JP2007197738A - Method for detecting flowing-out of slag - Google Patents

Method for detecting flowing-out of slag Download PDF

Info

Publication number
JP2007197738A
JP2007197738A JP2006014926A JP2006014926A JP2007197738A JP 2007197738 A JP2007197738 A JP 2007197738A JP 2006014926 A JP2006014926 A JP 2006014926A JP 2006014926 A JP2006014926 A JP 2006014926A JP 2007197738 A JP2007197738 A JP 2007197738A
Authority
JP
Japan
Prior art keywords
slag
molten metal
steel
pixels
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006014926A
Other languages
Japanese (ja)
Other versions
JP4747855B2 (en
Inventor
Takayuki Hori
隆行 堀
Takayuki Koyanagi
貴幸 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006014926A priority Critical patent/JP4747855B2/en
Publication of JP2007197738A publication Critical patent/JP2007197738A/en
Application granted granted Critical
Publication of JP4747855B2 publication Critical patent/JP4747855B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for detecting the flowing-out of slag with which in the case of discharging molten metal from a molten metal vessel into the other molten metal vessel, the flowing-out quantity of the slag can be controlled to a prescribed quantity without fluctuation by surely judging the detection of the flowing-out slag mixed with the molten metal stream at the end stage of the discharging of the molten metal. <P>SOLUTION: In the method for detecting the flowing-out slag 2 from the molten metal vessel by mixing into the molten metal stream 1A flowing down from a tapping hole 12 in the molten metal vessel 3; the molten metal stream is photographed with a infrared camera 6 and each pixel of photographed picture is distinguished to the molten metal and the slag by utilizing a brightness energy difference between the molten metal 1 and the slag 2, and the number of the pixels distinguished as the slag, is integrated in each photographing and the flowing-out of the slag is judged based on the integrated value of the number of the pixels distinguished as the slag. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、転炉及び取鍋などの溶融金属容器に設置される流出孔を介して該溶融金属容器から、取鍋やタンディッシュなどの他の溶融金属容器に溶銑及び溶鋼などの溶融金属を排出する際に、溶融金属の排出の末期、溶融金属に巻き込まれて流出するスラグを検知する方法に関するものである。   In the present invention, molten metal such as hot metal and molten steel is transferred from the molten metal container to another molten metal container such as a ladle or tundish through an outflow hole installed in a molten metal container such as a converter and a ladle. The present invention relates to a method of detecting slag that is caught in and flows out of molten metal at the end of discharging the molten metal.

転炉を用いた溶銑の脱炭精錬工程においては、精錬剤として生石灰(CaO)などの造滓剤を添加したり、副原料としてマンガン鉱石を添加したり、除去された溶銑中の不純物自体がスラグになったりし、更には、酸化精錬であることに起因して鉄の酸化物が不可避的に発生することから、スラグをなくすることは不可能であり、脱炭精錬終了後の溶鋼上にはスラグが形成される。形成されたスラグは、転炉から取鍋などへの出鋼過程の末期、転炉内の溶鋼が少なくなってくると溶鋼に巻き込まれ、溶鋼とともに取鍋内に排出される。このスラグは鉄酸化物及びマンガン酸化物などの酸素ポテンシャルの高い、所謂「低級酸化物」を含んでいるので、大量のスラグが取鍋内に流出した場合には、脱酸のために添加した溶鋼中のAlとスラグ中の低級酸化物とが反応して溶鋼中にアルミナが形成され、清浄性の高い鋼を得ることができなくなるという問題が発生する。また、取鍋の耐火物がスラグによって溶損し、取鍋耐火物の寿命が低下するという問題も発生する。   In the decarburizing and refining process of hot metal using a converter, impurities such as quick lime (CaO) are added as a refining agent, manganese ore is added as a secondary material, and impurities in the removed hot metal itself are removed. In addition, iron oxide is inevitably generated due to oxidation refining, and it is impossible to eliminate slag. A slag is formed in the. The formed slag is caught in molten steel when the molten steel in the converter becomes low at the end of the steelmaking process from the converter to the ladle, etc., and is discharged into the ladle together with the molten steel. Since this slag contains so-called “lower oxide” with high oxygen potential such as iron oxide and manganese oxide, when a large amount of slag flows into the ladle, it is added for deoxidation. A problem arises in that Al in the molten steel reacts with a lower oxide in the slag to form alumina in the molten steel, making it impossible to obtain steel with high cleanliness. Moreover, the problem that the refractory of a ladle melts | dissolves by slag and the lifetime of a ladle refractory falls will also generate | occur | produce.

同様に、連続鋳造工程においては、取鍋からタンディッシュへ溶鋼を注入する際、取鍋内の溶鋼量が少なくなった注入過程の末期に、取鍋内のスラグが溶鋼に巻き込まれ、溶鋼とともにタンディッシュに流出する。この場合のスラグは、一般的にはすでに低級酸化物は還元されており、酸化度の低いスラグであるので、巻き込まれたスラグがタンディッシュ内で全て浮上して溶鋼と分離してしまえば問題にはならないが、タンディッシュで浮上しきれずに鋳型内まで持ち来たされる場合には、スラグは鋳片に捕捉され、鋳片の清浄性が低下するといった問題が発生する。   Similarly, in the continuous casting process, when pouring molten steel from the ladle into the tundish, the slag in the ladle is caught in the molten steel at the end of the pouring process when the amount of molten steel in the ladle is reduced. Spill into the tundish. The slag in this case is generally a slag that has already been reduced with lower oxides and has a low degree of oxidation, so if all the slag involved rises in the tundish and separates from the molten steel, there is a problem. However, when the slag is brought into the mold without being lifted up by the tundish, the slag is trapped by the slab and the cleanability of the slab is lowered.

