 of the cold iron source 7 is used. It is preferable to carry out charging.

次いで、図2−(B)に示すように、転炉1に、装入鍋11を介して高炉から出銑され、必要に応じて脱硫処理の施された溶銑5(以下、「高炉溶銑5」と記す)を装入する(第1工程)。   Next, as shown in FIG. 2- (B), the hot metal 5 (hereinafter referred to as “blast furnace hot metal 5”) that has been tapped from the blast furnace through the charging pan 11 and desulfurized as necessary in the converter 1. ]) Is charged (first step).

その後、この転炉内の高炉溶銑5に、酸素源として酸素ガス8を供給して、図2−(C)に示すように、脱珪処理を実施する(第2工程)。高炉溶銑5に含有される珪素と酸素源中の酸素とが反応(Si+2O→SiO)して脱珪処理が進行する。この脱珪反応による珪素の酸化熱で溶銑温度が上昇し、溶銑中の冷鉄源7の溶解が促進される。 After that, oxygen gas 8 is supplied as an oxygen source to the blast furnace hot metal 5 in the converter to carry out a desiliconization process as shown in FIG. 2- (C) (second step). Silicon contained in the blast furnace hot metal 5 reacts with oxygen in the oxygen source (Si + 2O → SiO 2 ) to proceed with desiliconization treatment. Due to the heat of oxidation of silicon due to this desiliconization reaction, the hot metal temperature rises and the melting of the cold iron source 7 in the hot metal is promoted.

この脱珪処理前及び/または脱珪処理中に、生成するスラグ6の塩基度([質量%CaO]/[質量%SiO])(以下、単に「塩基度」とのみ表示することもある)を調整するために、CaO系媒溶剤を転炉1に添加する。脱珪処理において生成するスラグ6は「脱珪スラグ」とも呼ばれるので、以下、脱珪処理で生成するスラグ6を「脱珪スラグ6」と記す。 During this desiliconization treatment before and / or desiliconization treatment, there basicity of the slag 6 which generates ([wt% CaO] / [wt% SiO 2]) (hereinafter, also simply display only "basicity" ) Is added to the converter 1, a CaO-based medium solvent is added. Since the slag 6 generated in the desiliconization treatment is also called "desiliconization slag", the slag 6 generated in the desiliconization treatment will be referred to as "desiliconization slag 6" hereinafter.

具体的には、脱珪処理後の脱珪スラグ6の塩基度が0.5〜1.5の範囲内となるように、CaO系媒溶剤を転炉1に添加する。   Specifically, the CaO-based solvent medium is added to the converter 1 so that the basicity of the desiliconized slag 6 after the desiliconizing treatment is within the range of 0.5 to 1.5.

本発明においては、脱珪処理におけるCaO系媒溶剤として、脱珪処理の後工程の脱燐処理で生成するスラグ(脱燐処理で生成するスラグを「脱燐スラグ」と称す)を再利用する。これにより、脱燐スラグ中のCaO分が脱珪処理におけるCaO源として活用される。当然ではあるが、当該チャージよりも以前に行われた脱燐処理で生成した脱燐スラグを再利用する。   In the present invention, as the CaO-based solvent in the desiliconization treatment, the slag generated in the dephosphorization treatment after the desiliconization treatment (the slag generated in the dephosphorization treatment is referred to as “dephosphorization slag”) is reused. .. Thereby, the CaO content in the dephosphorization slag is utilized as the CaO source in the desiliconization treatment. As a matter of course, the dephosphorization slag generated in the dephosphorization treatment performed before the charge is reused.

脱珪スラグ6の塩基度を0.5以上に制御する理由は、脱珪スラグ6の塩基度が0.5未満になると、脱珪処理中に、再利用する脱燐スラグに含有されていた3CaO・Pなる燐酸化物が分解し、分解した燐が高炉溶銑5に戻り(この現象を「復燐」という)、脱珪処理後の溶銑14の燐濃度が脱珪処理前よりも高くなることが起こるからである。脱珪スラグ6の塩基度が高くなるほど復燐は起こらず、したがって、脱珪スラグ6の塩基度を0.8以上にすることが好ましい。一方、脱珪スラグ6の塩基度が1.5を超えると、脱珪スラグ6の融点が上昇して、脱珪スラグ6の排滓時に排滓率が悪化するので、脱珪スラグ6の塩基度を1.5以下に制御する。 The reason for controlling the basicity of the desiliconization slag 6 to be 0.5 or more is that when the basicity of the desiliconization slag 6 is less than 0.5, it is contained in the dephosphorization slag to be reused during the desiliconization treatment. The 3CaO / P 2 O 5 phosphorus oxide decomposes and the decomposed phosphorus returns to the blast furnace hot metal 5 (this phenomenon is called “reconstitution phosphorus”), and the phosphorus concentration of the hot metal 14 after desiliconization is higher than that before desiliconization. This is because it will be higher. As the basicity of the desiliconized slag 6 becomes higher, re-phosphorization does not occur. Therefore, the basicity of the desiliconized slag 6 is preferably 0.8 or more. On the other hand, when the basicity of the desiliconized slag 6 exceeds 1.5, the melting point of the desiliconized slag 6 rises, and the rate of slag is deteriorated when the slag is removed. Control the degree to 1.5 or less.

脱燐スラグを再利用する際に、溶融状態の脱燐スラグをスラグ保持容器に保持し、スラグ保持容器から溶融状態の脱燐スラグを転炉1に装入してもよく、また、脱燐スラグを冷却して固化させ、固化した脱燐スラグを破砕し、または、破砕せず、塊状または粉体状の脱燐スラグを転炉1に装入してもよい。脱燐スラグの塩基度は1.5〜3.5であるので、CaO系媒溶剤として機能する。脱燐スラグ以外のCaO系媒溶剤としては、生石灰、ドロマイト、炭酸カルシウムなどが使用できる。   When reusing the dephosphorized slag, the molten dephosphorized slag may be held in a slag holding container, and the molten dephosphorized slag may be charged into the converter 1 from the slag holding container. The slag may be cooled and solidified, and the solidified dephosphorized slag may be crushed, or the dephosphorized slag in a lump or powder form may be charged into the converter 1 without crushing. Since the basicity of dephosphorized slag is 1.5 to 3.5, it functions as a CaO-based medium solvent. As the CaO-based solvent other than the dephosphorization slag, quick lime, dolomite, calcium carbonate and the like can be used.

