JP2007211378A - Fiber comprising 4-methyl-1-pentene-based polymer and use thereof - Google Patents

Fiber comprising 4-methyl-1-pentene-based polymer and use thereof Download PDF

Info

Publication number
JP2007211378A
JP2007211378A JP2006033559A JP2006033559A JP2007211378A JP 2007211378 A JP2007211378 A JP 2007211378A JP 2006033559 A JP2006033559 A JP 2006033559A JP 2006033559 A JP2006033559 A JP 2006033559A JP 2007211378 A JP2007211378 A JP 2007211378A
Authority
JP
Japan
Prior art keywords
methyl
fiber
pentene
polymer
porous sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006033559A
Other languages
Japanese (ja)
Inventor
Tatsuya Tanizaki
達也 谷崎
Jun Kodama
順 兒玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2006033559A priority Critical patent/JP2007211378A/en
Publication of JP2007211378A publication Critical patent/JP2007211378A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide fibers comprising a 4-methyl-1-pentene-based polymer and having an average fiber diameter of ≤2 μm, to provide a porous sheet, a porous sheet for a gas-permeable film, and a battery separator including the fibers. <P>SOLUTION: The fibers having an average fiber diameter of ≤2 μm are obtained by melt-spinning a specific 4-methyl-1-pentene-based polymer having a melt flow rate (MFR) of 100 to 500 g/10 min and a molecular weight distribution (Mw/Mn) of 2 to 10. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、特定の4−メチル−1−ペンテン系重合体を成形して得られる平均繊維径が2μm以下である繊維並びに、該繊維からなる多孔質シート、ガス透過フィルム用多孔質シートおよびバッテリーセパレータに関する。 The present invention relates to a fiber having an average fiber diameter of 2 μm or less obtained by molding a specific 4-methyl-1-pentene polymer, a porous sheet comprising the fiber, a porous sheet for a gas permeable film, and a battery It relates to a separator.

4−メチル−1−ペンテン系重合体からなる繊維は、その誘電特性、耐熱性、耐薬品性、撥水性および成形性を生かして、ガス透過フィルム用多孔質シート等の各種の分離膜、電池用、電解コンデンサーキャパシター、ポリマー電池用のセパレータ用途に広く使用されている。 A fiber made of 4-methyl-1-pentene polymer is used for various separation membranes such as a porous sheet for gas permeable film, a battery, taking advantage of its dielectric properties, heat resistance, chemical resistance, water repellency and moldability. It is widely used for separators for electric capacitors, electrolytic capacitors, and polymer batteries.

従来の4−メチル−1−ペンテン系重合体を使用した溶融紡糸では、極細の繊維を得るには、溶融樹脂温度、紡糸エア量等の紡糸条件幅が極めて狭く、十分な細さの極細繊維を安定して生産性することが困難であり、また繊維径が安定した良好な品質の繊維が得られない問題がある。   In melt spinning using a conventional 4-methyl-1-pentene polymer, an ultrafine fiber having a sufficiently narrow spinning condition width such as a molten resin temperature and a spinning air amount is required to obtain an ultrafine fiber. It is difficult to achieve stable productivity, and good quality fibers with stable fiber diameter cannot be obtained.

特許文献1には、分岐α−オレフィン重合体として4−メチル−1−ペンテンを使用した繊維質多孔質シートからなる繊維径2.5μmのバッテリーセパレータ、また特許文献2にはポリメチルペンテンのメルトブロー不織布からなる繊維径3.9μmの耐熱性セパレータが開示されている。しかしながら使用されている繊維の繊維径が十分な細さを有していないことから、セパレータ特性の改善、即ち、繊維質多孔性シートの最大孔径が大きくなり電解質またはイオンのセパレータ性能が不十分となること等、さらなる改善が求められている。   Patent Document 1 discloses a battery separator having a fiber diameter of 2.5 μm made of a fibrous porous sheet using 4-methyl-1-pentene as a branched α-olefin polymer, and Patent Document 2 discloses a melt blow of polymethylpentene. A heat-resistant separator made of a nonwoven fabric and having a fiber diameter of 3.9 μm is disclosed. However, since the fiber diameter of the fiber used is not sufficiently thin, the separator characteristics are improved, that is, the maximum pore diameter of the fibrous porous sheet is increased and the separator performance of the electrolyte or ions is insufficient. There is a need for further improvements.

また特許文献3にはメルトインデックスが100〜800g/分であるポリメチルペンテン樹脂を用いたポリメチルペンテン極細繊維ウエブが開示されているが、得られる繊維径は2.9μmであり、十分満足できる繊維が得られていない。
特開2003−142064号公報 特開2002−124238号公報 特開平4−327258号公報
Patent Document 3 discloses a polymethylpentene ultrafine fiber web using a polymethylpentene resin having a melt index of 100 to 800 g / min, but the obtained fiber diameter is 2.9 μm, which is sufficiently satisfactory. Fiber is not obtained.
JP 2003-142064 A JP 2002-124238 A JP-A-4-327258

本発明は、特定の4−メチル−1−ペンテン系重合体を成形して得られる平均繊維径が2μm以下である繊維並びに、該繊維からなる多孔質シート、ガス透過フィルム用多孔質シートおよびバッテリーセパレータを提供することである。 The present invention relates to a fiber having an average fiber diameter of 2 μm or less obtained by molding a specific 4-methyl-1-pentene polymer, a porous sheet comprising the fiber, a porous sheet for a gas permeable film, and a battery It is to provide a separator.

