JP2007227529A - 半導体装置の製造方法、プラズマ処理装置、及び記憶媒体 - Google Patents

半導体装置の製造方法、プラズマ処理装置、及び記憶媒体 Download PDF

Info

Publication number
JP2007227529A
JP2007227529A JP2006045298A JP2006045298A JP2007227529A JP 2007227529 A JP2007227529 A JP 2007227529A JP 2006045298 A JP2006045298 A JP 2006045298A JP 2006045298 A JP2006045298 A JP 2006045298A JP 2007227529 A JP2007227529 A JP 2007227529A
Authority
JP
Japan
Prior art keywords
gas
plasma
ashing
processing
lower electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006045298A
Other languages
English (en)
Inventor
Eiichi Nishimura
栄一 西村
Yoshihide Kihara
嘉英 木原
Yasushi Inada
靖 稲田
Masuyoshi Hayashi
培欽 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2006045298A priority Critical patent/JP2007227529A/ja
Priority to US11/708,676 priority patent/US20070275560A1/en
Publication of JP2007227529A publication Critical patent/JP2007227529A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

【課題】エッチングによって凹部の形成されたSiOCH膜を有するウェハに対してSiOCH膜の上方のレジスト膜のアッシングを行うにあたり、アッシングに用いられるプラズマによって前記凹部の露出面から炭素を脱離させないこと。
【解決手段】アッシングを行う前にCH4ガスをプラズマ化し、そのプラズマによりSiOCH膜の凹部の露出部に堆積物を堆積させて、アッシングにおいて用いられるプラズマから前記SiOCH膜の凹部の露出部を保護する保護膜を堆積させる。
【選択図】図2

