JP2007213891A - Power generation cell for solid oxide fuel cell - Google Patents

Power generation cell for solid oxide fuel cell Download PDF

Info

Publication number
JP2007213891A
JP2007213891A JP2006030734A JP2006030734A JP2007213891A JP 2007213891 A JP2007213891 A JP 2007213891A JP 2006030734 A JP2006030734 A JP 2006030734A JP 2006030734 A JP2006030734 A JP 2006030734A JP 2007213891 A JP2007213891 A JP 2007213891A
Authority
JP
Japan
Prior art keywords
bdc
solid electrolyte
power generation
particles
fuel electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006030734A
Other languages
Japanese (ja)
Inventor
Takashi Yamada
喬 山田
Kiichi Komada
紀一 駒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Materials Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2006030734A priority Critical patent/JP2007213891A/en
Priority to AT06713974T priority patent/ATE554507T1/en
Priority to US11/884,014 priority patent/US20090274941A1/en
Priority to EP06713974A priority patent/EP1850411B1/en
Priority to PCT/JP2006/302833 priority patent/WO2006088133A1/en
Publication of JP2007213891A publication Critical patent/JP2007213891A/en
Priority to US13/406,642 priority patent/US20120171595A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel electrode for a solid oxide fuel cell capable of efficiently generating electric power even when hydrogen gas containing unreformed residual hydrocarbon gas is used as fuel gas. <P>SOLUTION: In a power generation cell for the solid oxide fuel cell using a lanthanum gallate system oxide ion conductor as a solid electrolyte, forming a porous air electrode on one surface of the solid electrolyte, and forming the fuel electrode on the other surface, the fuel electrode is formed by adhering Ru-carried B-doped ceria (herein after called BDC) particles 3 formed by carrying Ru metal onto BDC on the skeleton surface of a porous mixture sinter 8 having the skeleton structure comprising a network of the BDC particles 4' and nickel oxide particles 4 represented by general formula: Ce<SB>1-m</SB>B<SB>m</SB>O<SB>2</SB>(in the formula, B represents one kind or two kinds or more selected from the group comprising Sm, Gd, Y, and Ca; and m is 0<m≤0.4), and the Ru-carried BDC particles 3 are most densely adhered on the interface between the fuel electrode and the solid electrolyte and on the skeleton surface of the porous mixture sinter in the vicinity of the interface. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、改質が不十分なために未改質の炭化水素ガスが微量残留している水素ガスを燃料ガスとして使用しても効率良く発電することができる固体電解質としてランタンガレート系電解質を用いた固体電解質形燃料電池用発電セルに関するものであり、さらに改質が不十分なために未改質の炭化水素ガスが微量残留している水素ガスを燃料ガスとして使用しても効率良く発電することができる固体電解質形燃料電池に関するものである。   The present invention provides a lanthanum gallate electrolyte as a solid electrolyte that can efficiently generate power even when hydrogen gas in which a small amount of unreformed hydrocarbon gas remains because of insufficient reforming is used as a fuel gas. It is related to the power generation cell for the solid oxide fuel cell used, and it can efficiently generate power even when hydrogen gas, which is a small amount of unreformed hydrocarbon gas due to insufficient reforming, is used as the fuel gas. The present invention relates to a solid oxide fuel cell that can be used.

固体電解質形燃料電池の構造は、一般に、酸化物からなる固体電解質の片面に空気極を積層し、固体電解質のもう一方の片面に燃料極を積層してなる構造を有している発電セルと、この発電セルの空気極の外側に空気極集電体を積層させ、一方、発電セルの燃料極の外側に燃料極集電体を積層させ、前記空気極集電体および燃料極集電体の外側にそれぞれセパレータを積層させた構造を有している。   The structure of a solid electrolyte fuel cell is generally a power generation cell having a structure in which an air electrode is laminated on one side of a solid electrolyte made of oxide and a fuel electrode is laminated on the other side of the solid electrolyte. The air electrode current collector is laminated outside the air electrode of the power generation cell, while the fuel electrode current collector is laminated outside the fuel electrode of the power generation cell. Each has a structure in which separators are laminated on the outside.

この固体電解質形燃料電池を作動させる燃料ガスとしては一般に水素ガスが用いられており、この水素ガスは水の電気分解によっても得られるが、この方法で得られた水素ガスは高純度ではあるもののコストがかかるところから、固体電解質形燃料電池の燃料ガスとして使用する水素ガスは一般に天然ガス、メタノール、石炭ガスなどの炭化水素ガスを改質して製造している。   Hydrogen gas is generally used as a fuel gas for operating this solid oxide fuel cell, and this hydrogen gas can also be obtained by electrolysis of water, although the hydrogen gas obtained by this method is of high purity. Because of the high cost, the hydrogen gas used as the fuel gas for the solid oxide fuel cell is generally produced by reforming a hydrocarbon gas such as natural gas, methanol, or coal gas.

前記低温タイプの固体電解質形燃料電池に組込まれる固体電解質の一つとして、ランタンガレート系酸化物イオン伝導体を用いることが知られており、このランタンガレート系酸化物イオン伝導体は、一般式:La1−XSrGa1−Y−ZMg(式中、A=Co、Fe、Ni、Cuの1種または2種以上、X=0.05〜0.3、Y=0〜0.29、Z=0.01〜0.3、Y+Z=0.025〜0.3)で表される酸化物イオン伝導体であることが知られている(特許文献1参照)。 As one of the solid electrolytes incorporated in the low-temperature type solid electrolyte fuel cell, it is known to use a lanthanum gallate-based oxide ion conductor. The lanthanum gallate-based oxide ion conductor has a general formula: la 1-X Sr X Ga 1 -Y-Z Mg Y a Z O 3 ( where, a = Co, Fe, Ni , 1 or more kinds of Cu, X = 0.05~0.3, Y = 0 to 0.29, Z = 0.01 to 0.3, Y + Z = 0.025 to 0.3) (refer to Patent Document 1). .

