JP2007203442A - Metal coated abrasive grain, method of producing metal coated abrasive grain, and grindstone using the metal coated abrasive grain - Google Patents

Metal coated abrasive grain, method of producing metal coated abrasive grain, and grindstone using the metal coated abrasive grain Download PDF

Info

Publication number
JP2007203442A
JP2007203442A JP2006028813A JP2006028813A JP2007203442A JP 2007203442 A JP2007203442 A JP 2007203442A JP 2006028813 A JP2006028813 A JP 2006028813A JP 2006028813 A JP2006028813 A JP 2006028813A JP 2007203442 A JP2007203442 A JP 2007203442A
Authority
JP
Japan
Prior art keywords
metal
silane coupling
abrasive grain
abrasive grains
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006028813A
Other languages
Japanese (ja)
Inventor
Yuichi Sato
祐一 佐藤
Yoshinori Asai
良規 浅井
Koichi Kobayakawa
紘一 小早川
Keisuke Kishimoto
圭介 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Kanagawa University
Original Assignee
Kanagawa University
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa University, Disco Abrasive Systems Ltd filed Critical Kanagawa University
Priority to JP2006028813A priority Critical patent/JP2007203442A/en
Publication of JP2007203442A publication Critical patent/JP2007203442A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an abrasive grain, a method of producing the same, and a boring device using the abrasive grains, wherein adhesiveness between an abrasive grain surface and a metallic coating layer, is improved so as to achieve uniform coating of the abrasive grain surface with a metal. <P>SOLUTION: The metal coated abrasive grain has the surface thereof coated with the metallic coating layer. Specifically the metal coated abrasive grain has a silane coupling layer containing a silane coupling agent, which is formed on all or part of the abrasive grain surface, and the metallic coating layer coating all or part of a surface of the silane coupling layer. By virtue of silane coupling treatment, the adhesiveness between the abrasive grain and the metallic coating layer is enhanced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は,金属被覆砥粒,金属被覆砥粒の製造方法,およびその金属被覆砥粒を使用した砥石に関する。   The present invention relates to a metal-coated abrasive grain, a method for producing a metal-coated abrasive grain, and a grindstone using the metal-coated abrasive grain.

ガラス,シリコン,セラミックスなどの硬質材料からなる板状物に小孔を穿設するための孔開け装置がある。この種の孔開け装置として,ダイヤモンドやCBNなどの超砥粒を電着ボンドを用いてドリルの先端部に付着させた構成のものが公知である。   There is a drilling device for drilling small holes in a plate-like object made of a hard material such as glass, silicon, or ceramics. As this type of drilling device, a configuration in which superabrasive grains such as diamond and CBN are attached to the tip of a drill using an electrodeposition bond is known.

このようなドリルの中で,例えば特許文献1に記載されているように,PDP(プラズマディスプレーパネル)ガラスなどのガラス板に孔を形成するときに,ドリルの先端面(刃先)が進行することにより孔開け形成された内壁面に,ダイヤモンド砥粒層の側面が接する結果,内壁面に欠けやひび割れ等が生じるおそれがある。このため,図4に記載されているようにドリルの先端部のダイヤモンド砥粒層を単層または2層からなる薄層に形成する必要がある。このようなドリルでは,砥粒が電着ボンドに保持される保持力を向上させることが,砥粒の脱落を防ぎ,ドリルの切削能力や寿命を向上させるために重要であると考えられる。   In such a drill, as described in Patent Document 1, for example, when a hole is formed in a glass plate such as PDP (plasma display panel) glass, the tip surface (blade edge) of the drill advances. As a result of the contact of the side surface of the diamond abrasive grain layer with the inner wall surface formed by perforation, the inner wall surface may be chipped or cracked. For this reason, as shown in FIG. 4, it is necessary to form the diamond abrasive grain layer at the tip of the drill into a single layer or a thin layer consisting of two layers. In such a drill, it is considered that improving the holding force by which the abrasive grains are held by the electrodeposition bond is important in order to prevent the abrasive grains from dropping and to improve the cutting ability and life of the drill.

このような電着ボンドを使用した電着砥石は,例えば砥粒を電気めっき浴中に落下させて攪拌し,この砥粒が台金表面の砥粒層生成面に接触した際に,電気めっきにより固着して砥粒層を形成することによって製造される。この際に,砥粒の表面に金属層を被覆させた金属被覆砥粒を使用して,砥粒が電着ボンドに保持される保持力を向上させることが試みられている。   An electrodeposition grindstone using such an electrodeposition bond is prepared by, for example, electroplating when abrasive grains are dropped into an electroplating bath and agitated, and when the abrasive grains come into contact with the abrasive layer forming surface of the base metal surface. It is manufactured by adhering to form an abrasive layer. At this time, an attempt has been made to improve the holding force of the abrasive grains held by the electrodeposition bond by using metal-coated abrasive grains in which the surface of the abrasive grains is coated with a metal layer.

特開2004−122265号公報JP 2004-122265 A 特開2001−47367号公報JP 2001-47367 A 特開2005−1093号公報JP 2005-1093 A

しかしながら,本発明者らが検討した結果,超砥粒の表面に金属を均一に被覆することは困難であり,その結果,金属被覆にむらが生じて金属が被覆されてない場所が生じ,当該金属が被覆されてない場所から砥粒が脱落してしまうので,金属被覆した効果を発揮できないという問題があった。   However, as a result of investigations by the present inventors, it is difficult to uniformly coat the surface of the superabrasive grain with metal, and as a result, unevenness occurs in the metal coating, resulting in a place where the metal is not coated. Since the abrasive grains fall off from the place where the metal is not coated, there is a problem that the effect of metal coating cannot be exhibited.

超砥粒は,他の物質との濡れ性が悪いことで知られており,他の物質との複合化が難しい。したがって,超砥粒の表面に金属を無電解めっき等によって被覆したときに,超砥粒の表面と金属被覆層との密着性が低いため,金属被覆層が不均一に付着してしまい,金属被覆層が存在しない場所が発生してしまう,という問題があった。   Superabrasive grains are known for their poor wettability with other materials, making it difficult to combine them with other materials. Therefore, when metal is coated on the surface of superabrasive grains by electroless plating or the like, the adhesion between the surface of the superabrasive grains and the metal coating layer is low, so that the metal coating layer adheres unevenly and the metal There was a problem that a place where no coating layer was present occurred.

かかる問題を解決するため,超砥粒の表面と金属被覆層との密着性を高めることにより,金属被覆層を均一に被覆させることが考えられるが,金属を被覆する前に超砥粒の表面をパラジウムなどの触媒を含有する溶液に浸漬させてから金属被覆層を形成し,金属被覆層との密着性を高めても十分な密着性を得られず,金属膜を超砥粒の表面に均一に被覆することができなかった。   In order to solve this problem, it is conceivable to uniformly coat the metal coating layer by increasing the adhesion between the surface of the superabrasive grain and the metal coating layer. A metal coating layer is formed after immersing in a solution containing a catalyst such as palladium, and sufficient adhesion cannot be obtained even if the adhesion to the metal coating layer is increased. It was not possible to coat uniformly.

そこで,本発明は,このような問題に鑑みてなされたもので,その目的は,金属被覆砥粒とその製造方法およびその金属被覆砥粒を使用した砥石において,砥粒の表面と金属被覆層との密着性を向上させて,砥粒表面に金属を均一に被覆させることにある。   Accordingly, the present invention has been made in view of such problems, and an object thereof is to provide a metal-coated abrasive grain, a method for producing the same, and a grindstone using the metal-coated abrasive grain. In other words, the metal surface is uniformly coated with the abrasive grains.

上記課題を解決するために,本発明の第1の観点によれば,砥粒の表面に金属被覆層が被覆されてなる金属被覆砥粒が提供される。かかる金属被覆砥粒は,砥粒の表面の全部又は一部に形成されたシランカップリング剤を含むシランカップリング層と,このシランカップリング層の表面の全部又は一部を被覆する金属被覆層とを有することを特徴とする。   In order to solve the above problems, according to a first aspect of the present invention, there is provided a metal-coated abrasive grain in which a metal coating layer is coated on the surface of the abrasive grain. Such metal-coated abrasive grains include a silane coupling layer containing a silane coupling agent formed on the whole or part of the surface of the abrasive grain, and a metal coating layer covering all or part of the surface of the silane coupling layer. It is characterized by having.

このように,砥粒などの表面にシランカップリング処理を施した後に,金属で被覆した砥粒を使用すると,結合材に対する保持力を向上させることができる。このため,砥石部を薄層形態に形成する場合には,砥粒の結合材に対する保持力が特に要求されることから,特に好適である。すなわち,本発明に係る金属被覆砥粒を使用し,例えば,電気めっきを行って穿孔手段(ドリル)等の先端部に砥粒を電着させた砥石を製造すると,電着ボンドに対する砥粒の保持力が向上しているので,高い切削能力や長寿命を有することができる。   As described above, when the abrasive grains coated with metal are used after the surface of the abrasive grains or the like is subjected to the silane coupling treatment, the holding power to the binder can be improved. For this reason, when the grinding wheel portion is formed in a thin layer form, the holding force of the abrasive grains to the binder is particularly required, which is particularly preferable. That is, using the metal-coated abrasive grains according to the present invention, for example, when a grindstone is produced by electroplating and electrodepositing abrasive grains on the tip of a drilling means (drill) or the like, Because the holding power is improved, it can have high cutting ability and long life.