本発明者らは、上記問題点を解決するため鋭意検討した結果、特定の4−メチル−1−ペンテン系重合体を用いることで、平均繊維径が2μm以下の繊維を得ることができ、該繊維を多孔質シート、ガス透過フィルム用多孔質シートおよびバッテリーセパレータ用途に好適に使用できることを見出し、本発明を完成するに至った。
即ち、本発明は、
As a result of intensive studies to solve the above problems, the present inventors can obtain fibers having an average fiber diameter of 2 μm or less by using a specific 4-methyl-1-pentene polymer, The inventors have found that the fibers can be suitably used for porous sheets, porous sheets for gas permeable films, and battery separators, and have completed the present invention.
That is, the present invention

[1]4−メチル−1−ペンテン系重合体を成形して得られる、平均繊維径が2μm以下の繊維の提供。
[2]4−メチル−1−ペンテン系重合体が、4−メチル−1−ペンテンに由来する構成単位90〜100質量%および4−メチル−1−ペンテン以外の炭素原子数2〜20のオレフィンに由来する構成単位0〜10質量%を含む、前記[1]に記載の繊維の提供。
[3]炭素原子数2〜20のオレフィンが、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセンおよび1−オクタデセンから選ばれる少なくとも1種である、前記[2]に記載の繊維の提供。
[4]4−メチル−1−ペンテン系重合体が、4−メチル−1−ペンテンの単独重合体であり、平均繊維径が0.5〜2μmである、前記[1]に記載の繊維の提供。
[5]4−メチル−1−ペンテン系重合体のメルトフローレート(MFR)が100〜500g/10分、分子量分布(Mw/Mn)が2〜10である、前記[1]〜[4]に記載の繊維の提供。
[6]4−メチル−1−ペンテン系重合体の結晶化温度(Tc)が200〜225℃である、前記[1]〜[5]に記載の繊維の提供。
[7]前記[1]〜[6]に記載の繊維を成形して得られる多孔質シート、ガス透過フィルム用多孔質シートおよびバッテリーセパレータを提供することである。
[1] Provision of a fiber having an average fiber diameter of 2 μm or less obtained by molding a 4-methyl-1-pentene polymer.
[2] The 4-methyl-1-pentene polymer is an olefin having 2 to 20 carbon atoms other than 90 to 100% by mass of structural units derived from 4-methyl-1-pentene and 4-methyl-1-pentene. Provision of the fiber as described in said [1] containing the structural unit 0-10 mass% derived from.
[3] The fiber according to [2], wherein the olefin having 2 to 20 carbon atoms is at least one selected from 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene and 1-octadecene. Provided.
[4] The fiber according to [1], wherein the 4-methyl-1-pentene polymer is a homopolymer of 4-methyl-1-pentene and has an average fiber diameter of 0.5 to 2 μm. Provided.
[5] The melt flow rate (MFR) of the 4-methyl-1-pentene polymer is 100 to 500 g / 10 minutes, and the molecular weight distribution (Mw / Mn) is 2 to 10, the above [1] to [4] Provision of the fiber described in 1.
[6] The provision of the fiber according to the above [1] to [5], wherein the crystallization temperature (Tc) of the 4-methyl-1-pentene polymer is 200 to 225 ° C.
[7] To provide a porous sheet obtained by molding the fiber according to [1] to [6], a porous sheet for gas permeable film, and a battery separator.

本発明の特定の4−メチル−1−ペンテン系重合体を成形して得られる繊維は、誘電特性、耐熱性、耐薬品性、撥水性に優れ、特に極めて細い繊維を得ることができることから、柔軟性、バッテリーセパレータ用途に使用する場合はセパレータ特性に優れる。さらに、繊維をメルトブローン成形する際に、溶融樹脂温度、紡糸エア量、紡糸エア温度等の制御条件の幅を広くすることができ、工業的価値が極めて高い。 The fiber obtained by molding the specific 4-methyl-1-pentene polymer of the present invention is excellent in dielectric properties, heat resistance, chemical resistance, and water repellency, and in particular, an extremely thin fiber can be obtained. Excellent flexibility and separator characteristics when used for battery separators. Further, when the fiber is blown blown, the range of control conditions such as the molten resin temperature, the spinning air amount, and the spinning air temperature can be widened, and the industrial value is extremely high.

以下、本発明に係る4−メチル−1−ペンテン系重合体からなる繊維並びに、該繊維を用いた多孔質シート、ガス透過フィルム用多孔質シートおよびバッテリーセパレータについて詳細に説明する。 Hereinafter, the fiber consisting of 4-methyl-1-pentene polymer according to the present invention, the porous sheet using the fiber, the porous sheet for gas permeable film, and the battery separator will be described in detail.

[4−メチル−1−ペンテン系重合体]
本発明で用いられる4−メチル−1−ペンテン系重合体は、耐熱性、機械的特性を考慮すると、4−メチル−1−ペンテンに由来する構成単位を90〜100質量%、好ましくは95〜100質量%、さらに好ましくは97〜100質量%、4−メチル−1−ペンテン以外の炭素原子数2〜20のオレフィンに由来する構成単位を0〜10質量%、好ましくは0〜5質量%、さらに好ましくは0〜3質量%からなる4−メチル−1−ペンテンの単独重合体または4−メチル−1−ペンテンと4−メチル−1−ペンテン以外のオレフィンとの共重合体である。また共重合体としてはランダム共重合体であることが好ましい。
[4-Methyl-1-pentene polymer]
In consideration of heat resistance and mechanical properties, the 4-methyl-1-pentene polymer used in the present invention contains 90 to 100% by mass of a structural unit derived from 4-methyl-1-pentene, preferably 95 to 95%. 100% by mass, more preferably 97-100% by mass, 0-10% by mass of a structural unit derived from an olefin having 2-20 carbon atoms other than 4-methyl-1-pentene, preferably 0-5% by mass, More preferably, it is a homopolymer of 4-methyl-1-pentene comprising 0 to 3% by mass or a copolymer of 4-methyl-1-pentene and an olefin other than 4-methyl-1-pentene. The copolymer is preferably a random copolymer.

