JP5417738B2 - Slag outflow detection method - Google Patents

Slag outflow detection method Download PDF

Info

Publication number
JP5417738B2
JP5417738B2 JP2008142099A JP2008142099A JP5417738B2 JP 5417738 B2 JP5417738 B2 JP 5417738B2 JP 2008142099 A JP2008142099 A JP 2008142099A JP 2008142099 A JP2008142099 A JP 2008142099A JP 5417738 B2 JP5417738 B2 JP 5417738B2
Authority
JP
Japan
Prior art keywords
slag
steel
molten steel
radiant energy
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008142099A
Other languages
Japanese (ja)
Other versions
JP2009287097A (en
Inventor
正嗣 矢加部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008142099A priority Critical patent/JP5417738B2/en
Publication of JP2009287097A publication Critical patent/JP2009287097A/en
Application granted granted Critical
Publication of JP5417738B2 publication Critical patent/JP5417738B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Radiation Pyrometers (AREA)
  • Continuous Casting (AREA)

Description

本発明は、転炉側壁に設置された出鋼口を介して転炉から取鍋に溶鋼を排出する際に、溶鋼の排出の末期、溶鋼に巻き込まれて流出するスラグを検知する方法に関するものである。   The present invention relates to a method for detecting slag that is caught in and flows out of molten steel at the end of the discharge of molten steel when the molten steel is discharged from the converter to a ladle through a steel outlet provided on a converter side wall. It is.

転炉を用いた溶銑の脱炭精錬工程においては、精錬剤として生石灰(CaO)やドロマイト(MgCO3・CaCO3)などの造滓剤を添加したり、副原料としてマンガン鉱石を添加したり、また、除去された溶銑中の不純物自体がスラグになったりし、更には、酸化精錬であることに起因して鉄の酸化物が不可避的に発生することから、スラグをなくすることは不可能であり、脱炭精錬終了後の溶鋼上にはスラグが形成される。形成されたスラグは、転炉から取鍋への出鋼過程の末期、転炉内の溶鋼が少なくなってくると、溶鋼に形成される渦流によって溶鋼に巻き込まれ、溶鋼とともに取鍋内に排出される。 In the decarburization and refining process of hot metal using a converter, a slagging agent such as quick lime (CaO) or dolomite (MgCO 3 · CaCO 3 ) is added as a refining agent, manganese ore is added as an auxiliary material, In addition, the impurities in the hot metal removed itself become slag, and furthermore, iron oxide is inevitably generated due to oxidation refining, so it is impossible to eliminate slag. Thus, slag is formed on the molten steel after decarburization refining. When the molten steel in the converter becomes low at the end of the steelmaking process from the converter to the ladle, the formed slag is caught in the molten steel by the eddy current formed in the molten steel and discharged into the ladle together with the molten steel. Is done.

このスラグは鉄酸化物及びマンガン酸化物などの酸素ポテンシャルの高い、所謂「低級酸化物」を含んでいるので、大量のスラグが取鍋内に流出した場合には、溶鋼を脱酸するために添加した溶鋼中のAlとスラグ中の低級酸化物とが反応して溶鋼中にアルミナが形成され、清浄性の高い鋼を得ることができなくなるという問題が発生する。また、取鍋の耐火物がスラグによって溶損し、取鍋耐火物の寿命が低下するという問題も発生する。   Since this slag contains so-called “lower oxides” with high oxygen potential such as iron oxide and manganese oxide, in order to deoxidize molten steel when a large amount of slag flows into the ladle. A problem arises that Al in the added molten steel reacts with a lower oxide in the slag to form alumina in the molten steel, making it impossible to obtain a highly clean steel. Moreover, the problem that the refractory of a ladle melts | dissolves by slag and the lifetime of a ladle refractory falls will also generate | occur | produce.

そこで、スラグの流出を防止するための多数の提案がなされている。例えば、特許文献1には、転炉から出鋼口を介して取鍋へ溶鋼を出鋼する際に、転炉からの出鋼流を赤外線カメラで監視し、赤外線カメラで検知される流体が溶鋼からスラグに変わった時点で転炉を傾転(直立)させて出鋼を終了し、スラグの取鍋への流出を防止する方法が開示されている。   Thus, many proposals have been made to prevent slag outflow. For example, in Patent Document 1, when steel is discharged from a converter to a ladle through a steel outlet, the flow of steel output from the converter is monitored with an infrared camera, and the fluid detected by the infrared camera is detected. A method is disclosed in which, when the molten steel is changed to slag, the converter is tilted (upright) to finish the steel output, and the slag is prevented from flowing out into the ladle.

また、特許文献2には、溶融金属容器の流出孔を流下する溶融金属流に混入して前記溶融金属容器から流出するスラグの検知方法において、前記溶融金属流を赤外線カメラで撮影し、撮影した画像の各画素を、溶融金属及びスラグの輝度エネルギー差を利用して溶融金属とスラグとに判別し、スラグと判別された画素の数を撮影毎に積算し、スラグと判別された画素の数の積算値に基づいてスラグの流出を判定し、その時点で流出孔を閉鎖してスラグの流出を防止する方法が開示されている。
特開2001−107127号公報 特開2007−197738号公報
Further, in Patent Document 2, in the method for detecting slag mixed in the molten metal flow flowing down the outflow hole of the molten metal container and flowing out of the molten metal container, the molten metal flow was photographed with an infrared camera and photographed. Each pixel of the image is discriminated as molten metal and slag using the difference in luminance energy between the molten metal and slag, and the number of pixels determined as slag is integrated for each shooting, and the number of pixels determined as slag. A method is disclosed in which the outflow of slag is determined based on the integrated value, and the outflow hole is closed at that time to prevent the outflow of slag.
JP 2001-107127 A JP 2007-197738 A