ここで,本発明においてシランカップリング処理を行う目的は,無電解金属めっきによりめっきされる金属(例えば,Ni)が,砥粒の表面に付着しやすくすること,言い換えると,砥粒の表面と金属被覆層との密着性を向上させることである。この点で,特許文献2及び3に記載された発明とは大きく異なる。すなわち,特許文献2及び3に記載された発明においてもシランカップリング処理が行われているが,この処理の目的は,砥粒と金属被覆層との密着性の向上を目的としたものではなく,砥粒と結合材との密着性を高めることである。したがって,例えば,特許文献2に記載の金属被覆砥粒においては,金属被覆層の上にシランカップリング層が形成されている。   Here, the purpose of the silane coupling treatment in the present invention is to make the metal (for example, Ni) plated by electroless metal plating easily adhere to the surface of the abrasive grains, in other words, the surface of the abrasive grains. It is to improve the adhesion with the metal coating layer. In this respect, it differs greatly from the inventions described in Patent Documents 2 and 3. That is, the silane coupling process is also performed in the inventions described in Patent Documents 2 and 3, but the purpose of this process is not to improve the adhesion between the abrasive grains and the metal coating layer. It is to improve the adhesion between the abrasive grains and the binder. Therefore, for example, in the metal-coated abrasive grain described in Patent Document 2, a silane coupling layer is formed on the metal-coated layer.

また,上記課題を解決するために,本発明の第2の観点によれば,砥粒の表面の全部又は一部にシランカップリング剤を付着させるシランカップリング処理を行い,シランカップリング処理が行われた砥粒の表面に,めっきの化学反応を促進させる触媒を付与する触媒付与処理を行い,触媒付与処理が行われた砥粒に対して無電解めっきを行うことにより,シランカップリング剤が付着した砥粒の表面の全部又は一部に金属被覆層を形成する金属被覆砥粒の製造方法が提供される。   In order to solve the above-mentioned problem, according to the second aspect of the present invention, a silane coupling treatment for attaching a silane coupling agent to all or a part of the surface of the abrasive grains is performed, and the silane coupling treatment is performed. A silane coupling agent is applied to the surface of the abrasive grains that has been subjected to a catalyst application treatment that imparts a catalyst that promotes the chemical reaction of the plating, and electroless plating is applied to the abrasive grains that have undergone the catalyst application treatment. There is provided a method for producing metal-coated abrasive grains, in which a metal coating layer is formed on all or a part of the surface of the abrasive grains to which is adhered.

このように,砥粒などの表面にシランカップリング処理を施した後に,金属で被覆した砥粒を使用すると,結合材に対する保持力を向上させることができる。このため,砥石部を薄層形態に形成する場合には,砥粒の結合材に対する保持力が特に要求されることから,特に好適である。すなわち,本発明に係る製造方法により得られる金属被覆砥粒を使用し,例えば,電気めっきを行って穿孔手段(ドリル)等の先端部に砥粒を電着させた砥石を製造すると,電着ボンドに対する砥粒の保持力が向上しているので,高い切削能力や長寿命を有することができる。   As described above, when the abrasive grains coated with metal are used after the surface of the abrasive grains or the like is subjected to the silane coupling treatment, the holding power to the binder can be improved. For this reason, when the grinding wheel portion is formed in a thin layer form, the holding force of the abrasive grains to the binder is particularly required, which is particularly preferable. That is, when a metal-coated abrasive grain obtained by the production method according to the present invention is used and a grindstone in which abrasive grains are electrodeposited on the tip of a drilling means (drill) or the like by electroplating is produced, for example, Since the holding power of the abrasive grains against the bond is improved, it can have high cutting ability and long life.

ここで,本発明においてシランカップリング処理を行う目的が,砥粒の表面と金属被覆層との密着性を向上させることにあることは上記と同様である。   Here, the purpose of performing the silane coupling treatment in the present invention is to improve the adhesion between the surface of the abrasive grains and the metal coating layer, as described above.

上記金属被覆砥粒及びその製造方法において,上記シランカップリング剤は,アミノ基,カルボキシル基,アゾール基,水酸基,またはメルカプト基の少なくとも1つの官能基を含むことが好ましい。これらの官能基は金属捕捉能を有するため,金属との密着性を高めることができるためである。   In the metal-coated abrasive grains and the production method thereof, the silane coupling agent preferably contains at least one functional group of an amino group, a carboxyl group, an azole group, a hydroxyl group, or a mercapto group. This is because these functional groups have a metal-capturing ability and thus can improve the adhesion to the metal.

また,上記課題を解決するために,本発明の第3の観点によれば,上記第1の観点による金属被覆砥粒を使用して形成される砥石,あるいは,上記第2の観点による製造方法により得られた金属被覆砥粒を使用して形成される砥石が提供される。   In order to solve the above problem, according to a third aspect of the present invention, a grindstone formed using the metal-coated abrasive grain according to the first aspect, or a manufacturing method according to the second aspect The grindstone formed using the metal-coated abrasive grain obtained by the above is provided.

このように,シランカップリング処理がなされた金属被覆砥粒を使用することにより,電着ボンドに対する砥粒の保持力を向上させる砥石を製造することができ,砥石の切削能力や寿命を向上させることが可能となる。特に,砥粒を先端部に電着させた薄層の砥粒層を形成するドリル等に対して有効である。   In this way, by using metal-coated abrasive grains that have been subjected to silane coupling treatment, it is possible to manufacture a grindstone that improves the holding power of the abrasive grains against the electrodeposition bond, thereby improving the cutting ability and life of the grindstone. It becomes possible. In particular, this is effective for a drill or the like that forms a thin abrasive layer in which abrasive grains are electrodeposited on the tip.

本発明によれば,砥粒の表面に化学結合によってシランカップリング剤を強く結合させ表面を改質することにより,砥粒の表面と金属被覆層との密着性を向上させ,砥粒表面に金属を均一に被覆させることができる。したがって,このシランカップリング処理された金属被覆砥粒を使用することによって,電着ボンドに対する砥粒の保持力を向上させる砥石を製造することができ,砥石の切削能力や寿命を向上させることが可能となる。特に,砥粒を先端部に電着させた薄層の砥粒層を形成する孔開け装置(ドリル等)に有効である。   According to the present invention, the adhesiveness between the surface of the abrasive grain and the metal coating layer is improved by strongly bonding the silane coupling agent to the surface of the abrasive grain by chemical bonding, thereby improving the surface. A metal can be uniformly coated. Therefore, by using this metal-coated abrasive grain treated with silane coupling, it is possible to produce a grindstone that improves the holding power of the abrasive grain against the electrodeposition bond, and to improve the cutting ability and life of the grindstone. It becomes possible. In particular, it is effective for a drilling device (such as a drill) for forming a thin abrasive layer in which abrasive grains are electrodeposited on the tip.

以下に添付図面を参照しながら,本発明の好適な実施の形態について詳細に説明する。なお,本明細書及び図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

まず,図1に基づいて,本発明の一実施形態に係る金属被覆砥粒の構成について説明する。なお,図1は,本実施形態に係る金属被覆砥粒の構成を示す説明図である。   First, based on FIG. 1, the structure of the metal-coated abrasive grain which concerns on one Embodiment of this invention is demonstrated. In addition, FIG. 1 is explanatory drawing which shows the structure of the metal-coated abrasive grain which concerns on this embodiment.

図1に示すように,本実施形態に係る金属被覆砥粒は,砥粒の表面に金属被覆層が被覆されてなる金属被覆砥粒であって,砥粒の表面の全部又は一部に形成されたシランカップリング剤を含むシランカップリング層と,このシランカップリング層の表面の全部又は一部を被覆する金属被覆層と,を有する。   As shown in FIG. 1, the metal-coated abrasive according to the present embodiment is a metal-coated abrasive formed by coating the surface of the abrasive with a metal coating layer, and is formed on all or part of the surface of the abrasive. A silane coupling layer containing the prepared silane coupling agent, and a metal coating layer covering all or part of the surface of the silane coupling layer.

砥粒は,その種類が限定されるものではないが,加工能力を高くするためには,ダイヤモンド,CBNおよびSiCなどの超砥粒であることが好ましい。また,砥粒の表面を被覆する金属としては,主に,Niを使用することができるが,これには限られず,ニッケル−リン合金,ニッケル−ほう素合金,銅,金,白金,コバルト,チタンなどを使用することができる。   The type of abrasive grains is not limited, but superabrasive grains such as diamond, CBN, and SiC are preferable in order to increase the processing capability. Moreover, as a metal which coat | covers the surface of an abrasive grain, although Ni can mainly be used, it is not restricted to this, Nickel-phosphorus alloy, nickel-boron alloy, copper, gold | metal | money, platinum, cobalt, Titanium or the like can be used.

