JP2007205639A - Blast furnace and manufacture of pig iron using it - Google Patents

Blast furnace and manufacture of pig iron using it Download PDF

Info

Publication number
JP2007205639A
JP2007205639A JP2006025055A JP2006025055A JP2007205639A JP 2007205639 A JP2007205639 A JP 2007205639A JP 2006025055 A JP2006025055 A JP 2006025055A JP 2006025055 A JP2006025055 A JP 2006025055A JP 2007205639 A JP2007205639 A JP 2007205639A
Authority
JP
Japan
Prior art keywords
blast furnace
pig iron
iron
mixture
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006025055A
Other languages
Japanese (ja)
Other versions
JP5066690B2 (en
Inventor
Kazuhiro Nagata
和宏 永田
Motoyasu Sato
元泰 佐藤
Tetsuo Hayashi
哲郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gifu Prefecture
National Institute of Natural Sciences
Original Assignee
Gifu Prefecture
National Institute of Natural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gifu Prefecture, National Institute of Natural Sciences filed Critical Gifu Prefecture
Priority to JP2006025055A priority Critical patent/JP5066690B2/en
Publication of JP2007205639A publication Critical patent/JP2007205639A/en
Application granted granted Critical
Publication of JP5066690B2 publication Critical patent/JP5066690B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a blast furnace and a production method of pig iron using it capable of the mass production of pig iron with high purity while enhancing energy efficiency, in a blast furnace using microwaves. <P>SOLUTION: The blast furnace 11 is composed of a furnace body 12 holding a raw material mixture 22 comprised of an iron oxide containing compound and a carbon compound, a microwave irradiating device 13 heating the raw material mixture 22 by irradiating microwaves, and a guide path 20 guiding molten pig iron produced of the raw material mixture to the outside of a furnace body 12. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、溶鉱炉及びそれを用いた銑鉄の製造方法に関し、さらに詳しくは低温高酸素ポテンシャルによる迅速に且つ高純度銑鉄を製造するための溶鉱炉及びそれを用いた銑鉄の製造方法に関する。   The present invention relates to a blast furnace and a method for producing pig iron using the same, and more particularly to a blast furnace for producing rapidly and high-purity pig iron using a low temperature and high oxygen potential and a method for producing pig iron using the same.

一般に、各種鋼の原料となる銑鉄(通常、炭素含有量が約2%を超える高炭素鉄)は鉄鉱石等の酸化鉄含有化合物を還元・浸炭することにより得られる。かかる銑鉄の量産は、例えば特許文献1に開示されるような溶融炉(高炉)において行なわれる。まず、高炉の炉頂より熱源及び還元剤としての炭素源(コークス等)と鉄鉱石やペレット等を層状になるよう投入するとともに、炉下部より熱(空気)を高速で吹き込んで炭素を燃焼させ、炉内部を加熱する。次に、加熱によって炭素源から発生する一酸化炭素により鉄鉱石を還元・浸炭・溶融させるとともに溶融銑鉄を炉下部より流下回収することにより行なわれる。このとき、上部の鉄鉱石とコークスの重量は、最下層のコークスによって保持されている。また、最下層のコークスは炉床としての機能に加え、燃焼による燃焼熱を上部の鉄鉱石に熱伝導させるとともに燃焼により発生した一酸化炭素を供給する働きがある。しかしながら、鉄鉱石の熱伝導性は良好ではなく、また酸化鉄の還元反応は吸熱反応であるためエネルギーを多大に消費するとともに反射炉型反応炉では敷き詰め可能な層の厚さには制限あるため増産等に容易に対応することができないという問題があった。また、従来の高炉法においては、還元、溶融、浸炭には約1600℃において6時間以上を要し、エネルギー効率は決して高いものではなかった。   Generally, pig iron as a raw material for various steels (usually high carbon iron having a carbon content exceeding about 2%) is obtained by reducing and carburizing an iron oxide-containing compound such as iron ore. Such mass production of pig iron is performed in a melting furnace (a blast furnace) as disclosed in Patent Document 1, for example. First, a heat source and a carbon source (such as coke) as a reducing agent and iron ore and pellets are charged in layers from the top of the blast furnace, and heat (air) is blown from the bottom of the furnace at high speed to burn carbon. Heat the inside of the furnace. Next, the iron ore is reduced, carburized, and melted by carbon monoxide generated from the carbon source by heating, and the molten pig iron is recovered from the lower part of the furnace. At this time, the weight of the upper iron ore and coke is held by the lowermost coke. In addition to the function as a hearth, the lowermost coke has a function of conducting heat of combustion due to combustion to the upper iron ore and supplying carbon monoxide generated by combustion. However, the heat conductivity of iron ore is not good, and the reduction reaction of iron oxide is an endothermic reaction, so it consumes a lot of energy and the thickness of the layer that can be laid down in a reflection furnace is limited. There was a problem that it was not possible to easily cope with an increase in production. Further, in the conventional blast furnace method, reduction, melting, and carburization required 6 hours or more at about 1600 ° C., and the energy efficiency was never high.

また、従来より、エネルギー効率を高めた鉄鉱石の還元方法として特許文献2に開示されるマイクロ波を用いた金属還元方法が知られている。かかる金属還元方法は、まず鉄鉱石、コークス等の炭素源及び炭酸カルシウム等の炭酸塩からなる混合物をコンベア上のトレイに載置する。そして、マイクロ波を照射することによりマイクロ波エネルギーによって混合物が900℃以上に加熱され、鉄鉱石が還元されるものである。
特開平11−229007号公報 特開平6−116616号公報
Conventionally, a metal reduction method using a microwave disclosed in Patent Document 2 is known as a method for reducing iron ore with improved energy efficiency. In this metal reduction method, a mixture of a carbon source such as iron ore and coke and a carbonate such as calcium carbonate is first placed on a tray on a conveyor. And by irradiating a microwave, a mixture is heated by 900 degreeC or more with microwave energy, and an iron ore is reduced.
JP-A-11-229007 JP-A-6-116616

ところが、特許文献2に記載される金属還元方法は、鉄鉱石の溶融を伴うものではなくトレイ上において鉄鉱石を還元させることにより還元金属粉を生成させるものである。したがって、鉄鉱石中の不純物は分離されることなく金属鉄粉中に存在する。また、コンベア上のトレイで搬送する方式ではマイクロ波の漏洩が十分でないという問題があった。   However, the metal reduction method described in Patent Document 2 does not involve melting of iron ore, but generates reduced metal powder by reducing iron ore on a tray. Therefore, impurities in the iron ore are present in the metal iron powder without being separated. In addition, there is a problem that microwave leakage is not sufficient in the method of transporting by the tray on the conveyor.

本発明は、このような従来技術に存在する問題点に着目してなされたものである。その目的とするところは、マイクロ波を用いた溶鉱炉において、エネルギー効率を高めながら高純度の銑鉄の量産を可能とした溶鉱炉及びそれを用いた銑鉄の製造方法を提供することにある。   The present invention has been made paying attention to such problems existing in the prior art. An object of the present invention is to provide a blast furnace that enables mass production of high-purity pig iron while increasing energy efficiency in a blast furnace using microwaves, and a method for producing pig iron using the blast furnace.

上記の目的を達成するために、請求項1記載の溶鉱炉は、酸化鉄含有化合物及び該酸化鉄含有化合物を還元するための炭素化合物からなる混合物を収容する収容部、該収容部内部にマイクロ波を照射することにより前記混合物を加熱するマイクロ波発生部、及び前記酸化鉄含有化合物と炭素化合物が反応することにより生成した溶融銑鉄を炉床から収容部外に誘導する誘導部を備えてなる。   In order to achieve the above object, a blast furnace according to claim 1 is provided with a housing portion that contains a mixture comprising an iron oxide-containing compound and a carbon compound for reducing the iron oxide-containing compound, and a microwave is contained inside the housing portion. And a induction part for guiding the molten pig iron produced by the reaction of the iron oxide-containing compound and the carbon compound out of the housing part.

請求項2記載の発明は、請求項1記載の溶鉱炉において、前記炉床は、少なくとも一部が斜め下方に傾斜される傾斜部を有するとともに前記溶融銑鉄は傾斜部から誘導部へ流出するよう構成されている。   A second aspect of the present invention is the blast furnace according to the first aspect, wherein the hearth has an inclined portion that is inclined at least partially obliquely downward, and the molten pig iron flows out from the inclined portion to the induction portion. Has been.

請求項3記載の発明は、請求項1又は請求項2記載の溶鉱炉において、前記炭素化合物は、石炭、コークス、チャー、活性炭、木炭及び有機物を含む廃棄物の乾留物から選ばれる少なくとも一種である。   A third aspect of the present invention is the blast furnace according to the first or second aspect, wherein the carbon compound is at least one selected from coal, coke, char, activated carbon, charcoal, and a dry-distilled product of waste containing organic matter. .

請求項4記載の発明は、請求項1から請求項3のいずれか一項記載の溶鉱炉において、さらに不活性ガス導入部を有する。
請求項5記載の発明は、請求項4記載の溶鉱炉において、前記不活性ガスは窒素及びアルゴンから選ばれる少なくとも一種である。
According to a fourth aspect of the present invention, the blast furnace according to any one of the first to third aspects further includes an inert gas introduction section.
According to a fifth aspect of the present invention, in the blast furnace according to the fourth aspect, the inert gas is at least one selected from nitrogen and argon.

請求項6記載の発明は、請求項1から請求項5のいずれか一項に記載される溶鉱炉において、さらに前記混合物から排出される排気ガスを回収する排気ガス回収部を有する。
請求項7記載の発明は、請求項6記載の溶鉱炉において、さらに前記排気ガス回収部において回収した排気ガスの熱エネルギーを用いて前記不活性ガス及び混合物の少なくとも一つを予熱する予熱部を設けた。
A sixth aspect of the present invention is the blast furnace according to any one of the first to fifth aspects, further comprising an exhaust gas recovery unit that recovers the exhaust gas discharged from the mixture.
The invention according to claim 7 is the blast furnace according to claim 6, further comprising a preheating part for preheating at least one of the inert gas and the mixture using thermal energy of the exhaust gas recovered in the exhaust gas recovery part. It was.

請求項8記載の発明は、請求項7記載の溶鉱炉において、前記混合物は、赤鉄鉱及び磁鉄鉱の少なくとも一方を含有するとともに前記予熱部により混合物が予熱される。
請求項9記載の発明は、請求項1から請求項8のいずれか一項記載の溶鉱炉において、前記誘導部の吐出側先端には、溶融銑鉄を貯留するための貯留容器が接続されている。
The invention described in claim 8 is the blast furnace according to claim 7, wherein the mixture contains at least one of hematite and magnetite, and the mixture is preheated by the preheating portion.
A ninth aspect of the present invention is the blast furnace according to any one of the first to eighth aspects, wherein a storage container for storing molten pig iron is connected to a discharge-side tip of the induction portion.

請求項10記載の発明は、請求項9記載の溶鉱炉において、前記貯留容器は、底部に出銑口が設けられている。
請求項11記載の発明は、請求項10記載の溶鉱炉において、前記出銑口は、少なくとも開口時に金属製の網で外側が被覆されることによりマイクロ波が外部に漏洩しないように構成されている。
A tenth aspect of the present invention is the blast furnace according to the ninth aspect, wherein the storage container is provided with an outlet at the bottom.
The eleventh aspect of the present invention is the blast furnace according to the tenth aspect, wherein the tapping outlet is configured so that the microwave is not leaked to the outside by being covered with a metal net at least at the time of opening. .

請求項12記載の発明は、請求項1記載の溶鉱炉において、前記炉床には銑鉄よりも融点が高くマイクロ波によって自己発熱可能なマイクロ波吸収体が充填されている。
請求項13記載の発明は、請求項1から請求項12のいずれか一項に記載される溶鉱炉を用いた銑鉄の製造方法において、酸化鉄含有化合物及び該酸化鉄含有化合物を還元するための炭素化合物からなる混合物を収容部内に充填する工程、前記マイクロ波発生部からマイクロ波を照射することにより前記混合物を加熱する工程、加熱により溶融した混合物から分離した溶融銑鉄が誘導部から収容部外に誘導される工程からなる。
According to a twelfth aspect of the present invention, in the blast furnace according to the first aspect, the hearth is filled with a microwave absorber having a melting point higher than that of pig iron and capable of self-heating by microwaves.
The invention according to claim 13 is the method for producing pig iron using the blast furnace according to any one of claims 1 to 12, wherein the iron oxide-containing compound and carbon for reducing the iron oxide-containing compound are used. A step of filling the container with a mixture of the compound, a step of heating the mixture by irradiating microwaves from the microwave generation unit, and molten pig iron separated from the mixture melted by heating from the induction unit to the outside of the storage unit It consists of a guided process.

請求項14記載の発明は、請求項13記載の銑鉄の製造方法において、前記混合物の溶融は、酸素分圧10-13〜10-11atmの雰囲気下で行なわれる。
請求項15記載の発明は、請求項13又は請求項14記載の銑鉄の製造方法において、前記混合物の溶融は、1250〜1450℃の雰囲気下で行なわれる。
According to a fourteenth aspect of the present invention, in the pig iron manufacturing method according to the thirteenth aspect, the mixture is melted in an atmosphere having an oxygen partial pressure of 10 −13 to 10 −11 atm.
According to a fifteenth aspect of the invention, in the pig iron manufacturing method according to the thirteenth or fourteenth aspect, the mixture is melted in an atmosphere of 1250 to 1450 ° C.

本発明によれば、マイクロ波を用いた溶鉱炉において、エネルギー効率を高めながら高純度の銑鉄を量産することができる。   According to the present invention, high-purity pig iron can be mass-produced while improving energy efficiency in a blast furnace using microwaves.