さらに耐熱性が高く、平均繊維径が極めて細い繊維を得るためには、4−メチル−1−ペンテンの単独重合体であることが好ましい。
また、共重合成分となりうる炭素原子数2〜20のα−オレフィンとしては、エチレン、プロピレン、1−ブテン、1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセンなどを例示することができ、特に好ましくは1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン及び1−エイコセンである。
上記共重合体においてこれらのオレフィンが1種のみならず2種以上共重合されたものであってもよい。
Furthermore, in order to obtain a fiber having high heat resistance and an extremely thin average fiber diameter, a homopolymer of 4-methyl-1-pentene is preferable.
Examples of the α-olefin having 2 to 20 carbon atoms that can be a copolymerization component include ethylene, propylene, 1-butene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1- Hexadecene, 1-octadecene, 1-eicocene and the like can be exemplified, and particularly preferred are 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene and 1-eicocene.
In the above copolymer, these olefins may be copolymerized not only in one kind but also in two or more kinds.

上記のような4−メチル−1−ペンテン系重合体は、立体特異性触媒を使用して製造することが可能であり、例えばマグネシウム担持型チタン触媒、メタロセン触媒などが挙げられ、例えば国際公開特許WO01/53369、国際公開特許WO01/27124、特開平3-193796号公報あるいは特開平02-41303号公報中に記載の触媒の存在下に、前記4−メチル−1−ペンテン単独または4−メチル−1−ペンテンと4−メチル−1−ペンテン以外の炭素原子数2〜20のオレフィンとを、重合または共重合することにより得ることができる。   The 4-methyl-1-pentene polymer as described above can be produced using a stereospecific catalyst, and examples thereof include a magnesium-supported titanium catalyst and a metallocene catalyst. In the presence of the catalyst described in WO01 / 53369, International Patent Publication WO01 / 27124, JP-A-3-19396 or JP-A-02-41303, 4-methyl-1-pentene alone or 4-methyl- It can be obtained by polymerizing or copolymerizing 1-pentene and an olefin having 2 to 20 carbon atoms other than 4-methyl-1-pentene.

また、本発明の4−メチル−1−ペンテン系重合体には、本発明の目的を損なわない範囲で、従来公知の酸化防止剤、耐熱安定剤、耐候安定剤等の各種配合剤を添加して用いてもよく、種々公知の方法、例えばV-ブレンダー、リボンブレンダー、ヘンシェルミキサー、タンブラーブレンダーで混合する方法、あるいは前記ブレンダーで混合した後、単軸押し出し機、複軸押し出し機、ニーダー、バンバリーミキサー等で溶融混錬して造粒あるいは紛砕して用いてもよい。   The 4-methyl-1-pentene polymer of the present invention is added with various compounding agents such as conventionally known antioxidants, heat stabilizers, weathering stabilizers and the like within a range not impairing the object of the present invention. Various known methods such as V-blender, ribbon blender, Henschel mixer, tumbler blender, or after blending with the blender, single screw extruder, double screw extruder, kneader, banbury It may be used after being melt kneaded with a mixer or the like and granulated or pulverized.

また、4−メチル−1−ペンテン系重合体としては、十分な機械的強度を有し、平均繊維径2μm以下の繊維を得るためには、ASTM D1238に準拠して、温度260℃、荷重5kgで測定したメルトフローレート(MFR)が100〜500g/10分、さらに200〜500g/10分の範囲であることが好ましい。
4−メチル−1−ペンテン系重合体のMFRの制御は、該重合体の重合に際して重合反応系に水素を供給することで、得られる重合体のMFR値を高くすることができる。また、重合反応により得られた4−メチル−1−ペンテン系重合体を、溶融混練等することで、さらに過酸化物を添加して溶融混練等することでMFR値を高くすることができ、これらの方法を適宜組み合わせてMFR値を制御することができる。
In addition, as a 4-methyl-1-pentene polymer, in order to obtain a fiber having sufficient mechanical strength and an average fiber diameter of 2 μm or less, a temperature of 260 ° C. and a load of 5 kg in accordance with ASTM D1238. It is preferable that the melt flow rate (MFR) measured in step 100 is in the range of 100 to 500 g / 10 minutes, more preferably 200 to 500 g / 10 minutes.
The MFR of the 4-methyl-1-pentene polymer can be controlled by supplying hydrogen to the polymerization reaction system during the polymerization of the polymer to increase the MFR value of the resulting polymer. In addition, by melt-kneading the 4-methyl-1-pentene polymer obtained by the polymerization reaction, the MFR value can be increased by further adding a peroxide and melt-kneading. The MFR value can be controlled by appropriately combining these methods.

また分子量分布(Mw/Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)(Waters社製、alliance2000型)を用いて、カラムに東ソー社(GMHタイプ)、移動層にo−ジクロルベンゼンを使用して、ポリスチレンスタンダードによって較正して得られる分子量(重量平均分子量Mw、数平均分子量Mn)から求めることができ、最適な分子量分布(Mw/Mn)は2〜10、好ましくは2〜8、さらに好ましくは2〜5である。   The molecular weight distribution (Mw / Mn) was determined by using gel permeation chromatography (GPC) (Waters, alliance 2000 type), Tosoh (GMH type) for the column, and o-dichlorobenzene for the moving bed. The molecular weight (weight average molecular weight Mw, number average molecular weight Mn) obtained by calibrating with polystyrene standards can be determined, and the optimal molecular weight distribution (Mw / Mn) is 2 to 10, preferably 2 to 8, more preferably. Is 2-5.

4−メチル−1−ペンテン系重合体のMw/Mnは、使用する重合触媒の種類、重合条件等により制御可能であり、特にメタロセン触媒を使用することでMw/Mnが狭い重合体を得ることができる。   Mw / Mn of 4-methyl-1-pentene polymer can be controlled by the type of polymerization catalyst used, polymerization conditions, etc., and in particular, a polymer having a narrow Mw / Mn can be obtained by using a metallocene catalyst. Can do.