Description

本発明は、シリコン、炭素、酸素及び水素を含む低誘電率膜からなる絶縁膜に対してプラズマ処理を行う半導体装置の製造方法及びこの半導体装置の製造方法を実行するためのプラズマ処理装置に関するものであり、またこの半導体装置の製造方法を実行するためのコンピュータプログラムを格納した記憶媒体に関する。
半導体デバイスは年々高集積化する傾向にあり、半導体ウェハ(以下ウェハという)等の基板に形成されるパターンの微細化に応えるためにレジスト材料や露光技術の改善が進み、レジストマスクの開口寸法も相当小さくなってきている。
一方高集積化を図るためにデバイス構造が多層化されているが、動作速度を向上させるためには寄生容量を小さくすることが必要であることから、絶縁膜例えば層間絶縁膜についても低誘電率膜の材料の開発が進められている。この低誘電率膜の一つとして、例えば炭素含有シリコン酸化膜などと呼ばれているSiOCH膜が挙げられる。
このSiOCH膜は、例えば銅配線が埋め込まれるため、フォトマスク及びハードマスクをエッチングのためのマスクとして用いて、例えばCF4ガスによりエッチングが行われ、次いで酸素ガスをプラズマ化したプラズマによりアッシング(灰化処理)が行われる。図8はこの様子を模式的に示しており、100はSiOCH膜、101はレジストマスク、102はハードマスクである。
ところでレジストマスク101のアッシングを行う場合、SiOCH膜100のエッチングにより露出した露出面、即ち凹部の側壁及び底面がアッシングにおいて用いられる酸素のプラズマに曝されると、SiOCH膜100の成分である炭素がプラズマの成分である酸素と反応して膜中から脱離し、SiOCHがSiOHになってしまう。
このためエッチングにより露出した露出面の表面部には、炭素が脱離したSiOHである言わばダメージ103を含むダメージ層が形成されてしまうが、このダメージ層は炭素の含有量が低下していることから、誘電率が低下してしまう。配線パターンの線幅の微細化及び配線層や絶縁膜等の薄膜化が進んでいることから、ウェハW全体に対して表面部の与える影響の割合が大きくなっており、表面部といえどもその誘電率の低下により半導体装置の特性が設計値から外れてしまう要因の一つになる。
一方、このような問題を解決する方法として、特許文献1、2に記載の技術が知られている。特許文献1に記載の技術は、シリコン−水素結合を有する絶縁膜((HSiO1.5)2n(n=2〜8))において、エッチングによって形成された露出部を、水酸基の中性活性種を含むプラズマにより処理することによって酸化して、その後のアッシング工程において用いられるO2ガスのプラズマに耐性を有する改質層を露出部の表面に形成するものである。一方SiOCH膜は酸化によって炭素の脱離を起こすため、この技術を適用することはできない。
また、特許文献2に記載の技術は、Si−H結合を有する絶縁膜はアッシング工程において用いられる、O2ガスをプラズマ化したプラズマによって酸化してSi−OH結合となり不具合の原因となっていることから、このSi−OH結合をH2ガスのプラズマによって還元してSi−H結合に戻すことを特徴としている。既述の通りSiOCH膜はプラズマの成分である酸素によって膜中の元素(C)が脱離するため、その反応は不可逆反応でありH2ガスのプラズマによってSiOCH膜中から脱離した炭素を戻すことができないことから、この特許文献2の技術を適用できない。
特開2000−243749(2ページ目右欄27行目〜29行目、4ページ目左欄3行目〜8行目) 特開平11−87332((0009)、(0015))
本発明はこのような事情の下になされたものであり、その目的は、シリコン、炭素、酸素及び水素を含む低誘電率膜をエッチングした後のアッシング工程において、当該低誘電率膜からの炭素の脱離を抑制できる半導体装置の製造方法を提供することにある。また本発明の他の目的は、このような半導体装置の製造方法を実施できるプラズマ処理装置と、半導体装置の製造方法を制御するためのコンピュータプログラムを格納した記憶媒体とを提供することにある。
本発明の半導体装置の製造方法は、
基板に形成されたシリコン、炭素、酸素及び水素を含む低誘電率膜をレジストマスクを用いてエッチングを行うエッチング工程と、
次いでエッチングにより形成された凹部の露出面を保護するために基板の表面に保護膜を堆積する堆積工程と、
その後酸素を含むプラズマによりアッシングを行うことでレジストマスクを除去するアッシング工程と、を含むことを特徴とする。
前記堆積工程において使用される処理ガスは炭素及び水素の化合物からなるガスであることが好ましく、更にCH4、C2H2、C2H4及びC2H6から選択されるガスであることが好ましい。
前記堆積工程は、基板が載置される下部電極とこの下部電極に対向する上部電極との間に供給される第1の高周波により処理ガスをプラズマ化すると共に、第1の高周波よりも周波数の低い第2の高周波をバイアス用の高周波電源により下部電極に供給することにより行われ、
前記バイアス用の高周波電源による供給電力を基板の表面積で除した大きさが100W/70685.8mm以上、1000W/70685.8mm以下であることが好ましい。
前記堆積工程は、処理雰囲気の圧力を6.7Pa(50mTorr)以下に設定してCH4をプラズマ化することにより行われることが好ましい。
また、エッチング工程、堆積工程及びアッシング工程は、同一処理室内で連続して行われることが好ましい。
前記アッシング工程は、基板が載置される下部電極とこの下部電極に対向する上部電極との間に供給される第3の高周波によりアッシング用のガスをプラズマ化すると共に、第3の高周波よりも周波数の低い第4の高周波をバイアス用の高周波電源により下部電極に供給することにより行われ、
前記バイアス用の高周波電源による供給電力を基板の表面積で除した大きさが100W/70685.8mm以上、500W/70685.8mm以下であることが好ましい。
本発明のプラズマ処理装置は、
シリコン、炭素、酸素及び水素を含む低誘電率膜が形成された基板をプラズマにより処理するプラズマ処理装置において、
処理室内に設けられ、基板の載置台を兼用する下部電極と、
この下部電極に対向する上部電極と、
前記下部電極または上部電極に接続され、ガスをプラズマ化するためのプラズマ発生用の高周波を供給するためのプラズマ発生用の高周波電源と、
前記下部電極に接続され、プラズマ発生用の高周波よりも周波数の低いバイアス用の高周波を供給するためのバイアス用の高周波電源と、
前記低誘電率膜をエッチングするためのエッチングガスを処理室内に供給する手段と、
前記エッチングにより形成された凹部の露出面を保護するための保護膜の原料となるガスを処理室内に供給する手段と、
レジストマスクをアッシングにより除去するための酸素を含むアッシングガスを処理室内に供給する手段と、
前記半導体装置の製造方法を実行するための制御手段と、を備えたことを特徴とする。
本発明の記憶媒体は、
プラズマ処理装置に用いられ、コンピュータ上で動作するコンピュータプログラムを格納した記憶媒体であって、
前記コンピュータプログラムは、前記半導体装置の製造方法を実施するようにステップが組まれていることを特徴とする。
