JP2007227820A - Semiconductor device, and manufacturing method thereof - Google Patents

Semiconductor device, and manufacturing method thereof Download PDF

Info

Publication number
JP2007227820A
JP2007227820A JP2006049529A JP2006049529A JP2007227820A JP 2007227820 A JP2007227820 A JP 2007227820A JP 2006049529 A JP2006049529 A JP 2006049529A JP 2006049529 A JP2006049529 A JP 2006049529A JP 2007227820 A JP2007227820 A JP 2007227820A
Authority
JP
Japan
Prior art keywords
semiconductor layer
electrode
layer
semiconductor
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006049529A
Other languages
Japanese (ja)
Other versions
JP4901241B2 (en
Inventor
Masahiko Tsuchiya
正彦 土谷
Tadashi Horio
直史 堀尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2006049529A priority Critical patent/JP4901241B2/en
Publication of JP2007227820A publication Critical patent/JP2007227820A/en
Application granted granted Critical
Publication of JP4901241B2 publication Critical patent/JP4901241B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device structured in such a way that heights of a pair of electrodes are easily aligned. <P>SOLUTION: On a supporting substrate, a first semiconductor layer constructed from a first conductive semiconductor is formed. On the first semiconductor layer, a second semiconductor layer is formed as constructed from a second conductive semiconductor inverse to the first conductive semiconductor. A groove is formed which reaches a bottom face of the second semiconductor layer, and divides the second semiconductor layer into a first area and a second area separated from each other. On the first area of the second semiconductor layer, a first electrode is formed and a second electrode is formed for covering from the second area of the second semiconductor layer to the surface of the first semiconductor layer on the bottom face of the groove. The first semiconductor layer and the second semiconductor layer are formed from a group III-V chemical compound semiconductor containing nitrogen as group-V elements. A face of the first electrode in contact with the second semiconductor layer and a face of the second electrode in contact with the first semiconductor layer and the second semiconductor layer are formed from the same metal material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体装置及びその製造方法に関し、特に支持基板の一方の面上に一対の電極が形成された半導体装置及びその製造方法に関する。   The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device having a pair of electrodes formed on one surface of a support substrate and a manufacturing method thereof.

図4に、特許文献1に開示された半導体発光素子の断面図を示す。サファイア基板100の上に、GaNバッファ層101、n型GaN層102、n型AlGaN層103、InGaN層104、p型AlGaN層105、p型GaN層106がこの順番に積層されている。n型AlGaN層103からp型GaN層106までの積層がメサ状にされ、そのメサの周囲にn型GaN層が露出している。メサの周囲のn型GaN層102の上面にn側電極107が形成され、p型GaN層106の上面にp側電極108が形成されている。   FIG. 4 is a cross-sectional view of the semiconductor light emitting device disclosed in Patent Document 1. On the sapphire substrate 100, a GaN buffer layer 101, an n-type GaN layer 102, an n-type AlGaN layer 103, an InGaN layer 104, a p-type AlGaN layer 105, and a p-type GaN layer 106 are laminated in this order. The stack from the n-type AlGaN layer 103 to the p-type GaN layer 106 is mesa-shaped, and the n-type GaN layer is exposed around the mesa. An n-side electrode 107 is formed on the upper surface of the n-type GaN layer 102 around the mesa, and a p-side electrode 108 is formed on the upper surface of the p-type GaN layer 106.

電極107及び108をサブマウント基板に対向させて、半導体発光素子がサブマウント基板に実装される。このとき、電極107及び108が、サブマウント基板のボンディングパッドに接続される。InGaN層104で発光した光が、サファイア基板100を通って外部に放射される。   The semiconductor light emitting device is mounted on the submount substrate with the electrodes 107 and 108 facing the submount substrate. At this time, the electrodes 107 and 108 are connected to the bonding pads of the submount substrate. Light emitted from the InGaN layer 104 is emitted to the outside through the sapphire substrate 100.

特開2003−31851号公報JP 2003-31851 A

図4に示した半導体発光素子では、p側電極108がメサの上面に形成され、n側電極107がメサの周囲に配置される。このため、p側電極108の上面とn側電極107の上面との高さが揃わない。この半導体発光素子をサブマウント基板にフリップチップボンディングするために、サブマウント基板側で、2つの電極の高さの相違を吸収する構造を採用しなければならない。   In the semiconductor light emitting device shown in FIG. 4, the p-side electrode 108 is formed on the upper surface of the mesa, and the n-side electrode 107 is disposed around the mesa. For this reason, the heights of the upper surface of the p-side electrode 108 and the upper surface of the n-side electrode 107 are not uniform. In order to flip-chip bond the semiconductor light emitting device to the submount substrate, a structure that absorbs the difference in height between the two electrodes must be employed on the submount substrate side.

本発明の目的は、一対の電極の高さを容易に揃えることが可能な構造の半導体装装置及びその製造方法を提供することである。   An object of the present invention is to provide a semiconductor device having a structure capable of easily aligning the height of a pair of electrodes and a method for manufacturing the same.