特許文献1及び特許文献2ともに、溶鋼よりもスラグの方が、放射率が大きいこと、つまり放射エネルギー値が大きいことを利用して溶鋼とスラグとを判別しているが、これらの従来技術には、次のような問題点がある。即ち、特許文献1及び特許文献2ともに、溶鋼とスラグとを判別する際に、或る一定の放射エネルギー値を、溶融金属とスラグとを判別するための閾値(以下、「エネルギー閾値」と記す)として設定し、検出される放射エネルギー値が、エネルギー閾値を越えたときにスラグと判別し、エネルギー閾値以下の場合を溶鋼と判別しており、このエネルギー閾値を固定していることである。   Both Patent Document 1 and Patent Document 2 discriminate between molten steel and slag by utilizing the fact that the emissivity of slag is larger than that of molten steel, that is, the radiant energy value is large. Has the following problems. That is, in both Patent Literature 1 and Patent Literature 2, when discriminating between molten steel and slag, a certain radiant energy value is referred to as a threshold for discriminating between molten metal and slag (hereinafter referred to as “energy threshold”). ), And when the detected radiant energy value exceeds the energy threshold, it is determined as slag, and when it is less than the energy threshold, it is determined as molten steel, and this energy threshold is fixed.

本発明者らの経験によれば、出鋼温度(出鋼直前の転炉内の溶鋼温度)が同等であっても、溶鋼成分の違いや出鋼口形状の変化などによって、測定される溶鋼の放射エネルギー値が変化し、また、出鋼温度が相対的に高くなれば、測定される溶鋼の放射エネルギー値が高くなることが確認されている。また、この場合、スラグの放射エネルギー値も、溶鋼の放射エネルギー値の変動に伴って変動することが確認されている。   According to the experience of the present inventors, even when the steel output temperature (the molten steel temperature in the converter immediately before steel output) is equivalent, the molten steel is measured by the difference in the molten steel components, the change in the shape of the steel outlet, etc. It has been confirmed that the radiant energy value of the molten steel to be measured increases if the radiant energy value of the steel changes and the steel output temperature becomes relatively high. In this case, it has been confirmed that the radiant energy value of the slag also varies with the variation of the radiant energy value of the molten steel.

従って、エネルギー閾値を固定している特許文献1及び特許文献2では、溶損などにより出鋼口の状態が悪くなり、出鋼流が乱れて放射率が見掛け上大きくなるなどの理由から、測定される溶鋼の放射エネルギー値が高い場合には、溶鋼のみが流出中であっても放射エネルギー値が設定したエネルギー閾値を越えてしまい、溶鋼をスラグと誤認識してしまうという問題が発生する。また、この問題を回避するために、エネルギー閾値を高めて設定した場合には、出鋼流の乱れが収まり、測定される溶鋼の放射エネルギー値が低くなったときには、スラグが流出しているにも拘わらず、検出される放射エネルギー値はエネルギー閾値を越えず、スラグを溶鋼と誤認識してしまうという問題が発生する。   Therefore, in Patent Document 1 and Patent Document 2 in which the energy threshold is fixed, measurement is performed because the state of the steel outlet is deteriorated due to melting damage, the steel output flow is disturbed, and the emissivity is apparently increased. When the radiant energy value of the molten steel is high, even if only the molten steel is flowing out, the radiant energy value exceeds the set energy threshold value, causing a problem that the molten steel is erroneously recognized as slag. Also, in order to avoid this problem, when the energy threshold is set higher, the turbulence of the steel flow is settled, and when the measured radiant energy value of the molten steel becomes lower, the slag flows out. Nevertheless, the detected radiant energy value does not exceed the energy threshold value, and there is a problem that the slag is erroneously recognized as molten steel.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、転炉から取鍋に出鋼口を介して溶鋼を排出する際に、溶鋼の排出の末期、溶鋼に混入して流出するスラグを、何らかの理由によって排出される溶鋼の放射エネルギー値が高くなってもまた低くなっても、溶鋼の放射エネルギー値の如何に拘わらず的確に検知し、スラグの流出量をばらつきなく所定量に制御することのできるスラグの流出検知方法を提供することである。   The present invention has been made in view of the above circumstances, and the purpose of the present invention is to mix molten steel at the final stage of discharge of molten steel when discharging molten steel from a converter to a ladle through a steel outlet. Regardless of the radiant energy value of the molten steel, the slag flowing out can be accurately detected regardless of the radiant energy value of the molten steel, regardless of whether the radiant energy value of the molten steel is increased or decreased for any reason. To provide a slag outflow detection method that can be controlled quantitatively.

上記課題を解決するための本発明に係るスラグの流出検知方法は、転炉の出鋼口から流出する出鋼流を赤外線カメラで撮影し、赤外線カメラで測定される出鋼流中の溶鋼の放射エネルギー値と出鋼流中のスラグの放射エネルギー値とを対比することによって溶鋼とスラグとを判別し、前記出鋼口から流出する溶鋼に混合して流出するスラグを検知するスラグの流出検知方法であって、前記出鋼口から流出する溶鋼の放射エネルギーを前記赤外線カメラで測定し、この放射エネルギーの測定値に基づいて溶鋼とスラグとを判別するためのエネルギー閾値を決定することを特徴とするものである。   The slag outflow detection method according to the present invention for solving the above-mentioned problems is a method of photographing a steel flow flowing out from a steel outlet of a converter with an infrared camera, and measuring the molten steel in the steel flow measured by the infrared camera. Slag outflow detection that discriminates between molten steel and slag by comparing the radiant energy value and the radiant energy value of the slag in the outgoing steel flow, and detects the slag flowing out mixed with the molten steel flowing out from the steel outlet. It is a method, characterized in that the radiant energy of molten steel flowing out from the steel outlet is measured with the infrared camera, and an energy threshold for discriminating between molten steel and slag is determined based on the measured value of the radiant energy. It is what.