従って、スラグの流出を防止するために多数の提案がなされている。例えば、特許文献1には、転炉から出鋼口を介して取鍋へ溶鋼を出鋼する際に、転炉からの出鋼流を比較高温計で監視し、比較高温計で検知される流体が溶鋼からスラグに変わった時点で前記出鋼口に蓋体を挿入し、スラグの流出を防止する方法が開示されている。また、特許文献2には、取鍋からタンディッシュへの溶鋼の注入流の幅方向放射エネルギー分布を2次元CCDカメラで測定し、測定結果のうちの連続する最大幅部分を溶鋼注入流の径として検出し、溶鋼注入流の径の幅及びその積分値が増大したときにスラグ流出と判定して、取鍋からタンディッシュへの溶鋼の注入を終了する方法が開示されている。
特公昭55−47311号公報 特開平2−251362号公報
Therefore, many proposals have been made to prevent the outflow of slag. For example, in Patent Document 1, when steel is discharged from a converter to a ladle through a steel outlet, the steel flow from the converter is monitored with a comparative pyrometer and detected by the comparative pyrometer. A method is disclosed in which a lid is inserted into the steel outlet when the fluid changes from molten steel to slag to prevent the slag from flowing out. In Patent Document 2, the widthwise radiant energy distribution of the molten steel injection flow from the ladle to the tundish is measured with a two-dimensional CCD camera, and the continuous maximum width portion of the measurement result is the diameter of the molten steel injection flow. Is detected, and the slag outflow is determined when the diameter of the molten steel injection flow and the integral value thereof increase, and a method of terminating the injection of the molten steel from the ladle to the tundish is disclosed.
Japanese Patent Publication No.55-47311 JP-A-2-251362

特許文献1及び特許文献2ともに、溶鋼よりもスラグの方が、放射エネルギーが大きいことを利用して溶鋼とスラグとを判別しているが、これらの従来技術には、次のような問題点がある。即ち、特許文献1及び特許文献2ともに、出鋼流或いは注入流の放射エネルギー全体が増大したときにスラグが流出したと判定しており、このような判定方法では、スラグが出鋼流或いは注入流の一部分にしか混在しない状態が長時間連続した場合には、放射エネルギーの増加量が少ないためにスラグ流出の検知時期が遅れてしまい、検知した時点ではすでに大量のスラグが流出しまうことが発生する。   Both Patent Document 1 and Patent Document 2 discriminate between molten steel and slag by utilizing the fact that slag is larger in radiant energy than molten steel. However, these conventional techniques have the following problems. There is. That is, both Patent Document 1 and Patent Document 2 determine that the slag has flowed out when the entire radiant energy of the outgoing steel flow or the injected flow is increased. If a state where only a part of the flow is mixed continues for a long time, the amount of increase in radiant energy is small, so the detection timing of slag outflow is delayed, and a large amount of slag already flows out at the time of detection. To do.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、転炉から取鍋への出鋼時及び取鍋からタンディッシュへの溶鋼注入時などのように、溶融金属容器から他の溶融金属容器に流出孔を介して溶融金属を排出する際に、溶融金属の排出の末期、溶融金属流に混入して流出するスラグの検知を的確に判定し、スラグの流出量をばらつきなく所定量に制御することのできるスラグの流出検知方法を提供することである。   The present invention has been made in view of the above circumstances, and the object of the present invention is from a molten metal container, such as when steel is discharged from a converter to a ladle and when molten steel is poured from a ladle to a tundish. When discharging molten metal to other molten metal containers through the outflow holes, the detection of slag flowing into the molten metal flow at the end of the discharge of molten metal is accurately judged, and the slag outflow amount varies. It is another object of the present invention to provide a slag outflow detection method that can be controlled to a predetermined amount.

上記課題を解決するための第1の発明に係るスラグの流出検知方法は、溶融金属容器の流出孔を流下する溶融金属流に混入して前記溶融金属容器から流出するスラグの検知方法であって、前記溶融金属流を赤外線カメラで撮影し、撮影した画像の各画素を、溶融金属及びスラグの輝度エネルギー差を利用して溶融金属とスラグとに判別し、スラグと判別された画素の数を撮影毎に積算し、スラグと判別された画素の数の積算値に基づいてスラグ流出を判定することを特徴とするものである。   A slag outflow detection method according to a first aspect of the present invention for solving the above-described problem is a method for detecting slag mixed in a molten metal flow flowing down an outflow hole of a molten metal container and flowing out of the molten metal container. The molten metal flow is photographed with an infrared camera, and each pixel of the photographed image is discriminated as molten metal and slag using a difference in luminance energy between the molten metal and slag, and the number of pixels determined as slag is determined. The slag outflow is determined on the basis of an integrated value of the number of pixels determined to be slag, which is integrated for each photographing.

第2の発明に係るスラグの流出検知方法は、第1の発明において、前記溶融金属容器が転炉であり、且つ前記溶融金属が溶鋼であることを特徴とするものである。   The slag outflow detection method according to a second invention is characterized in that, in the first invention, the molten metal container is a converter, and the molten metal is molten steel.