MFRおよびMw/Mnが上記範囲内であると、紡糸に際して4−メチル−1−ペンテン系重合体の溶融粘度を下げるために過度の加熱を必要とすることが無く、該重合体の熱分解による紡糸ノズルの閉塞、糸切れ、焼け焦げなどの異物の発生による生産性の低下を改善することができ、また紡糸に際しての操作条件幅を広く設定することができる。
さらに溶融粘度の変動を抑えることができることから、繊維径が均一な繊維を得ることができる。
When MFR and Mw / Mn are within the above ranges, excessive heating is not required for spinning to lower the melt viscosity of the 4-methyl-1-pentene polymer during spinning. The reduction in productivity due to the occurrence of foreign matters such as spinning nozzle blockage, yarn breakage, and scorching can be improved, and the operating condition range during spinning can be set wide.
Furthermore, since the fluctuation | variation of melt viscosity can be suppressed, a fiber with a uniform fiber diameter can be obtained.

また、示差走査熱量計(DSC)を用いて、空気中、300℃まで加熱後、5分間ホールドし、20℃/分の降温速度で測定した結晶化温度(Tc)は200〜225℃、好ましくは210〜225℃であり、このような温度範囲であると、繊維をメルトブローン成形した際に、繊維切れが少ないく加工性に優れることから好ましい。
また、示差走査熱量計(DSC)を用いて、空気中、20℃/分の昇温速度の条件で測定した融点(Tm)は210〜245℃、好ましくは230〜245℃である。
このような繊維は、ガス透過フィルム用多孔質シートおよびバッテリーセパレータ等に好適に使用することができる。
The crystallization temperature (Tc) measured at a rate of temperature decrease of 20 ° C./min is preferably 200 to 225 ° C., preferably after heating to 300 ° C. using a differential scanning calorimeter (DSC). Is in the range of 210 to 225 ° C., and such a temperature range is preferable because when the fiber is melt blown, there is little fiber breakage and excellent workability.
Moreover, melting | fusing point (Tm) measured on the conditions of the temperature increase rate of 20 degree-C / min in the air using a differential scanning calorimeter (DSC) is 210-245 degreeC, Preferably it is 230-245 degreeC.
Such fibers can be suitably used for porous sheets for gas permeable films, battery separators, and the like.

[本発明の繊維]
本発明の繊維は、上記の4−メチル−1−ペンテン系重合体を成形して得られる繊維であり、平均繊維径は2μm以下、好ましくは0.5〜2μm、さらに好ましくは1〜2μmの繊維である。平均繊維径とは、光学顕微鏡(50倍)により任意の5ヶ所の外径を観測して得られた値を平均化した値である。
本発明の繊維は上記の4−メチル−1−ペンテン系重合体を溶融紡糸することで得ることができ、スパンボンド法、メルトブローン法等の公知の方法で成形して得ることができる。例えばメルトブローン法では目的とする繊維径にもよるが、上記の4−メチル−1−ペンテン系重合体を、押出機を用いて、樹脂の押出温度250〜380℃で該押出機に装着されたノズル孔を有するメルトブロー紡糸金型(ノズル孔径0.1〜1mm)から溶融している重合体を吐出し、該樹脂をメルトブロー紡糸金型に隣接して設置された紡糸エア出口から、高温、高速のエア(紡糸エア量10〜100Nm/kg)を噴射せしめて、吐出された溶融した重合体を繊維化することで得ることができる。
[Fiber of the present invention]
The fiber of the present invention is a fiber obtained by molding the above 4-methyl-1-pentene polymer, and the average fiber diameter is 2 μm or less, preferably 0.5 to 2 μm, more preferably 1 to 2 μm. Fiber. An average fiber diameter is the value which averaged the value obtained by observing the outer diameters of arbitrary five places with an optical microscope (50 times).
The fiber of the present invention can be obtained by melt spinning the above-mentioned 4-methyl-1-pentene polymer, and can be obtained by molding by a known method such as a spunbond method or a melt blown method. For example, in the melt blown method, although depending on the target fiber diameter, the above 4-methyl-1-pentene polymer was attached to the extruder at an extrusion temperature of 250 to 380 ° C. using an extruder. A melted polymer is discharged from a melt blow spinning mold having a nozzle hole (nozzle hole diameter of 0.1 to 1 mm), and the resin is discharged from a spinning air outlet installed adjacent to the melt blow spinning mold at high temperature and high speed. The air (spinning air amount: 10 to 100 Nm 3 / kg) is injected and the discharged molten polymer is made into a fiber.

[多孔質シート]
多孔質シートとは、4−メチル−1−ペンテン系重合体からなる繊維が交絡して有孔シートを形成しているものである。
多孔質シートは、例えばメルトブローン成形によって得られる不織布を、その厚みと空隙を減ずるように押圧加工することによって得ることができる。
[Porous sheet]
With a porous sheet, the fiber which consists of 4-methyl- 1-pentene type polymer is entangled and forms the perforated sheet.
The porous sheet can be obtained by, for example, pressing a non-woven fabric obtained by melt blown molding so as to reduce its thickness and voids.