本発明の一観点によると、
支持基板と、
前記支持基板上に形成され、第1導電型の半導体からなる第1の半導体層と、
前記第1の半導体層の上に形成され、前記第1導電型とは逆の第2導電型の半導体からなる第2の半導体層と、
前記第2の半導体層の底面まで達し、該第2の半導体層を、相互に分離された第1の領域と第2の領域とに区分する溝と、
前記第2の半導体層の第1の領域上に形成された第1の電極と、
前記第2の半導体層の第2の領域上から、前記溝の底面に表れた前記第1の半導体層の表面までを連続的に覆う第2の電極と
を有し、前記第1の半導体層及び第2の半導体層が、V族元素として窒素を含むIII−V族化合物半導体で形成され、前記第1の電極の、前記第2の半導体層に接する面と、前記第2の電極の、前記第1の半導体層及び第2の半導体層に接する面とが、同一の金属材料で形成されている半導体装置が提供される。
According to one aspect of the invention,
A support substrate;
A first semiconductor layer formed on the support substrate and made of a first conductivity type semiconductor;
A second semiconductor layer formed on the first semiconductor layer and made of a semiconductor of a second conductivity type opposite to the first conductivity type;
A groove that reaches the bottom surface of the second semiconductor layer and divides the second semiconductor layer into a first region and a second region separated from each other;
A first electrode formed on a first region of the second semiconductor layer;
A second electrode that continuously covers from the second region of the second semiconductor layer to the surface of the first semiconductor layer that appears on the bottom surface of the groove, and the first semiconductor layer And the second semiconductor layer is formed of a III-V group compound semiconductor containing nitrogen as a group V element, the surface of the first electrode in contact with the second semiconductor layer, and the second electrode, A semiconductor device is provided in which a surface in contact with the first semiconductor layer and the second semiconductor layer is formed of the same metal material.

本発明の他の観点によると、
支持基板上に、第1導電型の第1の半導体層を形成する工程と、
前記第1の半導体層の上に、前記第1導電型とは逆の第2導電型の第2の半導体層を形成する工程と、
前記第2の半導体層に、少なくとも該第2の半導体層の底面まで達する溝を形成し、該第2の半導体層を、相互に分離された第1の領域と第2の領域とに区分する工程と、
前記第2の半導体層の第1の領域の上に第1の電極を形成し、前記第2の領域の上面から前記溝の底面に露出している前記第1の半導体層の表面までを連続的に覆う第2の電極を形成する工程と
を有し、前記第1の電極及び第2の電極を形成する工程において、両者を同時に成膜する半導体装置の製造方法が提供される。
According to another aspect of the invention,
Forming a first semiconductor layer of a first conductivity type on a support substrate;
Forming a second semiconductor layer of a second conductivity type opposite to the first conductivity type on the first semiconductor layer;
A groove reaching at least the bottom surface of the second semiconductor layer is formed in the second semiconductor layer, and the second semiconductor layer is divided into a first region and a second region separated from each other. Process,
A first electrode is formed on a first region of the second semiconductor layer, and continuous from the upper surface of the second region to the surface of the first semiconductor layer exposed on the bottom surface of the groove. Forming a second electrode that covers the substrate, and in the step of forming the first electrode and the second electrode, a method for manufacturing a semiconductor device is provided in which both are formed simultaneously.

第1の電極及び第2の電極の双方の下に第2の半導体層が配置されているため、2つの電極の上面の高さを容易に揃えることができる。   Since the second semiconductor layer is disposed under both the first electrode and the second electrode, the heights of the upper surfaces of the two electrodes can be easily aligned.

図1に、実施例による半導体発光装置の断面図を示す。サファイアのC面が露出した支持基板1の表面上にn型半導体層2が形成されている。n型半導体層2の上に、p型半導体層3が形成されている。n型半導体層2及びp型半導体層3は、V族元素として窒素を含むIII−V族化合物半導体で形成される。例えば、InAl1−x−yGaN(x+y≦1、0≦x≦1、0≦y≦1)で形成される。n型半導体層2及びp型半導体層3は、有機金属化学気相堆積(MOCVD)法により成膜される。 FIG. 1 is a sectional view of a semiconductor light emitting device according to an embodiment. An n-type semiconductor layer 2 is formed on the surface of the support substrate 1 where the C-plane of sapphire is exposed. A p-type semiconductor layer 3 is formed on the n-type semiconductor layer 2. The n-type semiconductor layer 2 and the p-type semiconductor layer 3 are formed of a III-V group compound semiconductor containing nitrogen as a group V element. For example, it is made of In y Al 1-xy Ga x N (x + y ≦ 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1). The n-type semiconductor layer 2 and the p-type semiconductor layer 3 are formed by metal organic chemical vapor deposition (MOCVD).

p型半導体層3に、少なくともその底面まで達する溝8が形成されている。溝8は、p型半導体層3を、相互に分離された第1の領域3aと第2の領域3bとに区分する。第1の領域3aは、第2の領域3bに比べて大きい。溝8の底面に露出したn型半導体層2の一部に、凹部9が形成されている。溝8及び凹部9は、フォトリソグラフィと、塩素ガスを用いた反応性イオンエッチング(RIE)により形成される。   A groove 8 reaching at least the bottom surface is formed in the p-type semiconductor layer 3. The trench 8 divides the p-type semiconductor layer 3 into a first region 3a and a second region 3b that are separated from each other. The first area 3a is larger than the second area 3b. A recess 9 is formed in a part of the n-type semiconductor layer 2 exposed on the bottom surface of the groove 8. The groove 8 and the recess 9 are formed by photolithography and reactive ion etching (RIE) using chlorine gas.