脱珪処理のための酸素源としては、上吹きランス2からの酸素ガス8のみでもよく、また、酸素ガス8に酸化鉄(図示せず)を併用してもよい。短時間で行われる脱珪処理中に目標とする塩基度の脱珪スラグ6を形成させるためには、CaO系媒溶剤の滓化を促進させる機能を有する酸化鉄を使用することが効果的であるが、本発明では、CaO系媒溶剤として、溶融過程を経たプリメルトの脱燐スラグを使用するので、酸素ガス8のみを用いて脱珪処理を行っても、十分に目標とする塩基度の脱珪スラグ6を形成させることができる。更に、精錬容器として、強攪拌が可能な転炉1を使用するので、酸素ガス8のみを用いても、十分に目標とする塩基度の脱珪スラグ6を形成させることができる。   As the oxygen source for the desiliconization treatment, only the oxygen gas 8 from the upper blowing lance 2 may be used, or the oxygen gas 8 may be used together with iron oxide (not shown). In order to form the desiliconization slag 6 having the target basicity during the desiliconization treatment performed in a short time, it is effective to use iron oxide having a function of promoting the slag formation of the CaO-based solvent medium. However, in the present invention, since the premelted dephosphorization slag that has undergone the melting process is used as the CaO-based medium solvent, even if the desiliconization treatment is performed using only the oxygen gas 8, a sufficient basicity Desiliconized slag 6 can be formed. Furthermore, since the converter 1 capable of strong stirring is used as the refining vessel, the desiliconization slag 6 having a sufficiently basicity can be sufficiently formed by using only the oxygen gas 8.

この脱珪処理のあとに、図2−(D)に示すように、転炉1を傾動させて、排滓工程を設け、脱珪処理で発生した、SiOを大量に含む脱珪スラグ6の少なくとも一部を転炉1の炉口から排出する(第3工程)。 After this desiliconization process, as shown in FIG. 2- (D), the converter 1 is tilted to provide a slag removal process, and the desiliconized slag 6 containing a large amount of SiO 2 generated in the desiliconization process is produced. Is discharged from the furnace opening of the converter 1 (third step).

脱珪処理で発生したSiOを極力炉外に排出するために、排滓率(排滓率(質量%)=(排出スラグ質量)×100/(脱珪処理終了時の炉内スラグ質量))を50質量%以上とすることが好ましい。50質量%以上の排滓率を確保するために、脱珪スラグ6の塩基度を0.5〜1.1の範囲に調整し、且つ、脱珪スラグ6の温度を1280℃以上に調整することが好ましい。 In order to discharge the SiO 2 generated by the desiliconization process to the outside of the furnace as much as possible, the rate of slag (rate of slag (mass%) = (mass of discharged slag) x 100 / (mass of slag in the furnace at the end of desiliconization)) ) Is preferably 50% by mass or more. In order to secure the slag ratio of 50 mass% or more, the basicity of the desiliconization slag 6 is adjusted to the range of 0.5 to 1.1, and the temperature of the desiliconization slag 6 is adjusted to 1280 ° C or higher. Preferably.

脱珪スラグ6の排滓後、転炉1を、炉口を上方に向けた直立位置に戻し、転炉内に残留させた脱珪処理後の溶銑14(以下、「脱珪溶銑14」と記す)にCaO系媒溶剤及び酸素源を供給して、図2−(E)に示すように、脱珪溶銑14に対して脱燐処理を実施する(第4工程)。脱燐処理において生成するスラグは「脱燐スラグ」とも呼ばれるので、以下、脱燐処理で生成するスラグ12を「脱燐スラグ12」と記す。   After the desiliconization slag 6 was discharged, the converter 1 was returned to the upright position with the furnace mouth facing upward, and the desiliconized hot metal 14 left in the converter (hereinafter referred to as "desiliconized hot metal 14"). 2), a CaO-based medium solvent and an oxygen source are supplied, and as shown in FIG. 2- (E), the desiliconization hot metal 14 is subjected to dephosphorization treatment (fourth step). Since the slag generated in the dephosphorization treatment is also called "dephosphorization slag", hereinafter, the slag 12 generated in the dephosphorization treatment will be referred to as "dephosphorization slag 12".

脱燐処理においては、炉内の脱燐スラグ12の塩基度は1.5〜3.5の範囲に調整する。スラグの塩基度が高いほどスラグの燐酸化物(3CaO・Pなる)の吸収能が高くなって脱燐反応が促進されるので、脱燐反応を促進するために、脱燐スラグ12の塩基度を1.5以上に制御する。一方、脱燐スラグ12の塩基度が3.5を超えると、滓化性が悪くなり、脱燐反応が遅くなるので、脱燐スラグ12の塩基度を3.5以下に制御する。 In the dephosphorization treatment, the basicity of the dephosphorization slag 12 in the furnace is adjusted to the range of 1.5 to 3.5. The higher the basicity of the slag, the higher the absorption capacity of the slag for the phosphorus oxide (3CaO · P 2 O 5 ) and the faster the dephosphorization reaction is. Therefore, in order to accelerate the dephosphorization reaction, Control the basicity to 1.5 or more. On the other hand, when the basicity of the dephosphorization slag 12 exceeds 3.5, the slag forming property is deteriorated and the dephosphorization reaction is delayed, so the basicity of the dephosphorization slag 12 is controlled to 3.5 or less.

本発明では、脱燐スラグ12の塩基度を調整するためのCaO系媒溶剤として、脱燐処理の後工程の脱炭精錬で生成するスラグ(脱炭精錬で生成するスラグを「脱炭スラグ」と称す)を再利用する。これにより、脱炭スラグ中のCaO分が脱燐処理におけるCaO源として活用される。当然ではあるが、当該チャージよりも以前に行われた脱炭精錬で生成した脱炭スラグを再利用する。   In the present invention, as a CaO-based medium solvent for adjusting the basicity of the dephosphorization slag 12, the slag produced in the decarburization refining in the subsequent step of the dephosphorization treatment (the slag produced in the decarburization refining is referred to as "decarburization slag"). Reuse). Thereby, the CaO content in the decarburized slag is utilized as the CaO source in the dephosphorization treatment. Naturally, the decarburization slag generated in the decarburization refining performed before the charge is reused.

脱炭スラグを再利用する際に、溶融状態の脱炭スラグをスラグ保持容器に保持し、スラグ保持容器から溶融状態の脱炭スラグを転炉1に装入してもよく、また、脱炭スラグを冷却して固化させ、固化した脱炭スラグを破砕し、または、破砕せず、塊状または粉体状の脱炭スラグを転炉1に装入してもよい。脱炭スラグの塩基度は2.5〜5.0であるので、CaO系媒溶剤として機能する。   When reusing the decarburized slag, the molten decarburized slag may be held in a slag holding container, and the molten decarburized slag may be charged into the converter 1 from the slag holding container. The slag may be cooled and solidified, and the solidified decarburized slag may be crushed, or lump or powdered decarburized slag may be charged into the converter 1. Since the basicity of decarburized slag is 2.5 to 5.0, it functions as a CaO-based solvent.