本発明の多孔質シートは、誘電特性、耐熱性、耐薬品性、撥水性に優れ、特に極めて細い繊維を得ることができることから、柔軟性、セパレータ特性に優れ、バッテリーセパレータ、ガス透過フィルムに好適に使用することができる。   The porous sheet of the present invention is excellent in dielectric properties, heat resistance, chemical resistance, and water repellency, and can obtain extremely fine fibers. Therefore, it has excellent flexibility and separator properties, and is suitable for battery separators and gas permeable films. Can be used for

[ガス透過フィルム]
ガス透過フィルムとは、上記本発明の4−メチル−1−ペンテン系重合体を成形して得られる繊維からなる多孔質シートを、ガス透過フィルム用途に使用するものであり、4−メチル−1−ペンテン系重合体を成形して得られる繊維からなる多孔質シートと他のフィルムとを積層して用いられる。具体的には青果物用の鮮度保持フィルム、酸素吸収剤や吸湿剤の包装フィルム、使い捨ておむつ、住宅用の透湿性防水材などに好適に使用することができる。
[Gas permeable film]
The gas permeable film is a porous sheet made of fibers obtained by molding the 4-methyl-1-pentene polymer of the present invention, and is used for gas permeable film. -A porous sheet made of fibers obtained by molding a pentene polymer and another film are laminated and used. Specifically, it can be suitably used for a freshness-keeping film for fruits and vegetables, a packaging film of an oxygen absorbent or a hygroscopic agent, a disposable diaper, a moisture-permeable waterproof material for housing, and the like.

[バッテリーセパレータ]
バッテリーセパレータとは、上記本発明の4−メチル−1−ペンテン系重合体を成形して得られる繊維からなる多孔質シートを、バッテリーセパレータとして使用するものである。
バッテリーセパレータである多孔質シートの厚みは、5〜100μm、好ましくは7〜80μm、目付けは5〜50g/m、好ましくは10〜20g/m、空隙率は10〜70%、好ましくは40〜70%、最大孔径は30μm以下、好ましくは15μm以下、平均孔径は3〜20μm、さらに5〜10μmの範囲にあることが好ましい。
また、シート厚み(μm)/目付け(g/m)比が1.0〜5.0、さらに1.5〜3.0程度の範囲にあることが好ましい。
[Battery separator]
The battery separator uses a porous sheet made of fibers obtained by molding the 4-methyl-1-pentene polymer of the present invention as a battery separator.
The thickness of the porous sheet as the battery separator is 5 to 100 μm, preferably 7 to 80 μm, the basis weight is 5 to 50 g / m 2 , preferably 10 to 20 g / m 2 , and the porosity is 10 to 70%, preferably 40 It is preferable that the average pore diameter is in the range of ˜70%, the maximum pore diameter is 30 μm or less, preferably 15 μm or less, and the average pore diameter is 3 to 20 μm, more preferably 5 to 10 μm.
The sheet thickness (μm) / weight per unit area (g / m 2 ) ratio is preferably in the range of about 1.0 to 5.0, more preferably about 1.5 to 3.0.

上記のような特性を有する多孔質シートは、4−メチル−1−ペンテン系重合体を成形して得られる平均繊維径が0.5〜2μm、好ましくは1〜2.0μmであるメルトブローン不織布を、その厚みと空隙を減ずるように押圧加工することによって得ることができる。すなわち繊維径があまり大きすぎると、押圧加工後の多孔シートの最大孔径が大きくなりすぎ、セパレータ性能を損なう恐れがあるため、0.5〜2μm程度の細い繊維が適している。   The porous sheet having the characteristics as described above is a melt-blown nonwoven fabric having an average fiber diameter of 0.5 to 2 μm, preferably 1 to 2.0 μm, obtained by molding a 4-methyl-1-pentene polymer. It can be obtained by pressing so as to reduce the thickness and the gap. That is, if the fiber diameter is too large, the maximum pore diameter of the porous sheet after pressing is too large, and the separator performance may be impaired. Therefore, a thin fiber of about 0.5 to 2 μm is suitable.

本発明の4−メチル−1−ペンテン系重合体を成形して得られる繊維からなる多孔質シートをバッテリーセパレータとして使用することにより、膜厚を薄くでき、また電池組立て時や使用時に必要とされる機械的強度を有している。さらに充分な電気絶縁性を有しており、リチウムイオン電池のバッテリーセパレータとして使用したときには、電解液に対して化学的に安定であると共に、電気化学的にも安定である。また電解液を保持した状態で電解質やイオンの透過性がよく、電気抵抗が低い。さらに短絡電流が流れて発生する熱により温度上昇しても、変形に対する抵抗力が強く、形状保持性に優れているので安全性が高い。したがって、リチウムイオン電池のバッテリーセパレータとして好適である。
By using a porous sheet made of fibers obtained by molding the 4-methyl-1-pentene-based polymer of the present invention as a battery separator, the film thickness can be reduced, and it is required when assembling and using the battery. It has mechanical strength. Furthermore, it has sufficient electrical insulation, and when used as a battery separator of a lithium ion battery, it is chemically stable to the electrolyte and is also electrochemically stable. In addition, electrolyte and ion permeability are good with the electrolytic solution held, and electric resistance is low. Furthermore, even if the temperature rises due to heat generated by the flow of a short-circuit current, the resistance to deformation is strong and the shape retainability is excellent, so the safety is high. Therefore, it is suitable as a battery separator for lithium ion batteries.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。また、各物性値は以下の方法にて評価した。
[メルトフローレート(MFR)]
ASTM D1238に準じ、荷重5.0kg、温度260℃で測定した。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples. Each physical property value was evaluated by the following method.
[Melt flow rate (MFR)]
According to ASTM D1238, the load was 5.0 kg and the temperature was 260 ° C.

[分子量分布(Mw/Mn)]
ゲルパーミエーションクロマトグラフィー(GPC)(Waters社製、alliance2000型)を用いて、カラムに東ソー社(GMHタイプ)、移動層にo−ジクロルベンゼンを使用して、ポリスチレン換算の重量平均分子量(Mw)、および数平均分子量(Mn)を求め、分子量分布(Mw/Mn)を算出した。
[Molecular weight distribution (Mw / Mn)]
Weight average molecular weight (Mw) in terms of polystyrene using gel permeation chromatography (GPC) (Waters, Alliance 2000 type), Tosoh (GMH type) for the column and o-dichlorobenzene for the moving bed. ) And a number average molecular weight (Mn), and a molecular weight distribution (Mw / Mn) was calculated.