p型半導体層3の第1の領域3aの上に、p側電極4が形成されている。第2の領域3bの上面から、その端面を経由して溝8の底面に露出しているn型半導体層2の表面までを、n側電極5が覆う。n側電極5は、凹部9の内面に接触している。p側電極4はp型半導体層3の第1の領域3aにオーミック接触し、n側電極5は、溝8の底面及び凹部9の内面においてn型半導体層2にオーミック接触する。   A p-side electrode 4 is formed on the first region 3 a of the p-type semiconductor layer 3. The n-side electrode 5 covers from the upper surface of the second region 3b to the surface of the n-type semiconductor layer 2 exposed at the bottom surface of the groove 8 via its end surface. The n-side electrode 5 is in contact with the inner surface of the recess 9. The p-side electrode 4 is in ohmic contact with the first region 3 a of the p-type semiconductor layer 3, and the n-side electrode 5 is in ohmic contact with the n-type semiconductor layer 2 on the bottom surface of the groove 8 and the inner surface of the recess 9.

p側電極4の上にp側ボンディングパッド6が形成され、n側電極5の上にn側ボンディングパッド7が形成されている。ボンディングパッド6及び7はAu等で形成される。p側電極4、n側電極5、p側ボンディングパッド6及びn側ボンディングパッド7は、リフトオフ法を利用した真空蒸着により形成される。   A p-side bonding pad 6 is formed on the p-side electrode 4, and an n-side bonding pad 7 is formed on the n-side electrode 5. The bonding pads 6 and 7 are made of Au or the like. The p-side electrode 4, the n-side electrode 5, the p-side bonding pad 6 and the n-side bonding pad 7 are formed by vacuum deposition using a lift-off method.

次に、図2A及び図2Bを参照して、p側電極4及びn側電極5の構造及び形成方法について説明する。   Next, with reference to FIG. 2A and FIG. 2B, the structure and formation method of the p-side electrode 4 and the n-side electrode 5 will be described.

図2Aに、p側電極4の第1の構成例を示す。p側電極4は、第1の領域3a側から順番に、Rh層4RとAl層4Aとが交互に4層ずつ積層された8層構造を有する。盆ディングパッド5は、Ti層5T、Pt層5P、及びAu層5Aが積層された3層構造を有する。第1層目のRh層4Rから第4層目のAl層4Aまでの4層の各々の厚さは0.3nmである。第5層目のRh層4R及び第6層目のAl層4Aの各々の厚さは0.5nmである。第7層目のRh層4Rの厚さは2nmであり、第8層目のAl層4Aの厚さは98nmである。第8層目のAl層4Aは、図1に示した第1の半導体層2と第1の領域3aとの界面で発生した光を反射する反射電極として作用する。   FIG. 2A shows a first configuration example of the p-side electrode 4. The p-side electrode 4 has an eight-layer structure in which four Rh layers 4R and four Al layers 4A are alternately stacked in order from the first region 3a side. The bonding pad 5 has a three-layer structure in which a Ti layer 5T, a Pt layer 5P, and an Au layer 5A are stacked. The thickness of each of the four layers from the first Rh layer 4R to the fourth Al layer 4A is 0.3 nm. The thickness of each of the fifth Rh layer 4R and the sixth Al layer 4A is 0.5 nm. The thickness of the seventh Rh layer 4R is 2 nm, and the thickness of the eighth Al layer 4A is 98 nm. The eighth Al layer 4A functions as a reflective electrode that reflects light generated at the interface between the first semiconductor layer 2 and the first region 3a shown in FIG.

Ti層5T及びPt層5Pの各々の厚さは50nmであり、Au層5Aの厚さは200nmである。n側電極5は、p側電極4と同一の積層構造を有する。これらの層は、真空蒸着により形成される。   Each of the Ti layer 5T and the Pt layer 5P has a thickness of 50 nm, and the Au layer 5A has a thickness of 200 nm. The n-side electrode 5 has the same stacked structure as the p-side electrode 4. These layers are formed by vacuum deposition.

一般に、V族元素としてNを含むp型III−V族化合物半導体にオーミック接触するp側電極材料としてRhが用いられ、n型III−V族化合物半導体にオーミック接触するn側電極材料としてAlが用いられる。   Generally, Rh is used as a p-side electrode material in ohmic contact with a p-type III-V compound semiconductor containing N as a V-group element, and Al is used as an n-side electrode material in ohmic contact with an n-type III-V compound semiconductor. Used.

図2Aに示した第1の構成例では、第1層目のRh層4Rがp型半導体層3の第1の領域3aに接触する。このため、p側電極4をp型の第1の領域3aにのオーミック接触させることができる。   In the first configuration example shown in FIG. 2A, the first Rh layer 4 </ b> R is in contact with the first region 3 a of the p-type semiconductor layer 3. For this reason, the p-side electrode 4 can be brought into ohmic contact with the p-type first region 3a.

また、第1の構成例では、第1層目のRh層4Rから第6層目のAl層4Aまでの6層の各々の厚さが、0.3nm〜0.5nm程度であり、非常に薄い。このため、実際には、第1層目のRh4Rが、図1に示した第1の領域3a及び第2の領域3bの上面、及び溝8及び凹部9の内面を隈なく被覆することはなく、第1層目のRh層4Rを堆積した時点で、これらの表面が露出した領域がまだらに存在すると考えられる。その上に第2層目のAl層4Aを堆積させると、一部の領域において、第2層目のAl層4Aと、まだらに露出していた表面とが接触する。溝8及び凹部9の内面に露出していたn型半導体層2に、第2層目のAl層4Aが接触するため、n側電極5をn型半導体層2にオーミック接触させることができる。   In the first configuration example, the thickness of each of the six layers from the first Rh layer 4R to the sixth Al layer 4A is about 0.3 nm to 0.5 nm. thin. Therefore, in actuality, the first layer Rh4R does not cover the upper surfaces of the first region 3a and the second region 3b shown in FIG. When the first Rh layer 4R is deposited, it is considered that there are mottled regions where these surfaces are exposed. When the second Al layer 4A is deposited thereon, the second Al layer 4A comes into contact with the mottled surface in a part of the region. Since the second Al layer 4A is in contact with the n-type semiconductor layer 2 exposed on the inner surfaces of the groove 8 and the recess 9, the n-side electrode 5 can be in ohmic contact with the n-type semiconductor layer 2.