脱炭スラグ以外のCaO系媒溶剤としては、生石灰、ドロマイト、炭酸カルシウムなどが使用できる。但し、これらに限定されず、CaOを50質量%以上含有し、必要に応じてフッ素やアルミナなどの他の成分を含有するものも、脱燐処理時のCaO系媒溶剤として使用することができる。このCaO系媒溶剤の添加方法としては、粒状及び塊状のものは炉上のホッパーから、粉状のものは上吹きランス2を介するなどして投入することができる。   As the CaO-based solvent other than the decarburized slag, quick lime, dolomite, calcium carbonate and the like can be used. However, it is not limited to these, and those containing 50% by mass or more of CaO and, if necessary, other components such as fluorine and alumina can also be used as the CaO-based solvent during dephosphorization treatment. .. As a method of adding the CaO-based medium solvent, granular or lumpy ones can be introduced from a hopper on the furnace, and powdery ones can be introduced via the upper blowing lance 2.

この脱燐処理工程において使用する酸素源は、脱珪処理と同様に、上吹きランス2からの酸素ガス8を主体とするが、一部酸化鉄を使用しても構わない。   The oxygen source used in this dephosphorization treatment step is mainly oxygen gas 8 from the upper blowing lance 2 as in the desiliconization treatment, but iron oxide may be partially used.

脱珪溶銑14に含有される燐は供給される酸素源中の酸素に酸化されて燐酸化物(P)となり、この燐酸化物が、CaO系媒溶剤の滓化によって形成され、脱燐精錬剤として機能する脱燐スラグ12に3CaO・Pなる安定形態の化合物として取り込まれ、脱珪溶銑14の脱燐反応が進行する。脱燐反応が進行して脱珪溶銑14の燐濃度が所定の値に低下したなら、脱燐処理を終了する。 Phosphorus contained in the desiliconized hot metal 14 is oxidized to oxygen in the supplied oxygen source to form a phosphorus oxide (P 2 O 5 ), and this phosphorus oxide is formed by the slag formation of the CaO-based medium solvent to remove phosphorus. The dephosphorization slag 12 functioning as a refining agent is incorporated as a stable form compound of 3CaO.P 2 O 5 and the dephosphorization reaction of the desiliconized hot metal 14 proceeds. When the dephosphorization reaction proceeds and the phosphorus concentration of the desiliconized hot metal 14 decreases to a predetermined value, the dephosphorization process is terminated.

後工程の脱炭精錬によって溶製される溶鋼の燐濃度を安定して低下するためには、脱燐処理後の溶銑15(以下、「脱燐溶銑15」と記す)の燐濃度が0.040質量%以下になるまで、脱燐処理を行うことが好ましい。   In order to stably reduce the phosphorus concentration of the molten steel produced by the decarburization refining in the subsequent process, the phosphorus concentration of the hot metal 15 after dephosphorization treatment (hereinafter, referred to as "dephosphorized hot metal 15") is 0. It is preferable to perform the dephosphorization treatment until the content becomes 040 mass% or less.

この脱燐処理のあとに、図2−(F)に示すように、転炉1を再度傾動させて、排滓工程を設け、脱燐処理で発生した、3CaO・Pを含有する脱燐スラグ12の少なくとも一部を転炉1の炉口からスラグ保持容器(図示せず)に排出する(第5工程)。 After this dephosphorization treatment, as shown in FIG. 2- (F), the converter 1 is tilted again, and a slag process is provided to contain 3CaO.P 2 O 5 generated by the dephosphorization treatment. At least a part of the dephosphorized slag 12 is discharged from the furnace opening of the converter 1 into a slag holding container (not shown) (fifth step).

スラグ保持容器内の脱燐スラグ12を、前述したように、溶融状態のまま、または、冷却して固化させた後に、次のチャージ以後の脱珪処理におけるCaO系媒溶剤として再利用する。   As described above, the dephosphorized slag 12 in the slag holding container is reused as the CaO-based solvent in the desiliconization process after the next charge in the molten state or after being cooled and solidified.

脱燐処理で発生した3CaO・Pを極力炉外に排出するために、排滓率(排滓率(質量%)=(排出スラグ質量)×100/(脱燐処理終了時の炉内スラグ質量))を50質量%以上とすることが好ましい。 In order to discharge the 3CaO · P 2 O 5 generated by the dephosphorization process to the outside of the furnace as much as possible, the rate of slag (rate of slag (mass%) = (mass of slag discharged) x 100 / (furnace at the end of the dephosphorization process The internal slag mass)) is preferably 50% by mass or more.

脱燐スラグ12の排滓後、転炉1を、炉口を上方に向けた直立位置に戻し、転炉内に残留させた脱燐処理後の脱燐溶銑15にCaO系媒溶剤及び酸素源を供給して、図2−(G)に示すように、脱燐溶銑15に対して脱炭精錬を実施する(第6工程)。   After the dephosphorization slag 12 was discharged, the converter 1 was returned to the upright position with the furnace opening facing upward, and the dephosphorization hot metal 15 remaining in the converter was subjected to the dephosphorization treatment and the CaO-based solvent and the oxygen source. Is supplied to perform decarburization refining on the dephosphorized hot metal 15 as shown in FIG. 2- (G) (sixth step).

脱炭精錬においては、炉内のスラグ13の塩基度は2.5〜5.0に調整する。これは、脱炭精錬では、脱燐処理で得られた脱燐溶銑15を脱燐処理よりも更に低い濃度まで脱燐する必要があり、そのためには、塩基度の下限値を脱燐処理よりも高める必要があるからである。一方、脱炭精錬は、脱燐処理に比較して上吹き酸素ガス流量が多く、溶湯の攪拌が強いので、塩基度が5.0以下であれば炉内のスラグ13は十分に滓化する。脱炭精錬において生成するスラグは「脱炭スラグ」とも呼ばれるので、以下、脱炭精錬で生成するスラグ13を「脱炭スラグ13」と記す。   In decarburization refining, the basicity of the slag 13 in the furnace is adjusted to 2.5 to 5.0. This is because in decarburization refining, it is necessary to dephosphorize the dephosphorized hot metal 15 obtained in the dephosphorization treatment to a concentration lower than that in the dephosphorization treatment. It is also necessary to increase On the other hand, in the decarburization refining, the flow rate of the top-blown oxygen gas is larger than that in the dephosphorization treatment, and the molten metal is strongly stirred. Therefore, if the basicity is 5.0 or less, the slag 13 in the furnace is sufficiently slagged. .. Since the slag generated in the decarburization refining is also called "decarburization slag", the slag 13 generated in the decarburization refining will be referred to as "decarburization slag 13" hereinafter.