本発明によれば、出鋼口から流出する溶鋼の放射エネルギー値に基づいて溶鋼とスラグとを判別するためのエネルギー閾値を決定するので、従来はスラグと判断されてスラグ流出を検知できなかった、例えば出鋼流が激しく乱れた場合であっても、スラグ検知が可能となる。一方、例えば出鋼温度が低く、出鋼流の放射エネルギー値が低くなる場合には、それに応じてエネルギー閾値が小さくなるので、スラグを溶鋼と誤認することが防止される。これにより、転炉からのスラグ流出量をばらつきなく所定量に制御することが可能となり、その結果、溶鋼清浄性の向上、脱酸剤原単位の削減などが実現されて工業上有益な効果がもたらされる。   According to the present invention, since the energy threshold value for discriminating between molten steel and slag is determined based on the radiant energy value of molten steel flowing out from the steel outlet, it is conventionally judged as slag and slag outflow cannot be detected. For example, slag detection is possible even when the steel output flow is severely disturbed. On the other hand, for example, when the steel output temperature is low and the radiant energy value of the steel output flow is low, the energy threshold value is accordingly reduced, so that misidentification of slag as molten steel is prevented. As a result, it becomes possible to control the slag flow rate from the converter to a predetermined amount without any variation, and as a result, improvements in molten steel cleanliness, reduction in the deoxidizer basic unit, etc. are realized, and industrially beneficial effects are achieved. Brought about.

以下、添付図面を参照して本発明を具体的に説明する。図1は、本発明の実施の形態例であって、転炉から取鍋への出鋼流に本発明を適用した1例を示す概略断面図である。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic cross-sectional view showing an embodiment of the present invention, in which the present invention is applied to a steel flow from a converter to a ladle.

図1に示すように、外殻を鉄皮10とし、鉄皮10の内側に耐火物11が施工された転炉3の側壁には、溶鋼1を取鍋4に排出するための出鋼口12が設置されている。この転炉3の出鋼口12の近傍には、スラグストッパー9が設置されており、スラグストッパー9は、転炉3とは距離を隔てた位置に設置されるスラグストッパー制御装置8によって制御されている。また、出鋼口12を介して転炉3から取鍋4へ出鋼される出鋼流1Aに混合して流出するスラグ2を検知するために、赤外線カメラ6及び検知部7からなるスラグ検知装置5が設置されている。尚、出鋼流1Aには、溶鋼1のみならず、スラグ2も溶鋼1に混合して存在するが、通常、出鋼口12から排出されるもの全てを「出鋼流」と称している。   As shown in FIG. 1, a steel outlet 10 for discharging the molten steel 1 to the ladle 4 is provided on the side wall of the converter 3 in which the outer shell is the iron shell 10 and the refractory 11 is constructed inside the iron shell 10. 12 is installed. A slag stopper 9 is installed in the vicinity of the steel outlet 12 of the converter 3, and the slag stopper 9 is controlled by a slag stopper control device 8 installed at a distance from the converter 3. ing. Moreover, in order to detect the slag 2 which mixes and flows out into the outgoing steel flow 1A output from the converter 3 to the ladle 4 via the outgoing steel outlet 12, the slag detection which consists of the infrared camera 6 and the detection part 7 is detected. A device 5 is installed. In addition, not only the molten steel 1 but also the slag 2 is mixed with the molten steel 1 in the outgoing steel flow 1A, but generally all of the material discharged from the outgoing steel port 12 is referred to as “outgoing steel flow”. .

赤外線カメラ6は、出鋼流1A及びその背景を二次元で撮影し、各被写体の放射エネルギー値を測定するとともに、各被写体の放射エネルギー値を表示する装置である。赤外線カメラ6により撮影された二次元の画像及び放射エネルギーの測定値は、検知部7に送られる。検知部7は、赤外線カメラ6から送られた画像に基づいて、スラグ流出の検知並びにスラグ流出の判定を行う装置である。また、検知部7は、赤外線カメラ6による溶鋼1の放射エネルギー測定値に基づいて、溶鋼1とスラグ2とを判別するためのエネルギー閾値を決定する機能を備えている。検知部7の信号は、スラグストッパー制御装置8に入力されている。尚、赤外線カメラ6でなくても例えばCCDカメラなどでも、被写体の放射エネルギー値を計測することは可能であるが、検出感度が高いことから本発明では赤外線カメラ6を使用している。但し、赤外線カメラ6の代わりにCCDカメラを使用しても、本発明を実施することは可能である。   The infrared camera 6 is a device that captures the output steel flow 1A and its background in two dimensions, measures the radiant energy value of each subject, and displays the radiant energy value of each subject. The two-dimensional image taken by the infrared camera 6 and the measured value of radiant energy are sent to the detection unit 7. The detection unit 7 is a device that detects slag outflow and determines slag outflow based on an image sent from the infrared camera 6. Further, the detection unit 7 has a function of determining an energy threshold for discriminating between the molten steel 1 and the slag 2 based on the measured radiant energy value of the molten steel 1 by the infrared camera 6. The signal from the detection unit 7 is input to the slag stopper control device 8. Note that the radiant energy value of the subject can be measured with a CCD camera, for example, instead of the infrared camera 6, but since the detection sensitivity is high, the infrared camera 6 is used in the present invention. However, the present invention can be implemented even if a CCD camera is used instead of the infrared camera 6.

スラグストッパー9は、回転自在なアーム13と、アーム13の先端部に取り付けられた鋳鉄製の止め栓部14と、アーム13を駆動するための油圧シリンダー15と、から構成されており、油圧シリンダー15が作動することにより、アーム13の先端部の止め栓部14が出鋼口12に嵌合するようになっている。この止め栓部14には、止め栓部14の中心部を貫通してガス吹込み孔(図示せず)が設けられ、このガス吹込み孔から供給される窒素ガスが、止め栓部14を出鋼口12に嵌合させたときに、出鋼口12の流路内に噴射されるようになっている。ガス吹込み孔を流れる窒素ガス流量及び油圧シリンダー15を作動するための作動油は、スラグストッパー制御装置8によって制御されている。尚、図1では、油圧シリンダー15に接続する油圧配管、ガス吹込み孔に接続するガス供給管及び流量調整弁などは省略している。   The slag stopper 9 includes a rotatable arm 13, a cast iron stopper plug 14 attached to the tip of the arm 13, and a hydraulic cylinder 15 for driving the arm 13. By operating 15, the stopper 14 at the tip of the arm 13 is fitted into the steel outlet 12. The stop plug portion 14 is provided with a gas blowing hole (not shown) penetrating through the central portion of the stop plug portion 14, and nitrogen gas supplied from the gas blowing hole passes through the stop plug portion 14. When fitted to the steel outlet 12, it is injected into the flow path of the steel outlet 12. The flow rate of nitrogen gas flowing through the gas blowing holes and the hydraulic oil for operating the hydraulic cylinder 15 are controlled by the slag stopper control device 8. In FIG. 1, the hydraulic piping connected to the hydraulic cylinder 15, the gas supply pipe connected to the gas blowing hole, the flow rate adjusting valve, and the like are omitted.