このように、p側電極4及びn側電極5の、p型半導体層3及びn型半導体層2に接触する面が、p型半導体層3とオーミック接触する金属Rhからなる領域と、n型半導体層2とオーミック接触する他の金属Alからなる領域とを含む。これにより、同一の電極構造を採用しても、p型及びn型の両方の半導体層にオーミック接触させることが可能になる。   As described above, the surfaces of the p-side electrode 4 and the n-side electrode 5 that are in contact with the p-type semiconductor layer 3 and the n-type semiconductor layer 2 are made of the metal Rh that is in ohmic contact with the p-type semiconductor layer 3 and the n-type electrode. And a region made of other metal Al in ohmic contact with the semiconductor layer 2. Thereby, even if the same electrode structure is employed, it is possible to make ohmic contact with both the p-type and n-type semiconductor layers.

実際に、p型半導体層3とp側電極4との接触抵抗は約9.4×10−3Ωcmであり、n型半導体層2とn側電極5との接触抵抗は約8.6×10−5Ωcmであった。これにより、動作電圧3.4Vの青色発光ダイオードが実現された。この動作電圧は、図4に示した従来の素子と比べて遜色のないものである。p型の第1の領域3aにオーミック接触させることができる材料として、Rhの代わりに、Pt、Ir、Pd等を用いてもよい。 Actually, the contact resistance between the p-type semiconductor layer 3 and the p-side electrode 4 is about 9.4 × 10 −3 Ωcm 2 , and the contact resistance between the n-type semiconductor layer 2 and the n-side electrode 5 is about 8.6. × 10 −5 Ωcm 2 . As a result, a blue light emitting diode with an operating voltage of 3.4 V was realized. This operating voltage is comparable to the conventional element shown in FIG. Pt, Ir, Pd, or the like may be used instead of Rh as a material that can be brought into ohmic contact with the p-type first region 3a.

図2Bに、p側電極4の第2の構成例を示す。p側電極4は、第1の領域3a側から順番に、厚さ1nmのRh層4Rと厚さ500nmのAl層4Aとが積層された2層構造を有する。ボンディングパッド5は、第1の構成例のものと同一の積層構造を有する。これらの層は、真空蒸着により形成される。n側電極5も同様の積層構造を有する。   FIG. 2B shows a second configuration example of the p-side electrode 4. The p-side electrode 4 has a two-layer structure in which an Rh layer 4R having a thickness of 1 nm and an Al layer 4A having a thickness of 500 nm are stacked in order from the first region 3a side. The bonding pad 5 has the same laminated structure as that of the first configuration example. These layers are formed by vacuum deposition. The n-side electrode 5 has a similar laminated structure.

p側電極4のRh層4Rがp型の第1の領域3aに接触する。このため、p側電極4を形成した後、アニールを行わない状態で、p側電極4と第1の領域3aとの間の良好なオーミック接触が得られた。その接触抵抗は5×10−3Ωcmであった。p側電極4の、第1の領域3aに接触する面のほぼ全領域にRhが露出しているため、第1の構成例に比べて、より低い接触抵抗が得られている。 The Rh layer 4R of the p-side electrode 4 is in contact with the p-type first region 3a. For this reason, after forming the p-side electrode 4, good ohmic contact between the p-side electrode 4 and the first region 3a was obtained without annealing. The contact resistance was 5 × 10 −3 Ωcm 2 . Since Rh is exposed in almost the entire region of the p-side electrode 4 in contact with the first region 3a, lower contact resistance is obtained compared to the first configuration example.

ところが、この状態では、n側電極5とn型半導体層2とはショットキ接触になり、良好なオーミック接触が得られない。n側電極5を形成した後、所定の条件でアニールを行うことにより、オーミック接触を得ることができる。これは、Al層42内のAl原子がRh層4R内を拡散してn型半導体層2まで達するためであると考えられる。例えば、アニール時間が20秒の条件では、アニー無温度が100℃、200℃、及び300℃のときにショットキ接触のままであった。アニール温度を400℃以上にするとオーミック接触が得られた。アニール温度を400℃、500℃、及び600℃としたときの接触抵抗は、それぞれ4.0×10−5Ωcm、0.63×10−5Ωcm、1.8×10−5Ωcmであった。 However, in this state, the n-side electrode 5 and the n-type semiconductor layer 2 are in Schottky contact, and good ohmic contact cannot be obtained. After the n-side electrode 5 is formed, ohmic contact can be obtained by annealing under predetermined conditions. This is presumably because Al atoms in the Al layer 42 diffuse into the Rh layer 4R and reach the n-type semiconductor layer 2. For example, when the annealing time was 20 seconds, the Schottky contact was maintained when the annealing-free temperature was 100 ° C., 200 ° C., and 300 ° C. When the annealing temperature was 400 ° C. or higher, ohmic contact was obtained. The contact resistance when the annealing temperature is 400 ° C., 500 ° C., and 600 ° C. is 4.0 × 10 −5 Ωcm 2 , 0.63 × 10 −5 Ωcm 2 , and 1.8 × 10 −5 Ωcm 2, respectively. Met.