また,本実施形態に係る金属被覆砥粒は,シランカップリング処理が施されているが,シランカップリング処理とは,本来なじみにくい無機成分と有機成分を結びつける仲立ちをするための処理で,無機物と相性のいい加水分解基(例えば,アルコン基)を一方の結合手に有し,他方の結合手には有機成分と反応しやすい有機官能基を有するシランカップリング剤を使用して行われる。   In addition, the metal-coated abrasive grains according to this embodiment are subjected to silane coupling treatment. The silane coupling treatment is a treatment for linking the inorganic component and the organic component, which are inherently unfamiliar with each other. A silane coupling agent having an organic functional group that has a hydrolyzable group (for example, an alkone group) that is compatible with an organic component and has an organic functional group that easily reacts with an organic component is used for the other bond.

本実施形態に係るシランカップリング剤は,下記一般式(1)で表すことができる。   The silane coupling agent according to this embodiment can be represented by the following general formula (1).

Y−(CH−SiX ・・・(1) Y- (CH 2) n -SiX 3 ··· (1)

ここで,Y及びXは,それぞれ有機官能基及び加水分解基である。   Here, Y and X are an organic functional group and a hydrolysis group, respectively.

このようなシランカップリング剤は,有機官能基Yが有機物と化学結合し,加水分解基Xが無機物又はシランカップリング剤同士と化学結合するように反応する。ここで,加水分解基XをRO(Rはアルコキシシリル基)とすると,シランカップリング剤の加水分解は,下記反応式(2)で表すことができる。   Such a silane coupling agent reacts so that the organic functional group Y is chemically bonded to the organic substance and the hydrolyzable group X is chemically bonded to the inorganic substance or the silane coupling agent. Here, when the hydrolyzable group X is RO (R is an alkoxysilyl group), the hydrolysis of the silane coupling agent can be represented by the following reaction formula (2).

Y−(CH−Si(OR)+3H
→Y−(CH−Si(OH)+3ROH ・・・(2)
Y- (CH 2) n -Si ( OR) 3 + 3H 2 O
→ Y- (CH 2) n -Si (OH) 3 + 3ROH ··· (2)

上記反応式(2)に示すように,水の存在下で加水分解基Xは分解されて,アルコキシシリル基からシラノール(SiOH)に変わり,加水分解物としてアルコールを生成する。また,反応式(2)により生成されたOH基と無機物表面のOHとが脱水反応し,Yは有機物と反応する。このように,シランカップリング剤は無機物と有機物との橋渡しの役目をする。   As shown in the above reaction formula (2), the hydrolyzable group X is decomposed in the presence of water to change from an alkoxysilyl group to silanol (SiOH), and generate an alcohol as a hydrolyzate. Further, the OH group generated by the reaction formula (2) and the OH on the inorganic surface undergo a dehydration reaction, and Y reacts with the organic matter. Thus, the silane coupling agent serves as a bridge between inorganic and organic substances.

本実施形態に有用なシランカップリング剤としては,金属被覆層との密着性を高めるという観点から,金属捕捉能を持つ官能基を有するシランカップリング剤が好ましい。このような金属捕捉能を持つ官能基としては,これらに制限されるものではないが,例えば,アミノ基,カルボキシル基,アゾール基,水酸基,メルカプト基などが挙げられる。これらの中でもアゾール基が特に好ましい。アゾール基としては,例えば,イミダゾール,オキサゾール,チアゾール,セレナゾール,ピラゾール,イソオキサゾール,イソチアゾール,トリアゾール,オキサジアゾール,チアジアゾール,テトラゾール,オキサトリアゾール,チアトリアゾール,ベンダゾール,インダゾール,ベンズイミダゾール,ベンゾトリアゾールなどが挙げられる。   As a silane coupling agent useful in the present embodiment, a silane coupling agent having a functional group having a metal-trapping ability is preferable from the viewpoint of improving the adhesion with the metal coating layer. Such functional groups having a metal-capturing ability are not limited to these, but examples include amino groups, carboxyl groups, azole groups, hydroxyl groups, mercapto groups, and the like. Among these, an azole group is particularly preferable. Examples of the azole group include imidazole, oxazole, thiazole, selenazole, pyrazole, isoxazole, isothiazole, triazole, oxadiazole, thiadiazole, tetrazole, oxatriazole, thiatriazole, bendazole, indazole, benzimidazole, and benzotriazole. Can be mentioned.

また,一般式(1)で表されるシランカップリング剤又はその加水分解物としては,例えば,3−アミノプロピルトリメトキシシラン,γ−アミノプロピルトリメトキシシラン,N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン,N−β(アミノエチル)γ−アミノプロピルトリエトキシシラン,γ−メルカプトプロピルトリメトキシシラン,β−グリシドキシエチルトリメトキシシラン,β−グリシドキシエチルメチルジメトキシシラン,γ−グリシドキシプロピルトリエトキシシラン,β−グリシドキシプロピルトリメトキシシラン,β−グリシドキシエチルメチルジメトキシシラン,β−グリシドキシエチルメチルジエトキシシラン,γ−グリシドキシプロピルメチルジメトキシシラン,γ−グリシドキシプロピルメチルジメトキシシラン,β−グリシドキシエチルエチルジメトキシシラン,γ−グリシドキシエチルメチルジメトキシシラン,γ−グリシドキシプロピルエチルジエトキシシラン,β−グリシドキシプロピルエチルジエトキシシラン,β−グリシドキシエチルプロピルジメトキシシラン,β−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン,β−(3,4エポキシシクロヘキシル)エチルトリエトキシシラン,メチルトリメトキシシラン,メチルトリエトキシシラン,ビニルトリメトキシシラン,ビニルトリエトキシシラン,ビニルトリアセトキシシラン,ビニルトリメトキシエトキシシラン,γ−クロロプロピルトリメトキシシラン,γ−クロロプロピルトリエトキシシラン,γ−クロロプロピルトリプロポキシシラン,γ−クロロプロピルトリブトキシシラン,フェニルトリメトキシシラン,フェニルトリエトキシシラン,3,3,3−トリフロロプロピルトリメトキシシラン,γ−メタクリロキシプロピルトリメトキシシラン,ジメチルジメトキシシラン,γ−クロロプロピルメチルジメトキシシラン,γ−メタクリロキシプロピルメチルジメトキシシラン等がある。これらのシランカップリング剤又はその加水分解物は,単独または2種類以上を混合して用いることができる。   Examples of the silane coupling agent represented by the general formula (1) or a hydrolyzate thereof include 3-aminopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ- Aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, β-glycidoxyethyltrimethoxysilane, β-glycidoxyethylmethyldimethoxysilane, γ -Glycidoxypropyltriethoxysilane, β-glycidoxypropyltrimethoxysilane, β-glycidoxyethylmethyldimethoxysilane, β-glycidoxyethylmethyldiethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-Glycidoxypropylmethyl dimethoxy Sisilane, β-glycidoxyethylethyldimethoxysilane, γ-glycidoxyethylmethyldimethoxysilane, γ-glycidoxypropylethyldiethoxysilane, β-glycidoxypropylethyldiethoxysilane, β-glycidoxyethyl Propyldimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxy Silane, vinyltriacetoxysilane, vinyltrimethoxyethoxysilane, γ-chloropropyltrimethoxysilane, γ-chloropropyltriethoxysilane, γ-chloropropyltripropoxysilane, γ-chloropropyltri Butoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, dimethyldimethoxysilane, γ-chloropropylmethyldimethoxysilane, γ-methacrylic Examples include loxypropylmethyldimethoxysilane. These silane coupling agents or their hydrolysates can be used alone or in admixture of two or more.

このように,超砥粒などの原料粒子に対しシランカップリング処理を行うことによって,SiC粒子等の原料粒子の表面を改質して,表面に被覆された金属被覆層との間を強い化学的結合で結びつけることができるため,砥粒と金属被覆層との密着性を格段に向上させることができる。   In this way, by performing silane coupling treatment on raw particles such as superabrasive grains, the surface of the raw material particles such as SiC particles is modified, and a strong chemical layer is formed between the surface and the metal coating layer coated on the surface. Therefore, the adhesiveness between the abrasive grains and the metal coating layer can be significantly improved.

次に,図2に基づいて,本実施形態に係る砥石の形成に使用される金属被覆砥粒の製造方法について説明する。なお,図2は,本実施形態に係る金属被覆砥粒の製造方法を示すフローチャートである。   Next, based on FIG. 2, the manufacturing method of the metal-coated abrasive grain used for formation of the grindstone concerning this embodiment is explained. In addition, FIG. 2 is a flowchart which shows the manufacturing method of the metal-coated abrasive grain which concerns on this embodiment.