脱炭精錬で使用するCaO系媒溶剤としては、生石灰、ドロマイト、炭酸カルシウムなどが使用できる。但し、これらに限定されず、CaOを50質量%以上含有し、必要に応じてフッ素やアルミナなどの他の成分を含有するものも、脱炭精錬時のCaO系媒溶剤として使用することができる。このCaO系媒溶剤の添加方法としては、粒状及び塊状のものは炉上のホッパーから、粉状のものは上吹きランス2を介するなどして投入することができる。また、脱炭精錬において使用する酸素源は、上吹きランス2からの酸素ガス8を主体とする。   As the CaO-based solvent used in the decarburization refining, quick lime, dolomite, calcium carbonate and the like can be used. However, the present invention is not limited to these, and those containing CaO in an amount of 50% by mass or more and, if necessary, other components such as fluorine and alumina can also be used as the CaO-based solvent during decarburization refining. .. As a method of adding the CaO-based medium solvent, granular or lumpy ones can be introduced from a hopper on the furnace, and powdery ones can be introduced via the upper blowing lance 2. The oxygen source used in the decarburization refining is mainly oxygen gas 8 from the upper blowing lance 2.

脱炭精錬後、図2−(H)に示すように、転炉1を出湯口4が設置された側に傾動させて、溶製された転炉内の溶鋼16を出湯口4を介して取鍋などの溶鋼保持容器(図示せず)に出鋼する。   After decarburization refining, as shown in FIG. 2- (H), the converter 1 is tilted to the side where the tap 4 is installed, and the molten steel 16 in the molten converter is melted through the tap 4. The steel is tapped into a molten steel holding container (not shown) such as a ladle.

溶鋼16の出鋼後、炉口が下方に位置するように転炉1を傾動させ、炉口から炉内の脱炭スラグ13をスラグ保持容器(図示せず)に排出する。スラグ保持容器内の脱炭スラグ13を、前述したように、溶融状態のまま、または、冷却して固化させた後に、次のチャージ以後の脱燐処理におけるCaO系媒溶剤として再利用する。   After the molten steel 16 is tapped, the converter 1 is tilted so that the furnace opening is located below, and the decarburized slag 13 in the furnace is discharged from the furnace opening into a slag holding container (not shown). As described above, the decarburized slag 13 in the slag holding container is reused as a CaO-based medium solvent in the dephosphorization treatment after the next charge in the molten state or after being cooled and solidified.

脱炭スラグ13が排出された後の転炉1に、図2−(A)に示すように冷鉄源7を転炉1に装入し、更に、図2−(B)に示すように高炉溶銑5を転炉1に装入し、次のチャージの脱珪処理を開始する。   After the decarburization slag 13 is discharged, the cold iron source 7 is charged into the converter 1 as shown in FIG. 2- (A), and further as shown in FIG. 2- (B). The blast furnace hot metal 5 is charged into the converter 1, and the silicon removal process for the next charge is started.

本発明に係る転炉製鋼方法において、生産性の向上及び炭酸ガスの排出量削減のために、冷鉄源7を可能な限り多く装入することが好ましい。この観点から、第1工程での転炉内に溶銑を装入する前、第3工程の後、第5工程の後の期間のうちの少なくとも1つの期間で、転炉内へ冷鉄源を装入することが好ましい。特に、前述したように、第1工程での、高炉溶銑5を転炉1に装入する前に転炉1に冷鉄源7を装入し、更に、脱珪処理(第2工程)で生成した脱珪スラグ6を排滓する第3工程の後、及び/または、脱燐処理(第4工程)で生成した脱燐スラグ12を排滓する第5工程の後に、転炉内に冷鉄源7を装入することがより好ましい。転炉内への冷鉄源の装入量は、冷鉄源の未溶解を抑制する観点から、いずれの期間も、転炉に装入する総鉄源の10質量%以下とすることが好ましい。冷鉄源7の総装入量が同じ場合も、冷鉄源7を分散して装入することで、冷鉄源7の溶解が促進される。ここで、総鉄源とは、当該チャージにおいて転炉内へ装入される溶銑の質量及び冷鉄源の質量の和である。   In the converter steelmaking method according to the present invention, it is preferable to charge as many cold iron sources 7 as possible in order to improve productivity and reduce carbon dioxide gas emissions. From this viewpoint, the cold iron source is introduced into the converter during at least one of the periods before charging the hot metal into the converter in the first process, after the third process, and after the fifth process. It is preferable to charge. In particular, as described above, the cold iron source 7 is charged into the converter 1 before charging the blast furnace hot metal 5 into the converter 1 in the first step, and further, in the desiliconization treatment (second step). After the third step of discharging the generated desiliconization slag 6 and / or after the fifth step of discharging the dephosphorization slag 12 generated in the dephosphorization treatment (fourth step), the cooling is performed in the converter. More preferably, the iron source 7 is charged. From the viewpoint of suppressing unmelting of the cold iron source, the amount of the cold iron source charged into the converter is preferably 10% by mass or less of the total iron source charged into the converter in any period. .. Even when the total charging amount of the cold iron source 7 is the same, the cold iron source 7 is dispersed and charged so that the melting of the cold iron source 7 is promoted. Here, the total iron source is the sum of the mass of the hot metal charged into the converter in the charge and the mass of the cold iron source.

また、冷鉄源7の装入量を多くする場合には、冷鉄源7の溶解に高炉溶銑5が含有する珪素の燃焼熱を利用することが好ましい。したがって、その場合には、高炉鋳床での脱珪処理は行わないことが望ましい。   When the amount of the cold iron source 7 to be charged is increased, it is preferable to utilize the combustion heat of silicon contained in the blast furnace hot metal 5 for melting the cold iron source 7. Therefore, in that case, it is desirable not to perform desiliconization treatment in the blast furnace casting floor.

以上説明したように、本発明によれば、1基の転炉1で高炉溶銑5から溶鋼16を溶製する転炉製鋼方法において、脱珪処理、脱燐処理及び脱炭精錬を別々に実施し、且つ、脱珪処理及び脱燐処理の後にはそれぞれ排滓を行い、炉内にスラグを3回形成(トリプルスラグ法)させるので、高炉溶銑5に含有されていた燐の炉外への排出が促進され、転炉製鋼方法にダブルスラグ法を適用した場合に問題であった、脱炭精錬後の溶鋼16の低燐化を安定して実現することが可能となる。また、脱炭精錬で生成する脱炭スラグ13をCaO源として次のチャージ以後の脱燐処理に再利用し、且つ、脱燐処理で生成する脱燐スラグ12をCaO源として次のチャージ以後の脱珪処理に再利用するので、系外に排出されるスラグは脱珪スラグ6だけとなり、スラグの排出量が軽減されるのみならず、脱珪スラグ6は塩基度が低く、未溶解CaOによるスラグの膨張がないので、スラグの利材化が容易となる。更に、本発明では、1基の転炉1を用いて炉内の溶湯を炉外に排出することなく精錬するので、転炉1の生産性の低下が抑制される。   As described above, according to the present invention, in the converter steelmaking method of manufacturing molten steel 16 from blast furnace molten pig iron 5 in one converter 1, desiliconization treatment, dephosphorization treatment and decarburization refining are separately performed. However, since the slag is formed three times in the furnace (triple slag method) after the desiliconization treatment and the dephosphorization treatment, respectively, the phosphorus contained in the blast furnace hot metal 5 is discharged to the outside of the furnace. Discharge is promoted, and it becomes possible to stably realize low phosphorus content in the molten steel 16 after decarburization refining, which is a problem when the double slag method is applied to the converter steelmaking method. Further, the decarburization slag 13 produced by the decarburization refining is reused as the CaO source in the dephosphorization treatment after the next charge, and the dephosphorization slag 12 produced by the dephosphorization treatment is used as the CaO source after the next charge. Since it is reused for desiliconization treatment, the only slag discharged to the outside of the system is desiliconized slag 6, not only the amount of slag discharged is reduced, but desiliconized slag 6 has a low basicity and is not dissolved by CaO. Since there is no expansion of the slag, it is easy to use it as a material. Further, in the present invention, the molten metal in the furnace is refined using one converter 1 without being discharged to the outside of the furnace, so that the decrease in the productivity of the converter 1 is suppressed.