(第1の実施形態)
以下、本発明の溶鉱炉を具体化した第1の実施形態を図1にしたがって説明する。
図1に示されるように、溶鉱炉11は原料が充填される収容部としての有蓋円筒状の炉本体12、及び該炉本体12の内部12aと連通されるように炉本体12に接続されているマイクロ波発生部としてのマイクロ波照射装置13から構成されている。炉本体12には、さらに原料を内部12aに投入するための原料投入装置15、不活性ガスを内部12aに充填するための不活性ガス導入部としての不活性ガス導入装置16及び原料より発生した排気ガス(粉塵、ダストを含む)を回収するための排気ガス回収部として排気ガス回収装置14がそれぞれ内部12aと連通されるように接続されている。炉本体12には、溶融した銑鉄を一時貯留可能とした貯留部としての貯留容器21が炉本体12の内部12aと連通されるように炉本体12の側方下部に接続されている。
(First embodiment)
Hereinafter, a first embodiment embodying a blast furnace of the present invention will be described with reference to FIG.
As shown in FIG. 1, the blast furnace 11 is connected to the furnace main body 12 so as to communicate with a covered cylindrical furnace main body 12 as an accommodating portion filled with the raw material and an interior 12 a of the furnace main body 12. It is comprised from the microwave irradiation apparatus 13 as a microwave generation part. The furnace body 12 is further generated from a raw material charging device 15 for charging a raw material into the interior 12a, an inert gas introducing device 16 as an inert gas introducing portion for filling the inside 12a with an inert gas, and the raw material. As an exhaust gas recovery unit for recovering exhaust gas (including dust and dust), exhaust gas recovery devices 14 are connected so as to communicate with the interior 12a. The furnace body 12 is connected to a lower side portion of the furnace body 12 so that a storage container 21 serving as a storage part capable of temporarily storing molten pig iron is communicated with the interior 12 a of the furnace body 12.

炉本体12は、耐火物17によって内張された金属(例えばステンレス)製の外套18から構成されている。耐火物17は、マイクロ波の吸収が小さく断熱性及び耐浸食性が高いセラミックス系のライナーが好ましく適用され、具体的にはアルミナ系耐火物、ムライト系耐火物、シリカ系耐火物、ジルコニア系耐火物及び窒化珪素系耐火物等が挙げられる。原料還元時におけるエネルギー効率を向上させるために外套18と耐火物17の間にはさらに断熱材19を配設することが好ましい。断熱材19としては、アルミナファイバーや発泡アルミナ等が挙げられる。炉本体12の高さは、酸化鉄含有化合物の充填量、製造される銑鉄量等に応じて適宜設定されるが、3m以内が好ましい。   The furnace body 12 is composed of a metal (for example, stainless steel) mantle 18 lined with a refractory 17. As the refractory 17, a ceramic liner that absorbs microwaves and has high heat insulation and erosion resistance is preferably applied. Specifically, alumina refractories, mullite refractories, silica refractories, zirconia refractories are used. And silicon nitride refractories. In order to improve energy efficiency at the time of reducing the raw material, it is preferable to further provide a heat insulating material 19 between the mantle 18 and the refractory 17. Examples of the heat insulating material 19 include alumina fiber and foamed alumina. The height of the furnace body 12 is appropriately set according to the filling amount of the iron oxide-containing compound, the amount of pig iron produced, etc., but is preferably within 3 m.

炉本体12の底部には原料投入装置15から投入された原料が堆積される炉床部12bが設けられ、該炉床部12bには原料混合物から溶融分離した溶融銑鉄を貯留容器21へ導く管状の誘導部としての誘導路20が接続されている。炉床部12bの長さは溶鉱炉11の規模等により適宜設定されるが、1m以内が好ましい。炉床部12bは斜め下方に傾斜される傾斜部12cを有するとともに傾斜部12cの最下部には傾斜部12cの傾きを延長するように前記誘導路20が斜め下方に向けて配されている。傾斜部12cの角度は平行状態を0°とすると1〜35°、好ましくは10〜25°、より好ましくは18〜22°である。傾斜部12cの角度が1°未満であると溶融銑鉄が十分に流れないおそれがあり、35°を超えると固体不純物が溶融銑鉄とともに流れ落ちるおそれがある。誘導路20は炉本体12と連通する断熱材19及び耐火物17で内張りされた外套18から構成されている。   The bottom of the furnace body 12 is provided with a hearth 12b on which the raw material charged from the raw material charging device 15 is deposited. The furnace floor 12b has a tubular shape that guides molten pig iron melted and separated from the raw material mixture to the storage container 21. A guide path 20 is connected as a guide section. The length of the hearth 12b is appropriately set depending on the scale of the blast furnace 11 and the like, but preferably within 1 m. The hearth portion 12b has an inclined portion 12c inclined obliquely downward, and the guide path 20 is arranged obliquely downward at the lowermost portion of the inclined portion 12c so as to extend the inclination of the inclined portion 12c. The angle of the inclined portion 12c is 1 to 35 °, preferably 10 to 25 °, more preferably 18 to 22 °, assuming that the parallel state is 0 °. If the angle of the inclined portion 12c is less than 1 °, the molten pig iron may not flow sufficiently, and if it exceeds 35 °, solid impurities may flow down together with the molten pig iron. The induction path 20 includes a heat insulating material 19 communicating with the furnace body 12 and an outer jacket 18 lined with a refractory 17.

貯留容器21は筒状に構成されるとともに、上部側面において管状の誘導路20の吐出側端部と接続されている。貯留容器21の内部には、誘導路20から連通される耐火物17で内張りされた外套18によって囲まれることにより炉本体12の内部12aと連通される貯留空間21aが設けられている。貯留空間21aは重力により傾斜部12cから誘導路20へ通過することにより流入した溶融銑鉄22aを一時貯留可能に構成されている。貯留容器21の底部には溶融銑鉄22aを間歇的あるいは連続的に溶鉱炉11外部に放出する出銑口21bが設けられている。出銑口21bは貯留容器21の底部に設けられているため溶融銑鉄22aが貯留された際、貯留空間21aが溶融銑鉄22aによって密閉されるよう構成されている。そのため貯留空間21aと連通される炉本体12の内部12aに放射されたマイクロ波、排気ガス及び不活性ガスが誘導路20を通り溶鉱炉11外部へ漏れ出すことを防止する。   The storage container 21 is configured in a cylindrical shape and is connected to the discharge side end of the tubular guide path 20 on the upper side surface. A storage space 21 a is provided inside the storage container 21 so as to communicate with the interior 12 a of the furnace body 12 by being surrounded by a mantle 18 lined with a refractory 17 that communicates with the guide path 20. The storage space 21a is configured to be capable of temporarily storing molten pig iron 22a that has flowed in by passing from the inclined portion 12c to the guide path 20 by gravity. At the bottom of the storage container 21 is provided a spout 21b for discharging the molten pig iron 22a to the outside of the blast furnace 11 intermittently or continuously. Since the spout 21b is provided at the bottom of the storage container 21, the storage space 21a is sealed with the molten pig iron 22a when the molten pig iron 22a is stored. Therefore, the microwave, exhaust gas, and inert gas radiated into the interior 12 a of the furnace body 12 communicated with the storage space 21 a are prevented from leaking out of the blast furnace 11 through the induction path 20.

排気ガス回収装置14、原料投入装置15及び不活性ガス導入装置16はドーム状の炉本体12の上部に設けられている。原料投入装置15は投入管15a及び該投入管15aの内部に配される原料搬送手段15bより構成される。原料搬送手段15bは回転軸15cと該回転軸15cに螺旋状に取り付けられるスクリュウ羽根15dから構成されている。原料投入装置15は投入管15aの吐出側先端が炉本体12のドーム状の上部において斜め向きに突き刺されるように取り付け固定される。回転軸15cの回転に伴うスクリュウ羽根15dの回転を調節することにより所望量の粉末状又は粒子状の原料混合物22を炉本体12内の傾斜部12c上に投入することができる。   The exhaust gas recovery device 14, the raw material input device 15, and the inert gas introduction device 16 are provided on the top of the dome-shaped furnace body 12. The raw material input device 15 includes an input pipe 15a and a raw material transfer means 15b arranged inside the input pipe 15a. The raw material conveyance means 15b is comprised from the rotating shaft 15c and the screw blade | wing 15d attached helically to this rotating shaft 15c. The raw material charging device 15 is attached and fixed so that the discharge side tip of the charging tube 15a is pierced obliquely in the dome-shaped upper portion of the furnace body 12. By adjusting the rotation of the screw blade 15d accompanying the rotation of the rotating shaft 15c, a desired amount of the powdery or particulate raw material mixture 22 can be put on the inclined portion 12c in the furnace body 12.

排気ガス回収装置14は、粉末又は粒状の原料混合物22から噴出されるダスト及び原料混合物が加熱・溶融される過程で排出される水素ガス、メタンガス、窒素ガス、一酸化炭素ガス、二酸化炭素ガス等の排出ガスを回収する。排気ガス回収装置14は、炉本体12のドーム状の上部の頂点部に取り付けられる。排気ガス回収装置14は、例えばダストを捕捉回収するためのフィルタ、コンデンサを用いた亜鉛や鉛の回収、吸収法や接触式完全燃焼法を用いた炭酸ガス、炭化水素等の処理を行う。不活性ガス導入装置16は、炉本体12内の雰囲気を調製するために不活性ガスとしてアルゴン、窒素ガス等を炉本体12内に導入する。   The exhaust gas recovery device 14 includes hydrogen gas, methane gas, nitrogen gas, carbon monoxide gas, carbon dioxide gas, etc. discharged in the process of heating and melting the dust and raw material mixture ejected from the powder or granular raw material mixture 22. The exhaust gas is recovered. The exhaust gas recovery device 14 is attached to the top of the dome-shaped upper portion of the furnace body 12. The exhaust gas recovery device 14 performs, for example, a filter for capturing and recovering dust, recovery of zinc and lead using a condenser, carbon dioxide gas, hydrocarbons, and the like using an absorption method or a contact-type complete combustion method. The inert gas introduction device 16 introduces argon, nitrogen gas, or the like as an inert gas into the furnace body 12 in order to adjust the atmosphere in the furnace body 12.

マイクロ波照射装置13は、マイクロ波発振器13aと導波管13bとから構成され、マイクロ波発振器13aは導波管13bを介して炉本体12に接続されている。マイクロ波発振器13aから出力されるマイクロ波は、導波管13bを経由して断熱材19及び耐火物17を透過することにより炉本体12の内部12aに入射されるよう構成されている。マイクロ波の周波数は、0.9〜100GHzが好ましく、0.9〜10GHzがより好ましく、特に2.45GHzが好ましい。この周波数が0.9GHz未満では、波長が長くなりすぎるとともにマイクロ波の吸収率が低下するため好ましくない。逆に100GHzを超える場合には、マイクロ波発振器13aのコストの上昇を招くため好ましくない。炉本体12に設けられるマイクロ波発振器13aの数は適用されるマイクロ波の周波数、投入される原料混合物の量等により適宜決定されるが、第1の実施形態においては2.45GHzのマイクロ波を出力するマイクロ波発振器13aが使用される。   The microwave irradiation device 13 includes a microwave oscillator 13a and a waveguide 13b, and the microwave oscillator 13a is connected to the furnace body 12 via the waveguide 13b. The microwave output from the microwave oscillator 13a is configured to enter the interior 12a of the furnace body 12 by passing through the heat insulating material 19 and the refractory 17 through the waveguide 13b. The frequency of the microwave is preferably 0.9 to 100 GHz, more preferably 0.9 to 10 GHz, and particularly preferably 2.45 GHz. If this frequency is less than 0.9 GHz, the wavelength becomes too long and the microwave absorption rate is lowered, which is not preferable. Conversely, when the frequency exceeds 100 GHz, the cost of the microwave oscillator 13a is increased, which is not preferable. The number of the microwave oscillators 13a provided in the furnace body 12 is appropriately determined depending on the frequency of the applied microwave, the amount of the raw material mixture to be input, etc. In the first embodiment, the microwave of 2.45 GHz is used. An output microwave oscillator 13a is used.

マイクロ波の出力は、高く設定することにより原料混合物22の加熱速度を上昇させることができる一方、エネルギー効率の低下を招くおそれがあるため、原料混合物の種類、生産量、エネルギー効率等により適宜設定される。例えば、1日間に銑鉄1トン当たりを生産するためのマイクロ波発振器13aの出力は、150〜300kW、好ましくは200kWに設定されることにより効率よく銑鉄を製造することができる。また、原料混合物の加熱速度を上昇させた場合、製造される銑鉄中において、酸化鉄含有化合物及び炭素化合物由来の珪素、マグネシウム、リン酸、チタン、イオウ、マンガン及びそれらの酸化物等の不純物濃度を低下させることができる。これは急速に加熱されることにより内部12a酸素分圧の上昇(例えば10-13〜10-11atm)を招き、不純物の還元溶融が抑制されるためである。一方、マイクロ波の出力を上げることにより加熱速度を上昇させた場合、銑鉄中の炭素濃度は上昇する。これは高酸素分圧下(例えば10-13〜10-11atm)においては、固体の炭素化合物と固体の酸化鉄が1154℃の共晶温度以上で接触すると、接触点で銑鉄の液相が生成し、液相中に生じる炭素の拡散と液相の対流により速やかに炭素が炭素化合物から固体酸化鉄に移動し、固体酸化鉄を銑鉄(還元鉄)として溶融する。そして溶融により増した還元鉄の液相は炭素化合物と固体酸化鉄を濡らし、炭素化合物と溶融銑鉄と固体酸化鉄の接触面積を急速に拡大させて、それが炭素の移動(浸炭)をさらに加速するためである。マイクロ波の出力(加熱速度)を調節することにより、内部12aの酸素分圧及び銑鉄中の不純物濃度や炭素量を調整することができる。 The microwave output can be increased by setting the heating rate of the raw material mixture 22 at a high level. On the other hand, there is a risk of lowering the energy efficiency. Therefore, the microwave output is appropriately set depending on the type of raw material mixture, the production amount, the energy efficiency, etc. Is done. For example, pig iron can be produced efficiently by setting the output of the microwave oscillator 13a for producing pig iron per ton per day to 150 to 300 kW, preferably 200 kW. In addition, when the heating rate of the raw material mixture is increased, the concentration of impurities such as silicon, magnesium, phosphoric acid, titanium, sulfur, manganese and their oxides derived from iron oxide-containing compounds and carbon compounds in the pig iron produced Can be reduced. This is because rapid heating causes an increase in the internal 12a oxygen partial pressure (for example, 10 −13 to 10 −11 atm) and suppresses reduction and melting of impurities. On the other hand, when the heating rate is increased by increasing the microwave output, the carbon concentration in the pig iron increases. This is because, under a high oxygen partial pressure (for example, 10 −13 to 10 −11 atm), when a solid carbon compound and solid iron oxide contact at a eutectic temperature of 1154 ° C. or higher, a liquid phase of pig iron is generated at the contact point. Then, the carbon is rapidly transferred from the carbon compound to the solid iron oxide by the diffusion of the carbon generated in the liquid phase and the convection of the liquid phase, and the solid iron oxide is melted as pig iron (reduced iron). The liquid phase of reduced iron increased by melting wets the carbon compound and solid iron oxide, rapidly expanding the contact area between the carbon compound, molten pig iron and solid iron oxide, which further accelerates the movement of the carbon (carburization). It is to do. By adjusting the microwave output (heating rate), the oxygen partial pressure in the interior 12a, the impurity concentration in the pig iron, and the carbon content can be adjusted.