このような構成の転炉3及びスラグ検知装置5を用いて、次のようにして本発明を適用する。   Using the converter 3 and the slag detector 5 having such a configuration, the present invention is applied as follows.

転炉3に溶銑を装入し、更に、生石灰、焼成ドロマイト、蛍石などの造滓剤を装入して、上吹きランス(図示せず)または底吹き羽口(図示せず)若しくは双方から酸素ガスを溶銑に供給して脱炭精錬を実施する。溶銑は脱炭精錬されて溶鋼1が溶製され、造滓剤は溶融してスラグ2が生成される。溶製した溶鋼1を取鍋4に出鋼するに当たり、出鋼口12が下面側に位置するように直立していた転炉3を傾動させる。転炉3の傾動により、溶鋼1は出鋼口12を通過する出鋼流1Aとなって取鍋4に流下する。溶鋼1の出鋼が進み、転炉3に滞留する溶鋼1が少なくなると、溶鋼1に渦流が形成され、この渦流によって溶鋼1の上に浮遊するスラグ2が溶鋼1に巻き込まれ、出鋼流1Aに混入して取鍋4に流出する。   A hot metal is charged into the converter 3 and a slagging agent such as quick lime, calcined dolomite, and fluorite is charged, and an upper blowing lance (not shown) or a bottom blowing tuyere (not shown) or both. Decarburization and refining by supplying oxygen gas to the hot metal. The hot metal is decarburized and refined to produce molten steel 1, and the ironmaking agent is melted to produce slag 2. In taking out the molten steel 1 to the ladle 4, the converter 3 that has been upright is tilted so that the steel outlet 12 is located on the lower surface side. Due to the tilting of the converter 3, the molten steel 1 flows down to the ladle 4 as a outgoing steel flow 1 </ b> A passing through the outgoing steel outlet 12. When the molten steel 1 progresses and the molten steel 1 staying in the converter 3 decreases, a vortex flow is formed in the molten steel 1, and the slag 2 floating on the molten steel 1 is engulfed in the molten steel 1 by this vortex flow. It mixes in 1A and flows out into the ladle 4.

この出鋼流1Aを赤外線カメラ6で連続して監視し、一定周期で出鋼流1Aの二次元画像を撮影し、撮影した二次元画像の各位置の放射エネルギー値を測定する。測定された各位置の放射エネルギー値は検知部7に送られる。   This outgoing steel flow 1A is continuously monitored by the infrared camera 6, a two-dimensional image of the outgoing steel flow 1A is taken at a fixed period, and the radiant energy value at each position of the taken two-dimensional image is measured. The measured radiant energy value at each position is sent to the detector 7.

図2に、或る時刻において赤外線カメラ6により測定された出鋼流1A及び背景の放射エネルギー値の二次元画像の例を示す。図2において、「Z」として示す放射エネルギー値の極めて低い部分(以下、「範囲(Z)」と記す)は出鋼流1Aの背景であり、「X」として示す放射エネルギーレベルの高い部分(以下、「範囲(X)」と記す)が出鋼流1Aの溶鋼1の部分であり、出鋼流1Aのなかで放射エネルギーレベルの更に高い「Y」として示す部分(以下、「範囲(Y)」と記す)が、スラグ2の部分である。   FIG. 2 shows an example of a two-dimensional image of the outgoing steel flow 1A and the background radiant energy value measured by the infrared camera 6 at a certain time. In FIG. 2, the extremely low portion of the radiant energy value indicated as “Z” (hereinafter referred to as “range (Z)”) is the background of the outgoing steel flow 1A, and the portion of the radiant energy level indicated as “X” ( Hereinafter, the “range (X)”) is the portion of the molten steel 1 in the outgoing steel flow 1A, and the portion indicated as “Y” having a higher radiant energy level in the outgoing steel flow 1A (hereinafter referred to as “range (Y)”. ) ”Is the portion of the slag 2.

撮影した二次元画像を、範囲(X)、範囲(Y)及び範囲(Z)の3つの範囲に判別する方法を、図3を用いて説明する。図3は、図2に示すA−A’線上の放射エネルギー値の分布を示す概略図である。背景つまり範囲(Z)の部分は、放射エネルギー値が極めて低く、出鋼流1Aの部分、つまり範囲(X)及び範囲(Y)とは明確に判別することができる。出鋼流1Aの部分において、溶鋼1の放射エネルギー値はEmであり、スラグ2の放射エネルギー値は溶鋼1の放射エネルギーEmよりも高いEsであるので、溶鋼1とスラグ2とを判別することができる。具体的には、図3に示すように、Emよりも大きく且つEsよりも小さい所定のエネルギー閾値Ecを設定しておき、計測される放射エネルギーレベルがエネルギー閾値Ecを越えた範囲をスラグ2、つまり範囲(Y)とし、それ以外を溶鋼1、つまり範囲(X)として判別する。検知部7では、送られてくる放射エネルギー値の測定データに基づき、二次元画像全体について、このようにして溶鋼1、スラグ2及び背景の3つに判別する。   A method for discriminating a photographed two-dimensional image into three ranges of range (X), range (Y), and range (Z) will be described with reference to FIG. FIG. 3 is a schematic diagram showing a distribution of radiant energy values on the line A-A ′ shown in FIG. 2. The background, that is, the range (Z) portion has a very low radiant energy value, and can be clearly distinguished from the portion of the outgoing steel flow 1A, ie, the range (X) and the range (Y). Since the radiant energy value of the molten steel 1 is Em and the radiant energy value of the slag 2 is higher than the radiant energy Em of the molten steel 1 in the portion of the outgoing steel flow 1A, the molten steel 1 and the slag 2 are discriminated. Can do. Specifically, as shown in FIG. 3, a predetermined energy threshold value Ec larger than Em and smaller than Es is set, and the range in which the measured radiant energy level exceeds the energy threshold value Ec is defined as slag 2, In other words, the range (Y) is determined, and the others are determined as the molten steel 1, that is, the range (X). In the detection part 7, based on the measurement data of the radiant energy value sent, the whole two-dimensional image is discriminated in this way into the molten steel 1, the slag 2, and the background.