本発明によれば、転炉や取鍋などの溶融金属容器から流下する溶融金属流を赤外線カメラにより周期的に撮影し、撮影した画像の各画素を溶融金属とスラグとに判別し、スラグと判別された画素数を撮影毎に積算して、この画素数の積算値に基づいてスラグ流出を判定するので、スラグが溶融金属流の一部分にしか混在しない状態が長時間継続しても、スラグ流出の検知時期を的確に把握することができ、スラグの流出量をばらつきなく所定量に制御することが可能となる。その結果、溶鋼清浄性の向上、脱酸剤原単位の削減などが達成されて工業上有益な効果がもたらされる。   According to the present invention, a molten metal flow flowing down from a molten metal container such as a converter or a ladle is periodically photographed by an infrared camera, and each pixel of the photographed image is determined as a molten metal and a slag, Since the determined number of pixels is integrated for each shooting, and the slag outflow is determined based on the integrated value of the number of pixels, even if the slag is mixed only in a part of the molten metal flow, The detection timing of the outflow can be accurately grasped, and the outflow amount of the slag can be controlled to a predetermined amount without variation. As a result, improvements in molten steel cleanliness, reduction of deoxidizer basic unit, and the like are achieved, and industrially beneficial effects are brought about.

以下、添付図面を参照して本発明を具体的に説明する。図1は、本発明の実施の形態例を示す図であって、転炉から取鍋に溶鋼を出鋼する際に本発明を実施した例を示す概略断面図、図2は、図1に示すスラグストッパーの概略拡大図である。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a diagram illustrating an embodiment of the present invention, and is a schematic cross-sectional view illustrating an example in which the present invention is implemented when molten steel is discharged from a converter to a ladle. FIG. It is a schematic enlarged view of the slag stopper shown.

図1に示すように、外殻を鉄皮10とし、鉄皮10の内側に耐火物11が施工された転炉3の側壁には、溶鋼1を取鍋4に排出するための流出孔である出鋼口12が設置されている。この転炉3の出鋼口12の近傍には、スラグストッパー9が設置されており、スラグストッパー9は、転炉3とは距離を隔てた位置に設置されるスラグストッパー制御装置8によって制御されている。また、転炉3から取鍋4への出鋼流1Aに混合して流出するスラグ2を検知するために、赤外線カメラ6及び検知部7からなるスラグ検知装置5が設置されている。   As shown in FIG. 1, an outflow hole for discharging the molten steel 1 to the ladle 4 is provided on the side wall of the converter 3 in which the outer shell is the iron shell 10 and the refractory 11 is constructed inside the iron shell 10. A certain steel outlet 12 is installed. A slag stopper 9 is installed in the vicinity of the steel outlet 12 of the converter 3, and the slag stopper 9 is controlled by a slag stopper control device 8 installed at a distance from the converter 3. ing. Moreover, in order to detect the slag 2 which flows into the ladle flow 1A from the converter 3 to the ladle 4 and flows out, a slag detection device 5 including an infrared camera 6 and a detection unit 7 is installed.

赤外線カメラ6は、出鋼流1A及びその背景を二次元で撮影し、被写体の放射エネルギーに基づいて、溶鋼1、スラグ2及び背景に分別して表示する装置である。また、赤外線カメラ6は、撮影した画像中における溶鋼1、スラグ2及び背景の占める各画素の数を計測する機能を有している。赤外線カメラ6により撮影された二次元の画像、並びに、赤外線カメラ6により計測された溶鋼1、スラグ2及び背景の占める各画素数は検知部7に送られる。検知部7は、送られた画像及び各画素数に基づいてスラグ流出の検知並びにスラグ流出の判定を行う装置である。赤外線カメラ6でなくても例えばCCDカメラなどでも被写体の放射エネルギーを計測することは可能であるが、検出感度が高いことから本発明では赤外線カメラ6を使用している。但し、赤外線カメラ6の代わりにCCDカメラを使用しても、本発明を実施することはできる。検知部7の信号は、スラグストッパー制御装置8に入力されている。   The infrared camera 6 is a device that captures the outgoing steel flow 1A and its background in two dimensions, and displays them separately on the molten steel 1, the slag 2 and the background based on the radiant energy of the subject. The infrared camera 6 has a function of measuring the number of pixels occupied by the molten steel 1, the slag 2, and the background in the photographed image. The two-dimensional image photographed by the infrared camera 6 and the number of pixels occupied by the molten steel 1, slag 2 and background measured by the infrared camera 6 are sent to the detection unit 7. The detection unit 7 is a device that detects slag outflow and determines slag outflow based on the sent image and the number of pixels. Even if it is not the infrared camera 6, for example, a CCD camera can be used to measure the radiant energy of the subject, but since the detection sensitivity is high, the infrared camera 6 is used in the present invention. However, the present invention can be implemented even if a CCD camera is used instead of the infrared camera 6. The signal from the detection unit 7 is input to the slag stopper control device 8.

スラグストッパー9は、図2に示すように、転炉3の鉄皮10に固定されるアーム支持台18に軸受19を介して回転自在に支持されたアーム13と、アーム13の先端部に取り付けられた鋳鉄製のストッパー14と、アーム13のストッパー14の側とは反対側の先端部にシリンダーロッド16を介して連結される油圧シリンダー15と、から構成されている。この油圧シリンダー15は、鉄皮10に固定されるシリンダー支持台20に軸受21を介して回転自在に支持されている。アーム13とシリンダーロッド16との連結部は固定されておらず、連結したまま互いに自在に動くようになっている。また、ストッパー14の中心部を貫通してガス供給管17が設けられ、ガス供給管17を介して供給される窒素ガスが、ストッパー14を出鋼口12に嵌合したときに、出鋼口12の流路内に噴射されるようになっている。また更に、油圧シリンダー15には2本の油圧配管22,23が設置され、油圧配管22,23を介して供給・排出される作動油によって油圧シリンダー15が作動するようになっている。尚、図2では、ガス供給管17及び油圧配管22,23は、その一部分のみを表示し、全体の表示は省略している。   As shown in FIG. 2, the slag stopper 9 is attached to an arm 13 that is rotatably supported via a bearing 19 on an arm support 18 that is fixed to the iron skin 10 of the converter 3, and is attached to the tip of the arm 13. The cast iron stopper 14 and the hydraulic cylinder 15 connected to the tip of the arm 13 on the opposite side of the stopper 14 via a cylinder rod 16. The hydraulic cylinder 15 is rotatably supported by a cylinder support 20 fixed to the iron skin 10 via a bearing 21. The connecting portion between the arm 13 and the cylinder rod 16 is not fixed and can move freely while being connected. Further, a gas supply pipe 17 is provided through the center of the stopper 14, and when the nitrogen gas supplied through the gas supply pipe 17 fits the stopper 14 into the steel outlet 12, a steel outlet is provided. Injected into the 12 flow paths. Furthermore, two hydraulic pipes 22 and 23 are installed in the hydraulic cylinder 15, and the hydraulic cylinder 15 is operated by hydraulic oil supplied and discharged via the hydraulic pipes 22 and 23. In FIG. 2, only a part of the gas supply pipe 17 and the hydraulic pipes 22 and 23 are displayed, and the entire display is omitted.