本発明は、シリコン、炭素、酸素及び水素を含む低誘電率膜からなる絶縁膜例えばSiOCH膜の上にレジストマスクが積層された基板に対してエッチング及びアッシングを行うにあたって、アッシングを行う前に、エッチングにより形成されたSiOCH膜の凹部の露出面を保護するために基板の表面に保護膜を堆積することにより、その後のアッシングによって炭素の脱離を抑制することができ、膜質の低下を抑えることができる。
次に、図1を用いて本発明におけるプラズマ処理方法を実施するプラズマ処理装置の一例について説明する。図1に示したプラズマ処理装置2は、例えば内部が密閉空間となっている真空チャンバからなる処理室21と、この処理室21内の底面中央に配設された載置台3と、載置台3の上方に当該載置台3と対向するように設けられた上部電極4とを備えている。
前記処理室21は電気的に接地されており、また処理室21の底面の排気口22には排気管24を介して排気装置23が接続されている。この排気装置23には図示しない圧力調整部が接続されており、この圧力調整部は後述の制御部2Aからの信号によって処理室21内を真空排気して所望の真空度に維持するように構成されている。処理室21の壁面にはウェハWの搬送口25が設けられており、この搬送口25はゲートバルブ26によって開閉可能となっている。
載置台3は、下部電極31とこの下部電極31を下方から支持する支持体32とからなり、処理室21の底面に絶縁部材33を介して配設されている。載置台3の上部には静電チャック34が設けられ、この静電チャック34を介して載置台3上にウェハWが載置される。静電チャック34は絶縁材料からなり、この静電チャック34の内部には高圧直流電源35に接続された電極箔36が設けられている。高圧直流電源35からこの電極箔36に電圧が印加されることによって静電チャック34表面に静電気が発生して、載置台3に載置されたウェハWは静電チャック34に静電吸着されるように構成されている。静電チャック34には後述するバックサイドガスをこの静電チャック34の上部に放出するための貫通孔34aが設けられている。
載置台3内には所定の冷媒(例えば、従来公知のフッ素系流体、水等)が通る冷媒流路37が形成されており、冷媒がこの冷媒流路37を流れることで載置台3が冷却され、この載置台3を介して載置台3上に載置されたウェハWが所望の温度に冷却されるように構成されている。また、下部電極31には図示しない温度センサーが装着されており、この温度センサーによって下部電極31上のウェハWの温度が常時監視されている。
また載置台3の内部にはHe(ヘリウム)ガス等の熱伝導性ガスをバックサイドガスとして供給するガス流路38が形成されており、このガス流路38は載置台3の上面の複数箇所で開口している。これらの開口部は静電チャック34に設けられた前記貫通孔34aと連通しており、ガス流路38にバックサイドガスを供給すると、このバックサイドガスは貫通孔34aを介して静電チャック34の上部へ流出する。このバックサイドガスが静電チャック34と静電チャック34上に載置されたウェハWとの隙間全体に均等に拡散することにより、この隙間における熱伝導性が高まるようになっている。
前記下部電極31はハイパスフィルタ(HPF)3aを介して接地され、また下部電極31には第2及び第4の高周波に対応する高周波例えば13.56MHzの高周波電源31aが整合器31bを介して接続されている。この例では第2及び第4の高周波として、同じ13.56MHzの高周波を供給するようにしているが、周波数の異なる2種類の高周波を例えば2MHz〜13.56MHzの周波数から選択して第2及び第4の高周波として供給するようにしてもよい。
また下部電極31の外周縁には静電チャック34を囲むようにフォーカスリング39が配置され、プラズマ発生時にこのフォーカスリング39を介してプラズマが載置台3上のウェハWに集束するように構成されている。
上部電極4は中空状に形成され、その下面には処理室21内へ処理ガスを分散供給するための多数の孔41が例えば均等に分散して形成されてガスシャワーヘッドを構成している。また上部電極4の上面中央にはガス導入管42が設けられ、このガス導入管42は絶縁部材27を介して処理室21の上面中央を貫通している。そしてこのガス導入管42は上流側において5本に分岐して分岐管42A〜42Eを形成し、バルブ43A〜43Eと流量制御部44A〜44Eとを介してガス供給源45A〜45Eに接続されている。このバルブ43A〜43E、流量制御部44A〜44Eはガス供給系46を構成して後述の制御部2Aからの制御信号によって各ガス供給源45A〜45Eのガス流量及び給断の制御を行うことができる。
上部電極4はローパスフィルタ(LPF)47を介して接地されており、またこの上部電極4には第1及び第3の高周波として、第2及び第4の高周波電源31aよりも周波数の高い高周波例えば60MHzの高周波電源4aが整合器4bを介して接続されている。この例では第1及び第3の高周波として、同じ60MHzの高周波を供給するようにしているが、周波数の異なる2種類の高周波を例えば50MHz〜150MHzの周波数から選択して第1及び第3の高周波として供給するようにしてもよい。
上部電極4に接続された高周波電源4aからの高周波は、第1及び第3の高周波に相当するものであって、処理ガスをプラズマ化するためのものであり、下部電極31に接続された高周波電源31aからの高周波は、第2及び第4の高周波に相当するものであって、ウェハWにバイアス電力を印加することでプラズマ中のイオンをウェハW表面に引き込むものである。尚、高周波電源4a及び31aは制御部2Aに接続されており、制御信号に従って上部電極4及び下部電極31に供給される電力が制御される。
また、このプラズマ処理装置2には例えばコンピュータからなる制御部2Aが設けられており、この制御部2Aはプログラム、メモリ、CPUからなるデータ処理部などを備えており、前記プログラムには制御部2Aからプラズマ処理装置2の各部に制御信号を送り、後述の各ステップを進行させることでウェハWに対してプラズマ処理を施すように命令が組み込まれている。また、例えばメモリには処理圧力、処理時間、ガス流量、電力値などの処理パラメータの値が書き込まれる領域を備えており、CPUがプログラムの各命令を実行する際これらの処理パラメータが読み出され、そのパラメータ値に応じた制御信号がこのプラズマ処理装置2の各部位に送られることになる。このプログラム(処理パラメータの入力操作や表示に関するプログラムも含む)は、コンピュータ記憶媒体例えばフレキシブルディスク、コンパクトディスク、MO(光磁気ディスク)などの記憶部2Bに格納されて制御部2Aにインストールされる。
次に、前記プラズマ処理装置2を用いた本発明の半導体装置の製造方法の実施の形態について説明する。まずゲートバルブ26を開いて処理室21内へ図示しない搬送機構により300mm(12インチ)ウェハWを搬入する。このウェハWを載置台3上に水平に載置した後、ウェハWを載置台3に静電吸着する。その後搬送機構を処理室21から退去させてゲートバルブ26を閉じる。引き続きガス流路38からバックサイドガスを供給して、ウェハWを所定の温度に冷却する。その後以下のステップを行う。