図1に示すような容量300トンの転炉を用いて本発明に係る転炉製鋼方法を実施した(本発明例1)。また、比較のために、排滓を脱燐処理後の1回のみとする、脱燐処理後に脱燐溶銑を出湯し、別の転炉に装入して脱炭精錬を行う、または、脱炭スラグや脱燐スラグを再利用しない試験操業(比較例1〜3)も実施した。   The converter steelmaking method according to the present invention was carried out using a converter having a capacity of 300 tons as shown in FIG. 1 (Example 1 of the present invention). Also, for comparison, the waste is treated only once after the dephosphorization treatment, the dephosphorized hot metal is tapped after the dephosphorization treatment, and charged into another converter to perform decarburization refining, or A test operation (Comparative Examples 1 to 3) in which the charcoal slag and the dephosphorized slag were not reused was also carried out.

表1に、本発明例1及び比較例1〜3における、転炉を用いた脱珪処理、脱燐処理、脱炭精錬での上吹き酸素ガス及び攪拌用の底吹き窒素ガスの供給条件、吹錬時間、精錬する溶銑の質量を示す。   Table 1 shows the conditions for supplying top-blown oxygen gas and bottom-blown nitrogen gas for stirring in desiliconization treatment, dephosphorization treatment, and decarburization refining using a converter in Example 1 of the present invention and Comparative Examples 1 to 3. It shows the blowing time and the mass of the hot metal to be refined.

Figure 0006693536
Figure 0006693536

また、表2に本発明例1及び比較例1〜3の試験条件を示す。表2に示すように、本発明例1及び比較例1〜3では冷鉄源を装入しないで試験した。   Further, Table 2 shows the test conditions of the present invention example 1 and comparative examples 1 to 3. As shown in Table 2, the invention example 1 and the comparative examples 1 to 3 were tested without charging the cold iron source.

Figure 0006693536
Figure 0006693536

比較例1は、脱珪・脱燐処理→排滓→脱炭精錬のダブルスラグ法、比較例2は、脱珪処理→排滓→脱燐処理→出湯→別の転炉に再装入→脱炭精錬のダブルスラグ法、比較例3は、脱珪処理→排滓→脱燐処理→排滓→脱炭精錬のトリプルスラグ法であるが、脱炭スラグ及び脱燐スラグの再利用を行わない条件である。本発明例1は、脱珪処理→排滓→脱燐処理→排滓→脱炭精錬のトリプルスラグ法であり、且つ、脱炭スラグを脱燐処理へ再利用し、脱燐スラグを脱珪処理へ再利用した。   Comparative Example 1 is a double slag method of desiliconization / phosphorus removal → slag → decarburization refining, and Comparative Example 2 is desiliconization → slag → dephosphorization → tapping → recharging into another converter → The double slag method of decarburization refining, Comparative Example 3 is a triple slag method of desiliconization treatment → slag → dephosphorization → slag → decarburization refining, but decarburization slag and dephosphorization slag are reused. There is no condition. Example 1 of the present invention is a triple slag method of desiliconization treatment → slag → dephosphorization treatment → slag → decarburization refining, and decarburization slag is reused for dephosphorization treatment to desiliconize the dephosphorization slag. Reused for processing.

本発明例1におけるスラグの再利用方法は、脱炭精錬で発生した脱炭スラグは、一旦冷却し、1mm以下に粉砕したものを次のチャージ以後の脱燐処理において上吹きランスから酸素ガスとともに脱珪溶銑に向けて投射した。また、脱燐処理で発生した脱燐スラグは、クレーンで傾動可能な専用スラグ鍋(スラグ保持容器の1種)に溶融状態のまま保持し、次のチャージの脱珪処理において、冷鉄源の装入を行う場合は、冷鉄源の装入→溶銑装入後にスラグ鍋から転炉内に装入し、冷鉄源の装入を行わない場合は、溶銑装入後にスラグ鍋から転炉内に装入して、CaO源として再利用した。   The method for reusing slag in Inventive Example 1 is that the decarburized slag generated in the decarburization refining is cooled once and pulverized to 1 mm or less, and the decarburizing treatment after the next charge is performed together with the oxygen gas from the top blowing lance in the dephosphorization treatment. It was projected toward the desiliconized hot metal. The dephosphorization slag generated in the dephosphorization process is kept in a molten state in a dedicated slag pan (a type of slag holding container) that can be tilted by a crane, and is used as a cold iron source in the next charge desiliconization process. When charging is performed, the cold iron source is charged → The molten iron is charged and then the slag pan is charged into the converter.When the cold iron source is not charged, the molten iron is charged and the slag pan is converted. It was charged inside and reused as a source of CaO.

本発明例1及び比較例1〜3における冶金特性、生産性、CaO系媒溶剤原単位を表3に示す。表3は、各試験とも20チャージの平均値であり、表3の総処理時間は、精錬開始の溶銑装入から最終の脱炭精錬終了、出鋼、排滓までの時間である。   Table 3 shows the metallurgical properties, productivity, and CaO-based solvent / solvent basic unit in Inventive Example 1 and Comparative Examples 1 to 3. Table 3 shows the average value of 20 charges in each test, and the total treatment time in Table 3 is the time from the hot metal charging at the start of refining to the final decarburization and refining, tapping, and slag.

Figure 0006693536
Figure 0006693536

比較例1は、脱珪・脱燐処理後の排滓のみであり、したがって、総処理時間が短い。しかしながら、脱珪・脱燐処理後の排滓時点の溶銑中燐濃度が高く(0.055質量%)、また、排滓率が60質量%であったため、脱炭精錬中に炉内に残留する燐量が多く、脱炭精錬後の溶鋼の燐濃度が高かった(0.012質量%)。   In Comparative Example 1, only the slag after the desiliconization and dephosphorization treatment is performed, and therefore the total treatment time is short. However, the phosphorus concentration in the hot metal at the time of smelting after desiliconization and dephosphorization was high (0.055% by mass), and the slag ratio was 60% by mass, so it remained in the furnace during decarburization refining. The phosphorus content of the molten steel after decarburization and refining was high (0.012% by mass).