また、前記燃料極としては、B(ただし、BはSm、Gd、Y、Caの1種または2種以上)をドープしたセリア(以下、「BDC」という)粉末と酸化ニッケル粉末との混合粉末を焼結した多孔質混合焼結体を用いることが知られており、このBDCは一般式:Ce1−m(式中、BはSm、Gd、Y、Caの1種または2種以上、mは0<m≦0.4)で表されること、並びに前記BDCと酸化ニッケルからなる焼結体はBDC粒と酸化ニッケル粒が焼結してネットワークを組んでいる骨格構造を有することが知られている(特許文献2参照)。
特開平11−335164号公報 特開平11−297333号公報
The fuel electrode is a mixed powder of ceria (hereinafter referred to as “BDC”) doped with B (where B is one or more of Sm, Gd, Y, and Ca) and nickel oxide powder. It is known that a porous mixed sintered body obtained by sintering is used, and this BDC has a general formula: Ce 1-m B m O 2 (wherein B is one of Sm, Gd, Y, Ca or 2 or more, m is represented by 0 <m ≦ 0.4), and the sintered body made of BDC and nickel oxide is a skeletal structure in which BDC grains and nickel oxide grains are sintered to form a network It is known that it has (refer patent document 2).
Japanese Patent Laid-Open No. 11-335164 JP 11-297333 A

一般に、固体電解質形燃料電池の燃料ガスとして電気分解等により製造した高純度水素ガスを使用することが最も好ましいが、高純度水素ガスは比較的高価であるために、固体電解質形燃料電池用燃料ガスとして一般に炭化水素ガスを改質して製造した水素ガスが広く使用されている。しかし、かかる炭化水素ガスを改質して製造した水素ガスには未改質の炭化水素ガスが微量残留して混入していることが多く、かかる微量の炭化水素ガスが混入している水素燃料ガスを用いて発電を行うと、発電効率が低下する。したがって、微量の炭化水素ガスが混入している水素燃料ガスを用いても発電効率を低下させることのない固体電解質形燃料電池が求められていた。   In general, it is most preferable to use high-purity hydrogen gas produced by electrolysis or the like as the fuel gas of the solid electrolyte fuel cell. However, since the high-purity hydrogen gas is relatively expensive, the fuel for the solid oxide fuel cell In general, hydrogen gas produced by reforming hydrocarbon gas is widely used as the gas. However, hydrogen gas produced by reforming such hydrocarbon gas often contains a trace amount of unreformed hydrocarbon gas, and hydrogen fuel containing such a trace amount of hydrocarbon gas. When power generation is performed using gas, the power generation efficiency decreases. Therefore, there has been a demand for a solid oxide fuel cell that does not reduce power generation efficiency even when a hydrogen fuel gas mixed with a trace amount of hydrocarbon gas is used.

さらに、ランタンガレート系酸化物イオン伝導体を固体電解質とし、前記固体電解質の一方の面に多孔質の空気極が形成され、他方の面に多孔質の燃料極が成形された固体電解質形燃料電池用発電セルにおいて、前記燃料極における反応は主として三相界面(燃料極と電解質と燃料ガスが共存する部分)で起ることから、固体電解質形燃料電池用発電セルにおける三相界面が一層広くなるようにすればよいことが知られており、そのために、燃料極のBDCと酸化ニッケルの焼結体におけるBDC粒と酸化ニッケル粒の粒径を厚さ方向に変化させ、その粒径は固体電解質に近いほど微細にした粒径傾斜を有する構造にして三相界面を一層広くさせる試みもなされている。しかし、かかる燃料極は固体電解質との界面は広がるものの、BDC粒と酸化ニッケル粒の粒径が固体電解質に近いほど微細であるために三次元的広がりに乏しく、そのために燃料ガスの透過性が悪く、結果的に燃料ガスとの接触面積が少なくなり、その為に発電に必要な三相界面を実質的に広くすることができず、三相界面が期待したほど広がることがないことからこの燃料極を組み込んだ発電セルを有する固体電解質形燃料電池は十分な特性が得られていない。   Further, a solid electrolyte fuel cell in which a lanthanum gallate oxide ion conductor is a solid electrolyte, a porous air electrode is formed on one surface of the solid electrolyte, and a porous fuel electrode is formed on the other surface In the power generation cell for a fuel cell, the reaction at the fuel electrode mainly occurs at a three-phase interface (portion where the fuel electrode, the electrolyte, and the fuel gas coexist), so that the three-phase interface in the power cell for the solid oxide fuel cell becomes wider. For this purpose, the particle diameters of BDC particles and nickel oxide particles in the sintered body of BDC and nickel oxide of the fuel electrode are changed in the thickness direction, and the particle diameter is determined as a solid electrolyte. Attempts have been made to further widen the three-phase interface by making the structure having a grain size gradient that becomes finer as it approaches. However, although the interface between the fuel electrode and the solid electrolyte spreads, the BDC grains and the nickel oxide grains are finer as the particle diameter is closer to the solid electrolyte, so that the three-dimensional spread is poor. Unfortunately, as a result, the contact area with the fuel gas is reduced, so that the three-phase interface necessary for power generation cannot be substantially widened, and the three-phase interface does not expand as expected. A solid oxide fuel cell having a power generation cell incorporating a fuel electrode does not have sufficient characteristics.

本発明者等は、上述のような課題を解決すべく研究を行った。その結果、
(イ)BDC粒と酸化ニッケル粒がネットワークを組んでいる骨格構造を有する多孔質混合焼結体の骨格表面に、一般式:Ce1−m(式中、BはSm、Gd、Y、Ca内の1種または2種以上、mは0<m≦0.4)で表されるBDCにルテニウム金属を担持させてなる燃料極材料(以下、「Ru担持BDC」という)の粒子が焼着している燃料極を組み込んだ固体酸化物形燃料電池は、未改質の炭化水素ガスが微量残留している水素ガスを燃料ガスとして使用しても出力が落ちることがない、
(ロ)このRu担持BDC粒を従来よりも一層微細化し、この極めて微細なRu担持BDC粒を燃料極が固体電解質に接する界面およびその近傍の多孔質混合焼結体の骨格表面に最も多く固着させた構造を有する燃料極を固体電解質に積層させてなる固体電解質形燃料電池用発電セルは、三相界面を一層広くすることができ、さらにRu担持BDCを燃料極材料として使用することにより微量の未改質炭化水素ガスが混入している水素ガスを燃料ガスとして用いても発電効率を低下させることがない、
(ハ)前記多孔質混合焼結体の骨格表面に固着しているRu担持BDC粒は、粒径が100nm未満の極めて微細なRu担持BDC粒であることが好ましい、
(ニ)前記固体電解質に接する界面およびその近傍の多孔質混合焼結体の骨格表面に極めて微細なRu担持BDC粒を最も多く固着させた部分は、固体電解質の表面から10〜20μmの範囲の厚さにわたって形成されていることが好ましい、などの研究結果が得られたのである。
The present inventors conducted research to solve the above-described problems. as a result,
(A) On the skeleton surface of the porous mixed sintered body having a skeleton structure in which BDC grains and nickel oxide grains form a network, a general formula: Ce 1-m B m O 2 (where B is Sm, Gd , Y, Ca, one or more of them, and m is 0 <m ≦ 0.4) of a fuel electrode material (hereinafter referred to as “Ru-supported BDC”) in which ruthenium metal is supported on BDC A solid oxide fuel cell incorporating a fuel electrode in which particles are deposited does not decrease its output even when hydrogen gas in which a small amount of unreformed hydrocarbon gas remains is used as the fuel gas.
(B) The Ru-supported BDC grains are made finer than before, and the extremely fine Ru-supported BDC grains are most often fixed to the interface where the fuel electrode is in contact with the solid electrolyte and the skeleton surface of the porous mixed sintered body in the vicinity thereof. The power source cell for a solid oxide fuel cell in which the fuel electrode having the above structure is laminated on the solid electrolyte can further widen the three-phase interface, and further by using Ru-supported BDC as a fuel electrode material Even if hydrogen gas mixed with unreformed hydrocarbon gas is used as fuel gas, power generation efficiency is not reduced.
(C) The Ru-supported BDC particles fixed to the skeleton surface of the porous mixed sintered body are preferably extremely fine Ru-supported BDC particles having a particle size of less than 100 nm.
(D) The portion where the most extremely fine Ru-supported BDC particles are fixed to the skeleton surface of the porous mixed sintered body in the vicinity of the interface in contact with the solid electrolyte is in the range of 10 to 20 μm from the surface of the solid electrolyte. Research results such as being preferably formed over the thickness were obtained.