ここで、ウェハWの表面部の構造を図2(a)に示しておく。尚、この例では銅配線をデュアルダマシンで形成する工程の一部を表している。図2(a)において、56はCu配線、53はエッチストッパであるSiC膜、54は層間絶縁膜であるSiOCH膜、59はハードマスクであるSiO2膜、51はレジストマスク、55は開口部である。
(ステップ1:エッチング)
排気装置23により排気管24を介して処理室21内の排気を行い処理室21内を所定の真空度に保持した後、ガス供給系46より例えばCF4ガス、O2ガス及びArガスを供給する。続いて周波数が60MHzの第1の高周波を電力を例えば基板の表面積で除した大きさが1000W/70685.8mm(300mmウェハWの面積)として上部電極4に供給して前記ガスの混合ガスである処理ガスをプラズマ化すると共に、周波数が13.56MHzの第2の高周波を電力を例えば300W/70685.8mmとして下部電極31に供給する。
このプラズマ中には、炭素とフッ素との化合物の活性種が含まれており、SiO2膜59及びSiOCH膜54がこれら活性種雰囲気に曝されると、これらの膜中の原子と反応した化合物が生成され、これにより図2(b)に示すようにSiO2膜59及びSiOCH膜54がエッチングされて凹部57が形成される。
(ステップ2:堆積工程)
エッチング終了後、高周波電源4a、31aからの給電を止めて処理室21内におけるプラズマの発生を停止した後、ガス供給系46からのガスの供給を止める。次に排気装置23により処理室21内を排気して残存しているガスを除去して処理室21内を所定の真空度に保持する。
ガス供給系46より例えば炭素と水素との化合物からなるガス例えばCH4ガスを供給して処理室21内を例えば6.7Pa(50mTorr)以下の圧力に保持した後、周波数が60MHzの第1の高周波を電力を例えば750W/70685.8mmとして上部電極4に供給して前記ガスの混合ガスである処理ガスをプラズマ化すると共に、バイアス用の高周波として、周波数が13.56MHzの第2の高周波を電力を例えば500W/70685.8mmとして下部電極31に供給する。
このプラズマにより図2(c)に示すようにレジストマスク51の表面、開口部55の壁面、凹部57の壁面及び底面に炭素または炭素及び水素からなる保護膜61が堆積する。この保護膜61は前述のエッチング工程において生成したSiOCH膜54の露出面を保護して、後述のアッシング工程において使用されるプラズマによる炭素の脱離を抑制するためのものである。
この時下部電極31に高周波を供給しない場合には、プラズマはウェハWに強く引き込まれないため、ウェハWの表面側に堆積する保護膜61の量が多くなる。つまり、レジストマスク51の表面及び開口部55の壁面に堆積する保護膜61の量が多くなり、凹部57の壁面及び底面に堆積する量が少なくなる。そのような場合、凹部57の壁面及び底面に所望の厚さの保護膜61を堆積させるためには長い時間が必要となり、生産性の低下に繋がる。また、後述のアッシング工程においてアッシングに要する時間が長くなると共に、アッシングによって炭素の残渣が多く生成されてパーティクルの原因となることが予測される。そこで、前述の通り下部電極31に例えば100W/70685.8mmから1000W/70685.8mmのバイアス電力を印加して、上部電極4に供給される高周波によりプラズマ化されるプラズマをウェハWに強く引き込むことによって、レジストマスク51の表面、開口部55の壁面、凹部57の壁面及び底面に均一に保護膜61を堆積させることができ、更に凹部57の壁面に優先的に保護膜61を堆積させることも可能である。
保護膜61を堆積させるためのガスとしては例えばCH4を使用することができるが、これに限られずC2H2、C2H4、C2H6等の炭素と水素との化合物からなるガスの1種類以上を用いることができる。また、例えばArなどの希ガスやN2などを希釈ガスとして上記のガスと共に使用することができる。保護膜61を堆積させるときの処理圧力としては、凹部57の底面まで均等にプラズマを行き渡らせるために、処理ガスとしてCH4を用いる場合には後述の実施例からも6.7Pa(50mTorr)以下であることが好ましいが、この処理圧力の範囲は前述のガスの種類によって最適化する必要があると考えられる。
(ステップ3:アッシング工程)
保護膜61の堆積後、高周波電源4a、31aからの給電を止めて処理室21内におけるプラズマの発生を停止した後、ガス供給系46からのガスの供給を止める。次に排気装置23により処理室21内を排気して残存しているガスを除去して処理室21内を所定の真空度に保持する。
ガス供給系46より例えばCO2ガスを供給して、周波数が60MHzの第3の高周波を電力を例えば200W/70685.8mmとして上部電極4に供給して前記ガスをプラズマ化すると共に、周波数が13.56MHzの第4の高周波を電力を例えば400W/70685.8mmとして下部電極31に供給する。
このプラズマにより図2(d)に示すようにレジストマスク51がアッシングされ、保護膜61も有機膜であるためアッシングによって除去される。
このアッシング工程においては、下部電極31に第4の高周波を電力を例えば100W/70685.8mmから500W/70685.8mmとして供給することが好ましい。この場合、上部電極4に供給される第3の高周波によってプラズマ化される前記ガスのプラズマはウェハWに強く引き込まれ、レジストマスク51のアッシングを選択的に行うことができる。
プラズマを生成するガスとしては、前述のCO2ガスに限定されることなく、例えばO2ガスなどを使用することができる。CO2ガスを用いた場合には、CO2ガスは安定であり、O2ガスと比較してSiOCH膜54膜中の炭素と反応を起こす活性種の生成量が極めて少ないため、SiOCH膜54からの炭素の脱離をより一層抑制することができる利点がある。また、例えばArなどの希ガスやN2などを希釈ガスとして上記のガスと共に使用することができる。
上部電極4及び下部電極31に供給する第3及び第4の高周波の周波数は、この場合は夫々第1及び第2の高周波と同じ周波数としたが、第3の高周波の周波数よりも第4の高周波の周波数が低ければこれに限られることなく、例えば第3の高周波として50MHz、第4の高周波として2MHzの高周波を供給するようにしても構わない。
尚、この後例えば凹部57に犠牲膜となる有機膜を埋め込み、この有機膜を利用して凹部57を加工してCuを埋め込み、配線構造を形成する。
上述の実施の形態によれば、SiOCH膜54をエッチングした後、アッシング前に保護膜61を堆積しているので、アッシング時にSiOCH膜54の露出面が酸素の活性種による反応から保護されるので、SiOCH膜54からの炭素の脱離を低減することができ、このためSiOCH膜54の誘電率の低下が抑えられるので、予定としている電気的特性を有する半導体装置を得ることができる。
CH4ガスを用いる場合には、後述の実験例からも分かる通り、処理圧力を6.7Pa(50mTorr)以下とすることで、凹部57の底面まで均等にプラズマを行き渡らせてSiOCH膜54の露出面への保護膜61の堆積を速やかに行うことができるため、レジストマスク51の表面への保護膜61の堆積を減少させ、アッシング工程に要する時間を短くすることができる。この処理圧力の条件は、使用するガスごとに実験によって最適値を求めることができる。