シリンダーロッド16の突出部が短縮するように油圧シリンダー15が作動することで、アーム13は、ストッパー14が出鋼口12に近づくように軸受19を回転軸として回転し、図2に破線で示すように、シリンダーロッド16の突出部が最も短縮した時点で、ストッパー14が出鋼口12に嵌合するようになっている。ガス供給管17を介して流れる窒素ガス流量及び油圧配管22,23における作動油の流れの方向は、スラグストッパー制御装置8によって制御されている。   By operating the hydraulic cylinder 15 so that the protruding portion of the cylinder rod 16 is shortened, the arm 13 rotates with the bearing 19 as a rotation axis so that the stopper 14 approaches the steel outlet 12, and is shown by a broken line in FIG. 2. As described above, the stopper 14 is fitted into the steel outlet 12 when the projecting portion of the cylinder rod 16 is shortened the most. The flow rate of the nitrogen gas flowing through the gas supply pipe 17 and the direction of the hydraulic oil flow in the hydraulic pipes 22 and 23 are controlled by the slag stopper control device 8.

このような構成の転炉3及びスラグ検知装置5を用いて、次のようにして本発明を実施する。   Using the converter 3 and the slag detector 5 having such a configuration, the present invention is carried out as follows.

転炉3に溶銑を装入し、更に生石灰などの造滓剤を装入して、上吹きランス(図示せず)または底吹き羽口(図示せず)若しくは双方から酸素ガスを溶銑に供給して脱炭精錬を実施する。溶銑は脱炭精錬されて溶鋼1が溶製され、造滓剤は溶融してスラグ2が生成される。溶製した溶鋼1を取鍋4に出鋼するに当たり、出鋼口12が下面側に位置するように転炉3を傾動させる。転炉3の傾動により、溶鋼1は出鋼口12を通って取鍋4に流下する。溶鋼1の出鋼が進み、転炉3に滞留する溶鋼1が少なくなると、溶鋼1の上に浮遊するスラグ2が溶鋼1に巻き込まれ、出鋼流1Aに混入して取鍋4に流出する。   The converter 3 is charged with hot metal, and a calcining agent such as quick lime is further charged, and oxygen gas is supplied to the hot metal from the top blowing lance (not shown) or the bottom blowing tuyere (not shown). And decarburization refining. The hot metal is decarburized and refined to produce molten steel 1, and the ironmaking agent is melted to produce slag 2. In removing the molten steel 1 from the molten steel 1 to the ladle 4, the converter 3 is tilted so that the steel outlet 12 is located on the lower surface side. Due to the tilting of the converter 3, the molten steel 1 flows down to the ladle 4 through the steel outlet 12. When the molten steel 1 progresses and the molten steel 1 staying in the converter 3 decreases, the slag 2 floating on the molten steel 1 is caught in the molten steel 1, mixed in the discharged steel flow 1 </ b> A and flows out into the ladle 4. .

この出鋼流1Aを赤外線カメラ6で連続して監視し、一定周期で出鋼流1Aの二次元画像を撮影する。そして、被写体の放射エネルギーに基づき、撮影した二次元画像を溶鋼1、スラグ2及び背景に分別処理するとともに、撮影した画像中における溶鋼1、スラグ2及び背景として分別した各画素数を計測する。分別処理された画像並びに溶鋼1、スラグ2及び背景として分別された各画素数は検知部7に送られる。   This outgoing steel flow 1A is continuously monitored by the infrared camera 6, and a two-dimensional image of the outgoing steel flow 1A is taken at a constant period. And based on the radiant energy of a to-be-photographed object, while processing the image | photographed two-dimensional image into the molten steel 1, slag 2, and a background, the number of each pixel classified as the molten steel 1, slag 2 and background in the image | photographed image is measured. The sorted image and the number of pixels sorted as molten steel 1, slag 2 and background are sent to the detection unit 7.

図3に、或る時刻において赤外線カメラ6により撮影された出鋼流1Aの二次元画像を示す。図3において、「Z」として示す放射エネルギーの極めて低い部分(以下、「範囲(Z)」と記す)は出鋼流1Aの背景であり、「X」として示す放射エネルギーレベルの高い部分(以下、「範囲(X)」と記す)が出鋼流1Aつまり溶鋼1である。また、出鋼流1Aのなかに放射エネルギーレベルの高い「Y」として示す部分(以下、「範囲(Y)」と記す)が存在し、範囲(Y)の部分がスラグ2である。   FIG. 3 shows a two-dimensional image of the exit steel flow 1A taken by the infrared camera 6 at a certain time. In FIG. 3, the extremely low portion of the radiant energy indicated as “Z” (hereinafter referred to as “range (Z)”) is the background of the outgoing steel flow 1A, and the portion of the radiant energy level indicated as “X” (hereinafter referred to as “X”). And “range (X)”) is the outgoing steel flow 1A, that is, the molten steel 1. Further, a portion indicated as “Y” having a high radiant energy level (hereinafter referred to as “range (Y)”) exists in the outgoing steel flow 1 </ b> A, and the portion of the range (Y) is the slag 2.