この発明は、かかる研究結果に基づいて成されたものであって、
(1)ランタンガレード系酸化物イオン伝導体を固体電解質とし、前記固体電解質の一方の面に多孔質の空気極が形成され、他方の面に多孔質の燃料極が成形された固体電解質形燃料電池用発電セルにおいて、
前記燃料極は、BDC粒と酸化ニッケル粒がネットワークを組んでいる骨格構造を有する多孔質混合焼結体の骨格表面にRu担持BDC粒が固着しており、このRu担持BDC粒は燃料極が固体電解質に接する界面およびその近傍の多孔質混合焼結体の骨格表面に最も多く固着している固体電解質形燃料電池用発電セル、
(2)前記多孔質混合焼結体の骨格表面に固着しているRu担持BDC粒は、粒径が100nm未満の微細なRu担持BDC粒である前記(1)記載の固体電解質形燃料電池用発電セル、
(3)前記燃料極が固体電解質に接する界面およびその近傍の多孔質混合焼結体の骨格表面にRu担持BDC粒が最も多く固着している部分は、固体電解質の表面から10〜20μmの範囲の厚さにわたって層状に形成されている前記(1)または(2)記載の固体電解質形燃料電池用発電セル、に特徴を有するものである。
The present invention has been made based on such research results,
(1) A solid electrolyte type in which a lanthanum galade oxide oxide ion conductor is a solid electrolyte, a porous air electrode is formed on one surface of the solid electrolyte, and a porous fuel electrode is formed on the other surface In power generation cells for fuel cells,
In the fuel electrode, Ru-supported BDC particles are fixed to the skeleton surface of a porous mixed sintered body having a skeleton structure in which BDC particles and nickel oxide particles form a network. A power generation cell for a solid oxide fuel cell that is most fixed to the skeleton surface of the porous mixed sintered body in the vicinity of the interface in contact with the solid electrolyte, and
(2) The Ru-supported BDC particles fixed to the skeleton surface of the porous mixed sintered body are fine Ru-supported BDC particles having a particle size of less than 100 nm. Power generation cells,
(3) The portion where the Ru-supported BDC particles are fixed most on the skeleton surface of the porous mixed sintered body near the interface where the fuel electrode is in contact with the solid electrolyte is in the range of 10 to 20 μm from the surface of the solid electrolyte. The power generation cell for a solid oxide fuel cell according to the above (1) or (2), which is formed in a layer shape over the thickness of the solid electrolyte fuel cell.

この発明の固体電解質形燃料電池用発電セルを図面に基づいて一層具体的に説明する。図1は、この発明の固体電解質形燃料電池用発電セルにおける固体電解質と燃料極の接合部分を示した断面説明図であり、空気極の記載は省略してある。図1において、1は固体電解質、2は燃料極、3はRu担持BDC粒、4は酸化ニッケル粒、4´はBDC粒である。図1に示されるように、酸化ニッケル粒4とBDC粒4´とはネットワークを組んでいる骨格構造を有する多孔質混合焼結体8を構成している。この多孔質混合焼結体8は酸化ニッケル粉末とBDC粉末の混合粉末を焼結して作製する。燃料極2は一般式:Ce1−m(式中、BはSm、Gd、Y、Caの1種または2種以上、mは0<m≦0.4)で表されるBDCにルテニウム金属を担持させてなるRu担持BDC粒3が多孔質混合焼結体8の骨格表面に固着している構造を有している。そして、このRu担持BDC粒3は燃料極2が固体電解質1に接する界面5およびその近傍の多孔質混合焼結体8の骨格表面に最も多く固着している。 The power generation cell for a solid oxide fuel cell according to the present invention will be described more specifically with reference to the drawings. FIG. 1 is a cross-sectional explanatory view showing a joining portion of a solid electrolyte and a fuel electrode in a power generation cell for a solid oxide fuel cell according to the present invention, and the description of an air electrode is omitted. In FIG. 1, 1 is a solid electrolyte, 2 is a fuel electrode, 3 is a Ru-supported BDC particle, 4 is a nickel oxide particle, and 4 'is a BDC particle. As shown in FIG. 1, nickel oxide particles 4 and BDC particles 4 ′ constitute a porous mixed sintered body 8 having a skeleton structure forming a network. This porous mixed sintered body 8 is produced by sintering a mixed powder of nickel oxide powder and BDC powder. The fuel electrode 2 is represented by a general formula: Ce 1-m B m O 2 (wherein B is one or more of Sm, Gd, Y, and Ca, and m is 0 <m ≦ 0.4). The Ru-supported BDC particles 3 in which ruthenium metal is supported on BDC are fixed to the skeleton surface of the porous mixed sintered body 8. The Ru-supported BDC particles 3 are most adhered to the interface 5 where the fuel electrode 2 is in contact with the solid electrolyte 1 and the skeleton surface of the porous mixed sintered body 8 in the vicinity thereof.