本実施形態においては,SiC粒子などの超砥粒にシランカップリング処理を施した金属(例えば,Ni)を被覆した金属被覆砥粒を形成する。具体的には,図2に示すように,まず,金属被覆砥粒の原料粒子,例えばSiC粒子などの超砥粒を用意する(ステップS102)。なお,原料である超砥粒は,粒径が#2000(4〜6μm)程度のものを使用することができる。   In the present embodiment, metal-coated abrasive grains in which superabrasive grains such as SiC particles are coated with a metal (for example, Ni) subjected to silane coupling treatment are formed. Specifically, as shown in FIG. 2, first, raw material particles of metal-coated abrasive grains, for example, superabrasive grains such as SiC particles are prepared (step S102). In addition, the superabrasive grain which is a raw material can use a thing with a particle size of about # 2000 (4-6 micrometers).

次いで,用意した原料粒子に対してシランカップリング処理を行う(ステップS104)。本実施形態において,このシランカップリング処理の目的は,超砥粒は,一般に,他の物質の濡れ性が悪いことから,超砥粒の表面に金属を被覆したときに,超砥粒の表面と金属被覆層との密着性が低くなり,金属被覆層が存在しない場所が発生してしまうことを防止することである。なお,「濡れ」とは,次のような現象をいう。すなわち,固体の表面は通常空気と接触しているが,固体は,その表面に気体分子を吸着しており,固体表面には,固体/気体間の界面が形成されている。この場合に,固体が液体と直接に接触するためには,液体が固体/気体間の界面を押しのけなければならない。このようにして,固体/気体間の界面が消失して新たに固体/液体間の界面が生じる現象を「濡れ」という。   Next, a silane coupling process is performed on the prepared raw material particles (step S104). In this embodiment, the purpose of this silane coupling treatment is that the superabrasive grains generally have poor wettability with other substances, and therefore the surface of the superabrasive grains is coated when the surface of the superabrasive grains is coated with metal. It is to prevent the occurrence of a place where the metal coating layer does not exist by reducing the adhesion between the metal coating layer and the metal coating layer. “Wet” refers to the following phenomenon. That is, the surface of the solid is normally in contact with air, but the solid adsorbs gas molecules on the surface, and a solid / gas interface is formed on the solid surface. In this case, in order for the solid to come into direct contact with the liquid, the liquid must push the solid / gas interface. The phenomenon in which the solid / gas interface disappears and a new solid / liquid interface is generated in this way is called “wetting”.

このように,超砥粒などの原料粒子に対しシランカップリング処理を行うことによって,SiC粒子等の原料粒子の表面を改質して,表面に被覆された金属被覆層との間を強い化学的結合で結びつけることができるため,砥粒と金属被覆層との密着性を格段に向上させることができる。   In this way, by performing silane coupling treatment on the raw particles such as superabrasive grains, the surface of the raw material particles such as SiC particles is modified, and a strong chemical reaction with the metal coating layer coated on the surface is performed. Therefore, the adhesiveness between the abrasive grains and the metal coating layer can be significantly improved.

また,本実施形態に係る金属被覆砥粒の製造方法に使用するシランカップリング剤は,上述したように,上記一般式(1)で表される化合物であり,金属被覆層との密着性を高めるという観点から,金属捕捉能を持つ官能基を有するシランカップリング剤が好ましい。このような金属捕捉能を持つ官能基としては,これらに制限されるものではないが,例えば,アミノ基,カルボキシル基,アゾール基,水酸基,メルカプト基などが挙げられる。これらの中でもアゾール基が特に好ましい。アゾール基としては,例えば,イミダゾール,オキサゾール,チアゾール,セレナゾール,ピラゾール,イソオキサゾール,イソチアゾール,トリアゾール,オキサジアゾール,チアジアゾール,テトラゾール,オキサトリアゾール,チアトリアゾール,ベンダゾール,インダゾール,ベンズイミダゾール,ベンゾトリアゾールなどが挙げられる。   Moreover, as described above, the silane coupling agent used in the method for producing a metal-coated abrasive grain according to the present embodiment is a compound represented by the above general formula (1), and has an adhesive property with the metal coating layer. From the viewpoint of enhancing, a silane coupling agent having a functional group having a metal capturing ability is preferable. Such functional groups having a metal-capturing ability are not limited to these, but examples include amino groups, carboxyl groups, azole groups, hydroxyl groups, mercapto groups, and the like. Among these, an azole group is particularly preferable. Examples of the azole group include imidazole, oxazole, thiazole, selenazole, pyrazole, isoxazole, isothiazole, triazole, oxadiazole, thiadiazole, tetrazole, oxatriazole, thiatriazole, bendazole, indazole, benzimidazole, and benzotriazole. Can be mentioned.

次に,原料粒子(砥粒)がシランカップリング剤と混合された溶液を濾過して,砥粒の表面に付着しなかったシランカップリング剤を取り除く(ステップS106)。次いで,水や有機溶媒(アルコールなど)にシランカップリング剤が被覆された砥粒を入れて,その表面を洗浄し(ステップS108),さらに,洗浄後のシランカップリング剤が被覆された砥粒を乾燥させる(ステップS110)。なお,この後,原料粒子(砥粒)が凝集していた場合には,原料粒子を細かく粉砕してもよい。   Next, the solution in which the raw material particles (abrasive grains) are mixed with the silane coupling agent is filtered to remove the silane coupling agent that has not adhered to the surface of the abrasive grains (step S106). Next, the abrasive grains coated with the silane coupling agent are put in water or an organic solvent (alcohol, etc.), the surface is washed (step S108), and the abrasive grains coated with the washed silane coupling agent are then applied. Is dried (step S110). After that, if the raw material particles (abrasive grains) are aggregated, the raw material particles may be finely pulverized.

次いで,上記原料粒子の表面に無電解金属めっきを行う前に,めっきの化学反応を促進させるために触媒付与処理を行う(ステップS112)。触媒付与処理は,センシタイジング工程とアクチベイティング工程と呼ばれる工程からなる。センシタイジング工程は,化学めっき析出核となる触媒金属の微粒を基材表面に一様に還元析出分布させるため,触媒金属の微粒析出(触媒核付与)前に,基材表面を還元剤溶液で濡らす処理である。また,アクチベイティング工程は,化学めっきの析出核となる触媒の微粒を,溶液,コロイド分散液,気相等から沈析させたり,触媒を含むペイント,インク,接着剤の塗布等により,基材表面に付与したりするものである。   Next, before performing electroless metal plating on the surface of the raw material particles, a catalyst application treatment is performed in order to promote the chemical reaction of the plating (step S112). The catalyst application treatment includes steps called a sensitizing step and an activating step. In the sensitizing process, the fine particles of the catalyst metal, which are the chemical plating nuclei, are uniformly reduced and distributed on the surface of the substrate. It is a process of wetting with. In the activation process, catalyst fine particles, which are the precipitation nuclei of chemical plating, are precipitated from a solution, colloidal dispersion, gas phase, etc., or paint, ink, or adhesive containing the catalyst is applied to the substrate. It is given to the surface.

上記のような触媒能をもつ金属としては,周期律表第8族金属(Fe,Co,Ni,Ru,Rh,Pd,Os,Ir,Pt)や,第1B族金属(Cu,Ag,Au)であり,特に,Pd,Ptが好ましい。   Examples of the metal having catalytic ability as described above include Group 8 metals (Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt) and Group 1 B metals (Cu, Ag, Au). In particular, Pd and Pt are preferable.

次に,触媒付与処理(ステップS112)を行った原料粒子に対して無電解金属(例えば,Ni)めっきを行う(ステップS114)。ここで,無電解めっきとは,析出させる金属を含む溶剤(一般的には水)に溶ける化合物と還元剤をめっき液に溶解させた後に,基体をめっき液に浸漬させ,基体表面で金属を析出させることである。   Next, electroless metal (for example, Ni) plating is performed on the raw material particles subjected to the catalyst application process (step S112) (step S114). Here, electroless plating is a method in which a compound that dissolves in a solvent (generally water) containing a metal to be deposited and a reducing agent are dissolved in a plating solution, and then the substrate is immersed in the plating solution so that the metal is deposited on the surface of the substrate. It is to deposit.

このような無電解めっきを行う金属としては,主に,Niを使用することができるが,これには限られず,無電解めっきの種類としては,無電解ニッケル−リンめっき,無電解ニッケル−ほう素めっき,無電解銅めっき,無電解金めっき,無電解白金めっき,無電解コバルトめっき,無電解チタンめっきなどを使用することができる。   Ni can be mainly used as a metal for such electroless plating, but is not limited to this, and electroless plating types include electroless nickel-phosphorous plating and electroless nickel-method. Elemental plating, electroless copper plating, electroless gold plating, electroless platinum plating, electroless cobalt plating, electroless titanium plating, and the like can be used.