撮影した二次元画像を、範囲(X)、範囲(Y)及び範囲(Z)の3つの範囲に判別する方法を、図4を用いて説明する。図4は、図3に示すA−A’線上の放射エネルギー分布を示す概略図である。背景つまり範囲(Z)の部分は、放射エネルギーが極めて低く、出鋼流1Aの部分、つまり範囲(X)及び範囲(Y)とは明確に判別することができる。出鋼流1Aの部分で、溶鋼1の放射エネルギーはEm であり、スラグ2の放射エネルギーは溶鋼1の放射エネルギー(Em )よりも高いEs であるので、溶鋼1とスラグ2とを判別することができる。具体的には、図4に示すように、Em よりも大きく且つEs よりも小さい所定のエネルギー閾値Ec を設定しておき、計測される放射エネルギーレベルがエネルギー閾値Ec を越えた範囲をスラグ2つまり範囲(Y)とし、それ以外を溶鋼1つまり範囲(X)として判別する。   A method of discriminating a photographed two-dimensional image into three ranges of range (X), range (Y), and range (Z) will be described with reference to FIG. FIG. 4 is a schematic diagram showing a radiant energy distribution on the A-A ′ line shown in FIG. 3. The background, that is, the portion of the range (Z) has extremely low radiant energy, and can be clearly distinguished from the portion of the outgoing steel flow 1A, that is, the range (X) and the range (Y). Since the radiant energy of the molten steel 1 is Em and the radiant energy of the slag 2 is higher than the radiant energy (Em) of the molten steel 1 in the portion of the outgoing steel flow 1A, distinguish between the molten steel 1 and the slag 2 Can do. Specifically, as shown in FIG. 4, a predetermined energy threshold value Ec larger than Em and smaller than Es is set, and the range in which the measured radiant energy level exceeds the energy threshold value Ec is defined as slag 2, that is, The range (Y) is determined, and the others are determined as the molten steel 1, that is, the range (X).

赤外線波長領域におけるスラグ2の放射率は、溶鋼1の放射率の1.2〜1.5倍であり、これによって計測される放射エネルギーレベルに差が発生するので、赤外線カメラ6を使用することによって、出鋼流1Aにおける溶鋼1とスラグ2とを明確に区別することが可能となる。図4は、出鋼流1Aにスラグ2が混入した状態を示しており、スラグ2が混入していない場合には、画像は範囲(X)と範囲(Z)とで構成され、出鋼流1Aが全てスラグ2の場合には、画像は範囲(Y)と範囲(Z)とで構成される。   Since the emissivity of the slag 2 in the infrared wavelength region is 1.2 to 1.5 times the emissivity of the molten steel 1, a difference occurs in the measured radiant energy level, so the infrared camera 6 should be used. This makes it possible to clearly distinguish between the molten steel 1 and the slag 2 in the outgoing steel flow 1A. FIG. 4 shows a state in which the slag 2 is mixed in the outgoing steel flow 1A. When the slag 2 is not mixed, the image is composed of a range (X) and a range (Z), and the outgoing steel flow When 1A is all slag 2, the image is composed of a range (Y) and a range (Z).

赤外線カメラ6は、図4に示す画像処理を画像全体で行い、1画像のうちで範囲(X)、範囲(Y)、範囲(Z)の各範囲の占める画素数を計測する。範囲(X)、範囲(Y)、範囲(Z)の各画素数を合計した画素数は1画像の画素数と一致することになる。尚、範囲(X)の画素数と範囲(Y)の画素数との合計値に対する範囲(Y)の画素数の百分率[範囲(Y)の画素数×100/(範囲(X)の画素数+範囲(Y)の画素数)]は、出鋼流1Aにおけるスラグ2の面積率(%)となる。   The infrared camera 6 performs the image processing shown in FIG. 4 on the entire image, and measures the number of pixels occupied by each of the range (X), the range (Y), and the range (Z) in one image. The total number of pixels in the range (X), range (Y), and range (Z) matches the number of pixels in one image. The percentage of the number of pixels in the range (Y) with respect to the total value of the number of pixels in the range (X) and the number of pixels in the range (Y) [number of pixels in the range (Y) × 100 / (number of pixels in the range (X) + Number of pixels in the range (Y))] is the area ratio (%) of the slag 2 in the output steel flow 1A.