図1では、燃料極2が固体電解質1に接する界面5およびその近傍の多孔質混合焼結体8の骨格表面にRu担持BDC粒3の数が多く固着していることが示されている。また、前記多孔質混合焼結体8を作製するための酸化ニッケル粉末およびBDC粉末は粒径が0.5〜10μmの従来と同じかまたは従来よりも比較的粗大な酸化ニッケル粉末およびBDC粉末を使用して作製した多孔質混合焼結体を採用することが燃料ガスの透過性の向上という観点から好ましい。この多孔質混合焼結体8の骨格表面に固着しているRu担持BDC粒3は微細であるほど好ましく、100nm未満であることが好ましい。また、このRu担持BDC粒3が最も多く固着している部分は、図1に示されるように、厚さTが固体電解質の表面から10〜20μmの範囲の厚さにわたって層状に形成されていることが一層好ましい。厚さTが10μm未満では反応面積が小さすぎ、一方、20μmよりも厚くなると、燃料ガスの透過性が阻害されるようになるからである。   In FIG. 1, it is shown that a large number of Ru-supported BDC particles 3 are fixed to the interface 5 where the fuel electrode 2 is in contact with the solid electrolyte 1 and the skeleton surface of the porous mixed sintered body 8 in the vicinity thereof. Further, the nickel oxide powder and the BDC powder for producing the porous mixed sintered body 8 are the same as the conventional ones having a particle diameter of 0.5 to 10 μm or relatively coarser than the conventional ones. It is preferable to employ a porous mixed sintered body produced by use from the viewpoint of improving the permeability of fuel gas. The finer the Ru-supported BDC particles 3 fixed to the surface of the skeleton of the porous mixed sintered body 8, the better, and it is preferably less than 100 nm. Further, as shown in FIG. 1, the portion where the most Ru-supported BDC grains 3 are fixed is formed in a layered manner with a thickness T ranging from 10 to 20 μm from the surface of the solid electrolyte. More preferably. This is because when the thickness T is less than 10 μm, the reaction area is too small, whereas when the thickness T is greater than 20 μm, the permeability of the fuel gas is inhibited.

この発明の固体電解質形燃料電池用発電セルで使用される固体電解質は、一般式:La1−XSrGa1−Y−ZMg(式中、A=Co、Fe、Ni、Cuの1種または2種以上、X=0.05〜0.3、Y=0〜0.29、Z=0.01〜0.3、Y+Z=0.025〜0.3)で表される既に知られている酸化物イオン伝導体であり、また、この発明の固体電解質形燃料電池用発電セルで使用される燃料極は、Ru担持BDC粒が骨格構造を有する多孔質混合焼結体の骨格表面に固着した焼結体からなり、このRu担持BDCは一般式:Ce1−m(式中、BはSm、Gd、Y、Caの1種または2種以上、mは0<m≦0.4)で表される酸化物にルテニウム(Ru)金属を担持させてなる燃料極材料である。 The solid electrolyte used in the power generation cell for a solid electrolyte fuel cell of the present invention has a general formula: La 1-X Sr X Ga 1-YZ Mg Y A Z O 3 (where A = Co, Fe, 1 or 2 or more types of Ni and Cu, X = 0.05-0.3, Y = 0-0.29, Z = 0.01-0.3, Y + Z = 0.025-0.3) The fuel electrode used in the power generation cell for the solid oxide fuel cell according to the present invention is a porous mixed firing in which Ru-supported BDC grains have a skeleton structure. This Ru-supported BDC is composed of a sintered body fixed on the surface of the skeleton of the bonded body, and the Ru-supported BDC has a general formula: Ce 1-m B m O 2 , M is a fuel electrode material in which ruthenium (Ru) metal is supported on an oxide represented by 0 <m ≦ 0.4) It is.

この発明の固体電解質形燃料電池用発電セルを製造するには、まず、図2に示されるように、Ni酸化物粉末およびBDC粉末を固体電解質1の一方の面にスクリーン印刷などの方法により塗布し、大気中、温度:1000〜1200℃で焼き付けて酸化ニッケル粒4とBDC粒4´とがネットワークを組んでいる骨格構造を有する多孔質混合焼結体8を形成し、次に、図3に示されるようにRu担持BDC粒3が有機溶剤7に懸濁したスラリー6を前記多孔質混合焼結体8に含浸させる。このスラリー6を多孔質混合焼結体8に含浸させた状態に所定時間放置すると、図4に示されるように、Ru担持BDC粒3が沈降し、燃料極2が固体電解質1に接する界面5およびその近傍に多く堆積する。図4に示される状態で加熱乾燥させるとスラリーの有機溶剤が揮発し、その後、焼成することによりRu担持BDC粒3が多孔質混合焼結体8の骨格表面に固着した燃料極が生成する。この燃料極を用いて発電セルを作製し、この発電セル組み込んだ固体電解質形燃料電池に燃料ガスとしての水素ガスを流して発電すると、骨格構造を有する多孔質混合焼結体8を構成する酸化ニッケル粒4が還元されて金属ニッケル粒となる。   In order to manufacture the power generation cell for a solid electrolyte fuel cell of the present invention, first, as shown in FIG. 2, Ni oxide powder and BDC powder are applied to one surface of the solid electrolyte 1 by a method such as screen printing. Then, a porous mixed sintered body 8 having a skeleton structure in which nickel oxide grains 4 and BDC grains 4 'form a network is formed by baking at a temperature of 1000 to 1200 ° C. in the atmosphere. The porous mixed sintered body 8 is impregnated with the slurry 6 in which the Ru-supported BDC particles 3 are suspended in the organic solvent 7 as shown in FIG. When the slurry 6 is left in a state where the porous mixed sintered body 8 is impregnated for a predetermined time, as shown in FIG. 4, the Ru-supported BDC particles 3 settle and the fuel electrode 2 contacts the solid electrolyte 1. And much deposits in the vicinity. When heated and dried in the state shown in FIG. 4, the organic solvent in the slurry is volatilized and then fired to produce a fuel electrode in which the Ru-supported BDC particles 3 are fixed to the skeleton surface of the porous mixed sintered body 8. When a power generation cell is produced using this fuel electrode, and power is generated by flowing hydrogen gas as a fuel gas through the solid electrolyte fuel cell in which this power generation cell is incorporated, oxidation that constitutes a porous mixed sintered body 8 having a skeleton structure is formed. The nickel particles 4 are reduced to metal nickel particles.