炉本体12内に投入される原料混合物22は、粉末状又は粒子状に粉砕された酸化鉄含有化合物及び該酸化鉄含有化合物を還元するための炭素化合物からなる混合物である。原料混合物22は熱伝導性を向上させるために粉末状又は粒子状で内部12aに投入してもよい。また、粉塵・ダストの発生防止及び取り扱い性向上のため粉砕された酸化鉄含有化合物等を特定粒径のペレットにして投入してもよい。炭素化合物は酸化鉄含有化合物を還元するための還元剤として配合されるとともに、還元鉄中に浸炭されることにより銑鉄に変換させるために配合される。原料混合物22中における酸化鉄含有化合物と炭素化合物の配合量は、酸化鉄、酸化亜鉛、酸化鉛等の還元され易い全ての金属酸化物中の全ての酸素をCO、CO2又はこれらの混合ガスとして除去するために必要とされる炭素量と、所定の炭素濃度を有する銑鉄を得るために必要とされる炭素量の合計の炭素量を含む量である。例えば、酸化鉄含有化合物として鉄鉱石である磁鉄鉱を使用する場合、鉄鉱石1質量比に対し、炭素化合物0.12〜0.4質量比、好ましくは0.15〜0.3質量比、より好ましくは0.2〜0.25質量比である。酸化鉄含有化合物としては、鉄鉱石、製鋼ダスト、チタン鉄鉱としてのイルメナイト等が挙げられる。 The raw material mixture 22 charged into the furnace body 12 is a mixture composed of an iron oxide-containing compound pulverized into a powder or particles and a carbon compound for reducing the iron oxide-containing compound. The raw material mixture 22 may be put into the interior 12a in the form of powder or particles in order to improve the thermal conductivity. Further, a pulverized iron oxide-containing compound or the like may be added as pellets having a specific particle size in order to prevent generation of dust / dust and improve handling. The carbon compound is blended as a reducing agent for reducing the iron oxide-containing compound and is converted into pig iron by being carburized in the reduced iron. The compounding amount of the iron oxide-containing compound and the carbon compound in the raw material mixture 22 is such that all oxygen in all metal oxides such as iron oxide, zinc oxide, lead oxide and the like that are easily reduced is CO, CO 2 or a mixed gas thereof. The amount of carbon including the total amount of carbon required to remove the carbon and the amount of carbon required to obtain pig iron having a predetermined carbon concentration. For example, when using magnetite that is iron ore as the iron oxide-containing compound, the carbon compound is 0.12 to 0.4 mass ratio, preferably 0.15 to 0.3 mass ratio, relative to 1 mass ratio of iron ore. Preferably it is 0.2-0.25 mass ratio. Examples of the iron oxide-containing compound include iron ore, steelmaking dust, and ilmenite as titanite.

鉄鉱石の種類は、酸化鉄鉱石としての赤鉄鉱(ヘマタイト、Fe23)及び磁鉄鉱(マグネタイト、Fe34)が挙げられる。それら中でもマイクロ波吸収率の高い磁鉄鉱が好ましい。原料混合物22として磁鉄鉱を適用した場合、マイクロ波を照射することにより効率よく原料混合物22を加熱することができる。一方、赤鉄鉱を適用する場合、マイクロ波吸収率が磁鉄鉱より低いためマイクロ波吸収率が高い炭素源等を発熱体として原料に投入する必要がある。なお、鉄鉱石に赤鉄鉱が含まれる場合、予め原料を500〜800℃に予熱することにより赤鉄鉱の一部をマイクロ波吸収率の高い磁鉄鉱に還元することができる。 Examples of the iron ore include hematite (hematite, Fe 2 O 3 ) and magnetite (magnetite, Fe 3 O 4 ) as iron oxide ores. Among them, magnetite having a high microwave absorption rate is preferable. When magnetite is applied as the raw material mixture 22, the raw material mixture 22 can be efficiently heated by irradiation with microwaves. On the other hand, when hematite is applied, since the microwave absorption rate is lower than that of magnetite, a carbon source or the like having a high microwave absorption rate needs to be input to the raw material as a heating element. In addition, when hematite is contained in iron ore, a part of hematite can be reduced to magnetite having a high microwave absorption rate by preheating the raw material to 500 to 800 ° C. in advance.

炭素化合物としては、石炭、コークス、チャー、活性炭、木炭、有機物を含む廃棄物の乾留物等の炭素源が挙げられる。これらの炭素化合物のうちコークス等の不純物の少ない炭素源を使用することにより不純物の少ない銑鉄を得ることができる。かかる炭素源が酸化鉄含有化合物と加熱されることにより、例えば、Fe34+2C→3Fe+2CO2の反応により酸化鉄が還元鉄(本実施形態においては銑鉄)に還元される。還元剤として投入される炭素源としての炭素化合物は高マイクロ波誘導体である。したがって、マイクロ波照射により加熱され、炭素源において生じた熱が酸化鉄へ直接熱伝導により伝達されるため原料混合物を効率よく且つ急速に加熱することができる。酸化鉄は直接接触する炭素によって還元及び浸炭溶融される。還元剤としての炭素化合物は、酸化鉄と炭素源の接触面積を増加させるために粒状又は粉末状とすることが好ましい。それにより、酸化鉄への熱伝導、還元、浸炭の速度を向上させることができる。また、炭素源と酸化鉄との接触面積を増加させることにより酸化鉄の還元開始温度を低下させることができる。その他、原料混合物中にスラグ除去を目的として石灰石等の他の成分を適宜配合してもよい。 Examples of the carbon compound include carbon sources such as coal, coke, char, activated carbon, charcoal, and organic waste carbon dioxide. Of these carbon compounds, pig iron with less impurities can be obtained by using a carbon source with less impurities such as coke. When such a carbon source is heated with the iron oxide-containing compound, the iron oxide is reduced to reduced iron (in this embodiment, pig iron), for example, by a reaction of Fe 3 O 4 + 2C → 3Fe + 2CO 2 . The carbon compound as a carbon source input as a reducing agent is a high microwave derivative. Therefore, since the heat generated by the microwave irradiation and the heat generated in the carbon source is directly transferred to the iron oxide by heat conduction, the raw material mixture can be heated efficiently and rapidly. Iron oxide is reduced and carburized and melted by directly contacting carbon. The carbon compound as the reducing agent is preferably granular or powdery in order to increase the contact area between the iron oxide and the carbon source. Thereby, the speed of heat conduction to iron oxide, reduction, and carburization can be improved. Moreover, the reduction start temperature of iron oxide can be lowered by increasing the contact area between the carbon source and iron oxide. In addition, other components such as limestone may be appropriately blended in the raw material mixture for the purpose of removing slag.

炉本体12にはさらに図示しない内部12aの雰囲気を測定するための温度センサ、圧力センサ等の各種センサを取り付けてもよい。
次に、上記のように構成された溶鉱炉11の作用について説明する。
Various types of sensors such as a temperature sensor and a pressure sensor for measuring the atmosphere in the interior 12 a (not shown) may be further attached to the furnace body 12.
Next, the operation of the blast furnace 11 configured as described above will be described.

まず、酸化鉄含有化合物と炭素化合物を粉末状又は粒状に粉砕するとともに所定の配合比で混合することにより原料混合物のペレットを作成する。原料混合物は原料投入装置15により炉本体12の内部12aに投入され、炉床部12b上において所定量積層される。次に、不活性ガス導入装置16からアルゴン、窒素等の不活性ガスを導入することにより内部12aに不活性ガスを充填させる。そして、マイクロ波照射装置13によりマイクロ波を原料混合物22に照射し、原料混合物22を加熱する。原料混合物22中の酸化鉄はマイクロ波により自身が加熱されることにより又はマイクロ波により加熱された炭素化合物としての炭素源から熱伝導を受けることにより急速に加熱される。   First, a pellet of a raw material mixture is prepared by pulverizing an iron oxide-containing compound and a carbon compound into powder or granules and mixing them at a predetermined blending ratio. The raw material mixture is charged into the interior 12a of the furnace body 12 by the raw material charging device 15, and a predetermined amount is laminated on the hearth portion 12b. Next, an inert gas such as argon or nitrogen is introduced from the inert gas introduction device 16 to fill the interior 12a with the inert gas. Then, the microwave irradiation device 13 irradiates the raw material mixture 22 with microwaves, and heats the raw material mixture 22. The iron oxide in the raw material mixture 22 is rapidly heated by heating itself by microwaves or by receiving heat conduction from a carbon source as a carbon compound heated by microwaves.

酸化鉄含有化合物は、温度上昇に伴い還元反応が進行するとともに水素ガス、メタンガス、窒素ガス、一酸化炭素ガス、二酸化炭素ガス等の揮発性ガスを吹き出しながら数分で約1000℃付近に達する。内部12aは揮発性ガスが排気ガス回収装置14により回収されるとともに不活性ガス導入装置16からは不活性ガスが導入される。それにより、原料混合物22の加熱は常に不活性ガス雰囲気下で行われる。そのとき炉本体12の内部12aの酸素分圧は10-13〜10-11atm、好ましくは10-12〜10-11atm、より好ましくは10-12atmに維持される。かかる高酸素分圧下においては、酸化鉄は還元・溶融されるが、酸化鉄含有化合物又は炭素化合物由来の珪素、マグネシウム、リン酸、チタン、イオウ、マンガン及びそれらの酸化物等の不純物の還元・溶融は抑制される。一方、溶融により生じた還元鉄の液相は炭素化合物と固体酸化鉄を濡らし、炭素化合物と溶融銑鉄と固体酸化鉄の接触面積を急速に拡大し、それが炭素の還元鉄への移動(浸炭)をさらに加速させる。内部12aの酸素分圧は排気ガス回収装置14、不活性ガス導入装置16及び原料混合物の加熱速度によって調節される。 The iron oxide-containing compound proceeds to a reduction reaction as the temperature rises, and reaches about 1000 ° C. in a few minutes while blowing out volatile gases such as hydrogen gas, methane gas, nitrogen gas, carbon monoxide gas, carbon dioxide gas. In the interior 12 a, volatile gas is recovered by the exhaust gas recovery device 14, and inert gas is introduced from the inert gas introduction device 16. Thereby, the heating of the raw material mixture 22 is always performed in an inert gas atmosphere. At that time, the oxygen partial pressure inside the furnace body 12 is maintained at 10 −13 to 10 −11 atm, preferably 10 −12 to 10 −11 atm, more preferably 10 −12 atm. Under such high oxygen partial pressure, iron oxide is reduced and melted, but reduction of impurities such as silicon, magnesium, phosphoric acid, titanium, sulfur, manganese and their oxides derived from iron oxide-containing compounds or carbon compounds. Melting is suppressed. On the other hand, the liquid phase of reduced iron generated by melting wets the carbon compound and solid iron oxide, and rapidly expands the contact area between the carbon compound, molten pig iron and solid iron oxide, which moves the carbon to the reduced iron (carburization). ) Is further accelerated. The oxygen partial pressure in the interior 12a is adjusted by the exhaust gas recovery device 14, the inert gas introduction device 16, and the heating rate of the raw material mixture.

そしてさらに原料混合物がマイクロ波により加熱され、1250〜1450℃、好ましくは1300〜1400℃、より好ましくは1350〜1370℃の雰囲気下に維持される。かかる加熱温度はマイクロ波の照射出力を調節することにより調整することができる。上記の酸素分圧及び温度雰囲気下において、酸化鉄のみが還元・溶融されるとともに溶融還元鉄中への浸炭が加速される。その一方、酸化鉄含有化合物又は炭素化合物由来の珪素、マグネシウム、リン酸、チタン、イオウ、マンガン及びそれらの酸化物等の不純物は、還元・溶融が抑制されるため高純度の銑鉄が生成される。酸化鉄含有化合物からは加熱により還元・溶融されるとともに浸炭されることにより生成した溶融銑鉄は表面張力により凝集しながら重力により傾斜部12cから誘導路20へ導かれ、貯留容器21中に一時貯留される。貯留容器21中に貯留された溶融銑鉄22aは炉本体12の内部12aからの反射により入射されるマイクロ波の照射を受けることにより溶融状態が維持される。溶融銑鉄22aは間歇的あるいは連続的に出銑口21bから溶鉱炉11外部に放出する。炉本体12の内部12aに残った未還元状態の不純物は図示されない炉本体12又は貯留容器21に設けられた取り出し口から掻き出される。   Further, the raw material mixture is heated by microwaves and maintained in an atmosphere of 1250 to 1450 ° C, preferably 1300 to 1400 ° C, more preferably 1350 to 1370 ° C. The heating temperature can be adjusted by adjusting the microwave irradiation output. Under the above oxygen partial pressure and temperature atmosphere, only iron oxide is reduced and melted, and carburization into the molten reduced iron is accelerated. On the other hand, impurities such as silicon, magnesium, phosphoric acid, titanium, sulfur, manganese and their oxides derived from iron oxide-containing compounds or carbon compounds are reduced and melted, so high purity pig iron is produced. . From the iron oxide-containing compound, the molten pig iron that is reduced and melted by heating and carburized is guided by gravity to the guiding path 20 by gravity while agglomerating due to surface tension, and temporarily stored in the storage container 21. Is done. The molten pig iron 22a stored in the storage container 21 is irradiated with microwaves incident upon reflection from the interior 12a of the furnace main body 12 to maintain a molten state. The molten pig iron 22a is intermittently or continuously discharged to the outside of the blast furnace 11 from the tap outlet 21b. Unreduced impurities remaining in the interior 12a of the furnace body 12 are scraped out from a take-out port provided in the furnace body 12 or the storage container 21 (not shown).