検知部7には、撮影の毎に赤外線カメラ6から、溶鋼1、スラグ2及び背景に分別処理された画像、及び、溶鋼1、スラグ2及び背景として分別した各画素数が入力される。検知部7は、入力されたデータを記憶するとともに各画素数を積算する。そして、これらのデータのうちでスラグ2の画素数の積算値に基づいてスラグ流出を判定する。つまり、予め閾値を定めておき、スラグ2の画素数の積算値が閾値を超えた時点を「スラグ2が流出した時点」と判定して、その判定信号をスラグストッパー制御装置8に出力する。閾値は赤外線カメラ6の仕様(画素数)によって変化するが、操業条件などに応じて適宜設定変更することもできる。この場合、前述した、出鋼流1Aにおけるスラグ2の面積率を併用して、スラグ流出を判定してもよい。つまり、スラグ2の画素数の積算値が閾値を越える時点か、或いは、出鋼流1Aにおけるスラグ2の面積率が所定の閾値(例えば40%)を越える時点のどちらか早い方を、スラグ2の流出時点と判定する。このようにすることで、より精度良く、スラグ流出を検知することができる。   The detection unit 7 receives from the infrared camera 6 an image that has been separated into the molten steel 1, the slag 2, and the background, and the number of pixels that are separated as the molten steel 1, the slag 2, and the background each time an image is taken. The detection unit 7 stores the input data and integrates the number of pixels. And outflow of slag is determined based on the integrated value of the number of pixels of slag 2 among these data. That is, a threshold value is set in advance, and the time point when the integrated value of the number of pixels of the slag 2 exceeds the threshold value is determined as “the time point when the slag 2 flows out”, and the determination signal is output to the slag stopper control device 8. The threshold value varies depending on the specification (number of pixels) of the infrared camera 6, but can be appropriately changed depending on the operating conditions. In this case, the slag outflow may be determined using the above-described area ratio of the slag 2 in the output steel flow 1A. That is, when the integrated value of the number of pixels of the slag 2 exceeds the threshold value or when the area ratio of the slag 2 in the outgoing steel flow 1A exceeds a predetermined threshold value (for example, 40%), whichever is earlier, Judgment is made at the time of outflow. By doing in this way, slag outflow can be detected more accurately.

検知部7からスラグ流出の判定信号を受けたスラグストッパー制御装置8は、アーム13の先端に設置したストッパー14によって出鋼口12が閉塞されるように油圧シリンダー15を作動させると同時に、ガス供給管17から窒素ガスが流れるように電磁弁(図示せず)を制御する。出鋼流1Aはストッパー14によって止められるのみならず、出鋼口12の内部に噴射される窒素ガスによって、出鋼口12の内部の溶鋼1及びスラグ2は転炉3の内部に押し戻される。これにより、出鋼口12の溶鋼1による閉塞は防止される。転炉3は、スラグストッパー9の作動と同時にまたは作動直後に、炉口が上となるように傾動し、その後、出鋼口12が上になるように更に傾動し、スラグ2は炉口からスラグポット(図示せず)に排出される。   Upon receiving the slag outflow determination signal from the detection unit 7, the slag stopper control device 8 operates the hydraulic cylinder 15 so that the steel outlet 12 is closed by the stopper 14 installed at the tip of the arm 13, and simultaneously supplies gas. A solenoid valve (not shown) is controlled so that nitrogen gas flows from the pipe 17. The outgoing steel flow 1 </ b> A is not only stopped by the stopper 14, but the molten steel 1 and slag 2 inside the outgoing steel port 12 are pushed back into the converter 3 by nitrogen gas injected into the outgoing steel port 12. Thereby, obstruction | occlusion with the molten steel 1 of the steel outlet 12 is prevented. The converter 3 tilts simultaneously with or immediately after the operation of the slag stopper 9 so that the furnace port is upward, and then further tilts so that the steel outlet 12 is upward. It is discharged into a slag pot (not shown).

図5及び図6に、スラグ2の画素数の積算値の推移とスラグストッパー9の作動時期との関係を示す。図5は、出鋼流1Aにスラグ2の混入が急激に起こった場合を、一方、図6は、スラグ2の混入が徐々に起こった場合を例示しており、図5に示すスラグ2の画素数の積算値S1 と、図6に示すスラグ2の画素数の積算値S2 とは同等であり、取鍋4にはほぼ同程度のスラグ2が流出した時点で、出鋼口12が閉鎖される。 5 and 6 show the relationship between the transition of the integrated value of the number of pixels of the slag 2 and the operation timing of the slag stopper 9. FIG. 5 illustrates the case where the slag 2 is abruptly mixed in the outgoing steel flow 1A, while FIG. 6 illustrates the case where the slag 2 is gradually mixed, and the slag 2 shown in FIG. The integrated value S 1 of the number of pixels is equivalent to the integrated value S 2 of the number of pixels of the slag 2 shown in FIG. Is closed.

このように、本発明によれば、転炉3からの出鋼流1Aを画像処理して、撮影した画像の各画素を溶鋼1、スラグ2及び背景に判別し、スラグ2と判別された画素数を撮影毎に積算し、スラグ2と判別された画素数の積算値に基づいてスラグ流出を判定するので、スラグ2が出鋼流1Aの一部分にしか混在しない状態が長時間継続しても、スラグ流出の検知時期を的確に把握することができ、スラグ2の流出量をばらつきなく所定の範囲に制御することが可能となる。   Thus, according to the present invention, the processed steel flow 1A from the converter 3 is image-processed, and each pixel of the photographed image is determined as the molten steel 1, the slag 2, and the background, and the pixels determined as the slag 2 Since the slag outflow is determined on the basis of the integrated value of the number of pixels determined to be slag 2, and the slag 2 is mixed only in a part of the outgoing steel flow 1A for a long time. Thus, the detection timing of the slag outflow can be accurately grasped, and the outflow amount of the slag 2 can be controlled within a predetermined range without variation.