この発明の燃料極を設けてなる発電セルを組込んだ固体酸化物型燃料電池は、燃料ガスとして極微量の炭化水素ガスが残留する改質不十分な水素ガスを用いて発電しても発電効率を低下させることがないことから、燃料ガスである水素ガスの純度に関係なく高効率で発電することができる。   A solid oxide fuel cell incorporating a power generation cell provided with a fuel electrode according to the present invention generates power even when power is generated using an insufficiently reformed hydrogen gas in which a trace amount of hydrocarbon gas remains as a fuel gas. Since the efficiency is not reduced, power can be generated with high efficiency regardless of the purity of the hydrogen gas that is the fuel gas.

酸化ランタン、炭酸ストロンチウム、酸化ガリウム、酸化マグネシウム、酸化コバルトの粉体を用意し、(La0.8Sr0.2)(Ga0.8Mg0.15Co0.05)Oで示される組成となるよう秤量し、ボールミル混合の後、空気中、1200℃に3時間加熱保持し、得られた塊状焼結体をハンマーミルで粗粉砕の後、ボールミルで微粉砕して、平均粒径1.3μmのランタンガレート系固体電解質原料粉末を製造した。前記ランタンガレート系固体電解質原料粉末をトルエン-エタノール混合溶媒にポリビニルブチラルとフタル酸Nジオクチルを溶解した有機バインダー溶液と混合してスラリーとし、ドクターブレード法で薄板状に成形し、円形に切りだした後、空気中、1450℃に6時間加熱保持して焼結し、厚さ200μm、直径120mmの円板状のランタンガレート系固体電解質板を製造した。 A powder of lanthanum oxide, strontium carbonate, gallium oxide, magnesium oxide, and cobalt oxide is prepared, and is represented by (La 0.8 Sr 0.2 ) (Ga 0.8 Mg 0.15 Co 0.05 ) O 3. Weighed to a composition, mixed in a ball mill, heated and held in air at 1200 ° C. for 3 hours, and coarsely ground the resulting sintered body with a hammer mill and then finely ground with a ball mill to obtain an average particle size. A 1.3 μm lanthanum gallate solid electrolyte raw material powder was produced. The lanthanum gallate solid electrolyte raw material powder is mixed with an organic binder solution in which polyvinyl butyral and N-dioctyl phthalate are dissolved in a toluene-ethanol mixed solvent to form a slurry, which is formed into a thin plate by the doctor blade method and cut into a circle. After that, it was heated and held in air at 1450 ° C. for 6 hours to sinter to produce a disc-shaped lanthanum gallate solid electrolyte plate having a thickness of 200 μm and a diameter of 120 mm.

このランタンガレート系固体電解質板の表面に平均粒径1μmのNiO粉末および平均粒径0.5μmの(Ce0.8Sm0.2)O粉末をトルエン-エタノール混合溶媒にポリビニルブチラルとフタル酸Nジオクチルを溶解した有機バインダー溶液と混合してスラリーとし、このスラリーをスクリーン印刷法で、前記ランタンガレート系固体電解質の一方の面に、平均厚さ:20μmになるようにスラリーを塗布し、加熱乾燥して有機バインダー溶液を蒸発させたのち空気中、1200℃に3時間加熱保持の焼結を行うことにより、ランタンガレート系固体電解質板の表面に多孔質混合焼結体層を成形した。 On the surface of this lanthanum gallate-based solid electrolyte plate, NiO powder having an average particle diameter of 1 μm and (Ce 0.8 Sm 0.2 ) O 2 powder having an average particle diameter of 0.5 μm were mixed with toluene-ethanol mixed solvent with polyvinyl butyral and phthalate The slurry is mixed with an organic binder solution in which acid N-dioctyl is dissolved, and this slurry is applied to one surface of the lanthanum gallate solid electrolyte by screen printing so that the average thickness is 20 μm. After evaporating the organic binder solution by heating and drying, the porous mixed sintered body layer was formed on the surface of the lanthanum gallate solid electrolyte plate by sintering by heating at 1200 ° C. for 3 hours in the air.

さらに、0.5mol/Lの硝酸セリウム水溶液8部と0.5mol/Lの硝酸サマリウム水溶液2部の混合水溶液に1mol/Lの水酸化ナトリウム水溶液を攪拌しながら滴下し、酸化セリウムと酸化サマリウムを共沈させた。次いで、生成した粉末を遠心分離機を用いて沈降させ、上澄みを捨て、蒸留水を加えて攪拌・洗浄し、遠心分離機を用いて再度沈降させ、この操作を6回繰り返して洗浄した。次いで、遠心分離機で沈降させ、エタノールを加えて攪拌し、遠心分離機を用いて再度沈降させ、この操作を3回繰り返して溶液を水からエタノールに置換し、(Ce0.8Sm0.2)Oの超微粉末を含むエタノール溶液を作製した。得られた(Ce0.8Sm0.2)O超微粉末を含むエタノール溶液の一部を取りだし、(Ce0.8Sm0.2)O超微粉末の粒径をレーザー回折法で測定したところ、平均粒径:0.04μmを有していることが分かった(この平均粒径:0.04μmを有する(Ce0.8Sm0.2)O超微粉末を「SDC超微粉末」という)。 Further, a 1 mol / L sodium hydroxide aqueous solution was dropped into a mixed aqueous solution of 8 parts of 0.5 mol / L cerium nitrate aqueous solution and 2 parts of 0.5 mol / L samarium nitrate aqueous solution while stirring, and cerium oxide and samarium oxide were added. Co-precipitated. Next, the produced powder was settled using a centrifuge, the supernatant was discarded, distilled water was added, stirred and washed, and then settled again using a centrifuge, and this operation was repeated 6 times and washed. Next, the solution is precipitated using a centrifuge, ethanol is added and stirred, and the solution is precipitated again using a centrifuge. This operation is repeated three times to replace the solution with water from ethanol (Ce 0.8 Sm 0. 2 ) An ethanol solution containing an ultra fine powder of O 2 was prepared. A part of the ethanol solution containing the obtained (Ce 0.8 Sm 0.2 ) O 2 ultrafine powder was taken out, and the particle size of the (Ce 0.8 Sm 0.2 ) O 2 ultrafine powder was determined by a laser diffraction method. The average particle size was found to be 0.04 μm (this average particle size: (Ce 0.8 Sm 0.2 ) O 2 ultrafine powder having 0.04 μm was “SDC”. Called "ultrafine powder").

