JP2007218678A - Measurement microscope device - Google Patents

Measurement microscope device Download PDF

Info

Publication number
JP2007218678A
JP2007218678A JP2006038222A JP2006038222A JP2007218678A JP 2007218678 A JP2007218678 A JP 2007218678A JP 2006038222 A JP2006038222 A JP 2006038222A JP 2006038222 A JP2006038222 A JP 2006038222A JP 2007218678 A JP2007218678 A JP 2007218678A
Authority
JP
Japan
Prior art keywords
measurement
subject
objective lens
light
detection system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006038222A
Other languages
Japanese (ja)
Other versions
JP4869727B2 (en
Inventor
Takeshi Yamagishi
毅 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2006038222A priority Critical patent/JP4869727B2/en
Priority to TW096101830A priority patent/TW200739124A/en
Priority to CN2007100049982A priority patent/CN101021408B/en
Priority to KR1020070015225A priority patent/KR101283814B1/en
Publication of JP2007218678A publication Critical patent/JP2007218678A/en
Application granted granted Critical
Publication of JP4869727B2 publication Critical patent/JP4869727B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/04Measuring microscopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • G02B21/04Objectives involving mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/003Alignment of optical elements
    • G02B7/004Manual alignment, e.g. micromanipulators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Microscoopes, Condenser (AREA)
  • Automatic Focus Adjustment (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive measurement microscope device facilitating alignment work on a point of measurement. <P>SOLUTION: This measurement microscope device comprises an XY stage 22 horizontally moving a test body 21, an observation optical system 10 for observing the test body 21, a Z stage 15 vertically moving an objective lens 11 of the optical system 10, a focal point detection system 30 detecting focalization by applying measurement light via the objective lens 11 to the test body 21, a half mirror 17 optically coupling the detection system 30 to the objective lens 11, a signal processing part 41 controlling the Z stage 15 based on a detection result obtained by the detection system 30, and a measurement part 42 measuring the movement amount of the objective lens 11 caused by the Z stage. The microscope device further comprises two wedge prisms 51a and 51b disposed on an optical path between the detection system 30 and the half mirror 17, and rotary mechanisms 52a and 52b holding the wedge prisms 51a and 51b so as to allow them to rotate severally. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は測定顕微鏡装置に関する。   The present invention relates to a measurement microscope apparatus.

測定顕微鏡装置は、光学顕微鏡観察の下で微細加工物や電子部品などの試料の高さ測定を行う機能を有する。測定顕微鏡装置は、自動焦点検出機能を有するものもある。そのような測定顕微鏡装置の一例を図12に示す。   The measurement microscope apparatus has a function of measuring the height of a sample such as a fine workpiece or an electronic component under observation with an optical microscope. Some measurement microscope apparatuses have an automatic focus detection function. An example of such a measuring microscope apparatus is shown in FIG.

図12において、被検体21は図示しない照明系によって照明される。照明された被検体21は対物レンズ11と結像レンズ12によって結像される。結像された像は接眼レンズ13を介して目視観察される。   In FIG. 12, the subject 21 is illuminated by an illumination system (not shown). The illuminated subject 21 is imaged by the objective lens 11 and the imaging lens 12. The formed image is visually observed through the eyepiece 13.

対物レンズ11と結像レンズ12の間の光路上にハーフミラー17が配置されており、ハーフミラー17による反射光路上に焦点検出系30’が配置されている。焦点検出系30’において、LED光源31から発せられる測定光は、ビームスプリッター32と集光レンズ33’を通過し、ハーフミラー17で反射されて観察光路にのせられ、対物レンズ11によって被検体21の表面に集光される。被検体21で反射された測定光は、対物レンズ11によって捉えられ、ハーフミラー17で反射されて焦点検出系30’に戻り、集光レンズ33’により集光され、ビームスプリッター32で反射された後、ビームスプリッター34により二本のビームに分割される。分割された二本のビームは、それぞれ、被検体21に共役な点Pの前後に配置された開口35aと35bを介して、光検出器36aと36bによって光量が検出される。信号処理部41は、光検出器36aと36bからの信号を比較し、信号の大小関係から合焦状態と焦点ずれの方向を判断し、焦点ずれがなくなるようにZステージ15を制御する。これにより焦点合わせが行われる。   A half mirror 17 is disposed on the optical path between the objective lens 11 and the imaging lens 12, and a focus detection system 30 ′ is disposed on the light path reflected by the half mirror 17. In the focus detection system 30 ′, the measurement light emitted from the LED light source 31 passes through the beam splitter 32 and the condenser lens 33 ′, is reflected by the half mirror 17, is placed on the observation optical path, and is subjected to the subject 21 by the objective lens 11. Focused on the surface. The measurement light reflected by the subject 21 is captured by the objective lens 11, reflected by the half mirror 17, returned to the focus detection system 30 ′, condensed by the condenser lens 33 ′, and reflected by the beam splitter 32. Thereafter, the beam is split into two beams by the beam splitter 34. The light quantities of the two split beams are detected by the photodetectors 36a and 36b through the openings 35a and 35b arranged before and after the point P conjugate to the subject 21, respectively. The signal processing unit 41 compares the signals from the photodetectors 36a and 36b, determines the in-focus state and the direction of defocus from the magnitude relationship of the signals, and controls the Z stage 15 so that the defocus is eliminated. Thereby, focusing is performed.

この測定顕微鏡装置では、高さ測定は、被検体21に照射される測定光の位置すなわち観察視野の中心で行われる。このため、被検体21の高さ測定に先立ち、観察像を観察しながらXYステージ22により被検体21を移動させて、所望の測定個所を測定光の照射位置に合わせるアライメント作業が行われる。その位置において、焦点合わせが行われ、その際のZステージ15の移動量から高さ値が取得される。   In this measurement microscope apparatus, the height measurement is performed at the position of the measurement light applied to the subject 21, that is, at the center of the observation field. Therefore, prior to measuring the height of the subject 21, an alignment operation is performed in which the subject 21 is moved by the XY stage 22 while observing an observation image, and a desired measurement location is aligned with the measurement light irradiation position. At that position, focusing is performed, and the height value is acquired from the amount of movement of the Z stage 15 at that time.

焦点検出系30’の測定光が見えにくい、あるいは不可視光であるために見えないなど、測定個所の判別が困難な状況では、特開2003−131116号公報に開示されているように、測定個所が目視判別しやすいように測定光に指標を重ねて被検体21に照射することも行われている。   In situations where it is difficult to determine the measurement location, such as the measurement light of the focus detection system 30 'being difficult to see or invisible because of invisible light, the measurement location is disclosed in Japanese Patent Laid-Open No. 2003-131116. In other words, the subject 21 is irradiated with an index superimposed on the measurement light so that it can be easily discriminated visually.

また、CCDなどの撮像素子により画像を取り込んでモニタ画面に表示し、モニタ画面上において測定個所を指示させ、電動化されたXYステージにより被検体を移動して、指示された測定個所に観察視野中心を合わせて高さ測定を行うことも行われている。
特開2003−131116号公報
Also, an image is captured by an image sensor such as a CCD and displayed on the monitor screen. The measurement location is indicated on the monitor screen, the subject is moved by the motorized XY stage, and the observation field of view is displayed at the indicated measurement location. The height measurement is also performed by aligning the centers.
JP 2003-131116 A

従来の測定顕微鏡装置において、被検体像を観察しながらステージ移動によって測定個所を合わせる方法では、調整時に被検体像が移動することから、作業者は動く像を注視しながらステージ位置合わせを行うことになる。このため、測定点のアライメント作業は作業者に負担を強いる面倒な作業である。   In the conventional measurement microscope device, the method of aligning the measurement location by moving the stage while observing the subject image moves the subject image during adjustment, so the operator must align the stage while gazing at the moving image. become. For this reason, the alignment operation of the measurement points is a troublesome operation that imposes a burden on the operator.