第1の実施形態の溶鉱炉11によれば、以下のような効果を得ることができる。
(1)第1の実施形態において、鉄鉱石等の酸化鉄含有化合物及び還元剤としての炭素化合物からなる原料混合物にマイクロ波を照射することにより還元・溶融させた。したがって、マイクロ波が酸化鉄を直接又は炭素化合物からの熱伝導により急速(短時間)且つ効率的に加熱することができる。つまり、酸化鉄に接触する炭素化合物は、銑鉄の炭素源になるとともに熱源にもなるため還元・浸炭・溶融過程における反応効率及びエネルギー効率の向上を図ることができる。
According to the blast furnace 11 of the first embodiment, the following effects can be obtained.
(1) In the first embodiment, the raw material mixture composed of an iron oxide-containing compound such as iron ore and a carbon compound as a reducing agent was reduced and melted by irradiation with microwaves. Therefore, the microwave can heat iron oxide rapidly (short time) and efficiently by heat conduction from the carbon compound. In other words, since the carbon compound that comes into contact with iron oxide becomes a carbon source of pig iron and a heat source, it is possible to improve reaction efficiency and energy efficiency in the reduction, carburization, and melting processes.

(2)第1の実施形態において、溶融銑鉄を炉床部12bから内部12a空間外に誘導するための誘導路20を設けた。したがって、溶鉱炉11の内部12aにおいて還元反応により生成した溶融銑鉄を炉外に排出しながら、原料投入装置15から新たに原料混合物を投入することができる。つまり、マイクロ波を用いた銑鉄の製造において連続的な量産が可能となる。   (2) In the first embodiment, the guide path 20 for guiding the molten pig iron from the hearth 12b to the outside of the interior 12a is provided. Therefore, the raw material mixture can be newly charged from the raw material charging device 15 while discharging the molten pig iron generated by the reduction reaction in the interior 12a of the blast furnace 11 to the outside of the furnace. That is, continuous mass production is possible in the manufacture of pig iron using microwaves.

(3)第1の実施形態において、炉床部12bは斜め下方に傾斜される傾斜部12cを有するとともに傾斜部12cの最下部には傾斜部12cの傾きを延長するように誘導路20が斜め下方に向けて配されている。したがって、所定の加熱雰囲気下において、粉末状態の不純物と溶融した銑鉄を重力により容易に分離することができる。   (3) In the first embodiment, the hearth part 12b has an inclined part 12c inclined obliquely downward, and the guide path 20 is inclined at the lowermost part of the inclined part 12c so as to extend the inclination of the inclined part 12c. It is arranged downward. Therefore, the impurities in the powder state and the molten pig iron can be easily separated by gravity under a predetermined heating atmosphere.

(4)第1の実施形態において、炭素原料として天然物を原料とした活性炭、木炭、有機物を含む廃棄物の乾留物を使用した場合、温暖化の原因となる炭酸ガスの排出量の増加を抑制することができる。   (4) In the first embodiment, when activated carbon, charcoal, and waste carbon dioxide containing organic matter are used as a carbon raw material, carbon dioxide gas emissions that cause global warming are increased. Can be suppressed.

(5)第1の実施形態において、原料混合物の加熱は、不活性ガス導入装置16から窒素ガス、アルゴン等の不活性ガスを供給しながら不活性ガス雰囲気下で行なった。したがって、不活性ガスの流量の制御により炉本体12の内部12aの一酸化炭素濃度等を制御することにより酸素分圧も変化させることができるため、溶融銑鉄中の炭素及び不純物濃度を制御することができる。   (5) In the first embodiment, the raw material mixture was heated in an inert gas atmosphere while supplying an inert gas such as nitrogen gas or argon from the inert gas introduction device 16. Therefore, the oxygen partial pressure can be changed by controlling the carbon monoxide concentration and the like inside the furnace body 12 by controlling the flow rate of the inert gas, so that the carbon and impurity concentrations in the molten pig iron are controlled. Can do.

(6)第1の実施形態において、原料混合物から発生する粉塵・ダスト及び酸化鉄鉱石等の酸化鉄含有化合物が加熱されることにより排出される排気ガスを回収する排気ガス回収装置14を炉本体12の上部に設けた。したがって、排ガス中の熱及び特定成分を再利用することができる。   (6) In the first embodiment, the exhaust gas recovery device 14 that recovers exhaust gas discharged by heating iron oxide-containing compounds such as dust and dust generated from the raw material mixture and iron oxide ore is used as the furnace body. 12 was provided at the top. Therefore, the heat and specific components in the exhaust gas can be reused.

(7)第1の実施形態において、底部に出銑口21bが形成された貯留容器21を誘導路20の端部に取り付けることにより溶融銑鉄22aを一時貯留可能に構成した。したがって、銑鉄が生成されるごとに銑鉄の取り出し作業を行う必要がなく、炉本体12における銑鉄の連続的な製造が可能となるとともに生成した溶融銑鉄22aを適宜取り出すことが可能となる。また、銑鉄を溶融状態で出銑口21bから取り出すことができるため後処理において銑鉄の成分調整を容易に行なうことができる。   (7) In 1st Embodiment, the molten pig iron 22a was comprised so that temporary storage was possible by attaching the storage container 21 in which the tap spout 21b was formed in the bottom part to the edge part of the induction path 20. FIG. Therefore, it is not necessary to take out the pig iron every time the pig iron is generated, and it is possible to continuously produce the pig iron in the furnace body 12 and to appropriately take out the generated molten pig iron 22a. Moreover, since the pig iron can be taken out from the tap hole 21b in a molten state, the components of the pig iron can be easily adjusted in the post-treatment.

(8)第1の実施形態において、貯留容器21は断熱性の高い耐火物17により貯留空間21aを構成した。また、マイクロ波が照射される炉本体12の内部12aと連通されるよう構成した。したがって、貯留容器21の溶融銑鉄22aの溶融状態を維持することができる。   (8) In 1st Embodiment, the storage container 21 comprised the storage space 21a with the refractory material 17 with high heat insulation. Moreover, it comprised so that it might be connected with the inside 12a of the furnace main body 12 irradiated with a microwave. Therefore, the molten state of the molten pig iron 22a in the storage container 21 can be maintained.

(9)第1の実施形態において、原料混合物の溶融は、酸素分圧10-13〜10-11の雰囲気下で行なった。かかる雰囲気下においては、固体の炭素化合物と固体の酸化鉄が1154℃の共晶温度以上で接触すると、接触点で銑鉄の液相が生成し、液相中に生じる炭素の拡散と液相の対流により速やかに炭素が炭素化合物から固体酸化鉄に移動し、固体酸化鉄を銑鉄(還元鉄)として溶融する。そして溶融により増した還元鉄の液相は炭素化合物と固体酸化鉄を濡らし、炭素化合物と溶融銑鉄と固体酸化鉄の接触面積を急速に拡大させて、それが炭素の移動(浸炭)をさらに加速する。また、鉄鉱石等の酸化鉄含有化合物及び石炭等の炭素化合物由来の珪素、マグネシウム、リン酸、チタン、イオウ、マンガン及びそれらの酸化物等の不純物は、還元及び溶融が抑制される。そのため還元・溶融される銑鉄中に不純物が溶け込まれることはなく、不純物の含有量を低減させることにより高純度の銑鉄を製造することができる。この高酸素ポテンシャル雰囲気下は、熱源としてマイクロ波を用い、急速に原料混合物を加熱することにより形成することができる。 (9) In the first embodiment, the raw material mixture was melted in an atmosphere having an oxygen partial pressure of 10 −13 to 10 −11 . Under such an atmosphere, when a solid carbon compound and solid iron oxide come into contact with each other at a eutectic temperature of 1154 ° C. or more, a liquid phase of pig iron is generated at the contact point, and carbon diffusion and liquid phase generated in the liquid phase are generated. By convection, carbon quickly moves from the carbon compound to solid iron oxide, and the solid iron oxide is melted as pig iron (reduced iron). The liquid phase of reduced iron increased by melting wets the carbon compound and solid iron oxide, rapidly expanding the contact area between the carbon compound, molten pig iron and solid iron oxide, which further accelerates the movement of the carbon (carburization). To do. Impurities such as silicon, magnesium, phosphoric acid, titanium, sulfur, manganese, and oxides thereof derived from iron oxide-containing compounds such as iron ore and carbon compounds such as coal are reduced and melted. Therefore, impurities are not dissolved in pig iron to be reduced and melted, and high purity pig iron can be manufactured by reducing the content of impurities. This high oxygen potential atmosphere can be formed by using a microwave as a heat source and rapidly heating the raw material mixture.

(10)第1の実施形態において、原料混合物の溶融は、1250〜1450℃の雰囲気下で行なった。したがって、酸化鉄の還元反応を低温で行なうことができるため消費エネルギーを低減させることができる。また、かかる低温高酸素ポテンシャルにおいては、還元エネルギーを炭素の燃焼で供給する必要がないため温暖化の原因となる炭酸ガスの発生を抑制することができる。   (10) In the first embodiment, the raw material mixture was melted in an atmosphere of 1250 to 1450 ° C. Therefore, since the reduction reaction of iron oxide can be performed at a low temperature, energy consumption can be reduced. Further, in such a low-temperature high-oxygen potential, it is not necessary to supply reducing energy by carbon combustion, so that the generation of carbon dioxide that causes warming can be suppressed.

(11)第1の実施形態において、原料混合物は粉末状又は粒状の酸化鉄含有化合物と炭素化合物を使用した。したがって、酸化鉄と炭素化合物の接触面積を増加させることができるため、熱の伝達速度の上昇、還元処理速度及び還元鉄の浸炭と溶融速度の向上を図ることができる。   (11) In the first embodiment, the raw material mixture uses a powdered or granular iron oxide-containing compound and a carbon compound. Therefore, the contact area between the iron oxide and the carbon compound can be increased, so that the heat transfer rate can be increased, the reduction treatment rate, and the carburization and melting rate of the reduced iron can be improved.

(12)第1の実施形態において、排気ガス回収装置14は、炉本体12のドーム状の上部の頂点部に取り付けられる。したがって、加熱により発生した排気ガスを効率よく回収することができる。   (12) In the first embodiment, the exhaust gas recovery device 14 is attached to the top of the dome-shaped upper portion of the furnace body 12. Therefore, exhaust gas generated by heating can be efficiently recovered.

(13)第1の実施形態において、耐火物17及び断熱材19の構成により熱の漏洩を防止し、エネルギー効率を高めることができる。
(14)第1の実施形態において、原料混合物として粒子又はペレットを使用した場合においてもマイクロ波を用いて加熱することにより原料混合物の表面のみならず内部も急速に加熱することができ、温度及び酸素分圧を上記範囲内に容易に上昇させることができる。
(13) In the first embodiment, the configuration of the refractory 17 and the heat insulating material 19 can prevent heat leakage and increase energy efficiency.
(14) In the first embodiment, even when particles or pellets are used as the raw material mixture, not only the surface but also the inside of the raw material mixture can be rapidly heated by heating using microwaves. The oxygen partial pressure can be easily increased within the above range.

なお、上記第1の実施形態は以下のように変更してもよい。
・上記実施形態において、貯留容器21を1つ設けた。しかしながら、貯留容器の取り付け数は特に限定されず複数設けてもよい。例えば、図2に示されるように左右両側に貯留容器21を設けてもよい。かかる場合、炉床部12bの略中央部を頂点として左右両方向の下方へ傾斜するように傾斜部12cを設け、該傾斜部12cの傾きを延長するように誘導路20を斜め下方に向けてそれぞれ配することにより構成することができる。かかる複数の貯留容器を設ける構成を採用することにより、炉床部12b上の溶融銑鉄を効率よく、炉本体12外へ誘導することができる。
In addition, you may change the said 1st Embodiment as follows.
In the above embodiment, one storage container 21 is provided. However, the number of storage containers attached is not particularly limited, and a plurality of storage containers may be provided. For example, as shown in FIG. 2, storage containers 21 may be provided on both the left and right sides. In such a case, an inclined portion 12c is provided so as to incline downward in both the left and right directions with the approximate center of the hearth 12b as a vertex, and the guide path 20 is directed obliquely downward so as to extend the inclination of the inclined portion 12c. It can be configured by arranging. By adopting such a configuration in which a plurality of storage containers are provided, the molten pig iron on the hearth 12b can be efficiently guided outside the furnace body 12.

・上記実施形態において、原料投入装置15は投入管15aの吐出側先端が炉本体12のドーム状の上部において斜めに突き刺されるように取り付けた。しかしながら、図3に示されるように原料投入装置を投入管が吐出側先端と炉本体12の頂上部が連通されるよう水平状態で取り付けた原料投入装置36のように構成してもよい。かかる場合、排気ガス回収部としての排気ガス回収装置37をその近傍に取り付けるよう構成してもよい。かかる構成により、原料混合物を炉床部12bの中央部へ投入することができる。また、炉本体12内の熱が原料投入装置15を介して外部へ流出することを抑制することができる。   In the above embodiment, the raw material charging device 15 is attached so that the discharge side tip of the charging tube 15 a is stabbed obliquely at the dome-shaped upper portion of the furnace body 12. However, as shown in FIG. 3, the raw material charging device may be configured as a raw material charging device 36 that is mounted in a horizontal state so that the charging pipe communicates with the discharge-side tip and the top of the furnace body 12. In such a case, an exhaust gas recovery device 37 as an exhaust gas recovery unit may be attached in the vicinity thereof. With this configuration, the raw material mixture can be charged into the center of the hearth 12b. Further, it is possible to suppress the heat in the furnace main body 12 from flowing out through the raw material charging device 15.