このSDC超微粉末を含むエタノール溶液に、ポリビニルピロリドン、塩化ルテニウムを添加し、撹拌したのちさらに温度を上げながら撹拌してRu担持混合溶液を作製し、得られたRu担持混合溶液を遠心分離により洗浄を繰り返し行い、Ru担持SDC超微粉末を含むスラリーを作製した。
得られたRu担持SDC超微粉末を含むスラリーの一部を取りだし、Ru担持SDC超微粉末の粒径をレーザー回折法で測定したところ、平均粒径40nmであった。
前記Ru担持SDC超微粉末を含むスラリーを、先に作製したランタンガレート系固体電解質板の表面の多孔質混合焼結体層に含浸させ、かかる状態に0.5時間静止保持してRu担持SDC超微粉末を沈降させた後、100℃に加熱乾燥することによりエタノール溶液を蒸発させ、その後、空気中、700℃で焼成することによりランタンガレート系固体電解質の一方の面に燃料極を焼付け形成した。
このようにして得られたランタンガレート系固体電解質の一方の面に焼きつけた燃料極のミクロ組織の一部を走査形電子顕微鏡により観察した結果、Ru担持SDCの超微粒の平均粒径は40nmであることが分かった。
次に、図示してはないが、前記サマリウムストロンチウムコバルタイト系空気極原料粉をトルエン-エタノール混合溶媒にポリビニルブチラルとフタル酸Nジオクチルを溶解した有機バインダー溶液と混合してスラリーを作製し、このスラリーをランタンガレート系固体電解質の燃料極と反対側の他方の面にスクリーン印刷法により厚さ:30μmになるように成形し乾燥したのち、空気中、1100℃に3時間加熱保持して、空気極を成形・焼きつけることにより固体電解質、燃料極および空気極からなる本発明固体電解質形燃料電池用発電セル(以下、本発明発電セルと言う)を製造した。
Polyvinylpyrrolidone and ruthenium chloride are added to the ethanol solution containing the ultrafine SDC powder, and after stirring, the mixture is further stirred while raising the temperature to prepare a Ru-supported mixed solution. The resulting Ru-supported mixed solution is centrifuged. Washing was repeated to prepare a slurry containing Ru-supported SDC ultrafine powder.
A part of the obtained slurry containing the Ru-supported SDC ultrafine powder was taken out, and the particle size of the Ru-supported SDC ultrafine powder was measured by a laser diffraction method. As a result, the average particle size was 40 nm.
The slurry containing the Ru-supported SDC ultrafine powder is impregnated into the porous mixed sintered body layer on the surface of the lanthanum gallate-based solid electrolyte plate prepared previously, and kept in this state for 0.5 hours, and then Ru-supported SDC. After precipitating the ultrafine powder, the ethanol solution is evaporated by heating and drying to 100 ° C, and then firing at 700 ° C in air to burn the fuel electrode on one surface of the lanthanum gallate solid electrolyte. did.
As a result of observing a part of the microstructure of the fuel electrode baked on one surface of the lanthanum gallate solid electrolyte thus obtained with a scanning electron microscope, the average particle size of the ultrafine particles of Ru-supported SDC was 40 nm. I found out.
Next, although not shown in the drawing, the samarium strontium cobaltite-based air electrode raw material powder is mixed with an organic binder solution in which polyvinyl butyral and N-dioctyl phthalate are dissolved in a toluene-ethanol mixed solvent to prepare a slurry, This slurry was formed on the other surface of the lanthanum gallate solid electrolyte opposite to the fuel electrode by a screen printing method to a thickness of 30 μm and dried, and then heated and held at 1100 ° C. for 3 hours in air. A power generation cell for a solid electrolyte fuel cell of the present invention (hereinafter referred to as the present power generation cell) comprising a solid electrolyte, a fuel electrode and an air electrode was produced by molding and baking the air electrode.

得られた本発明発電セルの燃料極の上に厚さ0.74mmの多孔質ニッケルからなる燃料極集電体を積層し、一方、本発明発電セルの空気極の上に厚さ1.0mmの多孔質銀からなる空気極集電体を積層し、さらに前記燃料極集電体および空気極集電体の上にセパレータを積層することにより本発明固体電解質形燃料電池を作製した。   A fuel electrode current collector made of porous nickel having a thickness of 0.74 mm was laminated on the fuel electrode of the power generation cell of the present invention, while the thickness of 1.0 mm was formed on the air electrode of the power generation cell of the present invention. A solid electrolyte fuel cell of the present invention was produced by laminating an air electrode current collector made of porous silver and laminating a separator on the fuel electrode current collector and the air electrode current collector.

さらに比較のために、下記に示される方法で従来固体電解質形燃料電池を作製した。まず、1N−硝酸ニッケル水溶液、1N−硝酸セリウム水溶液を1N−硝酸サマリウム水溶液をそれぞれ用意し、NiOと(Ce0.8Sm0.2)Oが体積比率で60:40になるように秤量し、混合して、霧化器で溶液を霧化し、空気をキャリヤーガスとして縦型管状炉に導入、1000℃に加熱して、NiOと(Ce0.8Sm0.2)Oが体積比率で60:40となる酸化物混合粉末を得た。この酸化物混合粉末を用いてスラリーを作製し、このスラリーを用いて先に作製したランタンガレート系固体電解質の一方の面に塗布し燒結して燃料極を形成し、さらに空気極を形成して従来発電セルを製造した。この従来発電セルの片面に厚さ1mmの多孔質ニッケルからなる燃料極集電体を積層しさらにその上にセパレータを積層し、一方、従来の発電セルの他方の片面に厚さ1.2mmの多孔質銀からなる空気極集電体を積層しさらにセパレータを積層することにより従来固体電解質形燃料電池を作製した。
このようにして得られた本発明固体電解質形燃料電池および従来固体電解質形燃料電池を用いて、次の条件(燃料ガスとして改質不十分な5%炭化水素含有の水素ガスを用いた条件)で発電試験を実施し、その結果を表1に示した。
<発電試験>
温度:750℃、
燃料ガス:水素(5%炭化水素含有)、
燃料ガス流量:0.34L/min(=3cc/nin/cm2)、
酸化剤ガス:空気、
酸化剤ガス流量:1.7L/min(=15cc/nin/cm2)、
の発電条件で発電させ、セル電圧、出力、出力密度および発電効率を測定し、その結果を表1に示した。
For comparison, a conventional solid oxide fuel cell was produced by the method shown below. First, a 1N-nickel nitrate aqueous solution, a 1N-cerium nitrate aqueous solution, and a 1N-samarium nitrate aqueous solution were prepared, and NiO and (Ce 0.8 Sm 0.2 ) O 2 were weighed so that the volume ratio was 60:40. And mixing, atomizing the solution with an atomizer, introducing air as a carrier gas into a vertical tubular furnace, heating to 1000 ° C., and volume of NiO and (Ce 0.8 Sm 0.2 ) O 2 An oxide mixed powder having a ratio of 60:40 was obtained. A slurry is prepared using this oxide mixed powder, applied to one surface of the lanthanum gallate solid electrolyte prepared previously using this slurry, and sintered to form a fuel electrode, and further an air electrode is formed. Conventional power generation cells were manufactured. A fuel electrode current collector made of porous nickel having a thickness of 1 mm is laminated on one side of the conventional power generation cell, and a separator is further laminated thereon, while a thickness of 1.2 mm is formed on the other side of the conventional power generation cell. A conventional solid electrolyte fuel cell was fabricated by laminating an air electrode current collector made of porous silver and further laminating a separator.
Using the solid electrolyte fuel cell of the present invention and the conventional solid electrolyte fuel cell thus obtained, the following conditions (conditions using 5% hydrocarbon-containing hydrogen gas that is insufficiently reformed as the fuel gas): A power generation test was carried out, and the results are shown in Table 1.
<Power generation test>
Temperature: 750 ° C.
Fuel gas: hydrogen (containing 5% hydrocarbon),
Fuel gas flow rate: 0.34 L / min (= 3 cc / nin / cm 2 ),
Oxidant gas: air,
Oxidant gas flow rate: 1.7 L / min (= 15 cc / nin / cm 2 ),
The cell voltage, output, output density and power generation efficiency were measured under the power generation conditions, and the results are shown in Table 1.