400℃以上の温度でアニールを行うと、n側電極5をn型半導体層2にオーミック接触させることができるが、逆に、アニールを行うことによりp側電極4とp型の第1の領域3aとのオーミック接触が不良になり、ショットキ接触になってしまう傾向がある。従って、p側電極4及びn側電極5を形成した後、n側電極5とn型半導体層2とが接触する領域のみを局所的にアニールする必要がある。局所的なアニールとして、電極材料や半導体材料によって吸収される波長域のレーザを用いたレーザアニール等を採用することができる。例えば、Nd:YAGレーザ、COレーザ、Arレーザ、エキシマレーザ等を用いることができる。 When annealing is performed at a temperature of 400 ° C. or higher, the n-side electrode 5 can be brought into ohmic contact with the n-type semiconductor layer 2. Conversely, by performing annealing, the p-side electrode 4 and the p-type first region are formed. There is a tendency that ohmic contact with 3a becomes poor and Schottky contact occurs. Therefore, after forming the p-side electrode 4 and the n-side electrode 5, it is necessary to locally anneal only the region where the n-side electrode 5 and the n-type semiconductor layer 2 are in contact. As the local annealing, laser annealing using a laser having a wavelength region absorbed by an electrode material or a semiconductor material can be employed. For example, an Nd: YAG laser, a CO 2 laser, an Ar + laser, an excimer laser, or the like can be used.

上記実施例では、p側電極4が配置されるp型半導体層3の第1の領域3aの上面と、n側電極5が配置される第2の領域3bの上面との高さが揃っている。このため、p側電極4の上面とn側電極5の上面との高さ、及びp側ボンディングパッド6の上面とn側ボンディングパッド7の上面との高さを、容易に揃えることができる。   In the above embodiment, the upper surface of the first region 3a of the p-type semiconductor layer 3 where the p-side electrode 4 is disposed and the upper surface of the second region 3b where the n-side electrode 5 is disposed are aligned. Yes. For this reason, the height of the upper surface of the p-side electrode 4 and the upper surface of the n-side electrode 5 and the height of the upper surface of the p-side bonding pad 6 and the upper surface of the n-side bonding pad 7 can be easily aligned.

また、n側電極5が、n型半導体層2の表面に形成された凹部9の内面に接触するため、n側電極5とn型半導体層2との接触面積を広くすることができる。このため、両者の接触抵抗を低減することが可能になる。   Further, since the n-side electrode 5 is in contact with the inner surface of the recess 9 formed on the surface of the n-type semiconductor layer 2, the contact area between the n-side electrode 5 and the n-type semiconductor layer 2 can be increased. For this reason, it becomes possible to reduce both contact resistance.

p側電極4とp側ボンディングパッド6、及びn側電極5とn側ボンディングパッド7が、1回のフォトリソグラフィ工程に基づくリフトオフのみでパターニングされる。このため、フォトリソグラフィ工程を削減することができる。   The p-side electrode 4 and the p-side bonding pad 6, and the n-side electrode 5 and the n-side bonding pad 7 are patterned only by lift-off based on one photolithography process. For this reason, a photolithography process can be reduced.

図3に、図1に示した半導体発光装置をサブマウント基板に実装した状態の断面図を示す。図3に示したサブマウント基板の構造について説明する。シリコン基板20の表面上に、酸化シリコン膜21が形成されている。酸化シリコン膜21の一部の領域上にp側電極層22が形成され、他の領域上にn側電極層23が形成されている。p側電極層22及びn側電極層23は、例えばアルミニウム(Al)で形成される。   FIG. 3 shows a cross-sectional view of the semiconductor light emitting device shown in FIG. 1 mounted on a submount substrate. The structure of the submount substrate shown in FIG. 3 will be described. A silicon oxide film 21 is formed on the surface of the silicon substrate 20. A p-side electrode layer 22 is formed on a partial region of the silicon oxide film 21, and an n-side electrode layer 23 is formed on another region. The p-side electrode layer 22 and the n-side electrode layer 23 are made of, for example, aluminum (Al).

p側電極層22の上にp側接合用電極24が形成され、n側電極層23の上にn側接合用電極25が形成されている。接合用電極24及び25は、Au層とSn層とが交互に積層された積層構造を有する。なお、接合用電極24及び25をAuSn合金で形成してもよい。   A p-side bonding electrode 24 is formed on the p-side electrode layer 22, and an n-side bonding electrode 25 is formed on the n-side electrode layer 23. The bonding electrodes 24 and 25 have a laminated structure in which Au layers and Sn layers are alternately laminated. Note that the bonding electrodes 24 and 25 may be formed of an AuSn alloy.