また本発明のプラズマ処理装置2は、ウェハWを処理室21内から搬入出することなく、SiOCH膜54のエッチング工程、堆積工程及びアッシング工程を同じ処理室21内において、使用ガスや処理圧力などのプロセス条件を変更することによって行うことができるため、ウェハWの搬入出の時間や複数の処理室21を設置する場所を省くことができる。
本発明においてプラズマ処理を行うウェハWは、SiOCH膜54等の絶縁膜の上に直接レジストマスク51が形成されていても良いし、SiOCH膜54等の絶縁膜の上に形成されたSiO2膜59などのハードマスクとレジストマスク51との間に例えば露光時の反射を防止するための反射防止膜が形成されていても構わない。
本発明に用いるプラズマ処理装置2として、処理ガスをプラズマ化するための第1及び第3の高周波は上部電極4の代わりに下部電極31に供給するようにし、いわゆる下部2周波の構成の装置を採用してもよい。
次に本発明の効果を確認するために行った実験について説明する。
以下の実験においては、図3に示すように、直径300mmのベアシリコンウェハ上に、エッチストッパとしての役割を果たすSiC膜53、低誘電率膜であるSiOCH膜54、ハードマスクとして用いられるSiO2膜59、パターンの形成されているレジストマスク51がこの順に積層されたテスト用のウェハWを用い、既述の(ステップ1)に記載したエッチングを以下のプロセス条件において行ったウェハWを用いた。
(エッチング工程)
上部電極4の周波数 :60MHz
上部電極4の電力 :1000W
下部電極31の周波数:13.56MHz
下部電極31の電力 :300W
処理圧力 :10Pa(75mTorr)
処理ガス :CF4/O2/Ar=50/100/100sccm
処理時間 :70sec
このエッチングを行う際、図3に示したように、SiOCH膜54には凹部57としてライン状の溝部58を形成し、この溝部58の底面におけるダメージ層60(炭素の脱離した層の膜厚)及び保護膜61の評価を行うため、SiC膜53の表面までエッチングが達しないように、すなわち溝部58の底面がSiOCH膜54の中央付近となるように、エッチング条件を調整した。
表1に示す通り、実験に供する前のウェハWについて、切断面をSEM(走査型電子顕微鏡)により観察して、上記の各層の膜厚、開口部55の底部(レジストマスク51とSiO2膜59との界面)における線幅及びSiOCH膜54に形成された溝部58の深さD1を求めた。
(表1) 単位:nm
Figure 2007227529
SiOCH膜54に形成された溝部58の深さD1は、図3に示した通り、SiO2膜59とSiOCH膜54との界面から溝部58の底面までの深さとして測定した。尚、同表のデータのウェハWと以下の実験に用いられたウェハWとは異なるものであるが、ウェハW内、及びウェハW間における各値の均一性が極めて高いため、評価を行う上で影響はないと考えられる。各実験においてウェハWに対してプラズマ処理を行う装置として図1に示すプラズマ処理装置2を用いた。
(実験例1:アッシング工程前に保護膜61を堆積した場合としない場合とのダメージ層60の比較)
A.実施例1
前述の通り、図3に示したウェハWに対して保護膜61を堆積した後、アッシングを行った。保護膜61の堆積工程及びアッシング工程におけるプロセス条件は以下の通りである。
(堆積工程)
上部電極4の周波数 :60MHz
上部電極4の電力 :750W
下部電極31の周波数:13.56MHz
下部電極31の電力 :500W
処理圧力 :1.3Pa(10mTorr)
処理ガス :CH4/Ar=100/100sccm
処理時間 :10sec
(アッシング工程)
上部電極4の周波数 :60MHz
上部電極4の電力 :200W
下部電極31の周波数:13.56MHz
下部電極31の電力 :400W
処理圧力 :20Pa(150mTorr)
処理ガス :CO2=1500sccm
処理時間 :60sec
このようにして処理されたウェハWについて、SiOCH膜54のダメージ層60の量を評価するため、ウェハWを1重量%のHF水溶液に30秒浸漬した後溝部58の線幅CD2を測定した。次いで図4(a)に示した通り、HF水溶液に浸漬する前の溝部58の線幅CD1と比較して、SiOCH膜54がHF水溶液に溶解して増加した溝部58の線幅ΔCD(ΔCD=CD2−CD1)を求めた。即ちSiOCH膜54の表面部から炭素の脱離したダメージ層60はHF水溶液に溶解する一方、炭素の脱離していないSiOCH膜54はHF水溶液に溶解しないことから、溝部58の側壁におけるダメージ層60をΔCDを用いて評価した。この結果を図5の右端に示した。
尚、この実験例1においては、再現性を確認するために同じ実験を複数回繰り返し、ウェハWの中央部における溝部58についてΔCDを求め、その数点をプロットしている。
B.比較例
比較例1−1
堆積工程を行わなかった他は実施例1と同様にウェハWに対してアッシング工程及びHF水溶液への浸漬を行い、ΔCDを求めた。この結果を図5の左から2番目に示した。
比較例1−2
実施例1及び比較例1−1のアッシング工程におけるプロセス条件を以下の通り変更した以外は比較例1−1と同様にウェハWに対してアッシング工程及びHF水溶液への浸漬を行い、ΔCDを求めた。この結果を図5の右から2番目に示した。
上部電極4の電力 :1000W
下部電極31の電力:200W
処理圧力 :1.3Pa(10mTorr)
処理ガス :O2=300sccm
処理時間 :27sec
尚、このときアッシング工程における処理ガスがCO2の場合(実施例1及び比較例1−1)とO2の場合(比較例1−2)とにおいて、それぞれの処理ガスによるプラズマではアッシングの効果が異なる(CO2ガスによるプラズマよりもO2ガスによるプラズマのアッシング効果が強い)ため、ほぼ同程度のアッシングの強さとなるように処理ガスの流量及び処理時間を調整した。
C.参考例1
エッチング後のウェハWに対してアッシング工程及び堆積工程などの処理を行わずにHF水溶液に浸漬してΔCDを求めた。この結果を図5の左端に示した。
D.結果と考察
実施例1及び比較例1−1の結果から、ΔCDは実施例1における保護膜61の堆積工程を行うことによって減少しているため、SiOCH膜54の側壁は保護膜61によってアッシング工程におけるCO2ガスのプラズマから保護されて炭素の脱離が抑えられていることが分かる。
比較例1−2の結果から、ΔCDは従来のO2ガスのプラズマを用いてアッシングした場合に最も大きくなっているため、ダメージ層60の生成は既述の通り、炭素と反応を起こしやすいプラズマの生成によって、SiOCH膜54中の炭素が脱離しているものと考えられる。
一方参考例1の結果から、ダメージ層60はエッチング後においてすでに生成していることがわかった。これは、SiOCH膜54がエッチングされていく際、脱離しやすい炭素が優先的にエッチングされているからではないかと考えられる。このときのΔCDは実施例1の値とほぼ同じ値を示していることから、実施例1におけるダメージ層60はアッシング工程において生成したものではなく、エッチング工程において生成したものであることが分かる。
(実験例2:元素分析)