尚、本発明は上記説明に限るものではなく種々の変更が可能である。例えば、上記説明では、溶銑を脱炭精錬して得た溶鋼1の転炉3からの出鋼時に適用しているが、溶銑を予備脱燐処理して得た脱燐溶銑を転炉3から溶銑鍋などへ出湯する際にも適用することができる。また、転炉3からの出鋼流1Aに代えて、取鍋4からタンディッシュへの溶鋼の注入流に対しても同様に適用することができる。更に、スラグストッパー9の構造も上記に限るものではなく、出鋼口12を閉塞することができる限り、どのような構造であってもよい。また更に、スラグストッパー9を使用することなく、検知部7がスラグ流出を判定した時点で、転炉3を傾動させて出鋼口12からの流出を停止するようにしてもよい。   The present invention is not limited to the above description, and various modifications can be made. For example, in the above description, the molten steel 1 obtained by decarburizing and refining the molten iron is applied at the time of steel removal from the converter 3, but the dephosphorized molten iron obtained by preliminarily dephosphorizing the molten iron from the converter 3. It can also be applied when pouring hot water into hot metal pans. Moreover, it can replace with the outgoing steel flow 1A from the converter 3, and can apply similarly to the injection flow of the molten steel from the ladle 4 to a tundish. Furthermore, the structure of the slag stopper 9 is not limited to the above, and may be any structure as long as the steel outlet 12 can be closed. Furthermore, without using the slag stopper 9, the converter 3 may be tilted to stop the outflow from the steel outlet 12 when the detection unit 7 determines the outflow of slag.

転炉から取鍋に溶鋼を出鋼する際に本発明を実施した例を示す概略断面図である。It is a schematic sectional drawing which shows the example which implemented this invention, when discharging molten steel to a ladle from a converter. 図1に示すスラグストッパーの概略拡大図である。It is a schematic enlarged view of the slag stopper shown in FIG. 赤外線カメラにより撮影された出鋼流1Aの二次元画像の概略図である。It is the schematic of the two-dimensional image of the output steel flow 1A image | photographed with the infrared camera. 図3に示す、A−A’線上の放射エネルギー分布を示す概略図である。It is the schematic which shows the radiant energy distribution on the A-A 'line shown in FIG. スラグ画素数の積算値の推移とスラグストッパーの作動時期との関係を示す図である。It is a figure which shows the relationship between transition of the integrated value of the number of slag pixels, and the operation time of a slag stopper. スラグ画素数の積算値の推移とスラグストッパーの作動時期との関係を示す図である。It is a figure which shows the relationship between transition of the integrated value of the number of slag pixels, and the operation time of a slag stopper.

符号の説明Explanation of symbols

1 溶鋼
1A 出鋼流
2 スラグ
3 転炉
4 取鍋
5 スラグ検知装置
6 赤外線カメラ
7 検知部
8 スラグストッパー制御装置
9 スラグストッパー
10 鉄皮
11 耐火物
12 出鋼口
13 アーム
14 ストッパー
15 油圧シリンダー
16 シリンダーロッド
17 ガス供給管
18 アーム支持台
19 軸受
20 シリンダー支持台
21 軸受
22 油圧配管
23 油圧配管
DESCRIPTION OF SYMBOLS 1 Molten steel 1A Outgoing steel flow 2 Slag 3 Converter 4 Ladle 5 Slag detection device 6 Infrared camera 7 Detection part 8 Slag stopper control device 9 Slag stopper 10 Iron skin 11 Refractory 12 Steel outlet 13 Arm 14 Stopper 15 Hydraulic cylinder 16 Cylinder rod 17 Gas supply pipe 18 Arm support 19 Bearing 20 Cylinder support 21 Bearing 22 Hydraulic piping 23 Hydraulic piping

Claims (2)

溶融金属容器の流出孔を流下する溶融金属流に混入して前記溶融金属容器から流出するスラグの検知方法であって、前記溶融金属流を赤外線カメラで撮影し、撮影した画像の各画素を、溶融金属及びスラグの輝度エネルギー差を利用して溶融金属とスラグとに判別し、スラグと判別された画素の数を撮影毎に積算し、スラグと判別された画素の数の積算値に基づいてスラグ流出を判定することを特徴とする、スラグの流出検知方法。   A method for detecting a slag mixed in a molten metal flow flowing down an outflow hole of a molten metal container and flowing out of the molten metal container, wherein the molten metal flow is photographed with an infrared camera, and each pixel of the photographed image is Using the difference in luminance energy between the molten metal and slag, it is discriminated as molten metal and slag, the number of pixels discriminated as slag is added for each shooting, and the sum of the number of pixels discriminated as slag is calculated. A slag outflow detection method, characterized by determining slag outflow. 前記溶融金属容器が転炉であり、且つ前記溶融金属が溶鋼であることを特徴とする、請求項1に記載のスラグの流出検知方法。   The slag outflow detection method according to claim 1, wherein the molten metal container is a converter and the molten metal is molten steel.
JP2006014926A 2006-01-24 2006-01-24 Slag outflow detection method Active JP4747855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006014926A JP4747855B2 (en) 2006-01-24 2006-01-24 Slag outflow detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006014926A JP4747855B2 (en) 2006-01-24 2006-01-24 Slag outflow detection method

Publications (2)

Publication Number Publication Date
JP2007197738A true JP2007197738A (en) 2007-08-09
JP4747855B2 JP4747855B2 (en) 2011-08-17

Family

ID=38452625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006014926A Active JP4747855B2 (en) 2006-01-24 2006-01-24 Slag outflow detection method

Country Status (1)