[結晶化温度(Tc)、融点(Tm)]
示差走査熱量計(DSC)(パーキンエルマー社製、PYRIS-I型)を用い、試料5mgを空気雰囲気下300℃で5分加熱させた後、20℃/分の降温速度で結晶化させ、発熱曲線を求め、そのピーク温度で結晶化温度(Tc)を示した。さらに室温まで冷却後、20℃/分の昇温速度で300℃まで昇温させたときの試料の吸熱曲線を求め、ピーク温度を融点(Tm)とした。
[Crystallization temperature (Tc), melting point (Tm)]
Using a differential scanning calorimeter (DSC) (PYRIS-I, manufactured by PerkinElmer), 5 mg of the sample was heated at 300 ° C. for 5 minutes in an air atmosphere, and then crystallized at a rate of temperature decrease of 20 ° C./minute. A curve was obtained, and the crystallization temperature (Tc) was shown at the peak temperature. Furthermore, after cooling to room temperature, the endothermic curve of the sample when the temperature was raised to 300 ° C. at a rate of temperature increase of 20 ° C./min was determined, and the peak temperature was taken as the melting point (Tm).

[平均繊維径]
メルトブローン法で成形して得られた繊維を光学顕微鏡(50倍)により任意の5ヶ所の外径を観察し、平均化して平均繊維径を算出した。
[Average fiber diameter]
The fibers obtained by molding by the melt blown method were observed with an optical microscope (50 times) at five arbitrary outer diameters, averaged, and the average fiber diameter was calculated.

[実施例1]
4−メチル−1−ペンテン単独重合体(融点(Tm);245℃、メルトフローレート(MFR);250g/10分、分子量分布(Mw/Mn);4、結晶化温度(Tc);220℃)をメルトブローン法により、樹脂温度340℃、紡糸エア量60Nm/kg(樹脂1kgを紡糸するのに使用するエア量)で紡糸したところ、得られた繊維の平均繊維径は1.6μmであった。また、該繊維をウェブフォーマーにて捕集することで、不織布を得た。得られた不織布の目付けは10g/mであった。
[Example 1]
4-methyl-1-pentene homopolymer (melting point (Tm); 245 ° C., melt flow rate (MFR); 250 g / 10 min, molecular weight distribution (Mw / Mn); 4, crystallization temperature (Tc); 220 ° C. ) By a melt blown method with a resin temperature of 340 ° C. and a spinning air amount of 60 Nm 3 / kg (the amount of air used to spin 1 kg of resin), the average fiber diameter of the obtained fiber was 1.6 μm. It was. Moreover, the nonwoven fabric was obtained by collecting this fiber with a web former. The basis weight of the obtained nonwoven fabric was 10 g / m 2 .

[実施例2]
4−メチル−1−ペンテン/デセン−1共重合体(デセン−1含量;3質量%、融点(Tm);232℃、メルトフローレート(MFR);320g/10分、分子量分布(Mw/Mn);5、結晶化温度(Tc);212℃)をメルトブローン法により、樹脂温度340℃、紡糸エア量60Nm/kgで紡糸したところ、得られた繊維の平均繊維径は2μmであった。また該繊維をウェブフォーマーにて捕集することで、不織布を得た。得られた不織布の目付けは13g/mであった。
[Example 2]
4-methyl-1-pentene / decene-1 copolymer (decene-1 content; 3 mass%, melting point (Tm); 232 ° C., melt flow rate (MFR); 320 g / 10 min, molecular weight distribution (Mw / Mn ); 5, crystallization temperature (Tc): 212 ° C.) was melt blown, and the resin temperature was 340 ° C. and the spinning air amount was 60 Nm 3 / kg. As a result, the average fiber diameter of the obtained fibers was 2 μm. Moreover, the nonwoven fabric was obtained by collecting this fiber with a web former. The basis weight of the obtained nonwoven fabric was 13 g / m 2 .

[実施例3]
4−メチル−1−ペンテン/デセン−1共重合体(デセン−1含量;1質量%、融点(Tm);238℃、メルトフローレート(MFR);410g/10分、分子量分布(Mw/Mn);5、結晶化温度(Tc);215℃)をメルトブローン法により、樹脂温度340℃、紡糸エア量60Nm/kgで紡糸したところ、得られた繊維の平均繊維径は1.8μmであった。また該繊維をウェブフォーマーにて捕集することで、不織布を得た。得られた不織布の目付けは12g/mであった。
[Example 3]
4-methyl-1-pentene / decene-1 copolymer (decene-1 content; 1% by mass, melting point (Tm); 238 ° C., melt flow rate (MFR); 410 g / 10 min, molecular weight distribution (Mw / Mn ); 5, crystallization temperature (Tc): 215 ° C.) was melt blown, and the resin temperature was 340 ° C. and the spinning air amount was 60 Nm 3 / kg. As a result, the average fiber diameter of the obtained fiber was 1.8 μm. It was. Moreover, the nonwoven fabric was obtained by collecting this fiber with a web former. The basis weight of the obtained nonwoven fabric was 12 g / m 2 .

[比較例1]
4−メチル−1−ペンテン/デセン−1共重合体(デセン−1含量;3質量%、融点(Tm);231℃、メルトフローレート(MFR);10g/10分、分子量分布(Mw/Mn);3、結晶化温度(Tc);212℃)をメルトブローン法により、樹脂温度340℃、紡糸エア量60Nm/kgで紡糸したところ、得られた繊維の平均繊維径は2.5μmであった。また該繊維をウェブフォーマーにて捕集することで、不織布を得た。得られた不織布の目付けは20g/mであった。
[Comparative Example 1]
4-methyl-1-pentene / decene-1 copolymer (decene-1 content; 3 mass%, melting point (Tm); 231 ° C., melt flow rate (MFR); 10 g / 10 minutes, molecular weight distribution (Mw / Mn ); 3, crystallization temperature (Tc): 212 ° C.) was melt blown, and the resin temperature was 340 ° C. and the spinning air amount was 60 Nm 3 / kg. As a result, the average fiber diameter of the obtained fiber was 2.5 μm. It was. Moreover, the nonwoven fabric was obtained by collecting this fiber with a web former. The basis weight of the obtained nonwoven fabric was 20 g / m 2 .