・上記実施形態において、貯留容器21内に貯留された溶融銑鉄22aは、図4に示されるような出銑口21bの下部に配設される取鍋38で受けることにより取り出してもよい。取鍋38は例えば内側が耐火物38aによって内張された金属(例えばステンレス)製の外套38bから構成されている。また、出銑口21bが開口され溶融銑鉄22aを取鍋38で受ける際、マイクロ波の外部への漏洩を防止するために、金属(例えば銅)製のマイクロ波遮蔽網39で取鍋38を含め被覆することが好ましい。取鍋38により溶融銑鉄22aの他、スラグ、脈石、過剰炭素源等を取り出してもよい。   -In the said embodiment, you may take out the molten pig iron 22a stored in the storage container 21 by receiving with the ladle 38 arrange | positioned at the lower part of the tap hole 21b as shown in FIG. The ladle 38 is composed of, for example, a metal (for example, stainless steel) mantle 38b lined with a refractory 38a. In addition, when the spout 21b is opened and the molten pig iron 22a is received by the ladle 38, the ladle 38 is held by a microwave shielding net 39 made of metal (for example, copper) in order to prevent leakage of microwaves to the outside. It is preferable to cover it. In addition to the molten pig iron 22a, the ladle 38 may take out slag, gangue, excess carbon source, and the like.

・上記実施形態において、炉床部12b全面において斜め下方に傾斜される傾斜部12cを構成した。しかしながら、炉床部12bの少なくとも一部に傾斜部を設けても良い。かかる傾斜部の下端に誘導路を連通させることにより、溶融銑鉄を炉外に放出することができる。   -In above-mentioned embodiment, the inclined part 12c inclined diagonally downward was comprised in the whole hearth part 12b. However, you may provide an inclination part in at least one part of the hearth part 12b. The molten pig iron can be discharged to the outside of the furnace by connecting the guide path to the lower end of the inclined portion.

・上記実施形態において、マイクロ波照射装置13は太陽光、水力、風力、地熱又は原子力から選ばれる少なくとも一種によって発電される電力によって稼働されるように構成してもよい。かかる電力源は火力発電に比べ二酸化炭素の発生を抑制することができるため環境に配慮した銑鉄製造を行なうことができる。   In the above embodiment, the microwave irradiation device 13 may be configured to be operated by electric power generated by at least one selected from sunlight, hydraulic power, wind power, geothermal heat, or nuclear power. Such an electric power source can suppress the generation of carbon dioxide as compared with thermal power generation, and therefore can perform pig iron production in consideration of the environment.

・上記実施形態において、排気ガス回収装置14において回収した排気ガスの熱エネルギーを用いて窒素、アルゴン等の不活性ガス又は原料混合物を予熱する予熱部をさらに設けてもよい。かかる構成により銑鉄の製造におけるエネルギー効率をさらに向上させることができる。また、鉄鉱石に赤鉄鉱が含まれる場合、予熱部により予め原料を500〜800℃に予熱することにより赤鉄鉱の一部をマイクロ波吸収率の高い磁鉄鉱に還元することができる。   -In the said embodiment, you may further provide the pre-heating part which pre-heats inert gas or raw material mixtures, such as nitrogen and argon, using the thermal energy of the exhaust gas collect | recovered in the exhaust-gas collection | recovery apparatus 14. FIG. With this configuration, the energy efficiency in the production of pig iron can be further improved. Moreover, when hematite is contained in iron ore, a part of hematite can be reduced to magnetite having a high microwave absorption rate by preheating the raw material to 500 to 800 ° C. in advance by the preheating section.

・上記実施形態において、誘導路20を斜め下方に向けて構成した。しかしながら、誘導路を水平又は斜め上方に向けて構成するとともに吸引等により溶融銑鉄を回収できるように構成してもよい。   In the above embodiment, the guide path 20 is configured to face obliquely downward. However, you may comprise so that a molten pig iron can be collect | recovered by attraction | suction etc. while it comprises a guide path horizontally or diagonally upward.

・上記実施形態において、酸化鉄含有化合物中の固体不純物が溶融銑鉄とともに流れ出ること防止するため傾斜部12c上に網目構造、凹状段差、凸状段差等のフィルタ構造を設けてもよい。また、耐火性の球状の粒子からなる複数の充填体をフィルタとして配設させてもよい。   In the above embodiment, a filter structure such as a mesh structure, a concave step, or a convex step may be provided on the inclined portion 12c in order to prevent solid impurities in the iron oxide-containing compound from flowing out together with the molten pig iron. Moreover, you may arrange | position the several filler which consists of a fireproof spherical particle | grain as a filter.

(第2の実施形態)
以下、本発明の溶鉱炉を具体化した第2の実施形態を図5にしたがって説明する。
図5に示されるように、溶鉱炉23は炉床部24及び該炉床部24の真上において垂直に建てられる収容部としての円筒状の炉体25から構成されている。溶鉱炉23には、マイクロ波発生部としてのマイクロ波照射装置26、原料混合物から排出されるダスト及び排気ガスを回収する排気ガス回収部としての排気ガス回収装置27、原料投入装置28及び不活性ガス導入部としての不活性ガス導入装置29がそれぞれ溶鉱炉23の内部23aに連通されるように接続されている。炉床部24は溶融銑鉄を炉体外に導く誘導部としての誘導路30及び溶融銑鉄を炉外に放出する出銑口31が備えられている。
(Second Embodiment)
Hereinafter, a second embodiment of the blast furnace according to the present invention will be described with reference to FIG.
As shown in FIG. 5, the blast furnace 23 is composed of a hearth part 24 and a cylindrical furnace body 25 as a housing part which is built vertically above the hearth part 24. The blast furnace 23 includes a microwave irradiation device 26 as a microwave generation unit, an exhaust gas recovery device 27 as an exhaust gas recovery unit that recovers dust and exhaust gas discharged from the raw material mixture, a raw material input device 28, and an inert gas. Inert gas introduction devices 29 as introduction portions are connected to communicate with the interior 23a of the blast furnace 23, respectively. The hearth part 24 is provided with an induction path 30 as an induction part for guiding the molten pig iron out of the furnace body and an outlet 31 for discharging the molten pig iron out of the furnace.

炉体25は、耐火物32によって上部は薄く下部は厚くなるよう内張された金属(例えばステンレス)製の外套33から構成される。耐火物32は、マイクロ波の吸収が小さく断熱性が高いセラミックス系のライナーが好ましく適用され、具体的にはアルミナ系耐火物、ムライト系耐火物、シリカ系耐火物、ジルコニア系耐火物及び窒化珪素系耐火物等が挙げられる。炉体25の断面形状は円形、楕円形、多角形等が挙げられ、これらのうち内部23aの温度を均一にすることが容易な円形が好ましい。炉体25は上方から下方に向かって拡径方向に開くテーパ状をなし、該テーパ状をなす角度は0〜45°の範囲が好ましく、5〜20°の範囲がより好ましい。炉体25の高さは、酸化鉄含有化合物の充填量、銑鉄の製造量等に応じて適宜設定されるが、3m以内が好ましい。   The furnace body 25 is composed of a metal (for example, stainless steel) mantle 33 lined with a refractory 32 so that the upper part is thin and the lower part is thick. As the refractory 32, a ceramic-based liner that absorbs microwaves and has high heat insulation is preferably applied. Specifically, alumina-based refractories, mullite-based refractories, silica-based refractories, zirconia-based refractories, and silicon nitride. System refractories and the like. Examples of the cross-sectional shape of the furnace body 25 include a circle, an ellipse, and a polygon. Of these, a circle that can easily make the temperature of the interior 23a uniform is preferable. The furnace body 25 has a taper shape that opens in the diameter increasing direction from the top to the bottom, and the taper angle is preferably in the range of 0 to 45 °, more preferably in the range of 5 to 20 °. The height of the furnace body 25 is appropriately set according to the filling amount of the iron oxide-containing compound, the production amount of pig iron, etc., but is preferably within 3 m.

炉体25の上端部には、原料投入装置28が接続され、該原料投入装置28から投入された原料混合物は炉体25内に搬入されるよう構成されている。具体的原料投入装置として第1の実施形態に記載される原料投入装置15を適用することができる。炉体25の下端は炉床部24に接続され、炉体25内の原料混合物は炉床部24内の炉床24a上へと誘導される。炉床24aの幅は特に限定されないが、0.5m以内が好ましい。炉床部24は、炉体25と同様に耐火物32によって内張された金属製の外套33から構成される。耐火物32は、炉体25において適用される耐火物32と同様にマイクロ波の吸収が小さく断熱性が高いセラミックス系のライナーが好ましく適用される。炉床24aの上面は誘導路20の高さ位置と同一又は高い位置に設けられ、溶融銑鉄を重力により誘導路20へ導くように構成されている。   A raw material charging device 28 is connected to the upper end portion of the furnace body 25, and the raw material mixture charged from the raw material charging device 28 is configured to be carried into the furnace body 25. As a specific raw material charging apparatus, the raw material charging apparatus 15 described in the first embodiment can be applied. The lower end of the furnace body 25 is connected to the hearth part 24, and the raw material mixture in the furnace body 25 is guided onto the hearth 24 a in the hearth part 24. The width of the hearth 24a is not particularly limited, but is preferably within 0.5 m. Like the furnace body 25, the hearth part 24 is composed of a metal mantle 33 lined with a refractory 32. As the refractory 32, a ceramic liner that absorbs microwaves and has high heat insulation properties is preferably applied, similarly to the refractory 32 applied in the furnace body 25. The upper surface of the hearth 24a is provided at a position equal to or higher than the height position of the induction path 20, and is configured to guide the molten pig iron to the induction path 20 by gravity.

炉床24a上には還元生成される銑鉄よりも融点が高くマイクロ波によって自己発熱可能なマイクロ波吸収体34が充填されている。マイクロ波吸収体34の材料としては、ジルコニア及び炭素系化合物(例えば、炭化珪素、炭化窒素)等が挙げられる。炉床24a上に充填されるマイクロ波吸収体34の大きさ・形状は特に限定されないが、加熱により溶融・凝集した銑鉄がマイクロ波吸収体34の隙間を通じて、誘導路30へ流動されるように径の大きい(積層された際隙間の大きい)球状が好ましい。マイクロ波吸収体34の充填量は、特に限定されない。また、好ましくは固体不純物の流出を防止するために誘導路30の近傍に配設される。排気ガス回収装置27は、粉末又は粒子状の原料混合物から発生するダスト又は原料混合物が加熱・溶融される過程で排出される水素ガス、メタンガス、窒素ガス、一酸化炭素ガス、二酸化炭素ガス等の排出ガスを回収する。不活性ガス導入装置29からは、溶鉱炉23の内部23aの雰囲気を調製するために不活性ガスとしてアルゴン、窒素ガス等が導入される。   The hearth 24a is filled with a microwave absorber 34 having a melting point higher than that of pig iron to be reduced and capable of self-heating by microwaves. Examples of the material of the microwave absorber 34 include zirconia and carbon compounds (for example, silicon carbide and nitrogen carbide). The size and shape of the microwave absorber 34 filled on the hearth 24 a are not particularly limited, but pig iron melted and aggregated by heating flows through the gap between the microwave absorbers 34 to the induction path 30. A spherical shape with a large diameter (a large gap when laminated) is preferable. The filling amount of the microwave absorber 34 is not particularly limited. Further, it is preferably disposed in the vicinity of the guide path 30 in order to prevent the outflow of solid impurities. The exhaust gas recovery device 27 is configured to generate hydrogen gas, methane gas, nitrogen gas, carbon monoxide gas, carbon dioxide gas, etc. discharged in the process in which dust or raw material mixture generated from a powder or particulate raw material mixture is heated and melted. Collect the exhaust gas. From the inert gas introduction device 29, argon, nitrogen gas, or the like is introduced as an inert gas in order to adjust the atmosphere inside the blast furnace 23.

マイクロ波照射装置26は、マイクロ波発振器26aと導波管26bとから構成され、マイクロ波発振器26aは導波管26bを介して炉床部24に接続されている。マイクロ波発振器26aから出力されるマイクロ波は、導波管26bを経由して溶鉱炉23の内部23aに入射されるよう構成されている。マイクロ波の周波数は、0.9〜100GHzが好ましく、0.9〜10GHzがより好ましく、特に2.45GHzが好ましい。   The microwave irradiation device 26 includes a microwave oscillator 26a and a waveguide 26b, and the microwave oscillator 26a is connected to the hearth part 24 through the waveguide 26b. The microwave output from the microwave oscillator 26a is configured to be incident on the inside 23a of the blast furnace 23 via the waveguide 26b. The frequency of the microwave is preferably 0.9 to 100 GHz, more preferably 0.9 to 10 GHz, and particularly preferably 2.45 GHz.

炉体25内に投入される原料混合物35は、粉末又は粒子状に粉砕された酸化鉄含有化合物及び該酸化鉄含有化合物を還元するための還元剤としての炭素化合物からなる混合物である。炭素化合物は酸化鉄含有化合物を還元するための還元剤として配合されるとともに、還元鉄中に浸炭されることにより銑鉄に変換させるために配合される。原料混合物22中における酸化鉄含有化合物と炭素化合物の配合量は、酸化鉄含有化合物中の酸化鉄、酸化亜鉛、酸化鉛等の還元され易い全ての金属酸化物中の全ての酸素をCO、CO2又はこれらの混合ガスとして除去するために必要とされる炭素量と、所定の炭素濃度を有する銑鉄を得るために必要とされる炭素量の合計の炭素量を含む量である。例えば、酸化鉄含有化合物として鉄鉱石である磁鉄鉱を使用する場合、鉄鉱石1質量比に対し、炭素化合物0.12〜0.4質量比、好ましくは0.15〜0.3質量比、より好ましくは0.2〜0.25質量比である。 The raw material mixture 35 charged into the furnace body 25 is a mixture comprising an iron oxide-containing compound pulverized into powder or particles and a carbon compound as a reducing agent for reducing the iron oxide-containing compound. The carbon compound is blended as a reducing agent for reducing the iron oxide-containing compound and is converted into pig iron by being carburized in the reduced iron. The compounding amount of the iron oxide-containing compound and the carbon compound in the raw material mixture 22 is such that all oxygen in all metal oxides that are easily reduced such as iron oxide, zinc oxide, lead oxide, etc. in the iron oxide-containing compound is CO, CO 2 or an amount of carbon including the total amount of carbon required for obtaining pig iron having a predetermined carbon concentration and the amount of carbon required for removal as a mixed gas of these two or a mixture thereof. For example, when using magnetite that is iron ore as the iron oxide-containing compound, the carbon compound is 0.12 to 0.4 mass ratio, preferably 0.15 to 0.3 mass ratio, relative to 1 mass ratio of iron ore. Preferably it is 0.2-0.25 mass ratio.