電子部品や機械加工部品における構造の微細化は、一視野内で多くの高さ測定点を要求するようになっている。また測定対象は類似の形状を持つ場合が多い。このため、ステージ移動に伴って像が移動した際に、次の測定対象位置を見失ってしまうこともある。このように構造の微細化は、アライメント作業をより一層困難なものにしている。   Miniaturization of structures in electronic parts and machined parts requires many height measurement points within one field of view. The measurement object often has a similar shape. For this reason, when the image moves as the stage moves, the next measurement target position may be lost. Thus, the miniaturization of the structure makes alignment work even more difficult.

さらに、構造の微細化は高倍観察下の測定を必要とする。これに伴って、被検体の実際の移動量は微小となる。このため、被検体を移動させるXYステージには、微小量を調整できる高精度なステージが必要となる。その結果、装置は高価なものとなってしまう。   Furthermore, miniaturization of the structure requires measurement under high magnification observation. Along with this, the actual movement amount of the subject becomes minute. For this reason, the XY stage for moving the subject requires a highly accurate stage that can adjust a minute amount. As a result, the device becomes expensive.

また、モニタ画面上で測定個所を指示させる方法では、作業者の負担は軽減されるが、画像を取り込んで指示するための付加構成が大きい。また、XYステージを電動化する必要がある。その結果、装置はかなり高価なものとなってしまう。   Further, in the method of instructing the measurement location on the monitor screen, the burden on the operator is reduced, but the additional configuration for capturing and instructing the image is large. In addition, the XY stage needs to be motorized. As a result, the device becomes quite expensive.

本発明は、このような事情に鑑みてなされたもので、その目的は、測定点のアライメント作業を容易に行える安価な測定顕微鏡装置を提供することである。   The present invention has been made in view of such circumstances, and an object thereof is to provide an inexpensive measurement microscope apparatus capable of easily performing alignment work of measurement points.

本発明による測定顕微鏡装置は、被検体の近傍に配置される対物レンズを含む観察光学系と、前記被検体と前記対物レンズとを相対的に前記観察光学系の光軸に沿って移動させる移動手段と、前記対物レンズを介して被検体に測定光を照射するとともに前記被検体で反射された測定光に基づいて前記被検体に対する合焦を検出する焦点検出系と、前記被検体に対する前記測定光の照射位置を移動させる光偏向手段とを備えている。   The measurement microscope apparatus according to the present invention includes an observation optical system including an objective lens disposed in the vicinity of a subject, and a movement for moving the subject and the objective lens relatively along the optical axis of the observation optical system. Means, a focus detection system for irradiating the subject with measurement light through the objective lens, and detecting focus on the subject based on the measurement light reflected by the subject, and the measurement on the subject Light deflecting means for moving the light irradiation position.

本発明によれば、測定点のアライメント作業を容易に行える安価な測定顕微鏡装置が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the cheap measurement microscope apparatus which can perform the alignment operation | work of a measurement point easily is provided.

以下、図面を参照しながら本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<第一実施形態>
図1は、本発明の第一実施形態による測定顕微鏡装置を示している。図1に示されるように、本実施形態の測定顕微鏡装置は、被検体21を水平移動させるXYステージ22と、被検体21を観察する観察光学系10を有している。観察光学系10は、被検体21の近くに位置する対物レンズ11と、対物レンズ11と共に結像光学系を構成する結像レンズ12と、対物レンズ11と結像レンズ12によって結像される像を目視観察するための接眼レンズ13とを有している。
<First embodiment>
FIG. 1 shows a measuring microscope apparatus according to a first embodiment of the present invention. As shown in FIG. 1, the measurement microscope apparatus of this embodiment includes an XY stage 22 that horizontally moves a subject 21 and an observation optical system 10 that observes the subject 21. The observation optical system 10 includes an objective lens 11 located near the subject 21, an imaging lens 12 that forms an imaging optical system together with the objective lens 11, and an image formed by the objective lens 11 and the imaging lens 12. And an eyepiece 13 for visually observing the lens.

測定顕微鏡装置はさらに、焦点合わせのために対物レンズ11を観察光学系10の光軸に沿って上下移動させるZステージ15と、対物レンズ11を介して被検体21に測定光を照射するとともに被検体21で反射された測定光に基づいて被検体21に対する合焦を検出する焦点検出系30と、焦点検出系30と対物レンズ11を光学的に結合するハーフミラー17と、焦点検出系30による検出結果に基づいてZステージ15を制御する信号処理部41と、Zステージ15による対物レンズ11の移動量を測定する測定部42とを有している。   The measurement microscope apparatus further irradiates the subject 21 with measurement light through the Z stage 15 for moving the objective lens 11 up and down along the optical axis of the observation optical system 10 for focusing, and the objective lens 11. A focus detection system 30 that detects focus on the subject 21 based on the measurement light reflected by the sample 21, a half mirror 17 that optically couples the focus detection system 30 and the objective lens 11, and the focus detection system 30. A signal processing unit 41 that controls the Z stage 15 based on the detection result and a measurement unit 42 that measures the amount of movement of the objective lens 11 by the Z stage 15 are provided.

ハーフミラー17は、結像レンズ12と対物レンズ11の間に位置し、焦点検出系30から入射する測定光を対物レンズ11に方向付けるとともに、対物レンズ11から入射する被検体21で反射された測定光を焦点検出系30に方向付ける。   The half mirror 17 is located between the imaging lens 12 and the objective lens 11, directs measurement light incident from the focus detection system 30 to the objective lens 11, and is reflected by the subject 21 incident from the objective lens 11. The measurement light is directed to the focus detection system 30.

焦点検出系30は、測定光を発するLED光源31と、LED光源31から発せられる測定光の発散ビームを収束ビームに変える集光レンズ33と、LED光源31から発せられる測定光と被検体21で反射された測定光とを分離するビームスプリッター32と、ビームスプリッター32を経由した被検体21で反射された測定光を分岐させるビームスプリッター34と、ビームスプリッター34によって分岐された光路上にそれぞれ配置された光検出器36aおよび36bと、ビームスプリッター34と光検出器36aおよび36bとの間の光路上にそれぞれ配置された開口35aおよび35bとを有している。   The focus detection system 30 includes an LED light source 31 that emits measurement light, a condensing lens 33 that changes a divergent beam of measurement light emitted from the LED light source 31 to a convergent beam, and measurement light emitted from the LED light source 31 and the subject 21. A beam splitter 32 for separating the reflected measurement light, a beam splitter 34 for branching the measurement light reflected by the subject 21 via the beam splitter 32, and an optical path branched by the beam splitter 34, respectively. Photodetectors 36a and 36b, and openings 35a and 35b disposed on the optical path between the beam splitter 34 and the photodetectors 36a and 36b, respectively.

ビームスプリッター32は、LED光源31と集光レンズ33の間の光路上に位置し、LED光源31から発せられる測定光を透過する一方、被検体21で反射された測定光を反射する。ビームスプリッター34は、ビームスプリッター32の反射光路上に位置し、被検体21で反射された測定光を部分的に透過し部分的に反射する。開口35aは、対物レンズ11の焦点に共役な点Pの前方に位置し、開口35bは、対物レンズ11の焦点に共役な点Pの後方に位置している。光検出器36aは、開口35aを通過した光を検出し、光検出器36bは、開口35bを通過した光を検出する。   The beam splitter 32 is located on the optical path between the LED light source 31 and the condenser lens 33, and transmits the measurement light emitted from the LED light source 31, while reflecting the measurement light reflected by the subject 21. The beam splitter 34 is located on the reflected light path of the beam splitter 32, and partially transmits and partially reflects the measurement light reflected by the subject 21. The opening 35 a is located in front of the point P conjugate to the focal point of the objective lens 11, and the opening 35 b is located behind the point P conjugate to the focal point of the objective lens 11. The photodetector 36a detects light that has passed through the opening 35a, and the photodetector 36b detects light that has passed through the opening 35b.