実験例1におけるダメージ層60の評価方法(1重量%のHF水溶液に30秒浸漬してΔCDを測定)が適正な評価方法であるかを検証するため、実施例1及び比較例1−1において処理を施したウェハWの元素分析を行った。分析には電子エネルギー損失分光法(EELS)を用いて、実験例1における溝部58の線幅の測定位置に対応する位置を測定した。この測定結果を図6(a)及び(b)に示した。尚、SiOCH膜54中の平均的な組成を表すため、これらの図は同図(c)に示したように、図の中央に溝部58同士の間のSiOCH膜54、左右に溝部58の壁面が配置されるように表した。
その結果、実施例1及び比較例1−1の双方について、溝部58の側壁に、実験例1において確認されたΔCDに対応した炭素の量の少ない層が確認された。同図(a)及び(b)から、実施例1におけるダメージ層60はおよそ8nm、比較例1−1におけるダメージ層60はおよそ12nmと読み取れ、これらの値は図5にプロットした各データの範囲に収まっていたため、実験例1におけるダメージ層60の評価方法は妥当なものであることが確認された。
実験例1と同様に、炭素の減少量については、実施例1及び比較例1−1の間で顕著な差異が見られ、実施例1では比較例1−1よりも良好な結果となっていた。この分析では、炭素の減少に伴って酸素が増加していることから、SiOCH膜54からの炭素の脱離に伴ってSiOCH膜54中に価数バランスのために酸素が取り込まれていると考えられる。
(実験例3:堆積工程)
次に、以下のプロセス条件で図3に示したウェハWに対して保護膜61の堆積を行った。
上部電極4の周波数 :60MHz
上部電極4の電力 :750W
下部電極31の周波数:13.56MHz
下部電極31の電力 :500W
処理圧力 :別記
処理ガス :CH4/Ar=100/100sccm
処理時間 :10sec
処理圧力は以下に示す各例毎に設定した。
実施例3−1
上記のプロセス条件において、処理圧力を1.3Pa(10mTorr)とした。
実施例3−2
上記のプロセス条件において、処理圧力を6.7Pa(50mTorr)とした。
実施例3−3
上記のプロセス条件において、処理圧力を20Pa(150mTorr)とした。
実験結果
保護膜61を堆積した後、レジストマスク51の膜厚及び溝部58の深さと、SiO2膜59とSiOCH膜54との界面における溝部58の線幅及び溝部58の底面近傍における溝部58の線幅と、を測定した。次いで保護膜61を堆積する前の各膜厚と溝部58の線幅から、レジストマスク51の表面及び溝部58の底面に堆積した保護膜61の膜厚と、SiO2膜59とSiOCH膜54との界面における溝部58の線幅及び溝部58の底面近傍における、溝部58の線幅の増加量と、を求めて表2及び図7に示した。
(表2) 単位:nm
Figure 2007227529
処理圧力を高くする程、各部位における保護膜61の膜厚の増加する傾向が見受けられ、処理圧力によって保護膜61の膜厚を制御できることが分かった。尚、表2の結果については次の実施例4の結果と合わせて考察する。
(実験例4:保護膜61堆積後のアッシング工程)
次に、実験例3において保護膜61の堆積を行った各ウェハWに対して、以下のプロセス条件においてアッシングを行った。
上部電極4の周波数 :60MHz
上部電極4の電力 :0W
下部電極31の周波数:13.56MHz
下部電極31の電力 :1100W
処理圧力 :20Pa(150mTorr)
処理ガス :CO2=700sccm
処理時間 :21sec
尚、通常上部電極4の電力は0Wではプラズマは発生しないが、この例では下部電極31に1100Wの電力を印加しているため、この条件においてもプラズマは発生した。
実施例4−1
実施例3−1のプロセス条件にて保護膜61が堆積したウェハWに対してアッシング処理を行った。
実施例4−2
実施例3−2のプロセス条件にて保護膜61が堆積したウェハWに対してアッシング処理を行った。
実施例4−3
実施例3−3のプロセス条件にて保護膜61が堆積したウェハWに対してアッシング処理を行った。
実験結果
上記の各処理を施したウェハWを実験例1と同様に1重量%のHF水溶液に30秒浸漬した。次いで実験例1において求めた溝部58の線幅の増加量ΔCDについて、SiO2膜59とSiOCH膜54との界面における値及び溝部58の底面近傍における値の測定を行った。つまり、図4(b)に示すように、HF水溶液に浸漬後のウェハWについて、SiO2膜59とSiOCH膜54との界面における溝部58の線幅CD4及び溝部58の底面近傍における溝部58の線幅CD6を測定して、夫々の実験例3における保護膜61を堆積する前の各値CD3及びCD5と比較し、ΔCD1(ΔCD1=CD4−CD3)及びΔCD2(ΔCD2=CD6−CD5)を求めた。また、HF水溶液に浸漬した後のSiOCH膜54に形成された溝部58の深さD2を測定して、保護膜61を形成する前の値D1と比較して溝部58に形成された深さの増加量を示すΔD(ΔD=D2−D1)を求めた。尚、この実験例4ではウェハWの中央部及びウェハWの端部におけるダメージ層60の差異を確認するため、ウェハWの中央部及びウェハWの端部(ウェハWの周縁部から10mm)の位置における値を測定した。この結果を表3に示す。
(表3) 単位:nm
Figure 2007227529
この結果から、実験例3の堆積工程における処理圧力が高くなる程、ΔCD1、ΔCD2及びΔDの各値は概ね増加する傾向にある。表2と対比しながら表3を考察すると、堆積工程における処理圧力が1.3Pa(10mTorr)の場合には20Pa(150mTorr)の場合に比べて保護膜61の厚さが小さいが、ダメージ層60は薄くなっている(ΔCD1、ΔCD2、ΔDが小さくなっている)。この現象は、処理圧力が1.3Pa(10mTorr)の場合には保護膜61内のC−C結合が強く、あるいはC−C結合量が多くなっていて酸素の活性種のアタックに対して耐性が大きいのではないかと推測される。また、堆積工程における処理圧力が6.7Pa(50mTorr)の場合には20Pa(150mTorr)の場合に比べて保護膜61の膜厚が大きく、この膜厚の大小に対応して前者の場合のダメージ層60の厚さが後者の場合に比べて小さくなっていると考えられる。このように保護膜61は、処理圧力が小さい領域では耐酸素プラズマ性という点において保護膜61の膜質が良好なものになっていることが伺え、結果として、堆積工程における処理圧力は、6.7Pa(50mTorr)以下であることが好ましいと言える。
本発明のプラズマ処理装置の一例を示す平面図である。 本発明のプラズマ処理に用いられるウェハWの構成及び各プラズマ処理を示す図である。 本発明の実験に供したウェハWの概念図である。 本発明の実験例1及び実験例4において測定したウェハWの位置を示す図である。 本発明における実験例1の結果を示す図である。 本発明における実験例2の結果を示す図である。 本発明における実験例3の結果を示す図である。 従来のプラズマ処理におけるウェハWの模式図である。
符号の説明
2 プラズマ処理装置
21 処理室
3 載置台
31 下部電極
4 上部電極
54 SiOCH膜
55 開口部
57 凹部
58 溝部
59 SiO2膜
60 ダメージ層
61 保護膜