酸化鉄含有化合物としては、鉄鉱石、製鋼ダスト、チタン鉄鉱としてのイルメナイト等が挙げられる。鉄鉱石の種類は、酸化鉄鉱石としての赤鉄鉱(Fe23)及び磁鉄鉱(Fe34)が挙げられる。炭素化合物は、石炭、コークス、チャー、活性炭、木炭、有機物を含む廃棄物の乾留物等の炭素源が挙げられる。還元剤としての炭素化合物は、酸化鉄と炭素源の接触面積を増加させるために粒状又は粉末状とすることが好ましい。それにより、酸化鉄への熱伝導、還元、浸炭の速度を向上させることができる。その他、原料混合物中にスラグ除去を目的として石灰石等の他の成分を適宜配合してもよい。 Examples of the iron oxide-containing compound include iron ore, steelmaking dust, and ilmenite as titanite. Examples of the iron ore include hematite (Fe 2 O 3 ) and magnetite (Fe 3 O 4 ) as iron oxide ores. Examples of the carbon compound include carbon sources such as coal, coke, char, activated carbon, charcoal, and waste carbonized matter containing organic matter. The carbon compound as the reducing agent is preferably granular or powdery in order to increase the contact area between the iron oxide and the carbon source. Thereby, the speed of heat conduction to iron oxide, reduction, and carburization can be improved. In addition, other components such as limestone may be appropriately blended in the raw material mixture for the purpose of removing slag.

次に、上記のように構成された溶鉱炉23の作用について説明する。
まず、第1の実施形態と同様に酸化鉄含有化合物と還元剤としての炭素化合物からなる原料混合物のペレットを原料投入装置28から炉体25の内部23aに投入するとともに内部23aにおいて所定量積層させる。次に、不活性ガス導入装置29からアルゴン、窒素等の不活性ガスを導入することにより内部23aに不活性ガスを充填させる。そして、マイクロ波照射装置26によりマイクロ波を原料混合物35及びマイクロ波吸収体34に照射することにより原料混合物35及びマイクロ波吸収体34を加熱する。原料混合物35中の酸化鉄含有化合物はマイクロ波により自身が加熱されることにより又はマイクロ波により加熱された炭素化合物としての炭素源から熱伝導を受けることにより急速に加熱される。
Next, the operation of the blast furnace 23 configured as described above will be described.
First, as in the first embodiment, a pellet of a raw material mixture composed of an iron oxide-containing compound and a carbon compound as a reducing agent is charged from the raw material charging device 28 into the interior 23a of the furnace body 25, and a predetermined amount is stacked in the internal 23a. . Next, an inert gas such as argon or nitrogen is introduced from the inert gas introduction device 29 to fill the interior 23a with the inert gas. Then, the raw material mixture 35 and the microwave absorber 34 are heated by irradiating the raw material mixture 35 and the microwave absorber 34 with the microwave irradiation device 26. The iron oxide-containing compound in the raw material mixture 35 is rapidly heated by heating itself by microwaves or by receiving heat conduction from a carbon source as a carbon compound heated by microwaves.

酸化鉄含有化合物は、温度上昇に伴い還元反応が進行するとともに水素ガス、メタンガス、窒素ガス、一酸化炭素ガス、二酸化炭素ガス等の揮発性ガスを吹き出しながら数分で約1000℃付近に達する。内部23aは揮発性ガスが排気ガス回収装置27により回収されるとともに不活性ガス導入装置29からは不活性ガスが導入されることにより、原料混合物35の加熱は不活性ガス雰囲気下で行われる。そのとき内部23aの酸素分圧は10-13〜10-11atm、好ましくは10-12〜10-11atm、より好ましくは10-12atmに維持される。かかる高酸素分圧下においては、酸化鉄は還元・溶融されるが、酸化鉄含有化合物又は炭素化合物由来の珪素、マグネシウム、リン酸、チタン、イオウ、マンガン及びそれらの酸化物等の不純物の還元・溶融は抑制される。一方、溶融により生じた還元鉄の液相は炭素化合物と固体酸化鉄を濡らし、炭素化合物と溶融銑鉄と固体酸化鉄の接触面積を急速に拡大し、それが炭素の還元鉄への移動(浸炭)をさらに加速させる。内部23aの酸素分圧は排気ガス回収装置27、不活性ガス導入装置29及び原料混合物の加熱速度によって調節される。 The iron oxide-containing compound proceeds to a reduction reaction as the temperature rises, and reaches about 1000 ° C. in a few minutes while blowing out volatile gases such as hydrogen gas, methane gas, nitrogen gas, carbon monoxide gas, carbon dioxide gas. In the interior 23a, the volatile gas is recovered by the exhaust gas recovery device 27 and the inert gas is introduced from the inert gas introduction device 29, whereby the raw material mixture 35 is heated in an inert gas atmosphere. At that time, the oxygen partial pressure in the interior 23a is maintained at 10 −13 to 10 −11 atm, preferably 10 −12 to 10 −11 atm, more preferably 10 −12 atm. Under such high oxygen partial pressure, iron oxide is reduced and melted, but reduction of impurities such as silicon, magnesium, phosphoric acid, titanium, sulfur, manganese and their oxides derived from iron oxide-containing compounds or carbon compounds. Melting is suppressed. On the other hand, the liquid phase of reduced iron generated by melting wets the carbon compound and solid iron oxide, and rapidly expands the contact area between the carbon compound, molten pig iron and solid iron oxide, which moves the carbon to the reduced iron (carburization). ) Is further accelerated. The oxygen partial pressure in the interior 23a is adjusted by the exhaust gas recovery device 27, the inert gas introduction device 29, and the heating rate of the raw material mixture.

そしてさらに原料混合物がマイクロ波により加熱され、1250〜1450℃、好ましくは1300〜1400℃、より好ましくは1350〜1370℃の雰囲気下に維持される。かかる加熱温度はマイクロ波の照射出力を調節することにより調整することができる。上記の酸素分圧及び温度雰囲気下において、酸化鉄のみが還元・溶融されるとともに溶融還元鉄中への浸炭が加速される。その一方、酸化鉄含有化合物及び炭素化合物由来の珪素、マグネシウム、リン酸、チタン、イオウ、マンガン及びそれらの酸化物等の不純物は、還元・溶融が抑制されるため高純度の銑鉄が生成される。溶融・浸炭することにより生成した溶融銑鉄はマイクロ波により加熱されたマイクロ波吸収体34により加熱されながらマイクロ波吸収体34の隙間を通り炉床24a上に流出する。炉床24a上に流出された溶融銑鉄は表面張力により凝集しながら重力により又は吸引により誘導路30を通過し、最終的に出銑口31から溶鉱炉23外に放出される。   Further, the raw material mixture is heated by microwaves and maintained in an atmosphere of 1250 to 1450 ° C, preferably 1300 to 1400 ° C, more preferably 1350 to 1370 ° C. The heating temperature can be adjusted by adjusting the microwave irradiation output. Under the above oxygen partial pressure and temperature atmosphere, only iron oxide is reduced and melted, and carburization into the molten reduced iron is accelerated. On the other hand, impurities such as silicon, magnesium, phosphoric acid, titanium, sulfur, manganese and their oxides derived from iron oxide-containing compounds and carbon compounds are reduced and melted, so high purity pig iron is produced. . Molten pig iron generated by melting and carburizing flows through the gap between the microwave absorbers 34 while being heated by the microwave absorbers 34 heated by microwaves, and flows out onto the hearth 24a. The molten pig iron that has flowed out onto the hearth 24 a passes through the induction path 30 by gravity or suction while being agglomerated due to surface tension, and is finally discharged out of the blast furnace 23 from the tap 31.

第2の実施形態の溶鉱炉23によれば、上記第1の実施形態と同様の効果を得ることができるとともに、以下のような効果を得ることができる。
(1)第2の実施形態において、炉床24a上には銑鉄よりも融点が高くマイクロ波によって自己発熱可能なマイクロ波吸収体34を充填した。かかる構成により、マイクロ波により加熱されたマイクロ波吸収体34から熱伝導を受けることにより一層急速に酸化鉄含有化合物を加熱することができる。また、マイクロ波により還元・溶融した銑鉄はマイクロ波により加熱されたマイクロ波吸収体34からの熱伝導により溶融状態を維持することができる。一方、溶融銑鉄の溶融状態を維持するために、さらに誘導加熱コイル等の設備を設けて溶鉱炉23を外部から加熱した場合、かかる加熱は熱伝導を伴うものであるためエネルギー効率を高めることはできない。溶融銑鉄に接触するマイクロ波吸収体34を直接加熱することができるためエネルギー効率を高めることができる。
According to the blast furnace 23 of the second embodiment, the same effects as those of the first embodiment can be obtained, and the following effects can be obtained.
(1) In the second embodiment, a microwave absorber 34 having a melting point higher than pig iron and capable of self-heating by microwaves is filled on the hearth 24a. With this configuration, the iron oxide-containing compound can be heated more rapidly by receiving heat conduction from the microwave absorber 34 heated by the microwave. Further, pig iron reduced and melted by microwaves can maintain a molten state by heat conduction from the microwave absorber 34 heated by microwaves. On the other hand, in order to maintain the molten state of the molten pig iron, when the blast furnace 23 is heated from the outside by further providing equipment such as an induction heating coil, such heating is accompanied by heat conduction, so energy efficiency cannot be increased. . Since the microwave absorber 34 in contact with the molten pig iron can be directly heated, the energy efficiency can be increased.

また、溶融銑鉄の溶融状態を維持するために還元エネルギーを炭素の燃焼で供給する必要がないため温暖化の原因となる炭酸ガスの発生を抑制することができる。
(2)第2の実施形態において、炉床24a上の誘導路30近傍にマイクロ波吸収体34を充填した。したがって、複数のマイクロ波吸収体34がフィルタの役目をすることにより鉄鉱石等の酸化鉄含有化合物中の固体として存在する不純物が溶融銑鉄とともに流れ出ることを防止することができる。
Moreover, since it is not necessary to supply reduction energy by carbon combustion in order to maintain the molten state of molten pig iron, generation | occurrence | production of the carbon dioxide which causes a warming can be suppressed.
(2) In the second embodiment, the microwave absorber 34 is filled in the vicinity of the guide path 30 on the hearth 24a. Therefore, the plurality of microwave absorbers 34 serve as a filter, so that impurities existing as solids in the iron oxide-containing compound such as iron ore can be prevented from flowing out together with the molten pig iron.

なお、上記実施形態は以下のように変更してもよい。
・上記実施形態の溶鉱炉は、竪型溶鉱炉として構成されてもよい。かかる構成においても上述した効果を得ることができる。
In addition, you may change the said embodiment as follows.
-The blast furnace of the said embodiment may be comprised as a vertical type blast furnace. Even in such a configuration, the above-described effects can be obtained.

・マイクロ波吸収体は、炉床24a上において全面に積層させてもよく、誘導路30近傍等の一部に充填してもよい。
・上記実施形態において、第1の実施形態と同様に傾斜部の構成、誘導路30の吐出側先端に底部に出銑口を有する貯留容器、取鍋及びマイクロ波遮蔽網の構成を採用してもよい。かかる構成を採用することにより第1の実施形態と同様の効果を得ることができる。
-A microwave absorber may be laminated | stacked on the whole surface on the hearth 24a, and you may fill some in the vicinity of the induction path 30, etc. As shown in FIG.
In the above embodiment, as in the first embodiment, the configuration of the inclined portion, the configuration of the storage container having a tap at the bottom of the discharge side tip of the guide path 30, the ladle and the microwave shielding network are adopted. Also good. By adopting such a configuration, it is possible to obtain the same effect as that of the first embodiment.

次に、実施例を挙げて前記実施形態を更に具体的に説明する。
(実施例1〜3)
図1に示される溶鉱炉を使用して、マグネタイト鉄鉱石粉及び炭素化合物としての石炭粉を1:0.25の質量比で混合される直径約20mmのペレットを原料混合物として使用した。原料混合物を炉内部に投入するとともに窒素ガス雰囲気下において表1に示される実施例1〜3のペレット10g当たりのマイクロ波出力条件下においてマイクロ波加熱を行なった。加熱による還元溶融により生成した各銑鉄は傾斜部において固体不純物と分離されながら誘導路を通過し貯留容器に一時貯留された。貯留容器から取り出された各銑鉄中の炭素濃度及び不純物としての珪素、リン、チタンの濃度を測定した。測定結果を表1に示す。なお、表1における各成分の配合を示す数値の単位は質量%である。また、炉内部の温度(縦軸)とマイクロ波照射時間(横軸)の関係を示す表を図6に示す。
Next, the embodiment will be described more specifically with reference to examples.
(Examples 1-3)
Using the blast furnace shown in FIG. 1, pellets having a diameter of about 20 mm mixed with magnetite iron ore powder and coal powder as a carbon compound at a mass ratio of 1: 0.25 were used as a raw material mixture. The raw material mixture was put into the furnace and microwave heating was performed under a microwave output condition per 10 g of pellets of Examples 1 to 3 shown in Table 1 in a nitrogen gas atmosphere. Each pig iron produced by reductive melting by heating passed through the induction path while being separated from solid impurities in the inclined portion, and was temporarily stored in the storage container. The carbon concentration in each pig iron taken out from the storage container and the concentrations of silicon, phosphorus and titanium as impurities were measured. The measurement results are shown in Table 1. In addition, the unit of the numerical value which shows the mixing | blending of each component in Table 1 is the mass%. A table showing the relationship between the temperature inside the furnace (vertical axis) and the microwave irradiation time (horizontal axis) is shown in FIG.