以上のような工程(ステップS102〜S114)によって,図1に示すような,原料粒子にシランカップリング処理を施した後に金属(Ni等)を被覆した金属被覆粒子を形成することができる。   Through the above-described steps (steps S102 to S114), metal-coated particles in which the raw material particles are coated with a metal (Ni or the like) after being subjected to silane coupling treatment as shown in FIG. 1 can be formed.

ここで,図3に基づいて,シランカップリング処理により,どのようにして原料粒子と金属との密着性を向上させるかについて説明する。なお,図3は,シランカップリング処理による砥粒と金属との密着性の向上効果を説明するための説明図である。また,図3は,原料粒子としてSiC粒子を使用し,触媒金属としてPdを使用し,めっきする金属としてNiを使用した例を示している。   Here, based on FIG. 3, how to improve the adhesion between the raw material particles and the metal by the silane coupling treatment will be described. In addition, FIG. 3 is explanatory drawing for demonstrating the improvement effect of the adhesiveness of the abrasive grain and metal by a silane coupling process. FIG. 3 shows an example in which SiC particles are used as raw material particles, Pd is used as a catalyst metal, and Ni is used as a metal to be plated.

図3に示すように,原料粒子であるSiC粒子の前処理が未処理のもの(シランカップリング処理を施していないもの)に対して,触媒付与処理を行うと,原料粒子表面に存在する水酸基に対して,触媒のPdが吸着(または付着)するだけであるので,PdはSiC粒子に対して弱く付与されることになる。したがって,このようなSiC粒子に対し無電解Niめっきを行ったとしても,SiC粒子とめっき金属であるNiとの密着性は悪い。   As shown in FIG. 3, when the pretreatment of the SiC particles as raw material particles is untreated (not subjected to silane coupling treatment), the hydroxyl group present on the surface of the raw material particles is obtained by applying a catalyst. On the other hand, since Pd of the catalyst only adsorbs (or adheres), Pd is weakly applied to the SiC particles. Therefore, even if electroless Ni plating is performed on such SiC particles, the adhesion between the SiC particles and the plating metal Ni is poor.

これに対して,SiC粒子に対し,シランカップリング処理を行った場合には,SiC粒子の表面にシランカップリング材の層が形成される。この場合,シランカップリング層に含まれる有機官能基(図3ではアミノ基)が,触媒金属のPdと錯体を形成するため,PdがSiC粒子に対して強く付与される。したがって,このようなSiC粒子に対し無電解Niめっきを行うと,SiC粒子とNiとの密着性が良好となる。   On the other hand, when the silane coupling treatment is performed on the SiC particles, a layer of a silane coupling material is formed on the surface of the SiC particles. In this case, since the organic functional group (amino group in FIG. 3) contained in the silane coupling layer forms a complex with Pd of the catalytic metal, Pd is strongly imparted to the SiC particles. Therefore, when electroless Ni plating is performed on such SiC particles, the adhesion between the SiC particles and Ni is improved.

このように,超砥粒などの表面にシランカップリング処理を施した後に,金属で被覆した砥粒を使用すると,結合材に対する保持力を向上させることができる。このため,例えば,図4に示すような穿孔手段(ドリル)10の先端部10a等に砥粒を電着させた砥石20を製造する場合のように,砥石部を薄層形態に形成する場合には,砥粒の結合材に対する保持力が特に要求されることから,特に好適である。すなわち,上述のようにして製造した金属被覆砥粒を使用し,例えば,電気めっきを行って,基台部に砥粒を電着させた砥石を製造すると,電着ボンドに対する砥粒の保持力が向上しているので,高い切削能力や長寿命を有することができる。   As described above, when the abrasive grains coated with metal are used after the surface of superabrasive grains or the like is subjected to silane coupling treatment, the holding power to the binder can be improved. Therefore, for example, when the grindstone portion is formed in a thin layer form, as in the case of manufacturing the grindstone 20 in which the abrasive grains are electrodeposited on the tip portion 10a of the drilling means (drill) 10 as shown in FIG. Is particularly suitable because it requires a holding force of the abrasive grains to the binder. That is, using the metal-coated abrasive grains produced as described above, for example, when electroplating is performed to produce a grindstone in which abrasive grains are electrodeposited on the base part, the holding power of the abrasive grains against the electrodeposition bond Therefore, it can have high cutting ability and long life.

以下,実施例により本発明をさらに詳細に説明するが,本発明は,下記実施例により限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited by the following Example.

(金属被覆砥粒の製造)
本実施例においては,原料粒子として粒径が♯2000の範囲(4〜6μm)のSiC粒子を使用した。このSiC粒子にシランカップリング処理を施した。具体的には,シランカップリング処理は,3%超純水と6%のシランカップリング剤3−アミノプロピルトリメトキシシラン[HN(CHSi(OCH]を100cmのメタノール溶媒液中に混合し,30gの粒径が♯2000の範囲のSiC粒子を加えて,1時間攪拌することによって行った。
(Manufacture of metal-coated abrasive grains)
In this example, SiC particles having a particle size in the range of # 2000 (4 to 6 μm) were used as raw material particles. The SiC particles were subjected to silane coupling treatment. Specifically, the silane coupling treatment is performed by adding 3% ultrapure water and 6% silane coupling agent 3-aminopropyltrimethoxysilane [H 2 N (CH 2 ) 3 Si (OCH 3 ) 3 ] to 100 cm 3. In a methanol solvent solution, 30 g of SiC particles having a particle size in the range of # 2000 were added and stirred for 1 hour.

次に,上記のSiC粒子がシランカップリング剤と混合された溶液を濾過して,SiC粒子の表面に付着しなかったシランカップリング剤を取り除いた。次いで,メタノール→超純水→メタノールの順番で,それぞれの溶液中にシランカップリング剤が被覆されたSiC粒子を入れて,その表面を洗浄した。その後,70℃の乾燥機で10時間以上乾燥させた。   Next, the solution in which the SiC particles were mixed with the silane coupling agent was filtered to remove the silane coupling agent that did not adhere to the surface of the SiC particles. Next, SiC particles coated with a silane coupling agent were put into each solution in the order of methanol → ultra pure water → methanol, and the surface was washed. Then, it dried for 10 hours or more with a 70 degreeC dryer.

次に,上記SiC粒子の表面に無電解Niめっきを行う前に,めっきの化学反応を促進させるために触媒付与処理を行った。触媒溶液としては,センシタイジング工程ではSnCl(塩化すず)を,アクチベイティング工程ではPdCl(塩化パラジウム)をそれぞれ純水に溶かした溶液を使用した。SnClの濃度とPdClの濃度は,それぞれ10ppmとし,粒子10gを触媒溶液100cm中で2分間攪拌し,Sn,Pdの順で触媒を付与した。Snによる触媒付与処理と,Pdによる触媒付与処理との間には,超純水で洗浄して吸引濾過する工程を挟んだ。 Next, before the electroless Ni plating was performed on the surface of the SiC particles, a catalyst application treatment was performed in order to promote the chemical reaction of the plating. As the catalyst solution, a solution in which SnCl 2 (tin chloride) was dissolved in pure water in the sensitizing step and PdCl 2 (palladium chloride) in the activating step was used. The concentration of SnCl 2 and the concentration of PdCl 2 were 10 ppm each, and 10 g of particles were stirred in 100 cm 3 of the catalyst solution for 2 minutes, and the catalyst was applied in the order of Sn and Pd. Between the catalyst application treatment with Sn and the catalyst application treatment with Pd, a process of washing with ultrapure water and suction filtration was sandwiched.

次に,触媒付与処理を行ったSiC粒子に対して無電解Niめっきを行った。めっき浴組成を,アミノ酢酸(グリシン)(HNCHCOOH)0.4mol/dm,ホスフィン酸ナトリウム(NaHPO・HO)0.3mol/dm,硫酸ニッケル(NiSO・6HO)0.1mol/dmの割合でそれぞれを純水に溶かしたものとした。また,めっき条件を,pH4.5(NaOHで調整),浴槽温度60℃,浸漬時間20分とした。上記の組成と条件で,めっき浴100cmに10gの触媒付与処理をしたSiC粒子を加えてめっきを行った。 Next, electroless Ni plating was performed on the SiC particles subjected to the catalyst application treatment. The plating bath composition was aminoacetic acid (glycine) (H 2 NCH 2 COOH) 0.4 mol / dm 3 , sodium phosphinate (NaH 2 PO 2 .H 2 O) 0.3 mol / dm 3 , nickel sulfate (NiSO 4. 6H 2 O) was dissolved in pure water at a rate of 0.1 mol / dm 3 . The plating conditions were pH 4.5 (adjusted with NaOH), bath temperature 60 ° C., and immersion time 20 minutes. With the above composition and conditions, plating was performed by adding 10 g of catalyst-treated SiC particles to 100 cm 2 of the plating bath.

Ni金属は,浸漬時間が5〜20分で,粒子の表面に平均2〜7nmの厚さで付着すると考えられ,上記では約7nm程度付着すると推定される。   Ni metal is considered to adhere to the surface of the particles with an average thickness of 2 to 7 nm with an immersion time of 5 to 20 minutes, and is estimated to adhere to about 7 nm in the above.