つまり、赤外線波長領域におけるスラグ2の放射率は、溶鋼1の放射率の1.2〜1.5倍であり、これによって測定される放射エネルギーレベルに差が発生するので、赤外線カメラ6を使用することによって、出鋼流1Aにおける溶鋼1とスラグ2とを明確に区別することが可能となる。図3は、出鋼流1Aにスラグ2が混入した状態を示しており、スラグ2が混入していない場合には、画像は範囲(X)と範囲(Z)とで構成され、出鋼流1Aが全てスラグ2の場合には、画像は範囲(Y)と範囲(Z)とで構成される。   That is, the emissivity of the slag 2 in the infrared wavelength region is 1.2 to 1.5 times the emissivity of the molten steel 1, and a difference occurs in the radiant energy level measured thereby, so the infrared camera 6 is used. This makes it possible to clearly distinguish between the molten steel 1 and the slag 2 in the outgoing steel flow 1A. FIG. 3 shows a state in which the slag 2 is mixed in the outgoing steel flow 1A. When the slag 2 is not mixed, the image is composed of the range (X) and the range (Z), and the outgoing steel flow When 1A is all slag 2, the image is composed of a range (Y) and a range (Z).

ここで、従来、エネルギー閾値Ecは一定値のまま判定していたが、本発明者らは、種々の試験操業の結果から、出鋼流1Aの溶鋼1の温度や成分或いは出鋼流1Aの乱れなどによって放射率が変化すること、換言すれば、出鋼流1Aの溶鋼1の放射エネルギー値が変化することから、エネルギー閾値Ecを一定値としたまま判定すると、出鋼流1Aの溶鋼1の放射率が高い場合には、溶鋼1をスラグ2と誤認する場合が発生することを確認した。具体的には、出鋼流1Aの溶鋼1の温度が高くなるなどして出鋼流1Aの溶鋼1の放射率が高くなると、溶鋼1及びスラグ2ともに放射エネルギー値が高くなるので、出鋼流1Aの溶鋼1の放射率が高い場合には、出鋼流1Aの溶鋼1の放射率が低い場合に比べて、相対的にエネルギー閾値Ecを大きくする必要のあることを見出した。   Here, conventionally, the energy threshold value Ec was determined as a constant value, but the present inventors determined from the results of various test operations that the temperature and components of the molten steel 1 in the outgoing steel flow 1A or the outgoing steel flow 1A. Since the emissivity changes due to turbulence or the like, in other words, the radiant energy value of the molten steel 1 in the outgoing steel flow 1A changes, if the energy threshold Ec is determined to be a constant value, the molten steel 1 in the outgoing steel flow 1A It was confirmed that the case where the molten steel 1 was mistaken as the slag 2 occurred when the emissivity of the steel was high. Specifically, when the emissivity of the molten steel 1 in the outgoing steel flow 1A is increased by increasing the temperature of the molten steel 1 in the outgoing steel flow 1A, both the molten steel 1 and the slag 2 have higher radiant energy values. It has been found that when the emissivity of the molten steel 1 in the flow 1A is high, it is necessary to relatively increase the energy threshold Ec as compared with the case where the emissivity of the molten steel 1 in the outgoing steel flow 1A is low.

そこで、本発明においては、検知部7は、先ず、赤外線カメラ6から送られてくる溶鋼の放射エネルギー値のデータに基づいてエネルギー閾値Ecを決定する。溶鋼の放射エネルギー値としては、図2に示す範囲(X)の部分の平均値を用いればよいが、エネルギー閾値Ecを決定する前の段階であるので、範囲(X)と範囲(Y)との区別はできない。そこで、出鋼流1Aにスラグ2が混入しない段階で測定した出鋼流1Aの放射エネルギー値(=範囲(X)の部分の平均値)を溶鋼の放射エネルギー値として、エネルギー閾値Ecを決定する。一般的に、出鋼開始から2分間程度経過するまでは、出鋼流1Aにスラグ2が混入しないので、その時点までに測定した出鋼流1Aの放射エネルギー値を溶鋼の放射エネルギー値とすればよい。   Therefore, in the present invention, the detection unit 7 first determines the energy threshold Ec based on the radiant energy value data of the molten steel sent from the infrared camera 6. As the radiant energy value of the molten steel, the average value of the range (X) shown in FIG. 2 may be used, but since it is a stage before the energy threshold value Ec is determined, the range (X) and the range (Y) Cannot be distinguished. Therefore, the energy threshold value Ec is determined with the radiant energy value (= average value of the range (X) part) of the outgoing steel flow 1A measured at the stage where the slag 2 is not mixed in the outgoing steel flow 1A as the radiant energy value of the molten steel. . Generally, until about 2 minutes have passed since the start of steel output, slag 2 is not mixed in the steel output flow 1A. Therefore, the radiant energy value of the steel output flow 1A measured up to that point is used as the radiant energy value of the molten steel. That's fine.