さらに測定顕微鏡装置は、集光レンズ33とハーフミラー17の間の光路上に配置された2つのウェッジプリズム51aおよび51bと、ウェッジプリズム51aおよび51bをそれぞれ回転可能に保持している回転機構52aおよび52bと、ウェッジプリズム51aおよび51bとハーフミラー17との間の光路上に配置されたリレーレンズ55とを有している。   Further, the measurement microscope apparatus includes two wedge prisms 51a and 51b disposed on the optical path between the condenser lens 33 and the half mirror 17, and a rotation mechanism 52a that rotatably holds the wedge prisms 51a and 51b, respectively. 52b and a relay lens 55 arranged on the optical path between the wedge prisms 51a and 51b and the half mirror 17.

図1の測定顕微鏡装置において、被検体21は、図示しない照明系によって照明され、対物レンズ11と結像レンズ12からなる結像光学系によって結像される。結像された被検体21の像は接眼レンズ13を介して目視観察される。   In the measurement microscope apparatus of FIG. 1, a subject 21 is illuminated by an illumination system (not shown) and imaged by an imaging optical system including an objective lens 11 and an imaging lens 12. The formed image of the subject 21 is visually observed through the eyepiece 13.

LED光源31から射出された測定光は、ビームスプリッター32と集光レンズ33とウェッジプリズム51aおよび51bとリレーレンズ55とを通過し、ハーフミラー17で反射され、対物レンズ11によって集光され、被検体21に照射される。被検体21で反射された光は、対物レンズ11に入射し、ハーフミラー17で反射され、リレーレンズ55とウェッジプリズム51aおよび51bと集光レンズ33とを通過し、ビームスプリッター32で反射された後、ビームスプリッター34によって分岐される。ビームスプリッター34を透過した光は開口35aに達し、開口35aを通過した光が光検出器36aに入射する。ビームスプリッター34で反射された光は開口35bに達し、開口35bを通過した光が光検出器36bに入射する。   The measurement light emitted from the LED light source 31 passes through the beam splitter 32, the condenser lens 33, the wedge prisms 51a and 51b, and the relay lens 55, is reflected by the half mirror 17, is condensed by the objective lens 11, and is collected. The specimen 21 is irradiated. The light reflected by the subject 21 enters the objective lens 11, is reflected by the half mirror 17, passes through the relay lens 55, wedge prisms 51 a and 51 b, and the condenser lens 33, and is reflected by the beam splitter 32. Thereafter, the beam is branched by the beam splitter 34. The light that has passed through the beam splitter 34 reaches the opening 35a, and the light that has passed through the opening 35a enters the photodetector 36a. The light reflected by the beam splitter 34 reaches the opening 35b, and the light passing through the opening 35b enters the photodetector 36b.

光検出器36aと36bはそれぞれ入射した光の強度を反映した信号を出力する。信号処理部41は、光検出器36aと36bの出力信号を比較し、信号の大小関係から合焦状態を判断し、判断結果に基づいてZステージ15を駆動する。具体的には、信号処理部41は、光検出器36aの出力信号の方が光検出器36bの出力信号よりも小さい場合には、対物レンズ11を被検体21から遠ざけるようにZステージ15を駆動し、逆に光検出器36aの出力信号の方が光検出器36bの出力信号よりも大きい場合には、対物レンズ11を被検体21に近づけるようにZステージ15を駆動し、光検出器36aと36bの出力信号に差がない場合には、Zステージ15を駆動しない。   Each of the photodetectors 36a and 36b outputs a signal reflecting the intensity of incident light. The signal processing unit 41 compares the output signals of the photodetectors 36a and 36b, determines the in-focus state from the magnitude relationship of the signals, and drives the Z stage 15 based on the determination result. Specifically, when the output signal of the photodetector 36a is smaller than the output signal of the photodetector 36b, the signal processing unit 41 moves the Z stage 15 so as to keep the objective lens 11 away from the subject 21. In contrast, when the output signal of the photodetector 36a is larger than the output signal of the photodetector 36b, the Z stage 15 is driven so that the objective lens 11 is brought closer to the subject 21, and the photodetector is detected. When there is no difference between the output signals of 36a and 36b, the Z stage 15 is not driven.

ウェッジプリズム51aと51bのおのおのは、図2に示されるように、微小な頂角φwを持つプリズムであり、入射光線にわずかな偏角φ0を厚みの最大増加方向に与える。このプリズムが光軸周りに独立に回転されると、射出光の軌跡は半頂角φ0の円錐形となる。図3に示されるように、2つのウェッジプリズム51aと51bは、光軸に沿って直列に並べられており、これらが光軸周りに独立に回転されると、φ0が小さい場合、射出光は半頂角2φ0の円錐形内の任意の方向に偏向され得る。   As shown in FIG. 2, each of the wedge prisms 51a and 51b is a prism having a minute apex angle φw, and gives a slight declination φ0 to the incident light beam in the maximum increasing direction. When this prism is independently rotated about the optical axis, the locus of the emitted light becomes a conical shape with a half apex angle φ0. As shown in FIG. 3, the two wedge prisms 51a and 51b are arranged in series along the optical axis, and when these are independently rotated around the optical axis, when φ0 is small, the emitted light is It can be deflected in any direction within a cone with a half apex angle 2φ0.

図4は、光軸に沿って見たウェッジプリズム51aと51bからの射出光の偏角ベクトルを示している。図4において、aとbはそれぞれウェッジプリズム51aと51bによる偏角ベクトルを、cは2つのウェッジプリズム51aと51bによる合成の偏角ベクトルを示している。ウェッジプリズム51aと51bによる偏角ベクトルaとbは常にφ0の大きさを持ち、偏角ベクトルaとbの和である合成の偏角ベクトルcは、ウェッジプリズム51aと51bの配置角θaとθbに依存して、最大2φ0の範囲内で任意の値を持つことがわかる。   FIG. 4 shows the declination vector of the light emitted from the wedge prisms 51a and 51b as viewed along the optical axis. In FIG. 4, a and b are declination vectors by the wedge prisms 51a and 51b, respectively, and c is a combined declination vector by the two wedge prisms 51a and 51b. The declination vectors a and b by the wedge prisms 51a and 51b always have a magnitude of φ0, and the combined declination vector c, which is the sum of the declination vectors a and b, is the arrangement angle θa and θb of the wedge prisms 51a and 51b. It can be seen that it has an arbitrary value within the range of 2φ0 at the maximum, depending on.

また、ウェッジプリズム51aと51bは対物レンズ11の瞳位置と共役な位置又は近傍に配置されている。このため射出光の偏角ベクトルcは、瞳位置での光線角度すなわち被検体21上での平面位置に相当する。例えば、ウェッジプリズム51aの配置角θaとウェッジプリズム51bの配置角θbが180度ずれている場合、射出光の偏角ベクトルcの大きさは0となり、焦点検出系30からの測定光は観察視野の中心に照射される。従って、観察視野の中心が高さ測定位置となる。ウェッジプリズム51aと51bの配置角θaとθbを変化させ、偏角ベクトルcが大きさを持つことにより、焦点検出系30からの測定光は被検体21上での照射位置が変わり、高さ測定位置が移動される。   Further, the wedge prisms 51a and 51b are arranged at or near a position conjugate with the pupil position of the objective lens 11. For this reason, the deflection angle vector c of the emitted light corresponds to the ray angle at the pupil position, that is, the planar position on the subject 21. For example, when the arrangement angle θa of the wedge prism 51a and the arrangement angle θb of the wedge prism 51b are shifted by 180 degrees, the magnitude of the deflection angle vector c of the emitted light is 0, and the measurement light from the focus detection system 30 is the observation field of view. The center of the light is irradiated. Therefore, the center of the observation field is the height measurement position. When the arrangement angles θa and θb of the wedge prisms 51a and 51b are changed and the declination vector c has a magnitude, the irradiation position of the measurement light from the focus detection system 30 on the subject 21 changes, and the height is measured. The position is moved.