Figure 2007205639
図6に示されるように、いずれの実施例においてもマイクロ波を照射することにより、上昇開始時間に差はあるが急速に原料混合物は加熱され、各実施例において約1370℃において溶融銑鉄が生成したことが確認された。また、実施例1に示されるようにマイクロ波の出力を上げることにより加熱速度も上昇することが確認された。1500℃以上の高温を必要とする従来の高炉法と比べ、マイクロ波を使用した製造方法は、低温且つ迅速に銑鉄を生成させることができる。
Figure 2007205639
As shown in FIG. 6, in any of the examples, by irradiating microwaves, the raw material mixture is rapidly heated although there is a difference in rising start time, and in each example, molten pig iron is generated at about 1370 ° C. It was confirmed that Further, as shown in Example 1, it was confirmed that the heating rate was increased by increasing the output of the microwave. Compared with the conventional blast furnace method that requires a high temperature of 1500 ° C. or higher, the manufacturing method using microwaves can generate pig iron at a low temperature and quickly.

また、表1に示されるように生成された銑鉄中の不純物濃度は実施例1においてSiが0.01質量%未満、Pが0.0039質量%、Tiが0.006質量%となった。これらの値は従来の高炉法を用いた方法と比べ約1桁小さい値である。これはマイクロ波により原料混合物を急速に所定温度に加熱したことにより高酸素分圧下(約10-12atm)となった内部雰囲気下において、酸化鉄のみが還元されたことによるものである。また、マイクロ波の出力が高いほど不純物濃度が低下することが確認された。これはマイクロ波の出力を上げ、急速に原料混合物を加熱すると内部酸素分圧のさらなる上昇を招くため、不純物の還元溶融が一層抑制されたことによるものである。また、銑鉄中の炭素濃度は実施例1においては、2.7質量%であった。従来より低い加熱温度であっても浸炭が進行することが確認された。また、マイクロ波の出力を上げることにより銑鉄中の炭素濃度は前記不純物濃度とは逆に上昇することが確認された。かかる結果からもマイクロ波の出力を上げ、急速に原料混合物を加熱することにより、炉内及びペレット内は熱力学的に高酸素分圧雰囲気下に導かれることが確認される。 Moreover, the impurity concentration in the pig iron produced | generated as Table 1 became Si less than 0.01 mass% in Example 1, P became 0.0039 mass%, and Ti became 0.006 mass%. These values are about an order of magnitude smaller than those using the conventional blast furnace method. This is because only the iron oxide was reduced in an internal atmosphere that was under a high oxygen partial pressure (about 10 −12 atm) by rapidly heating the raw material mixture to a predetermined temperature by microwaves. It was also confirmed that the impurity concentration decreases as the microwave output increases. This is because when the microwave output is increased and the raw material mixture is heated rapidly, the internal oxygen partial pressure is further increased, so that the reduction melting of impurities is further suppressed. The carbon concentration in the pig iron was 2.7% by mass in Example 1. It was confirmed that carburization proceeds even at a lower heating temperature than before. It was also confirmed that the carbon concentration in the pig iron increased in the opposite direction to the impurity concentration by increasing the output of the microwave. From these results as well, it is confirmed that the microwave and the pellet mixture are rapidly heated, and the inside of the furnace and the pellet are thermodynamically guided to a high oxygen partial pressure atmosphere.

以上により、マイクロ波を用いた本実施形態の溶鉱炉を使用したことにより、酸化鉄のみが還元される雰囲気下(高酸素ポテンシャル下)に容易に導くことができるとともに、容易に不純物と分離されるため高純度の銑鉄を製造することができる。従来よりも高速且つ低温で高純度の銑鉄を製造することができるため、エネルギー効率を向上させることができる。   As described above, by using the blast furnace of the present embodiment using microwaves, it is possible to easily lead to an atmosphere in which only iron oxide is reduced (under a high oxygen potential) and to be easily separated from impurities. Therefore, high purity pig iron can be produced. Since high-purity pig iron can be produced at a higher speed and at a lower temperature than conventional, energy efficiency can be improved.

(比較例)
比較例において外部からの熱伝導によってペレット状の原料混合物を加熱した場合において、原料混合物の表面及び内部(中心)のそれぞれについて温度と酸素分圧を計測した。マグネタイト鉄鉱石粉及び炭素化合物としての石炭粉を1:0.25の質量比で混合される直径約22mmのペレットを原料混合物として使用した。原料混合物中の温度と酸素分圧は図7に示されるようなペレットの表面と内部にそれぞれ配される酸素センサと温度センサを使用した。酸素センサは管内部に標準電極として三酸化二クロムとクロムの混合物が充填される二酸化ジルコニア系固体電解質−端閉管を用いた。温度は白金電極に溶接される白金熱電対(R型)により測定される。ペレット状の原料混合物を約1350℃に加熱した窒素ガス雰囲気下の炉内に投入した後、経時的に温度と酸素分圧を計測した。測定結果を図8に示す。
(Comparative example)
In the comparative example, when the pellet-shaped raw material mixture was heated by heat conduction from the outside, the temperature and oxygen partial pressure were measured for each of the surface and the inside (center) of the raw material mixture. A pellet having a diameter of about 22 mm mixed with magnetite iron ore powder and coal powder as a carbon compound at a mass ratio of 1: 0.25 was used as a raw material mixture. As the temperature and oxygen partial pressure in the raw material mixture, an oxygen sensor and a temperature sensor respectively arranged on the surface and inside of the pellet as shown in FIG. 7 were used. The oxygen sensor used a zirconia-based solid electrolyte-end-closed tube filled with a mixture of dichromium trioxide and chromium as a standard electrode inside the tube. The temperature is measured by a platinum thermocouple (R type) welded to a platinum electrode. After putting the pellet-shaped raw material mixture into a furnace in a nitrogen gas atmosphere heated to about 1350 ° C., the temperature and oxygen partial pressure were measured over time. The measurement results are shown in FIG.

図8に示されるように、投入直後ペレット表面においては急速に約1350℃に加熱され、酸素分圧は約10-12atmとなった。かかる雰囲気下は鉄と酸化鉄の平衡酸素分圧がこの値より少し高い程度であるので酸化鉄のみが還元される条件となっている。一方、ペレットの内部は加熱が熱伝導を伴うため表面温度よりは遅れて温度が上昇し始め、約1000度付近で上昇速度が低下する。これは酸化鉄の還元反応が吸熱反応であるために生ずるものである。その後、内部温度はゆっくりと上昇し続ける。また、ペレットの内部における酸素分圧は一旦上昇するが、酸化鉄のみが還元される酸素分圧下に到達することはなかった。尚、ペレット内部において炭材が存在するにもかかわらず酸素分圧が高くなるのは温度が急速に上昇するため反応により生成した二酸化炭素ガスが一酸化炭素より拡散し難く、相対的に二酸化炭素分圧が一酸化炭素分圧より高くなるためである。 As shown in FIG. 8, the pellet surface immediately after the charging was rapidly heated to about 1350 ° C., and the oxygen partial pressure became about 10 −12 atm. Under such an atmosphere, the equilibrium oxygen partial pressure of iron and iron oxide is slightly higher than this value, so that only iron oxide is reduced. On the other hand, since heating involves heat conduction in the inside of the pellet, the temperature starts to rise later than the surface temperature, and the rate of increase decreases at about 1000 degrees. This occurs because the reduction reaction of iron oxide is an endothermic reaction. Thereafter, the internal temperature continues to rise slowly. Moreover, although the oxygen partial pressure inside the pellet once increased, it did not reach the oxygen partial pressure at which only iron oxide was reduced. Note that the oxygen partial pressure increases despite the presence of carbonaceous material inside the pellet because the temperature rises rapidly, so the carbon dioxide gas produced by the reaction is less likely to diffuse than carbon monoxide, and the relative carbon dioxide This is because the partial pressure becomes higher than the carbon monoxide partial pressure.

本願発明のマイクロ波を用いた銑鉄の製造方法は、ペレットの表面のならず内部も急速に温度を上昇させることができるためマイクロ波の出力を調節することにより短時間で高純度の銑鉄を製造することができる。   The method for producing pig iron using the microwave of the present invention can rapidly raise the temperature not only on the surface of the pellet, but also inside the pellet, so that high purity pig iron can be produced in a short time by adjusting the output of the microwave. can do.

次に、上記実施形態及び別例から把握できる技術的思想について、それらの効果とともに以下に追記する。
(a)前記貯留容器は複数設けられている溶鉱炉。従って、この(a)に記載の発明によれば、炉内の溶融銑鉄を効率よく迅速に収容部外に溶出させることができる。
Next, technical ideas that can be grasped from the above-described embodiment and other examples will be described below together with their effects.
(A) A blast furnace in which a plurality of the storage containers are provided. Therefore, according to the invention described in (a), the molten pig iron in the furnace can be efficiently and rapidly eluted out of the storage unit.

(b)前記マイクロ波発生部は太陽光、水力、風力、地熱又は原子力から選ばれる少なくとも一種によって発電される電力によって稼働される溶鉱炉。   (B) The microwave generating section is a blast furnace operated by electric power generated by at least one selected from sunlight, hydraulic power, wind power, geothermal heat, or nuclear power.

第1の実施形態の溶鉱炉の断面図。Sectional drawing of the blast furnace of 1st Embodiment. 別の実施形態の溶鉱炉の断面図。Sectional drawing of the blast furnace of another embodiment. 別の実施形態の溶鉱炉の要部断面図。The principal part sectional drawing of the blast furnace of another embodiment. 別の実施形態の溶鉱炉の要部断面図。The principal part sectional drawing of the blast furnace of another embodiment. 第2の実施形態の溶鉱炉の断面図。Sectional drawing of the blast furnace of 2nd Embodiment. マイクロ波照射時間(横軸)と炉内温度(縦軸)との関係を示すグラフ。The graph which shows the relationship between microwave irradiation time (horizontal axis) and furnace temperature (vertical axis). 比較例における原料混合物の温度と酸素分圧の測定方法を示す図。The figure which shows the measuring method of the temperature of the raw material mixture and oxygen partial pressure in a comparative example. 比較例における原料混合物を加熱した際の温度と時間及び酸素分圧と時間との関係を示すグラフ。The graph which shows the relationship between the temperature at the time of heating the raw material mixture in a comparative example, time, and oxygen partial pressure, and time.

符号の説明Explanation of symbols

11,23…溶鉱炉、12…炉本体、12b,24…炉床部、12c…傾斜部、13,26…マイクロ波照射装置、14,27…排気ガス回収装置、16,29…不活性ガス導入装置、20,30…誘導路、21…貯留容器、21b,31…出銑口、22,35…原料混合物、22a…溶融銑鉄、24a…炉床、25…炉体、34…マイクロ波吸収体、38…取鍋、39…マイクロ波遮蔽網。   DESCRIPTION OF SYMBOLS 11,23 ... Blast furnace, 12 ... Furnace main body, 12b, 24 ... Hearth part, 12c ... Inclined part, 13, 26 ... Microwave irradiation apparatus, 14, 27 ... Exhaust gas collection | recovery apparatus, 16, 29 ... Inert gas introduction Apparatus, 20, 30 ... induction path, 21 ... storage container, 21b, 31 ... tapping outlet, 22, 35 ... raw material mixture, 22a ... molten pig iron, 24a ... hearth, 25 ... furnace body, 34 ... microwave absorber 38 ... Ladle, 39 ... Microwave shielding net.

Claims (15)