また、溶鋼の放射エネルギー値からエネルギー閾値Ecを決定するにあたり、エネルギー閾値Ecを溶鋼放射エネルギー値毎に連続して変化させるようにしてもよいが、例えば或る一定の放射エネルギー値の範囲毎にエネルギー閾値Ecを変化させるなど、段階的に変化させるようにしても構わない。エネルギー閾値Ecの決定は検知部7に組み込まれた計算機で行うので、どちらであっても容易に実施可能である。何れにしろ、溶鋼の放射エネルギー値とエネルギー閾値Ecとの関係を予め検知部7に入力しておき、検知部7は、入力される溶鋼の放射エネルギー値に基づいてエネルギー閾値Ecを決定する。決定したエネルギー閾値Ecは当該チャージの出鋼中は変更しない。尚、出鋼温度が高い鋼種としては、例えば、高炭素鋼や出鋼時に合金鉄の投入量の多い鋼種(高マンガン鋼)などが挙げられる。   In determining the energy threshold value Ec from the radiant energy value of the molten steel, the energy threshold value Ec may be continuously changed for each molten steel radiant energy value. For example, for each range of a certain radiant energy value, You may make it change in steps, such as changing the energy threshold value Ec. Since the determination of the energy threshold Ec is performed by a computer incorporated in the detection unit 7, either can be easily performed. In any case, the relationship between the radiant energy value of molten steel and the energy threshold value Ec is input to the detection unit 7 in advance, and the detection unit 7 determines the energy threshold value Ec based on the radiant energy value of the molten steel that is input. The determined energy threshold value Ec is not changed during the steelmaking of the charge. Examples of the steel type having a high steel output temperature include high carbon steel and a steel type (high manganese steel) in which a large amount of alloy iron is added at the time of steel output.

検知部7は、測定された溶鋼の放射エネルギー値に基づいてエネルギー閾値Ecを決定したならば、決定したエネルギー閾値Ecに基づいて、範囲(X)か範囲(Y)かを、つまり溶鋼1かスラグ2かを、赤外線カメラ6からデータが送られてくる毎に判定する。   If the detection unit 7 determines the energy threshold value Ec based on the measured radiant energy value of the molten steel, the detection unit 7 determines whether the range (X) or the range (Y) is based on the determined energy threshold value Ec, that is, whether the molten steel 1 is used. Whether the slag is 2 is determined every time data is sent from the infrared camera 6.

そして、検知部7は、出鋼流1Aの面積(=範囲(X)+範囲(Y))における範囲(Y)の比率(Y/(X+Y))が所定の値になった時点を「スラグ2が流出した時点」と判定して、その判定信号をスラグストッパー制御装置8に出力する。この場合、スラグ2の流出を可能な限り少なくしたい場合には、比率(Y/(X+Y))を小さい値(例えば0.1程度)とし、一方、転炉3に残留する溶鋼1を少なくしたい場合には、比率(Y/(X+Y))を大きくする(例えば0.5〜0.7程度)など、溶製される溶鋼1の品質レベルなどに応じて、比率(Y/(X+Y))を設定する。但し、比率(Y/(X+Y))は、当該チャージの出鋼中は或る一定の値とする。   And the detection part 7 is "slag" when the ratio (Y / (X + Y)) of the range (Y) in the area (= range (X) + range (Y)) of the outgoing steel flow 1A becomes a predetermined value. It is determined that “when 2 flows out”, and the determination signal is output to the slag stopper control device 8. In this case, when it is desired to reduce the outflow of the slag 2 as much as possible, the ratio (Y / (X + Y)) is set to a small value (for example, about 0.1), while the molten steel 1 remaining in the converter 3 is desired to be reduced. In some cases, the ratio (Y / (X + Y)) is increased according to the quality level of the molten steel 1 to be melted, such as increasing the ratio (Y / (X + Y)) (for example, about 0.5 to 0.7). Set. However, the ratio (Y / (X + Y)) is a certain value during the charging of the steel.

つまり、比率(Y/(X+Y))は、当該溶鋼の出鋼中は或る一定の値であるので、赤外線カメラ6で測定される放射エネルギーの総量に応じてスラグ2の流出を判定することになるが、本発明においては、出鋼流1Aの溶鋼の放射エネルギー値に応じて溶鋼1かスラグ2かを判定するので、赤外線カメラ6で測定される放射エネルギーの総量が同一であっても、出鋼流1Aの溶鋼の放射エネルギー値によっては、溶鋼1と判定したり或いはスラグ2と判定したりすることになる。尚、エネルギー閾値Ecを一定値とする従来の検知方法では、放射エネルギーの総量に基づき一義的に溶鋼1かスラグ2かに判別される。   That is, since the ratio (Y / (X + Y)) is a certain value during the steelmaking of the molten steel, the outflow of the slag 2 is determined according to the total amount of radiant energy measured by the infrared camera 6. However, in the present invention, since the molten steel 1 or the slag 2 is determined according to the radiant energy value of the molten steel of the outgoing steel flow 1A, even if the total amount of radiant energy measured by the infrared camera 6 is the same. Depending on the radiant energy value of the molten steel in the outgoing steel flow 1A, it is determined as the molten steel 1 or as the slag 2. In the conventional detection method in which the energy threshold value Ec is set to a constant value, whether the molten steel 1 or the slag 2 is uniquely determined based on the total amount of radiant energy.

検知部7からスラグ流出の判定信号を受けたスラグストッパー制御装置8は、アーム13の先端に設置した止め栓部14によって出鋼口12が閉塞されるように油圧シリンダー15を作動させると同時に、止め栓部14の先端部から窒素ガスが流出するように電磁弁(図示せず)を制御する。出鋼流1Aは止め栓部14によって止められるのみならず、出鋼口12の内部に噴射される窒素ガスによって、出鋼口12の内部の溶鋼1及びスラグ2は転炉3の内部に押し戻される。これにより、出鋼口12の溶鋼1による閉塞は防止される。転炉3は、スラグストッパー9の作動と同時にまたは作動直後に、炉口が上となるように傾動し、その後、出鋼口12が上面側に位置するように更に傾動し、スラグ2は炉口からスラグポット(図示せず)に排出される。   The slag stopper control device 8 that has received the slag outflow determination signal from the detector 7 operates the hydraulic cylinder 15 so that the steel outlet 12 is closed by the stopper 14 installed at the tip of the arm 13, A solenoid valve (not shown) is controlled so that nitrogen gas flows out from the tip of the stopper plug 14. The outgoing steel flow 1 </ b> A is not only stopped by the stopper 14, but the molten steel 1 and the slag 2 inside the outgoing steel port 12 are pushed back into the converter 3 by the nitrogen gas injected into the outgoing steel port 12. It is. Thereby, obstruction | occlusion with the molten steel 1 of the steel outlet 12 is prevented. At the same time or immediately after the operation of the slag stopper 9, the converter 3 is tilted so that the furnace port is on the upper side, and then further tilted so that the steel outlet 12 is positioned on the upper surface side. It is discharged from the mouth into a slag pot (not shown).