なお、本実施形態では、2φ0が観察視野の最外位置となるようにウェッジプリズム51aと51bの頂角φwが設定されている。従って、ウェッジプリズム51aと51bの配置角θaとθbを独立に変化させることにより、焦点検出系30からの測定光の照射位置を観察視野範囲全域にわたり移動させることができる。   In the present embodiment, the apex angle φw of the wedge prisms 51a and 51b is set so that 2φ0 is the outermost position of the observation field. Accordingly, by independently changing the arrangement angles θa and θb of the wedge prisms 51a and 51b, the irradiation position of the measurement light from the focus detection system 30 can be moved over the entire observation visual field range.

このため、被検体21の像を観察しながら回転機構52aと52bを操作してウェッジプリズム51aと51bの配置角を変更することにより、測定光の照射位置すなわち高さ測定位置を観察視野内で容易に移動させることができる。従って、観察視野内の所望の個所で被検体21の高さ測定を行うことができる。   Therefore, by operating the rotation mechanisms 52a and 52b while observing the image of the subject 21 to change the arrangement angle of the wedge prisms 51a and 51b, the irradiation position of the measurement light, that is, the height measurement position is within the observation field. It can be moved easily. Therefore, the height of the subject 21 can be measured at a desired location in the observation field.

本実施形態の測定顕微鏡装置では、測定点のアライメント作業の際に被検体21の像が移動されることがなく、アライメント作業は、作業者が回転機構52aと52bを操作して観察視野内における焦点検出系30の測定光の照射位置を変えることによって行われる。従って、作業者はアライメント作業を少ない負担で容易に行える。   In the measurement microscope apparatus of this embodiment, the image of the subject 21 is not moved during the alignment operation of the measurement points, and the alignment operation is performed within the observation field by the operator operating the rotation mechanisms 52a and 52b. This is performed by changing the irradiation position of the measurement light of the focus detection system 30. Therefore, the operator can easily perform the alignment work with a small burden.

本実施形態によれば、非常に簡単な構成の付加によって測定点のアライメント作業を容易に行える測定顕微鏡装置が得られる。また、高倍観察時も移動操作をする必要がなく、そのため高精度なステージを必要としない。   According to the present embodiment, it is possible to obtain a measurement microscope apparatus that can easily perform measurement point alignment work by adding a very simple configuration. Further, it is not necessary to perform a moving operation even during high-magnification observation, so that a highly accurate stage is not required.

<第二実施形態>
図5は、本発明の第二実施形態による測定顕微鏡装置を示している。図5において、図1に示された部材と同一の参照符号で指示された部材は同様の部材であり、その詳しい説明は省略する。
<Second embodiment>
FIG. 5 shows a measuring microscope apparatus according to the second embodiment of the present invention. In FIG. 5, members indicated by the same reference numerals as those shown in FIG. 1 are the same members, and detailed description thereof is omitted.

本実施形態では、回転機構52aと52bは電動によりウェッジプリズム51aと51bを光軸周りに回転し得る。初期位置ではウェッジプリズム51aと51bの配置角は一致している。   In the present embodiment, the rotation mechanisms 52a and 52b can electrically rotate the wedge prisms 51a and 51b around the optical axis. At the initial position, the arrangement angles of the wedge prisms 51a and 51b are the same.

図5から分かるように、本実施形態の測定顕微鏡装置は、第一実施形態の測定顕微鏡装置の構成に加えて、ドライバ61と演算部62と入力部63とを備えている。入力部63は、観察視野内で測定位置を指示するための指示手段であり、例えばトラックボールやジョイスティックなどで構成される。演算部62は、入力部63の出力からそれぞれのウェッジプリズム51aと51bの配置角を算出する手段であり、被検体21に対する測定光の照射位置を入力部63によって指示された測定位置に一致させるウェッジプリズム51aと51bの配置角を算出する。ドライバ61は、演算部62で算出される配置角に従って回転機構52aと52bを駆動し、ウェッジプリズム51aと51bをその配置角に合わせる。   As can be seen from FIG. 5, the measurement microscope apparatus of the present embodiment includes a driver 61, a calculation unit 62, and an input unit 63 in addition to the configuration of the measurement microscope apparatus of the first embodiment. The input unit 63 is an instruction unit for instructing the measurement position within the observation field of view, and is configured by, for example, a trackball or a joystick. The calculation unit 62 is a means for calculating the arrangement angles of the wedge prisms 51 a and 51 b from the output of the input unit 63, and makes the measurement light irradiation position on the subject 21 coincide with the measurement position instructed by the input unit 63. The arrangement angle of the wedge prisms 51a and 51b is calculated. The driver 61 drives the rotation mechanisms 52a and 52b according to the arrangement angle calculated by the calculation unit 62, and adjusts the wedge prisms 51a and 51b to the arrangement angle.

本実施形態では、入力部63によって観察視野内における測定位置が指示値(x,y)として与えられ、この指示値は演算部62に送られる。演算部62は、入力された測定位置(x,y)に焦点検出系30の測定光の照射位置を移動させるウェッジプリズム51aと51bの配置角θaとθbを算出する。   In this embodiment, the measurement position in the observation visual field is given as an instruction value (x, y) by the input unit 63, and this instruction value is sent to the calculation unit 62. The calculation unit 62 calculates the arrangement angles θa and θb of the wedge prisms 51a and 51b that move the irradiation position of the measurement light of the focus detection system 30 to the input measurement position (x, y).

指示値(x,y)から配置角θaとθbへの変換方法について図6を参照しながら説明する。図6は、図4と同じく、ウェッジプリズム51aと51bからの射出光の偏角ベクトルを示している。aとbはそれぞれウェッジプリズム51aと51bによる偏角ベクトルを示し、cは2つのウェッジプリズム51aと51bによる合成の偏角ベクトルを示している。最外は|a|+|b|で正規化されている。   A method of converting the instruction value (x, y) into the arrangement angles θa and θb will be described with reference to FIG. FIG. 6 shows the deflection vector of the light emitted from the wedge prisms 51a and 51b, as in FIG. “a” and “b” represent declination vectors by the wedge prisms 51 a and 51 b, respectively, and “c” represents a declination vector obtained by combining the two wedge prisms 51 a and 51 b. The outermost part is normalized by | a | + | b |.

本実施形態においても、第一実施形態と同様に、2つのウェッジプリズム51aと51bによって作られる最大の偏角2φ0が観察光学系10の観察視野の最外位置に焦点検出測定点がくるよう、ウェッジプリズム51aと51bのウェッジ角φwが設定されている。   Also in this embodiment, as in the first embodiment, the maximum deviation angle 2φ0 formed by the two wedge prisms 51a and 51b is set so that the focus detection measurement point is at the outermost position of the observation field of the observation optical system 10. The wedge angle φw of the wedge prisms 51a and 51b is set.

射出光の偏角ベクトルcは終点が指示値(x,y)であり、これを極座標で示すと次のようになる。   The declination vector c of the emitted light has an instruction value (x, y) at the end point, which is expressed as follows in polar coordinates.