[比較例2]
4−メチル−1−ペンテン/ヘキセン−1共重合体(ヘキセン−1含量;5質量%、融点(Tm);225℃、メルトフローレート(MFR);30g/10分、分子量分布(Mw/Mn);3、結晶化温度(Tc);205℃)をメルトブローン法により、樹脂温度340℃、紡糸エア量60Nm/kgで紡糸したところ、得られた繊維の平均繊維径は3μmであった。また該繊維を、ウェブフォーマーにて捕集することで、不織布を得た。得られた不織布の目付けは15g/mであった。
[Comparative Example 2]
4-methyl-1-pentene / hexene-1 copolymer (hexene-1 content; 5 mass%, melting point (Tm); 225 ° C., melt flow rate (MFR); 30 g / 10 min, molecular weight distribution (Mw / Mn ); 3, crystallization temperature (Tc); 205 ° C.) was melt blown, and the resin temperature was 340 ° C. and the spinning air amount was 60 Nm 3 / kg. As a result, the average fiber diameter of the obtained fiber was 3 μm. Moreover, the nonwoven fabric was obtained by collecting this fiber with a web former. The basis weight of the obtained nonwoven fabric was 15 g / m 2 .

[比較例3]
4−メチル−1−ペンテン/ヘキセン−1共重合体(ヘキセン−1含量;5質量%、融点(Tm);225℃、メルトフローレート(MFR);330g/10分、分子量分布(Mw/Mn);14、結晶化温度(Tc);206℃)をメルトブローン法により、樹脂温度340℃、紡糸エア量60Nm/kgで紡糸したところ、得られた繊維の平均繊維径は2.5μmであった。また該繊維を、ウェブフォーマーにて捕集することで、不織布を得た。得られた不織布の目付けは18g/mであった。
[Comparative Example 3]
4-methyl-1-pentene / hexene-1 copolymer (hexene-1 content; 5 mass%, melting point (Tm); 225 ° C., melt flow rate (MFR); 330 g / 10 minutes, molecular weight distribution (Mw / Mn ); 14, crystallization temperature (Tc); 206 ° C.) was melt blown, and the resin temperature was 340 ° C. and the spinning air amount was 60 Nm 3 / kg. As a result, the average fiber diameter of the obtained fibers was 2.5 μm. It was. Moreover, the nonwoven fabric was obtained by collecting this fiber with a web former. The basis weight of the obtained nonwoven fabric was 18 g / m 2 .

本発明の特定の4−メチル−1−ペンテン重合体を成形等して得られる、平均繊維径が2μm以下である繊維は、ガス透過フィルム用多孔質シート等の各種の分離膜、電池用、電解コンデンサーキャパシター、ポリマー電池用のセパレータ用途に好適に使用することができる。 The fiber having an average fiber diameter of 2 μm or less, obtained by molding the specific 4-methyl-1-pentene polymer of the present invention, is used for various separation membranes such as a porous sheet for gas permeable films, for batteries, It can be suitably used for electrolytic capacitor capacitors and separator applications for polymer batteries.

Claims (9)

4−メチル−1−ペンテン系重合体を成形して得られる、平均繊維径が2μm以下の繊維。 A fiber having an average fiber diameter of 2 μm or less, obtained by molding a 4-methyl-1-pentene polymer. 4−メチル−1−ペンテン系重合体が、4−メチル−1−ペンテンに由来する構成単位90〜100質量%および4−メチル−1−ペンテン以外の炭素原子数2〜20のオレフィンに由来する構成単位0〜10質量%を含む、請求項1に記載の繊維。 The 4-methyl-1-pentene polymer is derived from 90 to 100% by mass of a structural unit derived from 4-methyl-1-pentene and an olefin having 2 to 20 carbon atoms other than 4-methyl-1-pentene. The fiber of Claim 1 containing 0-10 mass% of structural units. 炭素原子数2〜20のオレフィンが、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセンおよび1−オクタデセンから選ばれる少なくとも1種である、請求項2に記載の繊維。 The fiber according to claim 2, wherein the olefin having 2 to 20 carbon atoms is at least one selected from 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene and 1-octadecene. 4−メチル−1−ペンテン系重合体が、4−メチル−1−ペンテンの単独重合体であり、平均繊維径が0.5〜2μmである、請求項1に記載の繊維。 The fiber according to claim 1, wherein the 4-methyl-1-pentene polymer is a homopolymer of 4-methyl-1-pentene and has an average fiber diameter of 0.5 to 2 μm. 4−メチル−1−ペンテン系重合体のメルトフローレート(MFR)が100〜500g/10分、分子量分布(Mw/Mn)が2〜10である、請求項1〜4に記載の繊維。 The fiber according to claims 1 to 4, wherein the melt flow rate (MFR) of the 4-methyl-1-pentene polymer is 100 to 500 g / 10 min and the molecular weight distribution (Mw / Mn) is 2 to 10. 4−メチル−1−ペンテン系重合体の結晶化温度(Tc)が200〜225℃である、請求項1〜請求項5に記載の繊維。 The fiber according to claim 1, wherein the crystallization temperature (Tc) of the 4-methyl-1-pentene polymer is 200 to 225 ° C. 6. 請求項1〜6に記載の繊維を成形して得られる多孔質シート。 The porous sheet obtained by shape | molding the fiber of Claims 1-6. 請求項1〜6に記載の繊維を成形して得られるガス透過フィルム用多孔質シート。 The porous sheet for gas permeable films obtained by shape | molding the fiber of Claims 1-6. 請求項1〜6に記載の繊維を成形して得られるバッテリーセパレータ。

A battery separator obtained by molding the fiber according to claim 1.