比較例2は、脱珪処理後の排滓に加え、脱燐処理後に出湯して排滓し、脱燐溶銑を別の転炉に再度装入するので、総処理時間が長いという問題があった。しかし、脱燐処理によって脱燐溶銑は低燐化されており、且つ、脱燐スラグがほぼ完全に炉外に除去されるため、脱炭精錬後の溶鋼の燐濃度は低かった。   In Comparative Example 2, in addition to the slag after the desiliconization treatment, after the dephosphorization treatment, the hot water is discharged and slag is discharged, and the dephosphorized hot metal is charged again into another converter, so that there is a problem that the total treatment time is long. It was However, the dephosphorization treatment reduced the phosphorus content in the dephosphorized hot metal, and the dephosphorization slag was almost completely removed from the furnace. Therefore, the phosphorus concentration in the molten steel after decarburization refining was low.

比較例3は、トリプルスラグ法であり、比較例1に比べて総処理時間は長いが、出湯・再装入を行う比較例2に対しては総処理時間が短い。また、脱燐溶銑は低燐化されており、脱燐スラグがほぼ完全に炉外に除去される比較例2と比べると脱燐スラグの除去率は低いものの、脱炭精錬後の溶鋼の低濃化が実現されていた。但し、スラグを再利用していないので、生石灰原単位は28kg/溶鋼−tと高位であった。   Comparative Example 3 is a triple slag method, and the total processing time is longer than that of Comparative Example 1, but the total processing time is shorter than that of Comparative Example 2 in which tapping and recharging are performed. Further, the dephosphorized hot metal is low-phosphorized, and although the removal rate of the dephosphorized slag is low as compared with Comparative Example 2 in which the dephosphorized slag is almost completely removed outside the furnace, the molten steel after decarburizing and refining has a low removal rate. Thickening was realized. However, since the slag was not reused, the quicklime basic unit was as high as 28 kg / molten steel-t.

比較例1〜3に対して、本発明例1では、比較例3と同等の生産性、冶金特性であり、脱炭スラグを脱燐処理へ再利用し、且つ、脱燐スラグを脱珪処理へ再利用しているので、生石灰原単位は20kg/溶鋼−tと低位であった。   In contrast to Comparative Examples 1 to 3, the present invention example 1 has the same productivity and metallurgical characteristics as those of Comparative example 3, the decarburized slag is reused for the dephosphorization treatment, and the dephosphorized slag is desiliconized. Since it was reused, the unit of quick lime was as low as 20 kg / molten steel-t.

次に、冷鉄源の転炉への装入時期及び装入量を変化させて冷鉄源の溶解状況を比較する試験を行った(本発明例2〜8)。   Next, a test was conducted to compare the melting state of the cold iron source by changing the charging time and the charging amount of the cold iron source to the converter (Examples 2 to 8 of the present invention).

精錬方法は、本発明例1と同一であり、脱珪処理→排滓→脱燐処理→排滓→脱炭精錬のトリプルスラグ法で、且つ、脱炭スラグを脱燐処理へ再利用し、脱燐スラグを脱珪処理へ再利用した。本発明例2〜8で、冷鉄源の装入量は、転炉に装入する総鉄源の25質量%の一定とした。つまり、総鉄源を300トンとし、1チャージあたり225トンの高炉溶銑に対して、1チャージあたり75トンの冷鉄源を装入した。75トンの冷鉄源のうちで、60質量%分の45トンの冷鉄源は、厚さ10mm以上の重量屑を切断したものを使用し、残りの40質量%分の30トンは、厚さ10mm未満の軽量屑を使用した。本発明例2〜8における冷鉄源の装入条件を表4に示す。   The refining method is the same as that of Example 1 of the present invention, and is a triple slag method of desiliconization treatment → slag → dephosphorization → slag → decarburization refining, and reusing the decarburization slag for dephosphorization, The dephosphorized slag was reused for desiliconization treatment. In Examples 2 to 8 of the present invention, the charging amount of the cold iron source was constant at 25 mass% of the total iron source charged into the converter. That is, the total iron source was set to 300 tons, and 225 tons of molten iron per charge was charged with 75 tons of cold iron source per charge. Among the 75 tons of cold iron source, the 45 tons cold iron source for 60% by mass uses the heavy scraps with a thickness of 10 mm or more, and the remaining 30 tons for 40% by mass is the thickness. Lightweight scraps less than 10 mm in length were used. Table 4 shows charging conditions of the cold iron source in Examples 2 to 8 of the present invention.

Figure 0006693536
Figure 0006693536

表4に示すように、総鉄源の合計25質量%分の冷鉄源を溶解するにあたり、本発明例2では、高炉溶銑の装入前に5質量%(軽量屑=15トン)、脱珪スラグの排滓後に10質量%(軽量屑=15トン、重量屑=15トン)、脱燐スラグの排滓後に10質量%(重量屑=30トン)の冷鉄源を転炉内に装入した。   As shown in Table 4, when melting a total of 25 mass% of the total iron source of cold iron sources, in Invention Example 2, 5 mass% (lightweight scraps = 15 tons) was removed before charging the blast furnace hot metal. 10% by mass (lightweight scrap = 15 tons, heavy scrap = 15 tons) after slag of silica slag and 10% by mass (weight scrap = 30 tons) of cold iron source after slag removal of dephosphorization slag are installed in the converter. I entered.

本発明例3では、高炉溶銑の装入前に、75トンの全ての冷鉄源を転炉内に装入し、本発明例4では、高炉溶銑の装入前に15質量%(軽量屑=30トン、重量屑=15トン)、脱珪スラグの排滓後に10質量%(重量屑=30トン)の冷鉄源を転炉内に装入した。   In Invention Example 3, 75 tons of all cold iron sources were charged into the converter before charging the blast furnace hot metal, and in Invention Example 4, 15% by mass (lightweight scraps) before charging the blast furnace hot metal. = 30 tons, heavy scraps = 15 tons), and 10 mass% (weight scraps = 30 tons) of a cold iron source was charged into the converter after the desiliconization slag was discharged.

本発明例5では、高炉溶銑の装入前に10質量%(軽量屑=15トン、重量屑=15トン)、脱珪スラグの排滓後に15質量%(軽量屑=15トン、重量屑=30トン)の冷鉄源を転炉内に装入し、本発明例6では、高炉溶銑の装入前に5質量%(重量屑=15トン)、脱珪スラグの排滓後に15質量%(軽量屑=15トン、重量屑=30トン)、脱燐スラグの排滓後に5質量%(軽量屑=15トン)の冷鉄源を転炉内に装入した。   In Invention Example 5, 10% by mass (light scrap = 15 tons, heavy scrap = 15 tons) before charging of blast furnace hot metal, and 15% by mass (light scrap = 15 tons, heavy scrap = after waste of desiliconization slag) 30 tons of cold iron source was charged into the converter, and in Invention Example 6, 5% by mass (weight scrap = 15 tons) before charging of blast furnace hot metal and 15% by mass after desiliconization slag slag. (Lightweight scraps = 15 tons, heavy scraps = 30 tons), and after the dephosphorization slag was discharged, 5% by mass (lightweight scraps = 15 tons) of a cold iron source was charged into the converter.