また,無電解Niめっきは上述した方法に限られず,次のような方法でも行った。   Further, the electroless Ni plating is not limited to the method described above, and was also performed by the following method.

すなわち,めっき浴組成を,アミノ酢酸(グリシン)(HNCHCOOH)0.4mol/dm(モル濃度:溶液 1 dm(1000cm)中に溶けている溶質の物質量(mol)で表す。),硫酸ニッケル(NiSO・6HO)0.1mol/dmの割合でそれぞれを純水に溶かしたものとした。また,めっき条件を,pH4.5(NaOHで調整),浴槽温度60℃,浸漬時間20分とした。上記の組成と条件で,めっき浴100cmに10gの触媒付与処理をしたSiC粒子を加えてホスフィン酸ナトリウム(NaHPO・HO)0.3mol/dmを滴下しながら,めっきを行った。 That is, the plating bath composition is expressed as the amount of solute dissolved in aminoacetic acid (glycine) (H 2 NCH 2 COOH) 0.4 mol / dm 3 (molar concentration: solution 1 dm 3 (1000 cm 3 )). Each of which was dissolved in pure water at a rate of 0.1 mol / dm 3 of nickel sulfate (NiSO 4 .6H 2 O). The plating conditions were pH 4.5 (adjusted with NaOH), bath temperature 60 ° C., and immersion time 20 minutes. With the above composition and conditions, plating was performed while adding 10 g of catalyst-treated SiC particles to 100 cm 2 of the plating bath and dropping 0.3 mol / dm 3 of sodium phosphinate (NaH 2 PO 2 .H 2 O). went.

以上の工程によって,SiC粒子にシランカップリング処理を施したNi金属を被覆した金属被覆砥粒を形成した。   Through the above steps, metal-coated abrasive grains in which SiC particles were coated with Ni metal obtained by performing silane coupling treatment on SiC particles were formed.

(比較実験)
次に,シランカップリング処理の有無によって砥粒(SiC粒子)の表面にめっき金属(Ni)が付着する量がどの程度異なるかを比較した実験の結果について説明する。
(Comparative experiment)
Next, the results of an experiment comparing how much the amount of plating metal (Ni) attached to the surface of abrasive grains (SiC particles) varies depending on the presence or absence of silane coupling treatment will be described.

具体的には,本発明に係るシランカップリング処理を施したSiC粒子(A)と,シランカップリング処理を施さなかったSiC粒子(B)とを用意し,無電解Niめっき時において単位時間当たりのSiC粒子の表面に付着するNi金属の付着量を比較したものである。SiC粒子(B)にはシランカップリング処理を施さなかったこと以外,SiC粒子(A)とSiC粒子(B)とは全く同じ条件で製造した。   Specifically, SiC particles (A) subjected to silane coupling treatment according to the present invention and SiC particles (B) not subjected to silane coupling treatment are prepared, and per unit time during electroless Ni plating. This compares the amount of Ni metal adhering to the surface of the SiC particles. The SiC particles (A) and the SiC particles (B) were produced under exactly the same conditions except that the SiC particles (B) were not subjected to silane coupling treatment.

また,SiC粒子の表面に付着するNi金属の付着量は,Ni金属を付着する前の質量とNi金属を付着させた後の質量とを比較して,それらの質量の差を算出し,対象となったSiC粒子の個数と1個あたりの表面積とを掛け合せた総合面積で割った数値となっている。このようにして算出された実験結果を図5に示した。なお,図5は,本実施例におけるSiC粒子上のNi金属付着量とめっき時間との関係を示したグラフであり,未処理粒子とシランカップリング処理を施した粒子とを比較したものである。   In addition, the amount of Ni metal adhering to the surface of the SiC particles is calculated by comparing the mass before adhering the Ni metal and the mass after adhering the Ni metal, and calculating the difference between the masses. The value is obtained by dividing the total area obtained by multiplying the number of the resulting SiC particles by the surface area per one. The experimental results calculated in this way are shown in FIG. FIG. 5 is a graph showing the relationship between the Ni metal adhesion amount on the SiC particles and the plating time in this example, and compares untreated particles with particles subjected to silane coupling treatment. .

図5に示したように,めっき時間の経過と共に,シランカップリング処理を施さなかったSiC粒子(B)より,シランカップリング処理を施したSiC粒子(A)の上に付着するNi金属が顕著に増加していることが分かった。   As shown in FIG. 5, as the plating time elapses, the Ni metal adhering to the SiC particles (A) subjected to the silane coupling treatment becomes more prominent than the SiC particles (B) not subjected to the silane coupling treatment. It has been found that it has increased.

また,図6に,未処理のSiC粒子に対して無電解Niめっきを行ったものと,シランカップリング処理を行ったSiC粒子に対して無電解Niめっきを行ったものの走査型電子顕微鏡写真を示した。ここで,図6において,P,Qは2.00μmスケールの走査型電子顕微鏡写真,p,qは500nmスケールの走査型電子顕微鏡写真を示している。また,P,pは,未処理のSiC粒子に対し無電解Niめっきを行った場合を示し,Q,qは,シランカップリング処理を行ったSiC粒子に無電解Niめっきを行った場合を示している。   FIG. 6 shows scanning electron micrographs of the electroless Ni-plated untreated SiC particles and the electroless Ni-plated SiC particles subjected to silane coupling treatment. Indicated. Here, in FIG. 6, P and Q are scanning electron micrographs of 2.00 μm scale, and p and q are scanning electron micrographs of 500 nm scale. Moreover, P and p show the case where electroless Ni plating is performed on untreated SiC particles, and Q and q show the case where electroless Ni plating is performed on SiC particles subjected to silane coupling treatment. ing.

図6からわかるように,シランカップリング処理を施さなかったSiC粒子(B)より,シランカップリング処理を施したSiC粒子(A)の上に付着したNi粒子の量が多く,かつ,Ni粒子がSiC粒子に均一に付着していることがわかった。   As can be seen from FIG. 6, the amount of Ni particles adhering to the SiC particles (A) subjected to the silane coupling treatment is larger than the SiC particles (B) not subjected to the silane coupling treatment, and the Ni particles Was found to adhere uniformly to the SiC particles.

すなわち,これらの結果より,シランカップリング処理を行うことによってSiC粒子の表面にNi金属が付着し易い状態となることが示唆された。この要因は,シランカップリング処理された砥粒の表面は濡れ性が高く,化学的結合がされ易いので,触媒が付着し易い状態となっているからであると考えられる。この結果,化学反応を促進させる触媒がシランカップリング処理されたSiC粒子(A)の表面に十分に塗布されることとなり,無電解めっきを行うとNi金属を多く付着させることができる。   That is, from these results, it was suggested that Ni metal tends to adhere to the surface of the SiC particles by performing the silane coupling treatment. This is presumably because the surface of the silane coupling-treated abrasive grains has high wettability and is easily chemically bonded, so that the catalyst is easily attached. As a result, the catalyst for promoting the chemical reaction is sufficiently applied to the surface of the SiC particles (A) subjected to the silane coupling treatment, and a large amount of Ni metal can be adhered by performing electroless plating.

このように,シランカップリング処理されたSiC粒子(A)では,被覆された金属との密着力が高められていると考えられる。   As described above, it is considered that the SiC particles (A) subjected to the silane coupling treatment have enhanced adhesion with the coated metal.

また,シランカップリング処理されたSiC粒子(A)によって結合材に対する保持力が向上することは,シランカップリング処理を施さないSiC粒子(B)と,シランカップリング処理されたSiC粒子(A)とをそれぞれに基台に電解めっきさせた後に,その表面に対して同じテープを貼り付けて,その後にテープを剥離させることにより確認することができる。このテープ剥離試験は,JIS H 8504−1999に準じた方法で行った。この結果を図7に示した。なお,図7において,R〜Tは,シランカップリング処理を施さなかったSiC粒子に無電解Niめっきを施した粒子を基台にめっきした場合を示し,r〜tは,シランカップリング処理を施したSiC粒子に無電解Niめっきを施した粒子を基台にめっきした場合を示している。また,R,rは,テープを剥がした後のめっき表面の状態を示した走査型電子顕微鏡写真であり,S,sは,テープの粘着物(網目状のもの)の内部の状態を示した拡大像であり,T,tは,剥がされた後のテープの表面の状態を示した走査型電子顕微鏡写真である。   Further, the retention of the binding material by the SiC particles (A) subjected to the silane coupling treatment is improved by the SiC particles (B) not subjected to the silane coupling treatment and the SiC particles (A) subjected to the silane coupling treatment. After each is electroplated on the base, the same tape is applied to the surface, and then the tape is peeled off. This tape peeling test was performed by a method according to JIS H 8504-1999. The results are shown in FIG. In FIG. 7, R to T indicate cases where SiC particles that have not been subjected to silane coupling treatment are plated on particles that have been subjected to electroless Ni plating, and rt represents silane coupling treatment. This shows a case where particles obtained by applying electroless Ni plating to applied SiC particles are plated on a base. R and r are scanning electron micrographs showing the state of the plating surface after the tape is peeled off, and S and s are states inside the tape adhesive (mesh). It is an enlarged image, and T and t are scanning electron micrographs showing the state of the surface of the tape after peeling.