L=(x+y1/2
θ=arctan(y/X)
偏角ベクトルaとbの長さは同じであるから、射出光の回転角θと配置角θaおよびθbとの成す角△θは同じである。また、△θは図6から幾何学的に求められ、配置角θaとθbは次のように表わされる。
L = (x 2 + y 2 ) 1/2
θ = arctan (y / X)
Since the declination vectors a and b have the same length, the angle Δθ formed by the rotation angle θ of the emitted light and the arrangement angles θa and θb is the same. Δθ is obtained geometrically from FIG. 6, and the arrangement angles θa and θb are expressed as follows.

△θ=arccos(L) …(1)
θa=θ−△θ
θb=θ+△θ
演算部62による処理のフローチャートを図7に示す。まず、入力部63からの指示値(x,y)がサンプリングされる。サンプリングされた指示値(x,y)は極座標に変換され、原点からの距離Lが算出される。
Δθ = arccos (L) (1)
θa = θ−Δθ
θb = θ + Δθ
FIG. 7 shows a flowchart of processing by the calculation unit 62. First, the instruction value (x, y) from the input unit 63 is sampled. The sampled instruction value (x, y) is converted into polar coordinates, and the distance L from the origin is calculated.

L≠0の場合、(1)式に従って配置角θaとθbが算出される。また、L=0の場合、配置角θaとθbがπずれた組み合わせは無限にあって特定できないため、θaは前回の値に設定され、θbはθa+πに設定される。これにより、演算部62によって指示値(x,y)を満たす配置角θaとθbの組み合わせが算出される。   When L ≠ 0, the arrangement angles θa and θb are calculated according to the equation (1). Further, when L = 0, the combination in which the arrangement angles θa and θb are shifted by π is infinite and cannot be specified, so θa is set to the previous value and θb is set to θa + π. Thereby, the combination of the arrangement angles θa and θb satisfying the instruction value (x, y) is calculated by the calculation unit 62.

算出された配置角θaとθbはドライバ61を経由して回転機構52aと52bに出力される。回転機構52aと52bはウェッジプリズム51aと51bの配置角をそれぞれ配置角θaとθbに合わせる。   The calculated arrangement angles θa and θb are output to the rotation mechanisms 52a and 52b via the driver 61. The rotation mechanisms 52a and 52b adjust the arrangement angles of the wedge prisms 51a and 51b to the arrangement angles θa and θb, respectively.

このフローは繰り返し行われる。作業者は単に観察視野内で被検体21の像を観察しながら測定位置に測定光を移動させるように入力部63を操作するだけで、測定光は指示値(x,y)通りに追従する。   This flow is repeated. The operator simply operates the input unit 63 so as to move the measurement light to the measurement position while observing the image of the subject 21 within the observation field of view, and the measurement light follows the indicated value (x, y). .

本実施形態の測定顕微鏡装置では、測定点のアライメント作業の際に被検体21の像が移動されることがなく、アライメント作業は、作業者が入力部63を操作して観察視野内において焦点検出系30の測定光の照射位置を指示することによって行われる。従って、作業者はアライメント作業を少ない負担で非常に容易に行える。   In the measurement microscope apparatus of the present embodiment, the image of the subject 21 is not moved during the alignment operation of the measurement points. The alignment operation is performed by the operator operating the input unit 63 to detect the focus within the observation field. This is performed by indicating the measurement light irradiation position of the system 30. Therefore, the operator can perform alignment work very easily with a small burden.

本実施形態によれば、小規模な構成の付加によって非常に容易に測定点のアライメント作業を行える測定顕微鏡装置が得られる。また、第一実施形態同様、高倍観察時も移動操作をする必要がなく、そのため高精度なステージを必要としない。   According to the present embodiment, it is possible to obtain a measurement microscope apparatus that can perform measurement point alignment work very easily by adding a small-scale configuration. Further, as in the first embodiment, it is not necessary to perform a moving operation even during high-magnification observation, so that a highly accurate stage is not required.

<第三実施形態>
本実施形態は、回転機構52aと52bを操作するための機械的な操作機構に向けられている。この操作機構は、ウェッジプリズム51aと51bの配置角を機械的に設定するものである。ウェッジプリズム51aと51bによる測定光の照射位置の移動は第一実施形態と同様である。
<Third embodiment>
The present embodiment is directed to a mechanical operation mechanism for operating the rotation mechanisms 52a and 52b. This operation mechanism mechanically sets the arrangement angle of the wedge prisms 51a and 51b. The movement of the irradiation position of the measurement light by the wedge prisms 51a and 51b is the same as in the first embodiment.

図8〜図10は、本発明の第三実施形態による操作機構を示している。図8〜図10において、操作機構は、ウェッジプリズム51aと51bに固定された円環形状のプーリー71aと71bと、回転可能に支持されたプーリー73aおよび73bと、プーリー71aおよび71bとプーリー73aおよび73bの間にそれぞれかけられたベルト72aおよび72bと、プーリー73aおよび73bにそれぞれ固定されたバー74aおよび74bと、バー74aおよび74bにそれぞれ連結されたバー75aおよび75bとを有している。   8 to 10 show an operation mechanism according to the third embodiment of the present invention. 8 to 10, the operation mechanism includes annular pulleys 71a and 71b fixed to wedge prisms 51a and 51b, pulleys 73a and 73b rotatably supported, pulleys 71a and 71b, pulley 73a and Belts 72a and 72b hung between 73b, bars 74a and 74b fixed to pulleys 73a and 73b, respectively, and bars 75a and 75b connected to bars 74a and 74b, respectively.

プーリー71aと71bは同中心に配置され、プーリー73aと73bもまた同中心に配置されている。プーリー73aと73bはそれぞれプーリー71aと71bと同じ径を有している。従ってプーリー73aと73bの回転はそれぞれベルト72aと72bによってプーリー71aと71bに増幅も減衰もされることなくそのまま伝えられる。   The pulleys 71a and 71b are arranged at the same center, and the pulleys 73a and 73b are also arranged at the same center. The pulleys 73a and 73b have the same diameter as the pulleys 71a and 71b, respectively. Accordingly, the rotations of the pulleys 73a and 73b are transmitted to the pulleys 71a and 71b as they are without being amplified or attenuated by the belts 72a and 72b, respectively.

バー74aと74bは、端部がそれぞれプーリー73aと73bに固定されており、プーリー73aと73bの回転中心を中心として旋回し得る。つまりバー74aと74bは同一中心の周りに回転可能である。バー74aと74bの他方の端部はそれぞれリンクによってバー75aと75bの端部に回転可能に連結されており、バー75aと75bの他方の端部はリンクによって互いに回転可能に連結されている。四本のバー74aと74bと75aと75bの両端部にある回転軸間の距離は同一である。バー75aと75b同士の連結部にはノブ76が設けられている。   The ends of the bars 74a and 74b are fixed to the pulleys 73a and 73b, respectively, and can turn around the rotation centers of the pulleys 73a and 73b. That is, the bars 74a and 74b can rotate around the same center. The other ends of the bars 74a and 74b are rotatably connected to the ends of the bars 75a and 75b by links, respectively, and the other ends of the bars 75a and 75b are rotatably connected to each other by links. The distance between the rotating shafts at both ends of the four bars 74a, 74b, 75a and 75b is the same. A knob 76 is provided at the connecting portion between the bars 75a and 75b.