JP2006033559A 2006-02-10 2006-02-10 Fiber comprising 4-methyl-1-pentene-based polymer and use thereof Pending JP2007211378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006033559A JP2007211378A (en) 2006-02-10 2006-02-10 Fiber comprising 4-methyl-1-pentene-based polymer and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006033559A JP2007211378A (en) 2006-02-10 2006-02-10 Fiber comprising 4-methyl-1-pentene-based polymer and use thereof

Publications (1)

Publication Number Publication Date
JP2007211378A true JP2007211378A (en) 2007-08-23

Family

ID=38490066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006033559A Pending JP2007211378A (en) 2006-02-10 2006-02-10 Fiber comprising 4-methyl-1-pentene-based polymer and use thereof

Country Status (1)

Country Link
JP (1) JP2007211378A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010123687A1 (en) * 2009-04-23 2010-10-28 Toray Tonen Specialty Separator Company Thermoplastic film, methods for making such film, and the use of such film as battery separator film
WO2014100213A2 (en) 2012-12-18 2014-06-26 Sabic Innovative Plastics Ip B.V. High temperature melt integrity battery separators via spinning
JP2015183332A (en) * 2014-03-26 2015-10-22 三井化学株式会社 Fiber formed of resin composition including 4-methyl-1-pentene polymer
WO2019176743A1 (en) * 2018-03-13 2019-09-19 三井化学株式会社 Air-permeable sheet, laminate, and composite

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04332741A (en) * 1991-05-09 1992-11-19 Sumitomo Chem Co Ltd Crystalline poly-4-methyl-1-pentene composition
JP2002246001A (en) * 2000-12-13 2002-08-30 Michio Shoji Separator for alkaline storage battery
WO2005098118A1 (en) * 2004-04-09 2005-10-20 Mitsui Chemicals, Inc. Nonwoven fabric sheet and method for producing same
WO2005121192A1 (en) * 2004-06-10 2005-12-22 Mitsui Chemicals, Inc. Olefin polymer and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04332741A (en) * 1991-05-09 1992-11-19 Sumitomo Chem Co Ltd Crystalline poly-4-methyl-1-pentene composition
JP2002246001A (en) * 2000-12-13 2002-08-30 Michio Shoji Separator for alkaline storage battery
WO2005098118A1 (en) * 2004-04-09 2005-10-20 Mitsui Chemicals, Inc. Nonwoven fabric sheet and method for producing same
WO2005121192A1 (en) * 2004-06-10 2005-12-22 Mitsui Chemicals, Inc. Olefin polymer and use thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010123687A1 (en) * 2009-04-23 2010-10-28 Toray Tonen Specialty Separator Company Thermoplastic film, methods for making such film, and the use of such film as battery separator film
WO2014100213A2 (en) 2012-12-18 2014-06-26 Sabic Innovative Plastics Ip B.V. High temperature melt integrity battery separators via spinning
WO2014100213A3 (en) * 2012-12-18 2014-08-21 Sabic Innovative Plastics Ip B.V. High temperature melt integrity battery separators via spinning
US9577235B2 (en) 2012-12-18 2017-02-21 Sabic Global Technologies B.V. High temperature melt integrity battery separators via spinning
US10243187B2 (en) 2012-12-18 2019-03-26 Sabic Global Technologies B.V. Process of making battery separators via spinning
JP2015183332A (en) * 2014-03-26 2015-10-22 三井化学株式会社 Fiber formed of resin composition including 4-methyl-1-pentene polymer
WO2019176743A1 (en) * 2018-03-13 2019-09-19 三井化学株式会社 Air-permeable sheet, laminate, and composite
JPWO2019176743A1 (en) * 2018-03-13 2021-01-14 三井化学株式会社 Breathable sheets, laminates and composites
US11491760B2 (en) 2018-03-13 2022-11-08 Mitsui Chemicals, Inc. Breathable sheet, laminate, and composite

Similar Documents

Publication Publication Date Title
CN106559999B (en) Hollow porous fiber
JP5678096B2 (en) New bicomponent fiber
JP5676577B2 (en) Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5419817B2 (en) Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5427469B2 (en) Microporous film, method for producing the same, and battery separator
JP5697328B2 (en) Multilayer porous film, battery separator, and battery
WO2016104792A1 (en) Polyolefin microporous membrane, production method therefor, and battery separator
JP5807388B2 (en) Porous polypropylene film
JP5766291B2 (en) Polyolefin resin composition and use thereof
CN102414015A (en) Thermoplastic film, methods for making such film, and use of such film as battery separator film
KR20030021158A (en) Method of making elastic articles having improved heat-resistance
JP5034414B2 (en) Laminated porous film and nonaqueous electrolyte secondary battery separator
KR101271299B1 (en) Polyolefin resin porous film, and non-aqueous electrolyte cell separator using same
WO2010058789A1 (en) Polyolefin resin composition and applications thereof
JP2007211378A (en) Fiber comprising 4-methyl-1-pentene-based polymer and use thereof
JP2018076475A (en) High temperature low heat shrinkable polyolefin monolayer microporous film and method for producing the same
JP6682942B2 (en) Polypropylene resin porous film and method for producing the same
JP4894794B2 (en) Polyolefin resin porous membrane
CA2563984C (en) Polypropylene blends for non-woven fabrics
JP2006114746A (en) Separator for electric double layer capacitor made of polyolefin resin
KR20110139278A (en) Thermoplastic film, methods for making such film, and the use of such film as battery separator film
JP2005129435A (en) Battery separator made of polyolefin resin
JP6958586B2 (en) Porous film wound body and its manufacturing method
JP2014084324A (en) Polypropylene-based resin porous film
JP2004285509A (en) Extra fine fiber and nonwoven fabric using the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080414

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110322