Claims (14)

  1. 基板に形成されたシリコン、炭素、酸素及び水素を含む低誘電率膜をレジストマスクを用いてエッチングを行うエッチング工程と、
    次いでエッチングにより形成された凹部の露出面を保護するために基板の表面に保護膜を堆積する堆積工程と、
    その後酸素を含むプラズマによりアッシングを行うことでレジストマスクを除去するアッシング工程と、を含むことを特徴とする半導体装置の製造方法。
  2. 前記堆積工程において使用される処理ガスは炭素及び水素の化合物からなるガスであることを特徴とする請求項1に記載の半導体装置の製造方法。
  3. 前記化合物は、CH4、C2H2、C2H4及びC2H6から選択されるものであることを特徴とする請求項2に記載の半導体装置の製造方法。
  4. 前記堆積工程は、基板が載置される下部電極とこの下部電極に対向する上部電極との間に供給される第1の高周波により処理ガスをプラズマ化すると共に、第1の高周波よりも周波数の低い第2の高周波をバイアス用の高周波電源により下部電極に供給することにより行われ、
    前記バイアス用の高周波電源による供給電力を基板の表面積で除した大きさが100W/70685.8mm以上、1000W/70685.8mm以下であることを特徴とする請求項1ないし3のいずれか一つに記載の半導体装置の製造方法。
  5. 前記堆積工程は、処理雰囲気の圧力を6.7Pa(50mTorr)以下に設定してCH4をプラズマ化することにより行われることを特徴とする請求項1ないし4のいずれか一つに記載の半導体装置の製造方法。
  6. エッチング工程、堆積工程及びアッシング工程は、同一処理室内で連続して行われることを特徴とする請求項1または5のいずれか一つに記載の半導体装置の製造方法。
  7. 前記アッシング工程は、基板が載置される下部電極とこの下部電極に対向する上部電極との間に供給される第3の高周波によりアッシング用のガスをプラズマ化すると共に、第3の高周波よりも周波数の低い第4の高周波をバイアス用の高周波電源により下部電極に供給することにより行われ、
    前記バイアス用の高周波電源による供給電力を基板の表面積で除した大きさが100W/70685.8mm以上、500W/70685.8mm以下であることを特徴とする請求項1ないし6のいずれか一つに記載の半導体装置の製造方法。
  8. シリコン、炭素、酸素及び水素を含む低誘電率膜が形成された基板をプラズマにより処理するプラズマ処理装置において、
    処理室内に設けられ、基板の載置台を兼用する下部電極と、
    この下部電極に対向する上部電極と、
    前記下部電極または上部電極に接続され、ガスをプラズマ化するためのプラズマ発生用の高周波を供給するためのプラズマ発生用の高周波電源と、
    前記下部電極に接続され、プラズマ発生用の高周波よりも周波数の低いバイアス用の高周波を供給するためのバイアス用の高周波電源と、
    前記低誘電率膜をエッチングするためのエッチングガスを処理室内に供給する手段と、
    前記エッチングにより形成された凹部の露出面を保護するための保護膜の原料となる処理ガスを処理室内に供給する手段と、
    レジストマスクをアッシングにより除去するための酸素を含むアッシングガスを処理室内に供給する手段と、を備えたことを特徴とするプラズマ処理装置。
  9. 前記保護膜の原料となる処理ガスは炭素及び水素の化合物からなるガスであることを特徴とする請求項8に記載のプラズマ処理装置。
  10. 前記化合物は、CH4、C2H2、C2H4及びC2H6から選択されるものであることを特徴とする請求項9に記載のプラズマ処理装置。
  11. 前記凹部の露出面を保護するために前記処理ガスを処理室内に供給するときには、前記バイアス用の高周波電源による供給電力を基板の表面積で除した大きさが100W/70685.8mm以上、1000W/70685.8mm以下となるように制御動作する制御部と、を備えたことを特徴とする請求項8ないし10のいずれか一つに記載のプラズマ処理装置。
  12. 保護膜の原料となる処理ガスはCH4ガスであり、前記凹部の露出面を保護するためにCH4ガスを処理室内に供給するときには、処理雰囲気の圧力を6.7Pa(50mTorr)以下となるように制御動作する制御部を備えた請求項8ないし11のいずれか一つに記載のプラズマ処理装置。
  13. レジストマスクをアッシングにより除去するためにアッシングガスを処理室内に供給するときには、前記バイアス用の高周波電源による供給電力を基板の表面積で除した大きさが100W/70685.8mm以上、500W/70685.8mm以下となるように制御動作する制御部を備えた請求項8ないし12のいずれか一つに記載のプラズマ処理装置。
  14. プラズマ処理装置に用いられ、コンピュータ上で動作するコンピュータプログラムを格納した記憶媒体であって、
    前記コンピュータプログラムは、請求項1ないし7のいずれか一つに記載の半導体装置の製造方法を実施するようにステップが組まれていることを特徴とする記憶媒体。