このように、本発明によれば、転炉3の出鋼口12から出鋼される出鋼流1Aの溶鋼1の放射エネルギーの測定値に基づいて、溶鋼1とスラグ2とを判別するためのエネルギー閾値Ecを決定するので、従来はスラグ2と判断されてスラグ流出を検知できなかった放射率が高い場合であっても、スラグ検知が可能となる。一方、出鋼温度が低いときのような放射率が低い場合には、エネルギー閾値Ecを小さくするので、スラグ2を溶鋼1と誤認することが防止される。これにより、転炉3からのスラグ流出量をばらつきなく所定量に制御することが可能となる。   Thus, according to the present invention, in order to discriminate between the molten steel 1 and the slag 2 based on the measured value of the radiant energy of the molten steel 1 of the outgoing steel flow 1A output from the outgoing steel port 12 of the converter 3. Since the energy threshold value Ec of the slag is determined, it is possible to detect the slag even when the emissivity is high, which is conventionally determined as the slag 2 and the slag outflow cannot be detected. On the other hand, when the emissivity is low, such as when the steel output temperature is low, the energy threshold Ec is reduced, so that the slag 2 is prevented from being misidentified as the molten steel 1. Thereby, it becomes possible to control the slag outflow amount from the converter 3 to a predetermined amount without variation.

尚、本発明は上記説明に限るものではなく種々の変更が可能である。例えば、スラグストッパー9の構造は上記に限るものではなく、出鋼口12を閉塞することができる限り、どのような構造であっても構わない。また、スラグストッパー9を使用することなく、検知部7がスラグ流出を判定した時点で、転炉3を直立するように傾動させて出鋼口12からの流出を停止するようにしてもよい。また更に、上記説明は、本発明を溶銑の脱炭精錬に適用した場合を説明したが、精錬反応は、例えばクロム鉱石の還元による高クロム鋼の精錬反応など、どのような精錬反応であっても構わず、要は、転炉出鋼口から溶鋼を出鋼する場合の全てに、本発明を適用することができる。   The present invention is not limited to the above description, and various modifications can be made. For example, the structure of the slag stopper 9 is not limited to the above, and any structure may be used as long as the steel outlet 12 can be closed. Further, without using the slag stopper 9, the converter 3 may be tilted to stand upright to stop the outflow from the steel outlet 12 when the detection unit 7 determines the outflow of the slag. Furthermore, the above explanation has explained the case where the present invention is applied to hot metal decarburization refining, but the refining reaction is any refining reaction such as refining reaction of high chromium steel by reduction of chromium ore. Of course, the present invention can be applied to all cases where molten steel is discharged from a converter outlet.

図1に示す構成の転炉及びスラグ検知装置を用いて、転炉から取鍋への出鋼流のスラグ流出検知及びスラグストッパーよるスラグ流出防止を実施した。この場合、出鋼開始から20秒及び40秒経過した時点で出鋼流の放射エネルギー値を測定し、この溶鋼の放射エネルギー値の平均値に基づいてエネルギー閾値Ecを決定した。そして、溶鋼の放射エネルギー値に応じてエネルギー閾値Ecを5水準に設定し、予めこの溶鋼の放射エネルギー値とエネルギー閾値Ecとの関係を検知部に入力しておき、測定された溶鋼の放射エネルギー値からエネルギー閾値Ecを自動的に決定した。用いた転炉は、容量が250トンの上底吹き転炉である。   Using the converter and slag detection device having the configuration shown in FIG. 1, slag outflow detection of the steel flow from the converter to the ladle and slag outflow prevention by the slag stopper were performed. In this case, the radiant energy value of the outgoing steel flow was measured when 20 seconds and 40 seconds had elapsed from the start of the steel output, and the energy threshold Ec was determined based on the average value of the radiant energy values of the molten steel. And according to the radiant energy value of molten steel, the energy threshold value Ec is set to 5 level, the relationship between the radiant energy value of this molten steel and the energy threshold value Ec is input to the detector in advance, and the measured radiant energy of the molten steel is measured. The energy threshold value Ec was automatically determined from the value. The converter used was an upper-bottom blowing converter with a capacity of 250 tons.

その結果、従来、出鋼温度の高い高炭素鋼などではスラグの自動検知ができず、出鋼チャージ全体のスラグの自動検知率はおよそ93%程度であり、残りの7%には操作員による手動介入が必要であったが、本発明を適用することでスラグの自動検知率は100%になり、操作員による手動介入は全く不要となった。   As a result, conventional slag cannot be automatically detected in high carbon steel with a high steel output temperature, and the automatic detection rate of slag in the entire steel output is about 93%, and the remaining 7% is determined by the operator. Although manual intervention was necessary, application of the present invention resulted in an automatic slag detection rate of 100%, and manual intervention by the operator became completely unnecessary.

転炉から取鍋への出鋼流に本発明を適用した1例を示す概略断面図である。It is a schematic sectional drawing which shows one example which applied this invention to the outgoing steel flow from a converter to a ladle. 赤外線カメラにより撮影された出鋼流の二次元画像の概略図である。It is the schematic of the two-dimensional image of the outgoing steel flow image | photographed with the infrared camera. 図2に示す、A−A’線上の放射エネルギー分布を示す概略図である。It is the schematic which shows the radiant energy distribution on the A-A 'line shown in FIG.