半導体発光装置のp側ボンディングパッド6がp側接合用電極24に接触し、n側ボンディングパッド7がn側接合用電極25に接触する。接触部分で共晶化させ、両者を電気的及び機械的に結合する。p側ボンディングパッド6の上面とn側ボンディングパッド7の上面との高さが揃っているため、サブマウント基板側の接合用電極24及び25の微妙な高さ調整を行う必要がない。   The p-side bonding pad 6 of the semiconductor light emitting device is in contact with the p-side bonding electrode 24, and the n-side bonding pad 7 is in contact with the n-side bonding electrode 25. Eutectic is formed at the contact portion, and both are electrically and mechanically bonded. Since the heights of the upper surface of the p-side bonding pad 6 and the upper surface of the n-side bonding pad 7 are equal, it is not necessary to perform fine height adjustment of the bonding electrodes 24 and 25 on the submount substrate side.

p側電極4としてRhとAlを用いると、p側電極として実用化されているNiを用いた場合に比べて、高い反射率を得ることができる。半導体発光装置をフリップチップボンディングによりサブマウント基板に搭載し、透明な支持基板1を通して外部に光を取り出す場合、取り出し効率を高めることができる。   When Rh and Al are used as the p-side electrode 4, a higher reflectance can be obtained as compared with the case where Ni that is put into practical use as the p-side electrode is used. When the semiconductor light emitting device is mounted on the submount substrate by flip chip bonding and light is extracted to the outside through the transparent support substrate 1, the extraction efficiency can be increased.

半導体発光装置に電流を流すと、p型半導体層3の第1の領域3aとn型半導体層2との間のpn接合領域で発光が生じる。サファイアからなる支持基板1は、半導体層2及び3のバンドギャップに対応する波長の光に対して透明である。このため、発生した光は、支持基板1を通って外部に放射される。   When a current is passed through the semiconductor light emitting device, light emission occurs in the pn junction region between the first region 3 a of the p-type semiconductor layer 3 and the n-type semiconductor layer 2. The support substrate 1 made of sapphire is transparent to light having a wavelength corresponding to the band gap of the semiconductor layers 2 and 3. For this reason, the generated light is emitted to the outside through the support substrate 1.

上記実施例では、図1に示したp側電極4とn側電極5とを同時に成膜したが、別々に成膜してもよい。この場合には、リフトオフ法を利用した真空蒸着により一方の電極を形成した後、さらにリフトオフ法を利用した真空蒸着により他方の電極を形成する。別々に形成すると、フォトリソグラフィ及び成膜工程が増えるが、p型半導体及びn型半導体の各々にオーミック接触しやすい最適の材料を選択することができる。   In the above embodiment, the p-side electrode 4 and the n-side electrode 5 shown in FIG. 1 are formed simultaneously, but may be formed separately. In this case, after forming one electrode by vacuum deposition using the lift-off method, the other electrode is formed by vacuum deposition using the lift-off method. When formed separately, the number of photolithography and film formation steps increases, but an optimal material that can easily make ohmic contact with each of the p-type semiconductor and the n-type semiconductor can be selected.

図1に示したp側電極4とp側ボンディングパッド6との間、及びn側電極5とn側ボンディングパッド7との間に、反射層を挿入してもよい。反射層は、pn接合部分で発光した光を支持基板1側に向けて反射し、出射効率を高める。反射層の材料として、例えば、Al、Ag、Rh、Ir、Pt等を用いることができる。   A reflective layer may be inserted between the p-side electrode 4 and the p-side bonding pad 6 and between the n-side electrode 5 and the n-side bonding pad 7 shown in FIG. The reflective layer reflects the light emitted at the pn junction portion toward the support substrate 1 side, and improves the emission efficiency. As the material of the reflective layer, for example, Al, Ag, Rh, Ir, Pt, or the like can be used.

上記実施例では、半導体発光装置をサブマウント基板に実装する場合を例にとって説明したが、他の半導体装置をサブマウント基板に実装する場合にも、上記実施例の構成を適用することができる。   Although the case where the semiconductor light emitting device is mounted on the submount substrate has been described as an example in the above embodiment, the configuration of the above embodiment can also be applied to the case where another semiconductor device is mounted on the submount substrate.

以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。   Although the present invention has been described with reference to the embodiments, the present invention is not limited thereto. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

実施例による半導体発光装置の断面図である。It is sectional drawing of the semiconductor light-emitting device by an Example. (2A)及び(2B)は、それぞれp側電極の第1の構成例及び第2の構成例を示す断面図である。(2A) and (2B) are sectional views showing a first configuration example and a second configuration example of the p-side electrode, respectively. 実施例による半導体発光装置をサブマウント基板に実装した状態の断面図である。It is sectional drawing of the state which mounted the semiconductor light-emitting device by the Example in the submount board | substrate. 従来の半導体発光装置の断面図である。It is sectional drawing of the conventional semiconductor light-emitting device.

符号の説明Explanation of symbols

1 支持基板
2 n型半導体層
3 p型半導体層
4 p側電極
5 n側電極
6 p側ボンディングパッド
7 n側ボンディングパッド
8 溝
9 凹部
20 シリコン基板
21 酸化シリコン膜
22 p側電極層
23 n側電極層
24 p側接合用電極
25 n側接合用電極
1 support substrate 2 n-type semiconductor layer 3 p-type semiconductor layer 4 p-side electrode 5 n-side electrode 6 p-side bonding pad 7 n-side bonding pad 8 groove 9 recess 20 silicon substrate 21 silicon oxide film 22 p-side electrode layer 23 n-side Electrode layer 24 p-side bonding electrode 25 n-side bonding electrode

Claims (8)