図7からわかるように,シランカップリング処理されたSiC粒子は基台に残留していたが,シランカップリング処理を施さなかったSiC粒子は除去され,剥がされたテープに付着していた。   As can be seen from FIG. 7, the SiC particles subjected to the silane coupling treatment remained on the base, but the SiC particles not subjected to the silane coupling treatment were removed and adhered to the peeled tape.

以上の結果から,本発明では,シランカップリング剤を介して,砥粒と被覆される金属とを化学的に結合させるので砥粒との密着性を向上させることができることが示唆された。   From the above results, in the present invention, it was suggested that the adhesiveness to the abrasive grains can be improved because the abrasive grains and the metal to be coated are chemically bonded via the silane coupling agent.

なお,被覆した金属によって切削力が低下してしまうことが憂慮されるが,砥粒と被覆された金属は,その硬さが大きく異なるため,被覆された金属は砥粒の表面に削られてしまうので,被覆した金属によって切削力が低下してしまうことはないと考えられる。   Although it is feared that the cutting force is reduced by the coated metal, the hardness of the abrasive grains and the coated metal differ greatly, so the coated metal is scraped to the surface of the abrasive grains. Therefore, it is considered that the cutting force is not reduced by the coated metal.

また,本発明の砥粒を使用して砥石を製造するときに使用される結合材については,電着ボンドに限らず,どのような結合材に対しても効果がある。さらに,被覆される金属の表面にさらにシランカップリング剤を形成することによって,結合材と砥粒との密着性を高めることができると考えられる。   In addition, the binder used when manufacturing the grindstone using the abrasive grains of the present invention is not limited to the electrodeposition bond, and is effective for any binder. Furthermore, it is considered that the adhesion between the binder and the abrasive grains can be improved by further forming a silane coupling agent on the surface of the metal to be coated.

以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明はかかる例に限定されないことは言うまでもない。当業者であれば,特許請求の範囲に記載された範疇内において,各種の変更例または修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

本発明は,金属被覆砥粒,金属被覆砥粒の製造方法,およびその金属被覆砥粒を使用した砥石に適用可能である。   The present invention is applicable to metal-coated abrasive grains, a method for producing metal-coated abrasive grains, and a grindstone using the metal-coated abrasive grains.

本発明の一実施形態に係る金属被覆砥粒の構成を示す説明図である。It is explanatory drawing which shows the structure of the metal-coated abrasive grain which concerns on one Embodiment of this invention. 同実施形態に係る金属被覆砥粒の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the metal-coated abrasive grain which concerns on the same embodiment. シランカップリング処理による砥粒と金属との密着性の向上効果を説明するための説明図である。It is explanatory drawing for demonstrating the improvement effect of the adhesiveness of the abrasive grain and metal by a silane coupling process. 同実施形態に係る砥石が形成された穿孔手段を示す斜視図である。It is a perspective view which shows the punching means in which the grindstone concerning the embodiment was formed. 本発明の一実施例におけるSiC粒子上のNi金属付着量とめっき時間との関係を示したグラフであり,未処理粒子とシランカップリング処理を施した粒子とを比較したものである。It is the graph which showed the relationship between the Ni metal adhesion amount on the SiC particle | grain in one Example of this invention, and the plating time, and compares the untreated particle | grain and the particle | grains which performed the silane coupling process. 本発明の一実施例における未処理のSiC粒子に対して無電解Niめっきを行ったものと,シランカップリング処理を行ったSiC粒子に対して無電解Niめっきを行ったもののNi粒子の付着状態を示す走査型電子顕微鏡写真である。Adhesion state of Ni particles in which electroless Ni plating was performed on untreated SiC particles in one embodiment of the present invention and in which electroless Ni plating was performed on SiC particles subjected to silane coupling treatment It is the scanning electron micrograph which shows. 本発明の一実施例における未処理のSiC粒子に対して無電解Niめっきを行ったものと,シランカップリング処理を行ったSiC粒子に対して無電解Niめっきを行ったものについてのテープ剥離試験の結果を示す走査型電子顕微鏡写真である。Tape peeling test of electroless Ni-plated untreated SiC particles in one embodiment of the present invention and electroless Ni-plated SiC particles subjected to silane coupling treatment It is a scanning electron micrograph which shows the result.

Claims (6)

砥粒の表面に金属被覆層が被覆されてなる金属被覆砥粒において,
前記砥粒の表面の全部又は一部に形成されたシランカップリング剤を含むシランカップリング層と;
前記シランカップリング層の表面の全部又は一部を被覆する金属被覆層と;
を有することを特徴とする,金属被覆砥粒。
In the metal-coated abrasive grains in which the surface of the abrasive grains is coated with a metal coating layer,
A silane coupling layer containing a silane coupling agent formed on all or part of the surface of the abrasive grains;
A metal coating layer covering all or part of the surface of the silane coupling layer;
A metal-coated abrasive grain characterized by comprising:
前記シランカップリング剤は,アミノ基,カルボキシル基,アゾール基,水酸基及びメルカプト基からなる群から選択される少なくとも1つの官能基を含むことを特徴とする,請求項1に記載の金属被覆砥粒。   The metal-coated abrasive grain according to claim 1, wherein the silane coupling agent contains at least one functional group selected from the group consisting of an amino group, a carboxyl group, an azole group, a hydroxyl group, and a mercapto group. . 砥粒の表面の全部又は一部にシランカップリング剤を付着させるシランカップリング処理を行い,
前記シランカップリング処理が行われた砥粒の表面に,めっきの化学反応を促進させる触媒を付与する触媒付与処理を行い,
前記触媒付与処理が行われた砥粒に対して無電解めっきを行うことにより,前記シランカップリング剤が付着した砥粒の表面の全部又は一部に金属被覆層を形成することを特徴とする,金属被覆砥粒の製造方法。
Perform silane coupling treatment to attach a silane coupling agent to all or part of the surface of the abrasive grains,
The surface of the abrasive grain that has been subjected to the silane coupling treatment is subjected to a catalyst imparting treatment that imparts a catalyst that promotes a chemical reaction of plating,
A metal coating layer is formed on all or part of the surface of the abrasive grains to which the silane coupling agent has adhered by performing electroless plating on the abrasive grains that have been subjected to the catalyst application treatment. , Manufacturing method of metal coated abrasive.
前記シランカップリング剤は,アミノ基,カルボキシル基,アゾール基,水酸基及びメルカプト基からなる群から選択される少なくとも1つの官能基を含むことを特徴とする,請求項3に記載の金属被覆砥粒の製造方法。   The metal-coated abrasive grain according to claim 3, wherein the silane coupling agent includes at least one functional group selected from the group consisting of an amino group, a carboxyl group, an azole group, a hydroxyl group, and a mercapto group. Manufacturing method. 請求項1又は2に記載の金属被覆砥粒を使用して形成されることを特徴とする,砥石。   A whetstone formed by using the metal-coated abrasive grain according to claim 1 or 2. 請求項3又は4に記載の製造方法により得られた金属被覆砥粒を使用して形成されることを特徴とする,砥石。

5. A grindstone formed by using metal-coated abrasive grains obtained by the production method according to claim 3 or 4.

JP2006028813A 2006-02-06 2006-02-06 Metal coated abrasive grain, method of producing metal coated abrasive grain, and grindstone using the metal coated abrasive grain Pending JP2007203442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006028813A JP2007203442A (en) 2006-02-06 2006-02-06 Metal coated abrasive grain, method of producing metal coated abrasive grain, and grindstone using the metal coated abrasive grain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006028813A JP2007203442A (en) 2006-02-06 2006-02-06 Metal coated abrasive grain, method of producing metal coated abrasive grain, and grindstone using the metal coated abrasive grain

Publications (1)

Publication Number Publication Date
JP2007203442A true JP2007203442A (en) 2007-08-16

Family

ID=38483341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006028813A Pending JP2007203442A (en) 2006-02-06 2006-02-06 Metal coated abrasive grain, method of producing metal coated abrasive grain, and grindstone using the metal coated abrasive grain

Country Status (1)