符号の説明Explanation of symbols

1 溶鋼
1A 出鋼流
2 スラグ
3 転炉
4 取鍋
5 スラグ検知装置
6 赤外線カメラ
7 検知部
8 スラグストッパー制御装置
9 スラグストッパー
10 鉄皮
11 耐火物
12 出鋼口
13 アーム
14 止め栓部
15 油圧シリンダー
DESCRIPTION OF SYMBOLS 1 Molten steel 1A Outgoing steel flow 2 Slag 3 Converter 4 Ladle 5 Slag detection device 6 Infrared camera 7 Detection part 8 Slag stopper control device 9 Slag stopper 10 Iron skin 11 Refractory 12 Steel outlet 13 Arm 14 Stopper part 15 Hydraulic pressure cylinder

Claims (1)

転炉の出鋼口から流出する出鋼流を赤外線カメラで撮影し、赤外線カメラで測定される出鋼流中の溶鋼の放射エネルギー値と出鋼流中のスラグの放射エネルギー値とを対比することによって溶鋼とスラグとを判別し、前記出鋼口から流出する溶鋼に混合して流出するスラグを検知するスラグの流出検知方法であって、
出鋼開始から2分間経過するまでに測定した、前記出鋼流の放射エネルギー値を溶鋼の放射エネルギー値Emとし、該溶鋼の放射エネルギー値Emとスラグの放射エネルギー値Esとの間に、溶鋼とスラグとを判別するためのエネルギー閾値Ecを設定するにあたって、
前記溶鋼の放射エネルギー値Emに基づいて、前記エネルギー閾値Ecを変化させ、当該チャージの出鋼中の前記エネルギー閾値Ecを決定することを特徴とする、スラグの流出検知方法。
Take the steel flow that flows out from the steel outlet of the converter with an infrared camera, and compare the radiant energy value of the molten steel in the steel flow and the slag radiant energy value measured by the infrared camera. It is a slag outflow detection method for discriminating between molten steel and slag by detecting the slag flowing out mixed with the molten steel flowing out from the steel outlet,
The radiant energy value of the steel flow measured as two minutes after the start of steel production is defined as the radiant energy value Em of the molten steel , and between the radiant energy value Em of the molten steel and the radiant energy value Es of the slag, In setting the energy threshold Ec for discriminating between slag and slag ,
A method for detecting slag outflow, wherein the energy threshold value Ec in the discharged steel of the charge is determined by changing the energy threshold value Ec based on the radiant energy value Em of the molten steel .
JP2008142099A 2008-05-30 2008-05-30 Slag outflow detection method Active JP5417738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008142099A JP5417738B2 (en) 2008-05-30 2008-05-30 Slag outflow detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008142099A JP5417738B2 (en) 2008-05-30 2008-05-30 Slag outflow detection method

Publications (2)

Publication Number Publication Date
JP2009287097A JP2009287097A (en) 2009-12-10
JP5417738B2 true JP5417738B2 (en) 2014-02-19

Family

ID=41456595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008142099A Active JP5417738B2 (en) 2008-05-30 2008-05-30 Slag outflow detection method

Country Status (1)

Country Link
JP (1) JP5417738B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5444692B2 (en) * 2008-11-07 2014-03-19 Jfeスチール株式会社 Slag outflow detection method
JP7472536B2 (en) * 2020-02-25 2024-04-23 スズキ株式会社 Melting furnace molten metal level detection method and device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242746A (en) * 1985-04-19 1986-10-29 Sumitomo Metal Ind Ltd Detection of slag in outflow molten metal
JPS62174314A (en) * 1986-01-24 1987-07-31 Kobe Steel Ltd Detection of slag outflow from converter
JPH10230353A (en) * 1996-10-02 1998-09-02 Tokai Carbon Co Ltd Detection of flowing out of slag
JPH10158717A (en) * 1996-12-06 1998-06-16 Nisshin Steel Co Ltd Detection of slag when tapping molten steel in converter
JP3266858B2 (en) * 1998-06-29 2002-03-18 株式会社神戸製鋼所 Slag detection method, slag detection device, and continuous casting facility
JP4419861B2 (en) * 2005-02-03 2010-02-24 Jfeスチール株式会社 Method and apparatus for detecting slag during converter steelmaking
JP4742805B2 (en) * 2005-10-24 2011-08-10 Jfeスチール株式会社 Slag outflow prevention method

Also Published As

Publication number Publication date
JP2009287097A (en) 2009-12-10

Similar Documents

Publication Publication Date Title
JP4747855B2 (en) Slag outflow detection method
JP5444692B2 (en) Slag outflow detection method
JP6164173B2 (en) Converter discharge flow determination device, converter discharge flow determination method, hot metal pretreatment method, and converter pretreatment operation method
TW202039865A (en) Method for predicting slopping of converter furnace, method for operating converter furnace, and system for predicting slopping of converter furnace
JP4742805B2 (en) Slag outflow prevention method
JP5417738B2 (en) Slag outflow detection method
JP2010236743A (en) Slag discharge system and slag discharge method
JP2007322382A (en) Temperature measuring method of molten steel in convertor
CN106795573B (en) Method and device for determining the ignition time point in an oxygen converting process
JP5003204B2 (en) Steel production from converter
JP4419861B2 (en) Method and apparatus for detecting slag during converter steelmaking
JP5228414B2 (en) Slag outflow detection method
JP2020164992A (en) Slopping prediction method for converter, operation method for converter, and slopping prediction system for converter
JP2014055315A (en) Monitoring method of slag stream discharged from throat and converter operation method
JP6939039B2 (en) Tilt-type refining device and tilt-removal method
CN112921144A (en) Method for melting slag by using furnace slag
JP4032582B2 (en) Lance management method and management device for smelting furnace
JPH0617110A (en) Method for deciding completion of metal tapping
KR101258767B1 (en) Monitoring apparatus for refractories abrasion of electric furnace
JPH0633128A (en) Method for automatically stopping steel-tapping in converter
JP2000273519A (en) Method for removing slag from torpedo car
US3540879A (en) Method for controlling phosphorus removal in a basic oxygen furnace
JP2008156717A (en) Method for determining repairing-timing of molten steel tapping hole in converter
JP2971336B2 (en) Slag cut control method and slag cut device in molten metal refining furnace
Unwin Improving slag detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110421

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131104

R150 Certificate of patent or registration of utility model

Ref document number: 5417738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250