酸化鉄含有化合物及び該酸化鉄含有化合物を還元するための炭素化合物からなる混合物を収容する収容部、該収容部内部にマイクロ波を照射することにより前記混合物を加熱するマイクロ波発生部、及び前記酸化鉄含有化合物と炭素化合物が反応することにより生成した溶融銑鉄を炉床から前記収容部外に誘導する誘導部を備えてなる溶鉱炉。   A container containing a mixture of an iron oxide-containing compound and a carbon compound for reducing the iron oxide-containing compound, a microwave generator for heating the mixture by irradiating microwaves inside the container, and A blast furnace comprising an induction part for guiding molten pig iron produced by a reaction between an iron oxide-containing compound and a carbon compound from the hearth to the outside of the housing part. 前記炉床は、少なくとも一部が斜め下方に傾斜される傾斜部を有するとともに前記溶融銑鉄は傾斜部から誘導部へ流出するよう構成されている請求項1記載の溶鉱炉。   The blast furnace according to claim 1, wherein the hearth has an inclined portion that is inclined at least partially obliquely downward, and the molten pig iron flows from the inclined portion to the induction portion. 前記炭素化合物は、石炭、コークス、チャー、活性炭、木炭及び有機物を含む廃棄物の乾留物から選ばれる少なくとも一種である請求項1又は請求項2記載の溶鉱炉。   3. The blast furnace according to claim 1, wherein the carbon compound is at least one selected from coal, coke, char, activated carbon, charcoal, and a dry-distilled material containing organic matter. さらに不活性ガス導入部を有する請求項1から請求項3のいずれか一項記載の溶鉱炉。   The blast furnace according to any one of claims 1 to 3, further comprising an inert gas introduction section. 前記不活性ガスは、窒素及びアルゴンから選ばれる少なくとも一種である請求項4記載の溶鉱炉。   The blast furnace according to claim 4, wherein the inert gas is at least one selected from nitrogen and argon. さらに前記混合物から排出される排気ガスを回収する排気ガス回収部を有する請求項1から請求項5のいずれか一項に記載される溶鉱炉。   Furthermore, the blast furnace described in any one of Claims 1-5 which has an exhaust-gas collection | recovery part which collect | recovers the exhaust gas discharged | emitted from the said mixture. さらに前記排気ガス回収部において回収した排気ガスの熱エネルギーを用いて前記不活性ガス及び混合物の少なくとも一つを予熱する予熱部を設けた請求項6記載の溶鉱炉。   The blast furnace according to claim 6, further comprising a preheating unit that preheats at least one of the inert gas and the mixture using thermal energy of the exhaust gas recovered in the exhaust gas recovery unit. 前記混合物は、赤鉄鉱及び磁鉄鉱の少なくとも一方を含有するとともに前記予熱部により混合物が予熱される請求項7記載の溶鉱炉。   The blast furnace according to claim 7, wherein the mixture contains at least one of hematite and magnetite, and the mixture is preheated by the preheating portion. 前記誘導部の吐出側先端には、溶融銑鉄を貯留するための貯留容器が接続されている請求項1から請求項8のいずれか一項記載の溶鉱炉。   The blast furnace according to any one of claims 1 to 8, wherein a storage container for storing molten pig iron is connected to a discharge-side tip of the guide portion. 前記貯留容器は、底部に出銑口が設けられている請求項9記載の溶鉱炉。   The blast furnace according to claim 9, wherein the storage container is provided with an outlet at the bottom. 前記出銑口は、少なくとも開口時に金属製の網で外側が被覆されることによりマイクロ波が外部に漏洩しないように構成されている請求項10記載の溶鉱炉。   The blast furnace according to claim 10, wherein the tap hole is configured so that the microwave is not leaked to the outside by covering the outside with a metal net at least when the tap is opened. 前記炉床には銑鉄よりも融点が高くマイクロ波によって自己発熱可能なマイクロ波吸収体が充填されている請求項1記載の溶鉱炉。   The blast furnace according to claim 1, wherein the hearth is filled with a microwave absorber having a melting point higher than that of pig iron and capable of self-heating by microwaves. 請求項1から請求項12のいずれか一項に記載される溶鉱炉を用いた銑鉄の製造方法において、
酸化鉄含有化合物及び該酸化鉄含有化合物を還元するための炭素化合物からなる混合物を収容部内に充填する工程、前記マイクロ波発生部からマイクロ波を照射することにより前記混合物を加熱する工程、加熱により溶融した混合物から分離した溶融銑鉄が誘導部から収容部外に誘導される工程からなる銑鉄の製造方法。
In the manufacturing method of pig iron using the blast furnace as described in any one of Claims 1-12,
A step of filling the containing portion with a mixture comprising an iron oxide-containing compound and a carbon compound for reducing the iron oxide-containing compound, a step of heating the mixture by irradiating microwaves from the microwave generating portion, and heating. A method for producing pig iron comprising a step in which molten pig iron separated from a molten mixture is guided from the guiding part to the outside of the housing part.
前記混合物の溶融は、酸素分圧10-13〜10-11atmの雰囲気下で行なわれる請求項13記載の銑鉄の製造方法。 The method for producing pig iron according to claim 13, wherein the melting of the mixture is performed in an atmosphere having an oxygen partial pressure of 10 −13 to 10 −11 atm. 前記混合物の溶融は、1250〜1450℃の雰囲気下で行なわれる請求項13又は請求項14記載の銑鉄の製造方法。   The method for producing pig iron according to claim 13 or 14, wherein melting of the mixture is performed in an atmosphere of 1250 to 1450 ° C.
JP2006025055A 2006-02-01 2006-02-01 Blast furnace and method for producing pig iron using the same Active JP5066690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006025055A JP5066690B2 (en) 2006-02-01 2006-02-01 Blast furnace and method for producing pig iron using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006025055A JP5066690B2 (en) 2006-02-01 2006-02-01 Blast furnace and method for producing pig iron using the same

Publications (2)

Publication Number Publication Date
JP2007205639A true JP2007205639A (en) 2007-08-16
JP5066690B2 JP5066690B2 (en) 2012-11-07

Family

ID=38485263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006025055A Active JP5066690B2 (en) 2006-02-01 2006-02-01 Blast furnace and method for producing pig iron using the same

Country Status (1)

Country Link
JP (1) JP5066690B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035776A (en) * 2007-08-01 2009-02-19 Kazuhiro Nagata Microwave iron-making furnace
CN101261080B (en) * 2008-03-13 2010-06-02 赵建文 Split combination type microwave heating baking reducing furnace
WO2010087464A1 (en) * 2009-01-31 2010-08-05 国立大学法人東京工業大学 Vertical microwave smelting furnace
JP2010222667A (en) * 2009-03-25 2010-10-07 Nippon Steel Corp Method for reducing iron oxide-containing material
JP2011012290A (en) * 2009-06-30 2011-01-20 Tokyo Institute Of Technology Method for producing metal fine particle from metal oxide or metal hydroxide by microwave emission, and production device therefor
KR101042548B1 (en) * 2008-08-27 2011-06-20 주식회사 쎄코텍 Furnace using microwave
KR101160286B1 (en) 2010-12-22 2012-06-28 주식회사 포스코 Iron-making ship having comprehensive steel mill with environmental load reduction
KR101195225B1 (en) 2010-12-22 2012-10-29 주식회사 포스코 Blast furnace with no emission of carbon dioxide using microwave
KR101615336B1 (en) * 2015-03-09 2016-04-25 에이스기계 주식회사 Electric arc furnace with low electric power consumption
WO2017158087A1 (en) * 2016-03-17 2017-09-21 Jpm Silicon Gmbh Method for melting and cleaning metals, in particular scrap metal
CN108239688A (en) * 2018-03-30 2018-07-03 胡俊旭 A kind of microwave reduction shaft kiln and its restoring method
CN109945652A (en) * 2019-04-08 2019-06-28 株洲聚润合微波工业炉有限公司 It is a kind of for microwave metallurgical when persistently overheating method and microwave metallurgical furnace
CN113846233A (en) * 2021-10-20 2021-12-28 辽宁石油化工大学 Method for directly reducing and treating waste CRT glass by utilizing microwaves
CN114686687A (en) * 2022-03-09 2022-07-01 山东产研绿洲环境产业技术研究院有限公司 Ilmenite microwave titanium enrichment device and method
JP2022103014A (en) * 2020-12-25 2022-07-07 世苑 柯 Waste treatment furnace and treatment equipment having the same
KR102475608B1 (en) * 2022-07-13 2022-12-08 주식회사 삼보광업 Microwave shaft kiln

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101446933B1 (en) 2014-06-12 2014-10-06 유대형 Furnace using a magnetron

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5576028A (en) * 1978-12-05 1980-06-07 New Japan Radio Co Ltd Microwave melting method
JPS5583696U (en) * 1978-12-05 1980-06-09
JPS5826985A (en) * 1981-08-11 1983-02-17 ゲゼルシヤフト フユ−ア ヒユツテンヴエルクスアンラ−ゲン エムベ−ハ− Method of feeding treating agent into fluid hot-metal furnace pig-metal
JPS61104560A (en) * 1984-10-25 1986-05-22 Toshiba Corp Microwave electric-discharge light source
JPH05237468A (en) * 1992-02-26 1993-09-17 Hitachi Ltd Incineration ash heating and melting treatment method and apparatus
JPH06116616A (en) * 1992-08-17 1994-04-26 Dowa Iron Powder Co Ltd Method and device for producing iron powder utilizing microwave
JPH06273050A (en) * 1993-03-25 1994-09-30 Moruganaito Carbon Kk Melting furnace
JPH06279824A (en) * 1993-03-26 1994-10-04 Dowa Iron Powder Co Ltd Production of iron powder utilizing microwaves
JP2521292B2 (en) * 1987-05-27 1996-08-07 三機工業株式会社 Microwave incinerator
JPH1114263A (en) * 1997-06-25 1999-01-22 Nippon Sanso Kk Metal melting furnace and metal melting method
WO2000000311A1 (en) * 1998-06-26 2000-01-06 Hpm Stadco, Inc. Microwave processing system for metals
JP2004175921A (en) * 2002-11-27 2004-06-24 Chubu Electric Power Co Inc Carbonization method for organic waste
JP2005172371A (en) * 2003-12-12 2005-06-30 Pioneer Electronic Corp Board manufacturing method and device, and display device
JP2006348367A (en) * 2005-06-20 2006-12-28 Masahiro Kudo Method for recycling metal oxide

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5583696U (en) * 1978-12-05 1980-06-09
JPS5576028A (en) * 1978-12-05 1980-06-07 New Japan Radio Co Ltd Microwave melting method
JPS5826985A (en) * 1981-08-11 1983-02-17 ゲゼルシヤフト フユ−ア ヒユツテンヴエルクスアンラ−ゲン エムベ−ハ− Method of feeding treating agent into fluid hot-metal furnace pig-metal
JPS61104560A (en) * 1984-10-25 1986-05-22 Toshiba Corp Microwave electric-discharge light source
JP2521292B2 (en) * 1987-05-27 1996-08-07 三機工業株式会社 Microwave incinerator
JPH05237468A (en) * 1992-02-26 1993-09-17 Hitachi Ltd Incineration ash heating and melting treatment method and apparatus
JPH06116616A (en) * 1992-08-17 1994-04-26 Dowa Iron Powder Co Ltd Method and device for producing iron powder utilizing microwave
JPH06273050A (en) * 1993-03-25 1994-09-30 Moruganaito Carbon Kk Melting furnace
JPH06279824A (en) * 1993-03-26 1994-10-04 Dowa Iron Powder Co Ltd Production of iron powder utilizing microwaves
JPH1114263A (en) * 1997-06-25 1999-01-22 Nippon Sanso Kk Metal melting furnace and metal melting method
WO2000000311A1 (en) * 1998-06-26 2000-01-06 Hpm Stadco, Inc. Microwave processing system for metals
JP2004175921A (en) * 2002-11-27 2004-06-24 Chubu Electric Power Co Inc Carbonization method for organic waste
JP2005172371A (en) * 2003-12-12 2005-06-30 Pioneer Electronic Corp Board manufacturing method and device, and display device
JP2006348367A (en) * 2005-06-20 2006-12-28 Masahiro Kudo Method for recycling metal oxide

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035776A (en) * 2007-08-01 2009-02-19 Kazuhiro Nagata Microwave iron-making furnace
CN101261080B (en) * 2008-03-13 2010-06-02 赵建文 Split combination type microwave heating baking reducing furnace
KR101042548B1 (en) * 2008-08-27 2011-06-20 주식회사 쎄코텍 Furnace using microwave
JP5699265B2 (en) * 2009-01-31 2015-04-08 国立大学法人東京芸術大学 Vertical microwave smelting furnace
WO2010087464A1 (en) * 2009-01-31 2010-08-05 国立大学法人東京工業大学 Vertical microwave smelting furnace
KR101604884B1 (en) * 2009-01-31 2016-03-18 도쿄 게이주쯔 다이가쿠 Vertical microwave smelting furnace
JP2010222667A (en) * 2009-03-25 2010-10-07 Nippon Steel Corp Method for reducing iron oxide-containing material
JP2011012290A (en) * 2009-06-30 2011-01-20 Tokyo Institute Of Technology Method for producing metal fine particle from metal oxide or metal hydroxide by microwave emission, and production device therefor
KR101195225B1 (en) 2010-12-22 2012-10-29 주식회사 포스코 Blast furnace with no emission of carbon dioxide using microwave
KR101160286B1 (en) 2010-12-22 2012-06-28 주식회사 포스코 Iron-making ship having comprehensive steel mill with environmental load reduction
KR101615336B1 (en) * 2015-03-09 2016-04-25 에이스기계 주식회사 Electric arc furnace with low electric power consumption
WO2017158087A1 (en) * 2016-03-17 2017-09-21 Jpm Silicon Gmbh Method for melting and cleaning metals, in particular scrap metal
CN108239688A (en) * 2018-03-30 2018-07-03 胡俊旭 A kind of microwave reduction shaft kiln and its restoring method
CN109945652A (en) * 2019-04-08 2019-06-28 株洲聚润合微波工业炉有限公司 It is a kind of for microwave metallurgical when persistently overheating method and microwave metallurgical furnace
JP2022103014A (en) * 2020-12-25 2022-07-07 世苑 柯 Waste treatment furnace and treatment equipment having the same
JP7165234B2 (en) 2020-12-25 2022-11-02 世苑 柯 Waste treatment furnace and treatment equipment having it
CN113846233A (en) * 2021-10-20 2021-12-28 辽宁石油化工大学 Method for directly reducing and treating waste CRT glass by utilizing microwaves
CN114686687A (en) * 2022-03-09 2022-07-01 山东产研绿洲环境产业技术研究院有限公司 Ilmenite microwave titanium enrichment device and method
KR102475608B1 (en) * 2022-07-13 2022-12-08 주식회사 삼보광업 Microwave shaft kiln

Also Published As

Publication number Publication date
JP5066690B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP5066690B2 (en) Blast furnace and method for producing pig iron using the same
AU2007309609B2 (en) Microwave heating method and apparatus for iron oxide reduction
US8540794B2 (en) Method for reducing iron oxide and producing syngas
JP5603865B2 (en) Method for processing solid or molten material
CN1327072A (en) Method and device for making metal iron
EP0184405B1 (en) Processes and apparatus for the smelting reduction of ores
CN111394578B (en) Method for preheating and smelting manganese ore sinter
CN102300965B (en) Carbonaceous material for sintering iron ore
JPH0733528B2 (en) Blast furnace operation method
US7238222B2 (en) Thermal synthesis production of steel
JP2009280833A (en) Low-temperature iron-making method allowing high speed smelting
JP2008240028A (en) Method for operating blast furnace
JP2011074438A (en) Method for producing reduced iron with moving type hearth furnace
JP4341139B2 (en) Method for producing reduced metal from metal-containing material
US20230366051A1 (en) Biomass Direct Reduced Iron
US20230407423A1 (en) Biomass direct reduced iron
JP5055794B2 (en) Method for producing reduced metal
JP4767611B2 (en) Reduction method of iron oxide
AU2021453688A1 (en) Manganese alloy production method and production device therefor
CA2254220C (en) Reduction of iron ore in ore/coal mixtures
JPS62243723A (en) Reducing method for chromitite
JP2008184682A (en) Method for producing reduced metal
Honeyands et al. Performance of HBI in Scrap Pre-heating Systems
JPH0362767B2 (en)
JP2002285209A (en) Method for charging raw material into blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080821

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20081030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120606

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5066690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350