JP2006045298A 2006-02-22 2006-02-22 半導体装置の製造方法、プラズマ処理装置、及び記憶媒体 Pending JP2007227529A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006045298A JP2007227529A (ja) 2006-02-22 2006-02-22 半導体装置の製造方法、プラズマ処理装置、及び記憶媒体
US11/708,676 US20070275560A1 (en) 2006-02-22 2007-02-21 Method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006045298A JP2007227529A (ja) 2006-02-22 2006-02-22 半導体装置の製造方法、プラズマ処理装置、及び記憶媒体

Publications (1)

Publication Number Publication Date
JP2007227529A true JP2007227529A (ja) 2007-09-06

Family

ID=38549072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006045298A Pending JP2007227529A (ja) 2006-02-22 2006-02-22 半導体装置の製造方法、プラズマ処理装置、及び記憶媒体

Country Status (1)

Country Link
JP (1) JP2007227529A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8481426B2 (en) 2010-02-19 2013-07-09 Samsung Electronics Co., Ltd. Method of forming pattern structure and method of fabricating semiconductor device using the same
CN107180752A (zh) * 2016-03-11 2017-09-19 松下知识产权经营株式会社 元件芯片及其制造方法
CN110544628A (zh) * 2018-05-28 2019-12-06 东京毅力科创株式会社 对膜进行蚀刻的方法和等离子体处理装置
JP2022511446A (ja) * 2019-02-11 2022-01-31 長江存儲科技有限責任公司 保護層のin-situ形成を伴う新規のエッチング処理

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09167766A (ja) * 1995-12-15 1997-06-24 Hitachi Ltd プラズマ化学気相成長装置及び半導体装置の製造方法
JP2000183359A (ja) * 1998-10-07 2000-06-30 Furontekku:Kk 薄膜トランジスタとその製造方法および液晶表示装置ならびに薄膜成膜装置
JP2003218197A (ja) * 2002-01-23 2003-07-31 Sony Corp 半導体装置、その製造方法及び半導体製造装置
JP2004128313A (ja) * 2002-10-04 2004-04-22 Nec Electronics Corp 半導体装置の製造方法
JP2004165534A (ja) * 2002-11-15 2004-06-10 Mitsubishi Electric Corp 半導体装置の製造方法および半導体装置
JP2004281528A (ja) * 2003-03-13 2004-10-07 Tokyo Electron Ltd プラズマ処理方法及びプラズマ処理装置
WO2005122226A1 (en) * 2004-06-03 2005-12-22 Lam Research Corporation Method for plasma stripping using periodic modulation of gas chemistry and hydrocarbon addition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09167766A (ja) * 1995-12-15 1997-06-24 Hitachi Ltd プラズマ化学気相成長装置及び半導体装置の製造方法
JP2000183359A (ja) * 1998-10-07 2000-06-30 Furontekku:Kk 薄膜トランジスタとその製造方法および液晶表示装置ならびに薄膜成膜装置
JP2003218197A (ja) * 2002-01-23 2003-07-31 Sony Corp 半導体装置、その製造方法及び半導体製造装置
JP2004128313A (ja) * 2002-10-04 2004-04-22 Nec Electronics Corp 半導体装置の製造方法
JP2004165534A (ja) * 2002-11-15 2004-06-10 Mitsubishi Electric Corp 半導体装置の製造方法および半導体装置
JP2004281528A (ja) * 2003-03-13 2004-10-07 Tokyo Electron Ltd プラズマ処理方法及びプラズマ処理装置
WO2005122226A1 (en) * 2004-06-03 2005-12-22 Lam Research Corporation Method for plasma stripping using periodic modulation of gas chemistry and hydrocarbon addition
JP2008502146A (ja) * 2004-06-03 2008-01-24 ラム リサーチ コーポレーション ガス化学反応および炭化水素付加の周期的変調を用いたプラズマストリッピング方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8481426B2 (en) 2010-02-19 2013-07-09 Samsung Electronics Co., Ltd. Method of forming pattern structure and method of fabricating semiconductor device using the same
CN107180752A (zh) * 2016-03-11 2017-09-19 松下知识产权经营株式会社 元件芯片及其制造方法
CN107180752B (zh) * 2016-03-11 2023-06-02 松下知识产权经营株式会社 元件芯片及其制造方法
CN110544628A (zh) * 2018-05-28 2019-12-06 东京毅力科创株式会社 对膜进行蚀刻的方法和等离子体处理装置
JP2022511446A (ja) * 2019-02-11 2022-01-31 長江存儲科技有限責任公司 保護層のin-situ形成を伴う新規のエッチング処理
JP7235864B2 (ja) 2019-02-11 2023-03-08 長江存儲科技有限責任公司 保護層のin-situ形成を伴う新規のエッチング処理

Similar Documents

Publication Publication Date Title
JP2007194284A (ja) プラズマ処理方法、プラズマ処理装置、及び記憶媒体
TWI600083B (zh) Plasma etching method
US20210134604A1 (en) Etching method
JP4754374B2 (ja) プラズマエッチング方法およびコンピュータ読み取り可能な記憶媒体
JP6185305B2 (ja) プラズマエッチング方法およびプラズマエッチング装置
US20070275560A1 (en) Method of manufacturing semiconductor device
JP2008198659A (ja) プラズマエッチング方法
JP5712653B2 (ja) プラズマエッチング方法
JP2008028022A (ja) プラズマエッチング方法およびコンピュータ読取可能な記憶媒体
JP2008218959A (ja) エッチング方法および記憶媒体
TWI766866B (zh) 蝕刻方法
KR100870997B1 (ko) 저 유전율막의 데미지 수복 방법, 반도체 제조 장치, 및기억 매체
KR101540816B1 (ko) 플라즈마 에칭 방법, 컴퓨터 기억 매체 및 플라즈마 에칭 장치
JP4946138B2 (ja) エッチング方法
JP6550278B2 (ja) エッチング方法
JP2008021791A (ja) プラズマエッチング方法およびコンピュータ読取可能な記憶媒体
US9653321B2 (en) Plasma processing method
JP2007234770A (ja) プラズマエッチング方法およびコンピュータ読み取り可能な記憶媒体
JP4940722B2 (ja) 半導体装置の製造方法及びプラズマ処理装置並びに記憶媒体
JP2009032920A (ja) プラズマエッチング方法、プラズマエッチング装置、および記憶媒体
JP4509842B2 (ja) エッチング方法、エッチング装置、コンピュータプログラム及びコンピュータ記憶媒体
TWI499001B (zh) Substrate processing methods and memory media
JP4827567B2 (ja) プラズマエッチング方法およびコンピュータ読み取り可能な記憶媒体
US10811274B2 (en) Etching method and plasma processing apparatus
JP2009044090A (ja) 半導体装置の製造方法及び記憶媒体

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090106

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120813

A02 Decision of refusal

Effective date: 20130219

Free format text: JAPANESE INTERMEDIATE CODE: A02