Figure 2007213891
表1に示される結果から、本発明固体電解質形燃料電池と従来固体電解質形燃料電池とは、燃料極の構成が相違するのみで、その他の構成は同じであるが、改質不十分なために炭化水素ガスが残留する水素ガスを燃料ガスとして用いた条件で発電を行った場合、本発明固体電解質形燃料電池は従来固体電解質形燃料電池と比べて、負荷電流密度、燃料利用率、セル電圧、出力、出力密度、および発電効率がいずれも優れた値を示すことがわかる。
Figure 2007213891
From the results shown in Table 1, the solid electrolyte fuel cell of the present invention and the conventional solid electrolyte fuel cell differ only in the configuration of the fuel electrode and the other configurations are the same, but the reforming is insufficient. When the power generation is performed under the condition that the hydrogen gas in which the hydrocarbon gas remains is used as the fuel gas, the solid electrolyte fuel cell of the present invention has a load current density, fuel utilization rate, cell It can be seen that the voltage, output, output density, and power generation efficiency all show excellent values.

この発明の燃料極の構成を説明するための断面説明図である。It is a section explanatory view for explaining the composition of the fuel electrode of this invention. この発明の燃料極の製造方法を説明するための断面説明図である。It is a section explanatory view for explaining the manufacturing method of the fuel electrode of this invention. この発明の燃料極の製造方法を説明するための断面説明図である。It is a section explanatory view for explaining the manufacturing method of the fuel electrode of this invention. この発明の燃料極の製造方法を説明するための断面説明図である。It is a section explanatory view for explaining the manufacturing method of the fuel electrode of this invention.

符号の説明Explanation of symbols

1:固体電解質、2:燃料極、3:Ru担持BDC粒、4:酸化ニッケル粒、4´:BDC粒、5:界面、6:スラリー、7:有機溶剤、8:多孔質混合焼結体 1: solid electrolyte, 2: fuel electrode, 3: Ru-supported BDC particle, 4: nickel oxide particle, 4 ′: BDC particle, 5: interface, 6: slurry, 7: organic solvent, 8: porous mixed sintered body

Claims (4)

ランタンガレード系酸化物イオン伝導体を固体電解質とし、前記固体電解質の一方の面に多孔質の空気極が形成され、他方の面に多孔質の燃料極が成形された固体電解質形燃料電池用発電セルにおいて、
前記燃料極は、一般式:Ce1−m(式中、BはSm、Gd、Y、Ca内の1種または2種以上、mは0<m≦0.4)で表されるBドープされたセリア(以下、BDCという)粒と酸化ニッケル粒とがネットワークを組んでいる骨格構造を有する多孔質混合焼結体の骨格表面に、BDCにルテニウム金属を担持させてなる燃料極材料(以下、この燃料極材料を「Ru担持BDC」という)の粒が固着しており、このRu担持BDC粒は燃料極が固体電解質に接する界面およびその近傍の多孔質混合焼結体の骨格表面に最も多く固着していることを特徴とする固体電解質形燃料電池用発電セル。
For a solid oxide fuel cell in which a lanthanum galide-based oxide ion conductor is a solid electrolyte, a porous air electrode is formed on one surface of the solid electrolyte, and a porous fuel electrode is formed on the other surface In the power generation cell,
The fuel electrode is represented by a general formula: Ce 1-m B m O 2 (wherein B is one or more of Sm, Gd, Y, and Ca, and m is 0 <m ≦ 0.4). Formed by supporting ruthenium metal on BDC on the skeleton surface of a porous mixed sintered body having a skeleton structure in which B-doped ceria (hereinafter referred to as BDC) grains and nickel oxide grains form a network. Particles of an electrode material (hereinafter, this fuel electrode material is referred to as “Ru-supported BDC”) are fixed, and the Ru-supported BDC particles are formed at the interface where the fuel electrode contacts the solid electrolyte and the porous mixed sintered body in the vicinity thereof. A power generation cell for a solid oxide fuel cell, characterized in that it adheres most to the surface of the skeleton.
前記多孔質混合焼結体の骨格表面に固着しているRu担持BDC粒は、粒径が100nm未満の微細なRu担持BDC粒であることを特徴とする請求項1記載の固体電解質形燃料電池用発電セル。 2. The solid oxide fuel cell according to claim 1, wherein the Ru-supported BDC particles fixed to the skeleton surface of the porous mixed sintered body are fine Ru-supported BDC particles having a particle diameter of less than 100 nm. Power generation cell. 前記燃料極が固体電解質に接する界面およびその近傍の多孔質混合焼結体の骨格表面にRu担持BDC粒が最も多く固着している部分は、固体電解質の表面から10〜20μmの範囲の厚さにわたって層状に形成されていることを特徴とする請求項1または2記載の固体電解質形燃料電池用発電セル。 The portion where the Ru-supported BDC particles are most fixed to the interface of the fuel electrode in contact with the solid electrolyte and the skeleton surface of the porous mixed sintered body in the vicinity thereof has a thickness in the range of 10 to 20 μm from the surface of the solid electrolyte. 3. The power generation cell for a solid oxide fuel cell according to claim 1, wherein the power generation cell is formed in a layered manner over the entire surface. 請求項1、2または3記載の固体電解質形燃料電池用発電セルを組み込んだことを特徴とする固体電解質形燃料電池。 4. A solid oxide fuel cell comprising the solid oxide fuel cell power generation cell according to claim 1, 2 or 3.
JP2006030734A 2005-02-18 2006-02-08 Power generation cell for solid oxide fuel cell Withdrawn JP2007213891A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006030734A JP2007213891A (en) 2006-02-08 2006-02-08 Power generation cell for solid oxide fuel cell
AT06713974T ATE554507T1 (en) 2005-02-18 2006-02-17 POWER GENERATION CELL FOR A SOLID ELECTROLYTE FUEL BATTERY AND STRUCTURE OF THE FUEL ELECTRODE IN THE CELL
US11/884,014 US20090274941A1 (en) 2005-02-18 2006-02-17 Power Generation Cell for Solid Electrolyte Fuel Cell and Structure of Fuel Electrode Thereof
EP06713974A EP1850411B1 (en) 2005-02-18 2006-02-17 Power generation cell for solid electrolyte fuel battery and structure of fuel electrode in said cell
PCT/JP2006/302833 WO2006088133A1 (en) 2005-02-18 2006-02-17 Power generation cell for solid electrolyte fuel battery and structure of fuel electrode in said cell
US13/406,642 US20120171595A1 (en) 2005-02-18 2012-02-28 Power generation cell for solid electrolyte fuel cell and structure of fuel electrode thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006030734A JP2007213891A (en) 2006-02-08 2006-02-08 Power generation cell for solid oxide fuel cell