本発明例7では、高炉溶銑の装入前に5質量%(重量屑=15トン)、脱珪スラグの排滓後に5質量%(軽量屑=15トン)、脱燐スラグの排滓後に15質量%(軽量屑=15トン、重量屑=30トン)の冷鉄源を転炉内に装入し、本発明例8では、高炉溶銑の装入前に15質量%(軽量屑=15トン、重量屑=30トン)、脱珪スラグの排滓後に5質量%(軽量屑=15トン)、脱燐スラグの排滓後に5質量%(重量屑=15トン)の冷鉄源を転炉内に装入した。   In Inventive Example 7, 5% by mass (weight scrap = 15 tons) before charging blast furnace hot metal, 5% by mass after desiliconization slag discharge (lightweight scrap = 15 tons), 15% after removal of dephosphorization slag A cold iron source of mass% (lightweight scraps = 15 tons, heavy scraps = 30 tons) was charged into the converter, and in Example 8 of the present invention, 15% by mass (lightweight scraps = 15 tons) before charging of blast furnace hot metal. , Heavy scraps = 30 tons, 5 mass% after removal of desiliconized slag (light scraps = 15 tons), 5 mass% after removal of dephosphorized slag (weight scraps = 15 tons) cold iron source converter Charged inside.

本発明例3では、脱珪処理後の排滓時、及び、脱燐処理後の排滓時に転炉を傾動させた際に、炉底に未溶解の冷鉄源が確認された。また、脱炭精錬後の出鋼後に、炉内に残留させた脱炭スラグに混じって未溶解の冷鉄源が確認された。   In Invention Example 3, when the converter was tilted at the time of the slag after the desiliconization treatment and at the time of the slag after the dephosphorization treatment, an unmelted cold iron source was confirmed at the furnace bottom. In addition, after tapping after decarburization refining, it was confirmed that the unmelted cold iron source was mixed with the decarburized slag remaining in the furnace.

本発明例4及び本発明例5では、本発明例3と同様に、脱珪処理後の排滓時、及び、脱燐処理後の排滓時に未溶解の冷鉄源が一部炉底に観察された。また、脱炭精錬後の出鋼後に、炉内に残留させたスラグに混じって少量の未溶解の冷鉄源が観察された。   In the present invention example 4 and the present invention example 5, as in the case of the present invention example 3, a part of the undissolved cold iron source at the time of the slag after the desiliconization treatment and at the slag after the dephosphorization treatment is partially in the furnace bottom. Was observed. Further, after tapping after decarburization refining, a small amount of unmelted cold iron source was observed mixed with the slag left in the furnace.

本発明例6〜本発明例8では、本発明例4及び本発明例5に比較して、冷鉄源の残留量は少ないものの、炉底や脱炭精錬後の出鋼後に炉内に残留させたスラグに混じって未溶解の冷鉄源が僅かに確認された。   In Invention Example 6 to Invention Example 8, as compared with Invention Example 4 and Invention Example 5, although the residual amount of the cold iron source was small, it remained in the furnace at the bottom of the furnace or after tapping after decarburization refining. A small amount of undissolved cold iron source mixed in the slag thus formed was confirmed.

これに対して、本発明例2においては、脱珪処理の排滓時、脱燐処理後の排滓時、及び、脱炭精錬後の排滓時に未溶解の冷鉄源は確認されなかった。   On the other hand, in Example 2 of the present invention, no undissolved cold iron source was confirmed during the slag of desiliconization treatment, the slag after dephosphorization treatment, and the slag after decarburization refining. ..

このように、同一量の冷鉄源を装入する場合でも、冷鉄源の装入時期を分散させることで、炉底への未溶解冷鉄源の付着や、スラグとの混合による冷鉄源の未溶解が軽減されることがわかった。また、冷鉄源を分散させる場合でも、各工程、即ち、溶銑装入前、脱珪処理後の排滓後、脱燐処理後の排滓後において、総鉄源の10質量%を超える量の冷鉄源を装入すると、炉底への未溶解冷鉄源の付着や、スラグとの混合による冷鉄源の未溶解が発生する。したがって、溶銑装入前、脱珪処理後の排滓後、脱燐処理後の排滓後に転炉内に装入する冷鉄源の量は、いずれの期間も、総鉄源の10質量%以下に制御することが好ましいことが確認できた。尚、冷鉄源の溶解挙動の比較を行った本発明例2〜本発明例8における脱珪反応、脱燐反応及び脱炭反応の冶金特性は本発明例1と同様であった。   In this way, even when charging the same amount of cold iron source, by dispersing the charging time of the cold iron source, the unmelted cold iron source adheres to the furnace bottom and the cold iron is mixed by mixing with the slag. It was found that undissolved source was reduced. Further, even when the cold iron source is dispersed, in each step, that is, before the charging of the hot metal, after the slag after the desiliconization treatment, and after the slag after the dephosphorization treatment, an amount exceeding 10 mass% of the total iron source. When the cold iron source is charged, the unmelted cold iron source adheres to the furnace bottom and the cold iron source is unmelted due to mixing with the slag. Therefore, the amount of the cold iron source charged into the converter before the hot metal charging, after the slag after the desiliconization treatment, and after the slag after the dephosphorization treatment is 10 mass% of the total iron source in any period. It was confirmed that the following control is preferable. The metallurgical characteristics of the desiliconization reaction, dephosphorization reaction and decarburization reaction in Inventive Example 2 to Inventive Example 8 in which the dissolution behavior of the cold iron source was compared were the same as in Inventive Example 1.