支持基板と、
前記支持基板上に形成され、第1導電型の半導体からなる第1の半導体層と、
前記第1の半導体層の上に形成され、前記第1導電型とは逆の第2導電型の半導体からなる第2の半導体層と、
前記第2の半導体層の底面まで達し、該第2の半導体層を、相互に分離された第1の領域と第2の領域とに区分する溝と、
前記第2の半導体層の第1の領域上に形成された第1の電極と、
前記第2の半導体層の第2の領域上から、前記溝の底面に表れた前記第1の半導体層の表面までを連続的に覆う第2の電極と
を有し、前記第1の半導体層及び第2の半導体層が、V族元素として窒素を含むIII−V族化合物半導体で形成され、前記第1の電極の、前記第2の半導体層に接する面と、前記第2の電極の、前記第1の半導体層及び第2の半導体層に接する面とが、同一の金属材料で形成されている半導体装置。
A support substrate;
A first semiconductor layer formed on the support substrate and made of a first conductivity type semiconductor;
A second semiconductor layer formed on the first semiconductor layer and made of a semiconductor of a second conductivity type opposite to the first conductivity type;
A groove that reaches the bottom surface of the second semiconductor layer and divides the second semiconductor layer into a first region and a second region separated from each other;
A first electrode formed on a first region of the second semiconductor layer;
A second electrode that continuously covers from the second region of the second semiconductor layer to the surface of the first semiconductor layer that appears on the bottom surface of the groove, and the first semiconductor layer And the second semiconductor layer is formed of a III-V group compound semiconductor containing nitrogen as a group V element, the surface of the first electrode in contact with the second semiconductor layer, and the second electrode, A semiconductor device in which a surface in contact with the first semiconductor layer and the second semiconductor layer is formed of the same metal material.
さらに、前記溝の底面に形成された凹部を有し、前記第2の電極が、前記凹部の内面を覆い、前記支持基板が、前記第1の半導体層及び第2の半導体層のバンドギャップに対応する波長の光に対して透明である請求項1に記載の半導体装置。   Furthermore, it has a recess formed in the bottom surface of the groove, the second electrode covers the inner surface of the recess, and the support substrate has a band gap between the first semiconductor layer and the second semiconductor layer. The semiconductor device according to claim 1, wherein the semiconductor device is transparent to light of a corresponding wavelength. 前記第1の電極及び第2の電極の、前記第1の半導体層及び第2の半導体層に接触する面が、該第1の半導体層とオーミック接触する金属からなる領域と、該第2の半導体層とオーミック接触する他の金属からなる領域とを含む請求項1または2に記載の半導体装置。   A region of the first electrode and the second electrode in contact with the first semiconductor layer and the second semiconductor layer, a region made of a metal in ohmic contact with the first semiconductor layer, and the second electrode The semiconductor device according to claim 1, further comprising a region made of another metal that is in ohmic contact with the semiconductor layer. 前記第1の電極の、前記第2の半導体層に接する面と、前記第2の電極の、前記第1の半導体層及び第2の半導体層に接する面とを形成する金属材料が、Rh及びAlを含む請求項1〜3のいずれかに記載の半導体装置。   A metal material that forms a surface of the first electrode in contact with the second semiconductor layer and a surface of the second electrode in contact with the first semiconductor layer and the second semiconductor layer is Rh and The semiconductor device according to claim 1, comprising Al. 支持基板上に、第1導電型の第1の半導体層を形成する工程と、
前記第1の半導体層の上に、前記第1導電型とは逆の第2導電型の第2の半導体層を形成する工程と、
前記第2の半導体層に、少なくとも該第2の半導体層の底面まで達する溝を形成し、該第2の半導体層を、相互に分離された第1の領域と第2の領域とに区分する工程と、
前記第2の半導体層の第1の領域の上に第1の電極を形成し、前記第2の領域の上面から前記溝の底面に露出している前記第1の半導体層の表面までを連続的に覆う第2の電極を形成する工程と
を有し、前記第1の電極及び第2の電極を形成する工程において、両者を同時に成膜する半導体装置の製造方法。
Forming a first semiconductor layer of a first conductivity type on a support substrate;
Forming a second semiconductor layer of a second conductivity type opposite to the first conductivity type on the first semiconductor layer;
A groove reaching at least the bottom surface of the second semiconductor layer is formed in the second semiconductor layer, and the second semiconductor layer is divided into a first region and a second region separated from each other. Process,
A first electrode is formed on a first region of the second semiconductor layer, and continuous from the upper surface of the second region to the surface of the first semiconductor layer exposed on the bottom surface of the groove. Forming a second electrode that covers the first electrode, and forming the first electrode and the second electrode in the step of forming the first electrode and the second electrode at the same time.
前記第1の電極及び第2の電極を形成する工程が、
前記第1の半導体層及び第2の半導体層の一方にオーミック接触する金属を、露出表面全面を被覆しない厚さだけ堆積させる工程と、
その後、前記第1の半導体層及び第2の半導体層の他方にオーミック接触する他の金属を堆積させる工程とを含む請求項5に記載の半導体装置の製造方法。
Forming the first electrode and the second electrode;
Depositing a metal in ohmic contact with one of the first semiconductor layer and the second semiconductor layer to a thickness that does not cover the entire exposed surface;
And then depositing another metal in ohmic contact with the other of the first semiconductor layer and the second semiconductor layer.
前記第1の電極及び第2の電極を形成する工程が、
Rh層を堆積させる工程と、
前記Rh層の上にAl層を堆積させる工程と、
前記第1の半導体層がn型である場合には前記第2の電極と第1の半導体層との接触部分を局所的にアニールし、前記第2の半導体層がn型である場合には前記第1の電極と前記第2の半導体層との接触部分を局所的にアニールすることによって、オーミック接触を得る工程と
を含む請求項5に記載の半導体装置の製造方法。
Forming the first electrode and the second electrode;
Depositing an Rh layer;
Depositing an Al layer on the Rh layer;
When the first semiconductor layer is n-type, the contact portion between the second electrode and the first semiconductor layer is locally annealed, and when the second semiconductor layer is n-type The method of manufacturing a semiconductor device according to claim 5, further comprising: obtaining ohmic contact by locally annealing a contact portion between the first electrode and the second semiconductor layer.
さらに、前記溝の底面に凹部を形成する工程を含み、前記第2の電極を形成する工程において、該第2の電極が前記凹部の内面を覆うように該第2の電極を形成する請求項5〜7のいずれかに記載の半導体装置の製造方法。   The method further includes the step of forming a recess in the bottom surface of the groove, wherein in the step of forming the second electrode, the second electrode is formed so as to cover the inner surface of the recess. The manufacturing method of the semiconductor device in any one of 5-7.
JP2006049529A 2006-02-27 2006-02-27 Semiconductor light emitting device and manufacturing method thereof Active JP4901241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006049529A JP4901241B2 (en) 2006-02-27 2006-02-27 Semiconductor light emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006049529A JP4901241B2 (en) 2006-02-27 2006-02-27 Semiconductor light emitting device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007227820A true JP2007227820A (en) 2007-09-06
JP4901241B2 JP4901241B2 (en) 2012-03-21