四本のバー74aと74bと75aと75bは井桁状に組まれたリンク機構を構成しており、これによりノブ76は図8〜図10に示された円77の内部の範囲内を自由に移動され得る。ノブ76の移動に応じてプーリー73aと73bが回転され、プーリー73aと73bの回転はそれぞれベルト72aと72bを介してプーリー71aと71bに伝えられる。つまり、プーリー73aと73bとベルト72aと72bとプーリー71aと71bはそれぞれバー74aと74bの角度を回転機構52aと52bに伝達する伝達機構を構成している。   The four bars 74a, 74b, 75a, and 75b constitute a link mechanism assembled in a cross beam shape, so that the knob 76 can freely move within the range of the circle 77 shown in FIGS. Can be moved. The pulleys 73a and 73b are rotated according to the movement of the knob 76, and the rotations of the pulleys 73a and 73b are transmitted to the pulleys 71a and 71b through the belts 72a and 72b, respectively. That is, the pulleys 73a and 73b, the belts 72a and 72b, and the pulleys 71a and 71b constitute transmission mechanisms that transmit the angles of the bars 74a and 74b to the rotation mechanisms 52a and 52b, respectively.

プーリー71aと71bに固定されたウェッジプリズム51aと51bのウェッジ方向(厚みの最大増加方向)はバー74aと74bに平行に設定されている。さらにウェッジプリズム51aと51bのウェッジ方向はそれぞれバー74aと74bの基端(プーリー73aと73bとの固定端)から先端(バー75aと75bとの連結端)に向かう方向と同じ向きになるように設定されている。   The wedge direction (maximum increasing direction of the thickness) of the wedge prisms 51a and 51b fixed to the pulleys 71a and 71b is set parallel to the bars 74a and 74b. Further, the wedge directions of the wedge prisms 51a and 51b are respectively the same as the directions from the base ends of the bars 74a and 74b (fixed ends of the pulleys 73a and 73b) to the tips (the connecting ends of the bars 75a and 75b). Is set.

この操作機構において、プーリー73aと73bの回転中心を点O、バー74aとバー75aの連結点を点A、バー74bとバー75bの連結点を点B、バー75aとバー75bの連結点を点Cとすると、点Oに対する点Aと点Bと点Cの位置はそれぞれ図4の偏角ベクトルaとbとcに相当する。すなわち、ノブ76を移動させることは合成の偏角ベクトルcを入力することに相当し、バー74aと74bの方向が分解された偏角ベクトルaとbに相当する。バー74aと74bの方向はそれぞれウェッジプリズム51aと51bのウェッジ方向と同じに設定されているので、ノブ76の移動に追従して、ウェッジプリズム51aと51は、ノブ76の位置に対応する方向と大きさの偏角を発生させる配置角θaとθbにそれぞれ設定される。   In this operation mechanism, the center of rotation of the pulleys 73a and 73b is point O, the connection point of the bar 74a and bar 75a is point A, the connection point of the bar 74b and bar 75b is point B, and the connection point of the bar 75a and bar 75b is dotted. Assuming C, the positions of point A, point B, and point C with respect to point O correspond to the declination vectors a, b, and c in FIG. That is, moving the knob 76 corresponds to inputting a combined deflection angle vector c, and corresponds to the deflection angle vectors a and b in which the directions of the bars 74a and 74b are resolved. Since the direction of the bars 74a and 74b is set to be the same as the wedge direction of the wedge prisms 51a and 51b, the wedge prisms 51a and 51 follow the movement of the knob 76, and the direction corresponding to the position of the knob 76 The arrangement angles θa and θb for generating the magnitude declination are set.

すなわち、本実施形態の操作機構では、ノブ76の可動範囲である円77は観察視野に相当し、円77の範囲内におけるノブ76の位置は観察視野内における焦点検出系30の測定光の照射位置に相当する。つまり、ノブ76は、観察視野内における焦点検出系30の測定光の照射位置を指示する指示部として機能する。   That is, in the operation mechanism of the present embodiment, the circle 77 that is the movable range of the knob 76 corresponds to the observation visual field, and the position of the knob 76 within the circle 77 is irradiated with the measurement light of the focus detection system 30 in the observation visual field. Corresponds to position. That is, the knob 76 functions as an instruction unit that instructs the irradiation position of the measurement light of the focus detection system 30 within the observation visual field.

従って、本実施形態の操作機構を適用した測定顕微鏡装置では、測定点のアライメント作業の際に被検体21の像が移動されることがなく、アライメント作業は、作業者がノブ76を操作して円77の範囲内におけるノブ76の位置を指示することによって行われる。従って、作業者はアライメント作業を少ない負担で非常に容易に行える。   Therefore, in the measurement microscope apparatus to which the operation mechanism of the present embodiment is applied, the image of the subject 21 is not moved during the alignment operation of the measurement points, and the operator operates the knob 76 to perform the alignment operation. This is done by indicating the position of the knob 76 within the circle 77. Therefore, the operator can perform alignment work very easily with a small burden.

[変形例]
図11は本実施形態の操作機構の変形例を示している。本変形例の操作機構は、図8〜図10に示した操作機構に加えて、てこ部を有している。てこ部は、任意の方向に傾斜可能な操作棒81を有している。操作棒81は、中間部分に球状部82を有し、球状部82はジョイント83に自由に回転可能に支持されている。その結果、操作棒81は任意の方向に傾斜し得る。また操作棒81は球状の下端部84を有し、この下端部84はノブ76に形成された球状の凹部76aに係合している。その結果、操作棒81の傾斜方向と傾斜角度に応じてノブ76の位置が調整され、観察視野内における焦点検出系30の測定光の照射位置が調整される。
[Modification]
FIG. 11 shows a modification of the operation mechanism of the present embodiment. The operation mechanism of this modification has a lever part in addition to the operation mechanisms shown in FIGS. The lever portion has an operation rod 81 that can be tilted in an arbitrary direction. The operation rod 81 has a spherical portion 82 at an intermediate portion, and the spherical portion 82 is supported by a joint 83 so as to be freely rotatable. As a result, the operating rod 81 can be inclined in any direction. The operation rod 81 has a spherical lower end 84, and the lower end 84 is engaged with a spherical recess 76 a formed in the knob 76. As a result, the position of the knob 76 is adjusted according to the inclination direction and the inclination angle of the operation rod 81, and the irradiation position of the measurement light of the focus detection system 30 in the observation visual field is adjusted.

この変形例では好ましくは、ウェッジプリズム51aと51bのウェッジ方向はそれぞれバー74aと74bの基端(プーリー73aと73bとの固定端)から先端(バー75aと75bとの連結端)に向かう方向と逆の向きになるように設定されているとよい。これにより、操作棒81の上端部85の位置が、上から見て、観察視野内における焦点検出系30の測定光の照射位置と同じになり、操作性が向上する。   In this modification, preferably, the wedge directions of the wedge prisms 51a and 51b are the directions from the base ends of the bars 74a and 74b (fixed ends of the pulleys 73a and 73b) to the tips (the connecting ends of the bars 75a and 75b), respectively. It is good to set it so that it may become the reverse direction. Thereby, the position of the upper end portion 85 of the operation rod 81 is the same as the irradiation position of the measurement light of the focus detection system 30 in the observation field when viewed from above, and the operability is improved.

アライメント作業における作業者の手の動きは、てこ比(球状部82の中心を基準にして操作棒81の上側部分に対する下側部分の比)に従って減衰されてノブ76に伝えられる。このため、アライメント作業を精度良く行える。   The movement of the operator's hand in the alignment operation is attenuated according to the lever ratio (ratio of the lower portion to the upper portion of the operating rod 81 with respect to the center of the spherical portion 82) and transmitted to the knob 76. For this reason, alignment work can be performed with high accuracy.

例えば、本第三実施形態、および変形例において、プーリー73a、73bとプーリー71a、71bは同じ径で構成されているが、プーリー73a、73bに対して、プーリー71a、71bを異なる径としてもよい。この場合、プーリー71a、71bの回転範囲が視野に相当する範囲となるように支持点76の可動範囲に制限を設けるとなお良い。   For example, in the third embodiment and the modification, the pulleys 73a and 73b and the pulleys 71a and 71b are configured with the same diameter, but the pulleys 71a and 71b may have different diameters with respect to the pulleys 73a and 73b. . In this case, it is better to limit the movable range of the support point 76 so that the rotation range of the pulleys 71a and 71b is in a range corresponding to the visual field.