Country Link
JP (1) JP2007203442A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090162681A1 (en) * 2007-12-21 2009-06-25 Artur Kolics Activation solution for electroless plating on dielectric layers
CN101972673A (en) * 2010-09-17 2011-02-16 北京化工大学 Catalyst capable of enhancing catalytic activity of heterogeneous asymmetric catalytic reaction and preparation method thereof
WO2011042931A1 (en) * 2009-10-06 2011-04-14 ジャパンファインスチール株式会社 Fixed abrasive grain wire, process for producing the fixed abrasive grain wire, and abrasive grains for use in fixed abrasive grain wire
JP2011518051A (en) * 2008-04-18 2011-06-23 サンーゴバン アブレイシブズ,インコーポレイティド Hydrophilic and hydrophobic silane surface modification of abrasive grains
CN104114665A (en) * 2011-12-30 2014-10-22 圣戈本陶瓷及塑料股份有限公司 Abrasive particulate material including superabrasive material having a coating of metal
CN105195737A (en) * 2015-10-14 2015-12-30 东南大学 Method for covering surfaces of SiC particles with nickel
CN109333390A (en) * 2018-09-26 2019-02-15 东莞市鼎泰鑫电子有限公司 A kind of rubber substrate organic ceramic abrading block and preparation method thereof
WO2021072293A1 (en) * 2019-10-11 2021-04-15 Saint-Gobain Abrasives, Inc. Abrasive particle including coating, abrasive article including the abrasive particles, and method of forming
WO2022077030A1 (en) * 2020-10-09 2022-04-14 Saint-Gobain Abrasives, Inc. Abrasive particles including coating, abrasive article including the abrasive particles, and method of forming

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11277439A (en) * 1998-03-31 1999-10-12 Noritake Diamond Ind Co Ltd Super abrasive grain grindstone having mixed abrasive grain
JP2000163743A (en) * 1998-11-26 2000-06-16 Fuji Electric Co Ltd FORMING METHOD OF ELECTROLESS Ni-P PLATING LAYER ON GLASS SUBSTRATE FOR MAGNETIC DISK
WO2002067335A1 (en) * 2001-02-19 2002-08-29 International Business Machines Corporation Thin-film transistor structure, method for manufacturing the thin-film transistor structure, and display device using the thin-film transistor structure
JP2002304780A (en) * 2001-04-06 2002-10-18 Sony Corp Manufacturing method for stamper for optical disk manufacture and manufacturing device used for the same
JP2004184796A (en) * 2002-12-05 2004-07-02 Sumitomo Metal Mining Co Ltd Method for manufacturing optical fiber array
JP2005001093A (en) * 2003-06-16 2005-01-06 Nikon Corp Method for manufacturing grinding wheel
JP2005322364A (en) * 2004-05-11 2005-11-17 Fuji Electric Device Technology Co Ltd Disk substrate for vertical magnetic recording medium, vertical magnetic recording medium using substrate and manufacturing method thereof
JP2006016684A (en) * 2004-07-05 2006-01-19 Ebara Corp Wiring method and wiring device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11277439A (en) * 1998-03-31 1999-10-12 Noritake Diamond Ind Co Ltd Super abrasive grain grindstone having mixed abrasive grain
JP2000163743A (en) * 1998-11-26 2000-06-16 Fuji Electric Co Ltd FORMING METHOD OF ELECTROLESS Ni-P PLATING LAYER ON GLASS SUBSTRATE FOR MAGNETIC DISK
WO2002067335A1 (en) * 2001-02-19 2002-08-29 International Business Machines Corporation Thin-film transistor structure, method for manufacturing the thin-film transistor structure, and display device using the thin-film transistor structure
JP2002304780A (en) * 2001-04-06 2002-10-18 Sony Corp Manufacturing method for stamper for optical disk manufacture and manufacturing device used for the same
JP2004184796A (en) * 2002-12-05 2004-07-02 Sumitomo Metal Mining Co Ltd Method for manufacturing optical fiber array
JP2005001093A (en) * 2003-06-16 2005-01-06 Nikon Corp Method for manufacturing grinding wheel
JP2005322364A (en) * 2004-05-11 2005-11-17 Fuji Electric Device Technology Co Ltd Disk substrate for vertical magnetic recording medium, vertical magnetic recording medium using substrate and manufacturing method thereof
JP2006016684A (en) * 2004-07-05 2006-01-19 Ebara Corp Wiring method and wiring device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI494164B (en) * 2007-12-21 2015-08-01 Lam Res Corp Activation solution for electroless plating on dielectric layers
US20090162681A1 (en) * 2007-12-21 2009-06-25 Artur Kolics Activation solution for electroless plating on dielectric layers
JP2011518051A (en) * 2008-04-18 2011-06-23 サンーゴバン アブレイシブズ,インコーポレイティド Hydrophilic and hydrophobic silane surface modification of abrasive grains
JP2014195865A (en) * 2008-04-18 2014-10-16 サンーゴバン アブレイシブズ,インコーポレイティド Hydrophilic and hydrophobic silane surface modification of abrasive grains
WO2011042931A1 (en) * 2009-10-06 2011-04-14 ジャパンファインスチール株式会社 Fixed abrasive grain wire, process for producing the fixed abrasive grain wire, and abrasive grains for use in fixed abrasive grain wire
CN102574275A (en) * 2009-10-06 2012-07-11 日本精细钢铁株式会社 Fixed abrasive grain wire, process for producing the fixed abrasive grain wire, and abrasive grains for use in fixed abrasive grain wire
JPWO2011042931A1 (en) * 2009-10-06 2013-02-28 ジャパンファインスチール株式会社 Fixed abrasive wire, method of manufacturing the same, and abrasive used for the fixed abrasive wire
KR101322529B1 (en) 2009-10-06 2013-10-28 재팬 파인 스틸 컴퍼니 리미티드 Fixed abrasive grain wire, process for producing the fixed abrasive grain wire, and abrasive grains for use in fixed abrasive grain wire
CN101972673A (en) * 2010-09-17 2011-02-16 北京化工大学 Catalyst capable of enhancing catalytic activity of heterogeneous asymmetric catalytic reaction and preparation method thereof
CN104114665A (en) * 2011-12-30 2014-10-22 圣戈本陶瓷及塑料股份有限公司 Abrasive particulate material including superabrasive material having a coating of metal
JP2015503460A (en) * 2011-12-30 2015-02-02 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Granular abrasive including superabrasive with metal coating
CN105195737A (en) * 2015-10-14 2015-12-30 东南大学 Method for covering surfaces of SiC particles with nickel
CN105195737B (en) * 2015-10-14 2017-07-18 东南大学 A kind of method of SiC particulate surface cladded with nickel
CN109333390A (en) * 2018-09-26 2019-02-15 东莞市鼎泰鑫电子有限公司 A kind of rubber substrate organic ceramic abrading block and preparation method thereof
WO2021072293A1 (en) * 2019-10-11 2021-04-15 Saint-Gobain Abrasives, Inc. Abrasive particle including coating, abrasive article including the abrasive particles, and method of forming
US11685849B2 (en) 2019-10-11 2023-06-27 Saint-Gobain Abrasives, Inc. Abrasive particle including coating, abrasive article including the abrasive particles, and method of forming
WO2022077030A1 (en) * 2020-10-09 2022-04-14 Saint-Gobain Abrasives, Inc. Abrasive particles including coating, abrasive article including the abrasive particles, and method of forming

Similar Documents

Publication Publication Date Title
JP2007203442A (en) Metal coated abrasive grain, method of producing metal coated abrasive grain, and grindstone using the metal coated abrasive grain
JPWO2005073985A1 (en) Conductive fine particles and anisotropic conductive materials
JP2004537647A (en) Paint containing nickel, boron and particles
CN105008587B (en) Chemical copper plating solution
JP2007173075A (en) Conductive particulate and anisotropic conductive material
TW201203287A (en) Conductive powder, conductive material containing it, and method for manufacturing conductive particle
JP4740137B2 (en) Method for producing conductive fine particles
US9520205B2 (en) Copper containing particle and method for manufacturing same
TWI721096B (en) Conductive particles, insulating coated conductive particles, anisotropic conductive adhesive, connection structure, and manufacturing method of conductive particles
JP5937086B2 (en) Electroless metal deposition using highly alkaline plating bath
JP4217271B2 (en) Conductive fine particles and anisotropic conductive materials
JP2007324138A (en) Conductive particulate and anisotropic conductive material
US7338686B2 (en) Method for producing conductive particles
JP6263228B2 (en) Conductive particles and conductive material containing the same
Georgieva et al. Investigation of the structure of copper coatings obtained by chemical deposition from formaldehyde-free solution on dielectrics
JP2000096252A (en) Method for plating to hard disk substrate
JP6332986B2 (en) Method for producing nanocarbon fiber coated diamond particles
JP3905013B2 (en) Conductive electroless plating powder and manufacturing method thereof
WO2021095804A1 (en) Electrically conductive particles, production method for same, and electrically conductive material including same
JP5695768B2 (en) Conductive powder and conductive material including the same
JP4649599B2 (en) In2O3 thin film pattern, In (OH) 3 thin film pattern, and methods for producing them
JP4658634B2 (en) Electroless plating catalyst solution and electroless plating method using the same
JP5505156B2 (en) Conductive particles, method for producing the same, and anisotropic conductive adhesive
KR100446203B1 (en) method for preparation of conductive ultra fine particles
JP2010214547A (en) Polishing sheet and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090128

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110608

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

A02 Decision of refusal

Effective date: 20120306

Free format text: JAPANESE INTERMEDIATE CODE: A02