Family

ID=38549298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006049529A Active JP4901241B2 (en) 2006-02-27 2006-02-27 Semiconductor light emitting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4901241B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188370A (en) * 2008-02-01 2009-08-20 Seoul Opto Devices Co Ltd Light emitting diode and method for manufacturing the same
JP2010109018A (en) * 2008-10-28 2010-05-13 Panasonic Electric Works Co Ltd Method of manufacturing semiconductor light-emitting element
JP2015167252A (en) * 2009-11-06 2015-09-24 ウルトラテック インク gallium nitride light emitting diode
JP6837593B1 (en) * 2020-08-07 2021-03-03 日機装株式会社 Semiconductor light emitting element and manufacturing method of semiconductor light emitting element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04163969A (en) * 1990-10-27 1992-06-09 Toyoda Gosei Co Ltd Light emitting element of gallium nitride compound semiconductor
JPH09232632A (en) * 1995-12-22 1997-09-05 Toshiba Corp Semiconductor light-emitting element and manufacture thereof
JPH10223930A (en) * 1997-02-04 1998-08-21 Rohm Co Ltd Semiconductor light emitting element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04163969A (en) * 1990-10-27 1992-06-09 Toyoda Gosei Co Ltd Light emitting element of gallium nitride compound semiconductor
JPH09232632A (en) * 1995-12-22 1997-09-05 Toshiba Corp Semiconductor light-emitting element and manufacture thereof
JPH10223930A (en) * 1997-02-04 1998-08-21 Rohm Co Ltd Semiconductor light emitting element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188370A (en) * 2008-02-01 2009-08-20 Seoul Opto Devices Co Ltd Light emitting diode and method for manufacturing the same
JP2010109018A (en) * 2008-10-28 2010-05-13 Panasonic Electric Works Co Ltd Method of manufacturing semiconductor light-emitting element
JP2015167252A (en) * 2009-11-06 2015-09-24 ウルトラテック インク gallium nitride light emitting diode
JP6837593B1 (en) * 2020-08-07 2021-03-03 日機装株式会社 Semiconductor light emitting element and manufacturing method of semiconductor light emitting element
JP2022030948A (en) * 2020-08-07 2022-02-18 日機装株式会社 Semiconductor light-emitting element and manufacturing method thereof

Also Published As

Publication number Publication date
JP4901241B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
US9209362B2 (en) Semiconductor light emitting device and method of fabricating semiconductor light emitting device
US8604502B2 (en) Light emitting diodes including barrier sublayers
JP4050444B2 (en) Light emitting device and manufacturing method thereof
JP4602079B2 (en) LIGHT EMITTING DIODE INCLUDING BARRIER LAYER AND METHOD FOR MANUFACTURING SAME
US20090294784A1 (en) Nitride Semiconductor Light Emitting Element and Method for Producing Nitride Semiconductor Light Emitting Element
US8587015B2 (en) Light-emitting element
JP2012074665A (en) Light-emitting diode
JP2007103689A (en) Semiconductor light emitting device
JP5326957B2 (en) Light emitting device manufacturing method and light emitting device
JP3752339B2 (en) Semiconductor light emitting device
JP4901241B2 (en) Semiconductor light emitting device and manufacturing method thereof
TWI583023B (en) Contact for a semiconductor light emitting device
JP2011071444A (en) Light-emitting element
JP2009170655A (en) Nitride semiconductor light emitting element and production of nitride semiconductor light emitting element
KR101499954B1 (en) fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
JP4867414B2 (en) Nitride semiconductor light emitting diode
JP5438534B2 (en) Semiconductor device and manufacturing method thereof
US20070158665A1 (en) Light emitting diode
JP6690139B2 (en) Semiconductor light emitting device and manufacturing method thereof
KR102051477B1 (en) Method of manufacturing semiconductor light emitting device
KR101499953B1 (en) fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
KR20090103343A (en) Fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
JP6468459B2 (en) Semiconductor light emitting device
KR101158077B1 (en) High efficiency light emitting diode and method of fabricating the same
KR20090115903A (en) Fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

R150 Certificate of patent or registration of utility model

Ref document number: 4901241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250