Country Link
JP (1) JP4747855B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281603A (en) * 2008-05-20 2009-12-03 Central Res Inst Of Electric Power Ind Slag solidification determining device, and its program and method
JP2010111925A (en) * 2008-11-07 2010-05-20 Jfe Steel Corp Method for detecting flowing-out of slag
JP2010236743A (en) * 2009-03-31 2010-10-21 Pan Pacific Copper Co Ltd Slag discharge system and slag discharge method
CN102181598A (en) * 2011-03-04 2011-09-14 浙江大学 Prejudgment and control method of tapping and slagging of converter based on thermal image
WO2012040558A2 (en) * 2010-09-23 2012-03-29 Gillespie + Powers, Inc. Furnace tap hole flow control and tapper system and method of using the same
EP3350548A4 (en) * 2015-07-23 2019-07-10 Mahmoud Meribout System and method for real-time flow measurement in pipelines using thz imaging
CN110093475A (en) * 2019-04-24 2019-08-06 芜湖新兴铸管有限责任公司 Furnace rear slag stopping vehicle automatic control system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102392098A (en) * 2011-11-04 2012-03-28 衡阳镭目科技有限责任公司 Roughing slag detection system for steel furnace

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215450A (en) * 1988-02-24 1989-08-29 Sumitomo Metal Ind Ltd Slag flowout detecting method
JPH02251362A (en) * 1989-03-23 1990-10-09 Sumitomo Metal Ind Ltd Method and instrument for detecting flowing-out of slag
JP2000015408A (en) * 1998-06-29 2000-01-18 Kobe Steel Ltd Method for detecting slag and instrument for detecting slag and continuous casting equipment
JP2001107127A (en) * 1999-10-08 2001-04-17 Bethlehem Steel Corp System and method for minimizing carry-over of slag during production of steel
JP2003183720A (en) * 2001-12-20 2003-07-03 Jfe Engineering Kk Method and device for detecting slag

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215450A (en) * 1988-02-24 1989-08-29 Sumitomo Metal Ind Ltd Slag flowout detecting method
JPH02251362A (en) * 1989-03-23 1990-10-09 Sumitomo Metal Ind Ltd Method and instrument for detecting flowing-out of slag
JP2000015408A (en) * 1998-06-29 2000-01-18 Kobe Steel Ltd Method for detecting slag and instrument for detecting slag and continuous casting equipment
JP2001107127A (en) * 1999-10-08 2001-04-17 Bethlehem Steel Corp System and method for minimizing carry-over of slag during production of steel
JP2003183720A (en) * 2001-12-20 2003-07-03 Jfe Engineering Kk Method and device for detecting slag

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281603A (en) * 2008-05-20 2009-12-03 Central Res Inst Of Electric Power Ind Slag solidification determining device, and its program and method
JP2010111925A (en) * 2008-11-07 2010-05-20 Jfe Steel Corp Method for detecting flowing-out of slag
JP2010236743A (en) * 2009-03-31 2010-10-21 Pan Pacific Copper Co Ltd Slag discharge system and slag discharge method
WO2012040558A2 (en) * 2010-09-23 2012-03-29 Gillespie + Powers, Inc. Furnace tap hole flow control and tapper system and method of using the same
WO2012040558A3 (en) * 2010-09-23 2012-05-31 Gillespie + Powers, Inc. Furnace tap hole flow control and tapper system and method of using the same
US8715567B2 (en) 2010-09-23 2014-05-06 Gillespie + Powers, Inc. Furnace tap hole flow control and tapper system and method of using the same
CN102181598A (en) * 2011-03-04 2011-09-14 浙江大学 Prejudgment and control method of tapping and slagging of converter based on thermal image
CN102181598B (en) * 2011-03-04 2013-02-06 浙江大学 Prejudgment and control method of tapping and slagging of converter based on thermal image
EP3350548A4 (en) * 2015-07-23 2019-07-10 Mahmoud Meribout System and method for real-time flow measurement in pipelines using thz imaging
US10996091B2 (en) 2015-07-23 2021-05-04 Khalifa University of Science and Technology System and method for real-time flow measurement in pipelines using THz imaging
CN110093475A (en) * 2019-04-24 2019-08-06 芜湖新兴铸管有限责任公司 Furnace rear slag stopping vehicle automatic control system

Also Published As

Publication number Publication date
JP4747855B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP4747855B2 (en) Slag outflow detection method
JP5444692B2 (en) Slag outflow detection method
AU1134600A (en) System and method for minimizing slag carryover during the production of steel
JP2006144114A (en) Method for quantifying flowing-out quantity of converter slag, method for operating converter and apparatus for these
Deo et al. Control of slag formation, foaming, slopping, and chaos in BOF
CN111944942B (en) Dynamic tapping control method and device for eccentric furnace bottom of converter
JP4742805B2 (en) Slag outflow prevention method
US9618265B2 (en) Method for tapping a steel making furnace
JP2016030850A (en) Converter discharge flow determination device, converter discharge flow determination method, molten iron pretreatment method and operation method of converter pretreatment
US4462574A (en) Method for minimizing slag carryover
JP5417738B2 (en) Slag outflow detection method
JP2010236743A (en) Slag discharge system and slag discharge method
JP5228414B2 (en) Slag outflow detection method
JP5003204B2 (en) Steel production from converter
JP2014055315A (en) Monitoring method of slag stream discharged from throat and converter operation method
JP2017049204A (en) Device for monitoring bottom-blowing nozzle of converter
JP4238165B2 (en) Measuring method of dredging diameter of blast furnace outlet
JPH0270372A (en) Detecting method for outflow of slug and preventing method for tandish nozzle from clogging
JPH0617110A (en) Method for deciding completion of metal tapping
JP2000273519A (en) Method for removing slag from torpedo car
JPH0947861A (en) Method for pouring molten metal in ladle
JP2001303122A (en) Method for preventing flow-out of slag from converter and its device
JP2008156717A (en) Method for determining repairing-timing of molten steel tapping hole in converter
JP3228764B2 (en) Steelmaking arc furnace and tapping method
US4733853A (en) Molten metal taphole design to improve yield and cleanliness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110502

R150 Certificate of patent or registration of utility model

Ref document number: 4747855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250