また、第一実施形態から第三実施形態では、ウェッジプリズム51aと51bのウェッジ角φwは観察視野の最外位置に焦点検出測定点がくるように設定されているが、これに限らず、観察視野の最外位置より内側となるように設定し、光学系収差のより少ない範囲で高精度な測定に使用することもできる。   In the first embodiment to the third embodiment, the wedge angle φw of the wedge prisms 51a and 51b is set so that the focus detection measurement point comes to the outermost position of the observation field of view. It can also be set so that it is inside the outermost position of the field of view, and can be used for high-accuracy measurement within a range with less optical system aberration.

これまで、図面を参照しながら本発明の実施形態を述べたが、本発明は、これらの実施形態に限定されるものではなく、その要旨を逸脱しない範囲において様々な変形や変更が施されてもよい。   The embodiments of the present invention have been described above with reference to the drawings. However, the present invention is not limited to these embodiments, and various modifications and changes can be made without departing from the scope of the present invention. Also good.

本発明の第一実施形態による測定顕微鏡装置を示している。1 shows a measurement microscope apparatus according to a first embodiment of the present invention. 図1に示されたウェッジプリズムのおのおのによって入射光線に与えられる偏角を示している。FIG. 2 shows the deflection angle given to the incident light by each of the wedge prisms shown in FIG. 図1に示された2つのウェッジプリズムによって入射光線に与えられる偏角を示している。FIG. 2 shows a declination angle given to an incident light beam by the two wedge prisms shown in FIG. 光軸に沿って見たウェッジプリズムからの射出光の偏角ベクトルを示している。The deflection angle vector of the emitted light from the wedge prism viewed along the optical axis is shown. 本発明の第二実施形態による測定顕微鏡装置を示している。3 shows a measurement microscope apparatus according to a second embodiment of the present invention. 図4と同じく、ウェッジプリズムからの射出光の偏角ベクトルを示している。As in FIG. 4, the declination vector of the light emitted from the wedge prism is shown. 図5に示された演算部による処理のフローチャートを示している。FIG. 6 is a flowchart of processing performed by a calculation unit illustrated in FIG. 5. FIG. 本発明の第三実施形態による操作機構を示している。7 shows an operating mechanism according to a third embodiment of the present invention. 図8の操作機構において別の配置角の状態を示している。FIG. 9 shows another arrangement angle state in the operation mechanism of FIG. 8. 図8の操作機構においてさらに別の配置角の状態を示している。The state of another arrangement angle is shown in the operation mechanism of FIG. 本発明の第三実施形態の操作機構の変形例を示している。The modification of the operation mechanism of 3rd embodiment of this invention is shown. 自動焦点検出機能を有する測定顕微鏡装置の従来例を示している。The prior art example of the measurement microscope apparatus which has an automatic focus detection function is shown.

符号の説明Explanation of symbols

10…観察光学系、11…対物レンズ、12…結像レンズ、13…接眼レンズ、15…Zステージ、17…ハーフミラー、21…被検体、22…XYステージ、30…焦点検出系、30’…焦点検出系、31…LED光源、32…ビームスプリッター、33…集光レンズ、33’…集光レンズ、34…ビームスプリッター、35a…開口、35b…開口、36a…光検出器、36b…光検出器、41…信号処理部、42…測定部、51…ウェッジプリズム、51a…ウェッジプリズム、51b…ウェッジプリズム、52a…回転機構、52b…回転機構、55…リレーレンズ、61…ドライバ、62…演算部、63…入力部、71a…プーリー、71b…プーリー、72a…ベルト、72b…ベルト、73a…プーリー、73b…プーリー、74a…バー、74b…バー、75a…バー、75b…バー、76…ノブ、76a…凹部、77…円、81…操作棒、82…球状部、83…ジョイント、84…下端部、85…上端部。 DESCRIPTION OF SYMBOLS 10 ... Observation optical system, 11 ... Objective lens, 12 ... Imaging lens, 13 ... Eyepiece lens, 15 ... Z stage, 17 ... Half mirror, 21 ... Subject, 22 ... XY stage, 30 ... Focus detection system, 30 ' DESCRIPTION OF SYMBOLS ... Focus detection system, 31 ... LED light source, 32 ... Beam splitter, 33 ... Condensing lens, 33 '... Condensing lens, 34 ... Beam splitter, 35a ... Aperture, 35b ... Aperture, 36a ... Photo detector, 36b ... Light Detector 41: Signal processing unit 42 ... Measuring unit 51 ... Wedge prism 51a ... Wedge prism 51b ... Wedge prism 52a ... Rotating mechanism 52b ... Rotating mechanism 55 ... Relay lens 61 ... Driver 62 ... Arithmetic unit, 63 ... input unit, 71a ... pulley, 71b ... pulley, 72a ... belt, 72b ... belt, 73a ... pulley, 73b ... pulley, 4a ... Bar, 74b ... Bar, 75a ... Bar, 75b ... Bar, 76 ... Knob, 76a ... Recess, 77 ... Circle, 81 ... Operation rod, 82 ... Spherical part, 83 ... Joint, 84 ... Lower end, 85 ... Upper end Department.

Claims (5)

被検体の近傍に配置される対物レンズを含む観察光学系と、
前記被検体と前記対物レンズとを相対的に前記観察光学系の光軸に沿って移動させる移動手段と、
前記対物レンズを介して被検体に測定光を照射するとともに前記被検体で反射された測定光に基づいて前記被検体に対する合焦を検出する焦点検出系と、
前記被検体に対する前記測定光の照射位置を移動させる光偏向手段とを備えている、測定顕微鏡。
An observation optical system including an objective lens disposed in the vicinity of the subject;
Moving means for relatively moving the subject and the objective lens along the optical axis of the observation optical system;
A focus detection system that irradiates the subject with measurement light through the objective lens and detects focus on the subject based on the measurement light reflected by the subject;
A measurement microscope comprising: an optical deflection unit that moves an irradiation position of the measurement light with respect to the subject.
前記焦点検出系による検出結果に基づいて前記移動手段を制御する制御手段をさらに備えている、請求項1に記載の測定顕微鏡装置。   The measurement microscope apparatus according to claim 1, further comprising a control unit that controls the moving unit based on a detection result by the focus detection system. 前記光偏向手段は、前記対物レンズの瞳位置と共役な位置又は近傍に配置された2つのウェッジプリズムと、前記ウェッジプリズムをそれぞれ光軸周りに回転させる2つの回転機構とを備えている、請求項1に記載の測定顕微鏡装置。   The light deflection unit includes two wedge prisms arranged at or near a position conjugate with a pupil position of the objective lens, and two rotation mechanisms for rotating the wedge prisms around an optical axis, respectively. Item 2. A measuring microscope apparatus according to Item 1. 前記光偏向手段は、観察視野内における測定位置を指示するための指示手段と、指示手段の出力からそれぞれのウェッジプリズムの配置角を算出する演算手段とをさらに備えている、請求項3に記載の測定顕微鏡装置。   The said light deflection | deviation means is further provided with the instruction | indication means to instruct | indicate the measurement position in an observation visual field, and the calculating means to calculate the arrangement | positioning angle of each wedge prism from the output of an instruction | indication means. Measuring microscope device. 前記光偏向手段は、前記回転機構を操作するための機械的な操作機構をさらに備え、前記操作機構は、二本の第一のバーと二本の第二のバーで構成されたリンク機構を含み、前記第一のバーは同一中心の周りに回転可能であり、前記第一のバーの他端部はそれぞれ前記第二のバーの一端部に回転可能に連結され、前記第二のバーの他端部は互いに回転可能に連結されており、前記操作機構はさらに、観察視野内における測定位置を指示するための指示部と、前記第一のバーの角度をそれぞれ回転機構に伝達する伝達機構とを有し、前記指示部は、第二のバー同士の連結部に設けられている、請求項3に記載の測定顕微鏡装置。   The light deflecting unit further includes a mechanical operation mechanism for operating the rotation mechanism, and the operation mechanism includes a link mechanism including two first bars and two second bars. The first bar is rotatable about the same center, and the other end of the first bar is rotatably connected to one end of the second bar, respectively. The other end portions are rotatably connected to each other, the operation mechanism further includes an instruction portion for instructing a measurement position in the observation field, and a transmission mechanism for transmitting the angle of the first bar to the rotation mechanism, respectively. The measurement microscope apparatus according to claim 3, wherein the instruction unit is provided at a connection portion between the second bars.
JP2006038222A 2006-02-15 2006-02-15 Measuring microscope equipment Expired - Fee Related JP4869727B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006038222A JP4869727B2 (en) 2006-02-15 2006-02-15 Measuring microscope equipment
TW096101830A TW200739124A (en) 2006-02-15 2007-01-17 Measurement microscope device
CN2007100049982A CN101021408B (en) 2006-02-15 2007-02-14 Microscope device
KR1020070015225A KR101283814B1 (en) 2006-02-15 2007-02-14 Microscope device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006038222A JP4869727B2 (en) 2006-02-15 2006-02-15 Measuring microscope equipment