1 転炉
2 上吹きランス
3 底吹き羽口
4 出湯口
5 高炉溶銑
6 脱珪スラグ
7 冷鉄源
8 酸素ガス
9 底吹きガス
10 スクラップシュート
11 装入鍋
12 脱燐スラグ
13 脱炭スラグ
14 脱珪溶銑
15 脱燐溶銑
16 溶鋼
1 Converter 2 Top-blowing lance 3 Bottom-blowing tuyere 4 Hot-water spout 5 Blast furnace hot metal 6 Desiliconization slag 7 Cold iron source 8 Oxygen gas 9 Bottom-blowing gas 10 Scrap chute 11 Charging pot 12 Dephosphorization slag 13 Decarburization slag 14 Desalination Silica hot metal 15 Dephosphorized hot metal 16 Molten steel

Claims (1)

1基の転炉で溶銑を精錬して溶銑から溶鋼を溶製する転炉製鋼方法であって、
転炉内に溶銑を装入する第1工程と、
転炉内にCaO系媒溶剤を供給し、且つ、転炉内の溶銑を底吹きガスによって攪拌しつつ上吹きランスから酸素ガスを溶銑に供給して転炉内の溶銑を脱珪処理する第2工程と、
転炉を傾動させて第2工程で生成したスラグの少なくとも一部を転炉から排滓する第3工程と、
転炉を直立位置に戻し、転炉内にCaO系媒溶剤を供給し、且つ、転炉内の溶銑を底吹きガスによって攪拌しつつ上吹きランスから酸素ガスを溶銑に供給して転炉内に残留させた溶銑を脱燐処理する第4工程と、
転炉を再度傾動させて第4工程で生成したスラグの少なくとも一部を転炉から排滓する第5工程と、
転炉を直立位置に戻し、転炉内にCaO系媒溶剤を供給し、且つ、転炉内の溶銑を底吹きガスによって攪拌しつつ上吹きランスから酸素ガスを溶銑に供給して転炉内に残留させた溶銑を脱炭精錬する第6工程と、
からなり、
第1工程での転炉内に溶銑を装入する前、第3工程の後、第5工程の後の各期間における冷鉄源の装入量を、いずれの期間も、転炉に装入する総鉄源の10質量%以下として、第1工程での転炉内に溶銑を装入する前に転炉内に冷鉄源を装入し、更に、第3工程の後及び/または第5工程の後に転炉内に冷鉄源を装入し、
第6工程で発生したスラグを次のチャージ以後の第4工程の脱燐処理でCaO系媒溶剤として再利用し、且つ、
第4工程で発生したスラグを次のチャージ以後の第2工程の脱珪処理でCaO系媒溶剤として再利用する転炉製鋼方法。
A converter steelmaking method for refining hot metal in one converter to produce molten steel from the hot metal,
The first step of charging the hot metal into the converter,
A CaO-based medium solvent is supplied to the converter, and oxygen gas is supplied to the hot metal from the top-blowing lance while stirring the hot metal in the converter with bottom-blown gas to desiliconize the hot metal in the converter. 2 steps,
A third step of tilting the converter to discharge at least part of the slag generated in the second step from the converter;
Return the converter to the upright position, supply the CaO-based medium solvent into the converter, and supply oxygen gas from the top blowing lance to the hot metal while stirring the hot metal in the converter with the bottom blowing gas. A fourth step of dephosphorizing the hot metal remaining in
A fifth step of tilting the converter again to discharge at least a part of the slag generated in the fourth step from the converter;
Return the converter to the upright position, supply the CaO-based medium solvent into the converter, and supply oxygen gas from the top blowing lance to the hot metal while stirring the hot metal in the converter with the bottom blowing gas. A sixth step of decarburizing and refining the hot metal remaining in
Consists of
Before charging molten iron into the converter in the first step, after the third step, and after the fifth step, the charging amount of the cold iron source was charged into the converter in each period. 10 mass% or less of the total iron source, the cold iron source is charged into the converter before charging the hot metal into the converter in the first step, and further after the third step and / or the third step. After 5 steps, put a cold iron source in the converter,
The slag generated in the sixth step is reused as a CaO-based solvent in the dephosphorization treatment in the fourth step after the next charging, and
A converter steelmaking method in which the slag generated in the fourth step is reused as a CaO-based solvent in the second step of desiliconization treatment after the next charging.
JP2018078912A 2017-04-18 2018-04-17 Converter steelmaking method Active JP6693536B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017081923 2017-04-18
JP2017081923 2017-04-18

Publications (2)

Publication Number Publication Date
JP2018178260A JP2018178260A (en) 2018-11-15
JP6693536B2 true JP6693536B2 (en) 2020-05-13

Family

ID=64282663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018078912A Active JP6693536B2 (en) 2017-04-18 2018-04-17 Converter steelmaking method

Country Status (1)

Country Link
JP (1) JP6693536B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7436839B2 (en) 2020-06-09 2024-02-22 日本製鉄株式会社 Melting method for ultra-low phosphorus steel
JP7363731B2 (en) * 2020-09-30 2023-10-18 Jfeスチール株式会社 Method for dephosphorizing hot metal and manufacturing method for molten steel
CN115287389B (en) * 2022-07-18 2024-04-09 山东莱钢永锋钢铁有限公司 Smelting method for converter with less slag

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734113A (en) * 1993-07-20 1995-02-03 Nippon Steel Corp Converter refining method
JP3735211B2 (en) * 1999-05-12 2006-01-18 新日本製鐵株式会社 Converter refining method for adjusting the silicon content
JP3823623B2 (en) * 1999-08-13 2006-09-20 Jfeスチール株式会社 Hot metal refining method
JP5230062B2 (en) * 2005-08-04 2013-07-10 株式会社神戸製鋼所 Operation method of converter facilities
JP6164151B2 (en) * 2014-05-14 2017-07-19 Jfeスチール株式会社 Method for refining molten iron using a converter-type refining furnace
JP6172194B2 (en) * 2014-07-23 2017-08-02 Jfeスチール株式会社 Hot metal pretreatment method
JP6269974B2 (en) * 2015-03-25 2018-01-31 Jfeスチール株式会社 Steel melting method

Also Published As

Publication number Publication date
JP2018178260A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
JP5408369B2 (en) Hot metal pretreatment method
JP5954551B2 (en) Converter steelmaking
JP6164151B2 (en) Method for refining molten iron using a converter-type refining furnace
JP3239197B2 (en) Converter steelmaking method
WO1995001458A1 (en) Steel manufacturing method using converter
JP6693536B2 (en) Converter steelmaking method
JP2006274349A (en) Method for refining steel
JP3557910B2 (en) Hot metal dephosphorization method and low sulfur and low phosphorus steel smelting method
JP6665884B2 (en) Converter steelmaking method
JP5408379B2 (en) Hot metal pretreatment method
JP5233378B2 (en) Hot phosphorus dephosphorization method
JP2013227664A (en) Molten iron preliminary treatment method
JP2003239009A (en) Dephosphorization refining method of hot metal
JP2002220615A (en) Converter steelmaking method
JP4957018B2 (en) Method for refining molten steel
WO2003029498A1 (en) Method for pretreatment of molten iron and method for refining
JP2002129221A (en) Method for refining molten iron
JP2006241561A (en) Method for preventing development of dust from transporting vessel for molten iron
JP2001131625A (en) Dephosphorizing method of molten iron using converter
JPH0437135B2 (en)
WO2022163219A1 (en) Method for refining molten iron
JP2004010935A (en) Method for manufacturing molten steel
JP3419254B2 (en) Hot metal dephosphorization method
JP3736229B2 (en) Hot metal processing method
JPH10102120A (en) Steelmaking method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200330

R150 Certificate of patent or registration of utility model

Ref document number: 6693536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250