Publications (1)

Publication Number Publication Date
JP2007213891A true JP2007213891A (en) 2007-08-23

Family

ID=38492141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006030734A Withdrawn JP2007213891A (en) 2005-02-18 2006-02-08 Power generation cell for solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP2007213891A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010044934A (en) * 2008-08-12 2010-02-25 Casio Comput Co Ltd Fuel cell, and manufacturing method for fuel cell
CN103796775A (en) * 2011-09-16 2014-05-14 独立行政法人科学技术振兴机构 Ruthenium microparticles having essentially face-centered cubic structure and method for producing same
JP2019029356A (en) * 2017-08-01 2019-02-21 国立研究開発法人物質・材料研究機構 Anode material of solid oxide fuel battery, method for manufacturing the same, and solid oxide fuel battery
JP2020149796A (en) * 2019-03-11 2020-09-17 住友電気工業株式会社 Method for manufacturing hydrogen electrode-solid electrolyte layer composite, method for manufacturing cell structure, and method for manufacturing fuel battery
CN115318284A (en) * 2022-09-06 2022-11-11 上海应用技术大学 Ru-based catalyst and preparation method and application thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010044934A (en) * 2008-08-12 2010-02-25 Casio Comput Co Ltd Fuel cell, and manufacturing method for fuel cell
CN103796775A (en) * 2011-09-16 2014-05-14 独立行政法人科学技术振兴机构 Ruthenium microparticles having essentially face-centered cubic structure and method for producing same
JP2019029356A (en) * 2017-08-01 2019-02-21 国立研究開発法人物質・材料研究機構 Anode material of solid oxide fuel battery, method for manufacturing the same, and solid oxide fuel battery
JP7076788B2 (en) 2017-08-01 2022-05-30 国立研究開発法人物質・材料研究機構 Anodic material for solid oxide fuel cell and its manufacturing method, and solid oxide fuel cell
JP2020149796A (en) * 2019-03-11 2020-09-17 住友電気工業株式会社 Method for manufacturing hydrogen electrode-solid electrolyte layer composite, method for manufacturing cell structure, and method for manufacturing fuel battery
JP7086017B2 (en) 2019-03-11 2022-06-17 住友電気工業株式会社 A method for manufacturing a hydrogen electrode-solid electrolyte layer composite, a method for manufacturing a cell structure, and a method for manufacturing a fuel cell.
CN115318284A (en) * 2022-09-06 2022-11-11 上海应用技术大学 Ru-based catalyst and preparation method and application thereof
CN115318284B (en) * 2022-09-06 2024-02-27 上海应用技术大学 Ru-based catalyst and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US20120171595A1 (en) Power generation cell for solid electrolyte fuel cell and structure of fuel electrode thereof
JP5270885B2 (en) Fuel electrode for solid oxide electrochemical cell, method for producing the same, and solid oxide electrochemical cell
JP2009064641A (en) Fuel electrode of solid oxide electrochemical cell, its manufacturing method, and solid oxide electrochemical cell
JP4931362B2 (en) Fuel cell and fuel cell
JP5613286B2 (en) Solid oxide electrochemical cell anode and solid oxide electrochemical cell
JP2008010411A (en) Electrolyte membrane for electrochemical cell, and manufacturing method therefor
JP2017145445A (en) Electrode for electrochemical cell and electrochemical cell
JP2007213891A (en) Power generation cell for solid oxide fuel cell
JP2002298878A (en) Air electrode collector and solid electrolyte fuel cell with the air electrode collector integrated therein
JP6805054B2 (en) Steam electrolysis cell
JP2006228587A (en) Fuel electrode of power generation cell for solid electrolyte fuel cell
JP2010232134A (en) Durable fuel electrode and solid oxide fuel battery incorporating this fuel electrode
JP2010232135A (en) Durable fuel electrode and solid oxide fuel battery incorporating the fuel electrode
US20090098436A1 (en) Power generation cell for solid electrolyte fuel cell
JP2007095673A (en) Power generation cell for solid electrolyte fuel cells
JP5093741B2 (en) Power generation cell for solid oxide fuel cell and manufacturing method thereof
JP2007213889A (en) Power generation cell for solid oxide fuel cell
KR101218602B1 (en) The Manufacturing method of Low Temperature Operating Solid Oxide Fuel Cell composed Silver Nano Particles and Solid Oxide Fuel Cell manufactured thereby
JP6562623B2 (en) Mixed air electrode material for solid oxide fuel cell and solid oxide fuel cell
JP5243782B2 (en) Solid oxide fuel cell
JP2005166640A (en) Power generation cell of solid electrolyte fuel cell
JP2012156097A (en) Fuel electrode of power generation cell of solid oxide fuel cell
JP2006024545A (en) Power generation cell for solid electrolyte fuel battery
JP2007213890A (en) Fuel electrode material constituting fuel electrode in power generation cell for solid oxide fuel cell
JP5626837B2 (en) Method for producing nickel-based alloy powder

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090512