Publications (2)

Publication Number Publication Date
JP2007218678A true JP2007218678A (en) 2007-08-30
JP4869727B2 JP4869727B2 (en) 2012-02-08

Family

ID=38496159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006038222A Expired - Fee Related JP4869727B2 (en) 2006-02-15 2006-02-15 Measuring microscope equipment

Country Status (4)

Country Link
JP (1) JP4869727B2 (en)
KR (1) KR101283814B1 (en)
CN (1) CN101021408B (en)
TW (1) TW200739124A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8873138B2 (en) 2011-09-19 2014-10-28 Samsung Electronics Co., Ltd. Auto focusing devices for optical microscopes

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2488909B1 (en) * 2009-10-16 2021-03-10 Thorlabs, Inc. Autofocus apparatus
CN104391371B (en) * 2014-12-19 2017-04-26 成都理工大学 Digital microscope and use method thereof
CN109799595A (en) * 2017-11-16 2019-05-24 长光华大基因测序设备(长春)有限公司 A kind of the inspection focus adjustment method and device of gene sequencer microcobjective
CN111665259A (en) * 2019-03-08 2020-09-15 深圳中科飞测科技有限公司 Detection device and detection method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235090A (en) * 1987-03-24 1988-09-30 Ngk Insulators Ltd Laser beam machining apparatus
JPH04352124A (en) * 1991-05-30 1992-12-07 Toshihiro Tsumura Optical axis deflection device for optical equipment
JPH07128014A (en) * 1993-09-09 1995-05-19 Topcon Corp Position detector
JPH08334317A (en) * 1995-06-09 1996-12-17 Olympus Optical Co Ltd Measuring microscope
JPH10133117A (en) * 1996-10-31 1998-05-22 Nikon Corp Microscope equipped with focus detecting device
JP2001066138A (en) * 1999-06-23 2001-03-16 Mitsubishi Precision Co Ltd Measuring system, and prism-type optical path control used for it
JP2001305420A (en) * 2000-04-24 2001-10-31 Shigeki Kasahara Automatic focusing device for microscope
JP2003131116A (en) * 2001-10-22 2003-05-08 Olympus Optical Co Ltd Focus detecting device
JP2003207731A (en) * 2002-01-15 2003-07-25 Yoshio Sozu Two-axial optical scanner
JP2003307681A (en) * 2002-04-17 2003-10-31 Olympus Optical Co Ltd Confocal scanning optical microscope

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3212691A1 (en) * 1982-04-05 1983-10-06 Zeiss Carl Fa PRISM COMPENSATOR FOR STEREOSCOPIC OBSERVATORS
CN87210363U (en) * 1987-07-25 1988-09-28 北京大学 New light beam-deflecting apparatus
TW555954B (en) * 2001-02-28 2003-10-01 Olympus Optical Co Confocal microscope, optical height-measurement method, automatic focusing method
US7324274B2 (en) * 2003-12-24 2008-01-29 Nikon Corporation Microscope and immersion objective lens
CN1300563C (en) * 2005-03-24 2007-02-14 华中科技大学 Minisize three-dimensional self-scanning confocal microscope

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235090A (en) * 1987-03-24 1988-09-30 Ngk Insulators Ltd Laser beam machining apparatus
JPH04352124A (en) * 1991-05-30 1992-12-07 Toshihiro Tsumura Optical axis deflection device for optical equipment
JPH07128014A (en) * 1993-09-09 1995-05-19 Topcon Corp Position detector
JPH08334317A (en) * 1995-06-09 1996-12-17 Olympus Optical Co Ltd Measuring microscope
JPH10133117A (en) * 1996-10-31 1998-05-22 Nikon Corp Microscope equipped with focus detecting device
JP2001066138A (en) * 1999-06-23 2001-03-16 Mitsubishi Precision Co Ltd Measuring system, and prism-type optical path control used for it
JP2001305420A (en) * 2000-04-24 2001-10-31 Shigeki Kasahara Automatic focusing device for microscope
JP2003131116A (en) * 2001-10-22 2003-05-08 Olympus Optical Co Ltd Focus detecting device
JP2003207731A (en) * 2002-01-15 2003-07-25 Yoshio Sozu Two-axial optical scanner
JP2003307681A (en) * 2002-04-17 2003-10-31 Olympus Optical Co Ltd Confocal scanning optical microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8873138B2 (en) 2011-09-19 2014-10-28 Samsung Electronics Co., Ltd. Auto focusing devices for optical microscopes

Also Published As

Publication number Publication date
TW200739124A (en) 2007-10-16
CN101021408B (en) 2010-08-25
CN101021408A (en) 2007-08-22
KR101283814B1 (en) 2013-07-08
KR20070082531A (en) 2007-08-21
JP4869727B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
EP2093536B1 (en) Measurement device and measurement method
JP5841750B2 (en) Autofocus device for microscope and appropriate autofocus aperture stop
JP5867194B2 (en) microscope
JP4869727B2 (en) Measuring microscope equipment
JP2006084794A (en) Observation device with focal position control mechanism
JP2007078485A (en) Auto-collimator and angle measuring device using it
JP7168798B2 (en) Method and Apparatus for Confirming Confocality of Scanning and Descanning Microscope Assemblies
JP2003533733A (en) Autofocusing equipment for optical equipment
US6875972B2 (en) Autofocus module for microscope-based systems
JP4587693B2 (en) Living body observation device
WO2020054043A1 (en) Optical device and microscope
JP3579630B2 (en) Microscope autofocus device
JP2007264322A (en) Infrared microscope
JP4228125B2 (en) microscope
JP2017012580A (en) Fundus imaging apparatus
JP2006039360A (en) In-vivo examination apparatus
JP2008233679A (en) Microscope instrument
JP2003131116A (en) Focus detecting device
JP3591952B2 (en) Fundus examination device
JP2003148939A (en) Autocollimator provided with microscope, and instrument for measuring shape using the same
JPH08334317A (en) Measuring microscope
JP2007195726A (en) Funduscopy apparatus
KR101202977B1 (en) Hybrid Microscope for Simultaneously Observing Surface and Inner Structure of Target Sample
JP2006118944A (en) Evaluation device of lens
JP3379928B2 (en) measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees