JP2007196545A - Metal-resin composite structure and its manufacturing method - Google Patents

Metal-resin composite structure and its manufacturing method Download PDF

Info

Publication number
JP2007196545A
JP2007196545A JP2006018588A JP2006018588A JP2007196545A JP 2007196545 A JP2007196545 A JP 2007196545A JP 2006018588 A JP2006018588 A JP 2006018588A JP 2006018588 A JP2006018588 A JP 2006018588A JP 2007196545 A JP2007196545 A JP 2007196545A
Authority
JP
Japan
Prior art keywords
fiber
resin
resin composition
metal
composite structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006018588A
Other languages
Japanese (ja)
Inventor
Kanako Okada
佳那子 岡田
Katsuhiko Suzuki
克彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006018588A priority Critical patent/JP2007196545A/en
Publication of JP2007196545A publication Critical patent/JP2007196545A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal-resin composite structure which has the restrained warp generation after the heat curing, can be manufactured over a short period, and shows a sufficient reinforcing effect on use, and its manufacturing method. <P>SOLUTION: The metal-resin composite structure keeps a metal sheet and a fiber-reinforced resin composition bonded through a foamed resin composition. The foaming resin composition comprises, based on 100 pts.wt. of an epoxy resin, 2-30 pts.wt. of a carbon fiber or glass fiber having a fiber length of 1-3 mm and a fiber diameter of 5-20 μm, 3-30 pts.wt. of a heat-activated curing agent, 0.5-15 pts.wt. of a heat-activated curing catalyst, 0.5-15 pts.wt. of a heat-decomposable organic foaming agent, 50-200 pts.wt. of an inorganic filler having an aspect ratio of 2:1 or more, and 2-15 pts.wt. of an air bubbles preventive agent. This metal-resin composite structure is useful for a body structure for a car. The metal-resin composite structure can be manufactured by arranging the foaming resin composition C on the metal sheet A with the fiber-reinforced resin composition B arranged on its top, and then foaming the foaming resin composition C and curing it. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、金属樹脂複合構造体及びその製造方法に係り、更に詳細には、金属板と繊維強化樹脂組成物が発泡樹脂組成物を介して接合され、金属板/発泡樹脂組成物/繊維強化樹脂の3層構造をなす金属樹脂複合構造体及びその製造方法に関する。   The present invention relates to a metal resin composite structure and a method for producing the same, and more specifically, a metal plate and a fiber reinforced resin composition are joined via a foamed resin composition, and the metal plate / foamed resin composition / fiber reinforced The present invention relates to a metal resin composite structure having a resin three-layer structure and a method for producing the same.

最近、土木・建築物、自動車、船舶などの補強部材として、金属と繊維強化樹脂組成物を接合した複合材料が普及してきている。   Recently, composite materials obtained by joining a metal and a fiber reinforced resin composition have become widespread as reinforcing members for civil engineering / buildings, automobiles, ships, and the like.

例えば、軽金属と繊維強化組成物を接着剤で一体化し、耐食性に優れ、強度・衝撃エネルギー吸収性能を向上させた軽金属/CFRPハイブリッド構造材が提案されている(特許文献1参照)。
また、鉄やアルミニウムと繊維強化樹脂組成物を両面粘着テープなどの粘着材で粘着接合した輸送機器用バンパーのエネルギー吸収部材が提案されている(特許文献2参照)。
更に、アルミニウム材と繊維強化樹脂組成物をボルト接合で一体化し、自動車等の衝撃エネルギー吸収特性を向上させ、且つその変形量を小さくする自動車用のドア・サイドビームやバンパービーム等に使用される複合構造の衝撃吸収用部材が提案されている(特許文献3参照)。
更にまた、金属と繊維強化樹脂組成物とをボルト接合した場合、接合部で応力集中が発生して金属材料と繊維強化樹脂組成物の間の応力伝達が非効率的であるという理由から、接着剤で接着接合した衝撃エネルギー吸収部材が提案されている(特許文献4参照)。
国際公開番号WO1999/010168 特公2002−240658号公報 特開平6−101732号公報 特開平11−173358号公報
For example, a light metal / CFRP hybrid structure material in which a light metal and a fiber reinforced composition are integrated with an adhesive, excellent in corrosion resistance, and improved in strength and impact energy absorption performance has been proposed (see Patent Document 1).
In addition, an energy absorbing member for a bumper for transportation equipment in which iron or aluminum and a fiber reinforced resin composition are adhesively bonded with an adhesive such as a double-sided adhesive tape has been proposed (see Patent Document 2).
In addition, aluminum materials and fiber reinforced resin compositions are integrated by bolt joints to improve impact energy absorption characteristics of automobiles, etc., and to be used for automobile doors, side beams, bumper beams, etc. A composite structure shock absorbing member has been proposed (see Patent Document 3).
Furthermore, when a metal and a fiber reinforced resin composition are bolted together, stress concentration occurs at the joint, and the stress transmission between the metal material and the fiber reinforced resin composition is inefficient. An impact energy absorbing member adhesively bonded with an agent has been proposed (see Patent Document 4).
International Publication Number WO1999 / 010168 Japanese Patent Publication No. 2002-240658 JP-A-6-101732 JP-A-11-173358

しかしながら、金属と繊維強化樹脂との接合に、熱硬化性接着剤を用いて両者を接着接合した場合には、金属材料と繊維強化樹脂との線膨張係数の差により、熱をかけてから冷却した際、硬化時に貼り付け部材がそってしまい、備品の形状が変化してしまうという問題が生じていた。
これを防ぐために、常温硬化性接着剤を使用すると、硬化までに長時間放置する必要があり、量産製品の製造ラインに適用することが難しかった。
However, when both a metal and fiber reinforced resin are bonded using a thermosetting adhesive, the metal material and the fiber reinforced resin are cooled after being heated due to the difference in coefficient of linear expansion between the metal material and the fiber reinforced resin. When it did, the sticking member will bend at the time of hardening, and the problem that the shape of fixtures changed had arisen.
In order to prevent this, if a room temperature curable adhesive is used, it must be left for a long time before curing, and it has been difficult to apply it to a production line for mass-produced products.

また、接着剤を用いた接合方法においては、作業工程に事前混合、塗布、硬化という時間とコストがかかるという問題があった。
即ち、液固状の接着剤では粘性が高いため、短時間に広い面積への塗布に多大な時間がかかり、液状の接着剤では作業環境が汚れる、厚み管理が難しい等、大量生産やライン導入には不適な側面があった。
Moreover, in the joining method using an adhesive agent, there is a problem that the work process takes time and cost of premixing, coating, and curing.
In other words, liquid-solid adhesives have high viscosity, so it takes a lot of time to apply over a large area in a short time, and liquid adhesives contaminate the work environment, making it difficult to control thickness, etc. There were unsuitable aspects.

更に、粘着テープでの接合は簡便であるが、例えば60kmで走行する車にかかる衝撃には耐えられず、衝撃を受けたときに、接着面が剥がれたり切れたりしてしまうという問題があった。   Furthermore, although joining with an adhesive tape is simple, there is a problem that, for example, it cannot withstand an impact applied to a car traveling at 60 km, and the adhesive surface is peeled off or cut when subjected to the impact. .

更にまた、金属のレインフォースを溶接して補強すると、重量が増加してしまい、輸送機器などに使用した際は燃費が低下するという問題があった。   Furthermore, when metal reinforcement is reinforced by welding, the weight increases, and there is a problem that the fuel consumption decreases when used for transportation equipment.

本発明は、このような従来技術の有する課題及び新たな知見に鑑みてなされたものであり、その目的とするところは、加熱硬化後のそり発生を抑制し、短期間で製造でき、使用時の補強効果が十分な金属樹脂複合構造体及びその製造方法を提供することにある。   The present invention has been made in view of the problems and new knowledge of the prior art, and the object of the present invention is to suppress the occurrence of warping after heat-curing, and can be manufactured in a short period of time. An object of the present invention is to provide a metal resin composite structure having a sufficient reinforcing effect and a method for producing the same.

本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、金属板と繊維強化樹脂組成物を、エポキシ樹脂を主成分とし、炭素繊維やガラス繊維、エポキシ樹脂用熱活性型硬化剤、エポキシ樹脂用熱活性型硬化触媒、熱分解型有機系発泡剤、無機系充填剤、気泡防止剤を所定量含めた発泡樹脂組成物を用いて接合することにより、上記課題が解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have made a metal plate and a fiber reinforced resin composition mainly composed of an epoxy resin, carbon fiber, glass fiber, and a thermally activated curing agent for epoxy resin. And found that the above problems can be solved by joining with a foamed resin composition containing a predetermined amount of a thermally activated curing catalyst for epoxy resin, a pyrolytic organic foaming agent, an inorganic filler, and an anti-bubble agent. The present invention has been completed.

即ち、本発明の金属樹脂複合構造体は、金属板と繊維強化樹脂組成物が、発泡樹脂組成物を介して接合されている3層の金属樹脂複合構造体であって、
上記発泡樹脂組成物は、エポキシ樹脂100重量部に対して、繊維長1〜3mm、繊維径5〜20μmの炭素繊維及び/又はガラス繊維を2〜30重量部、エポキシ樹脂用熱活性型硬化剤を3〜30重量部、エポキシ樹脂用熱活性型硬化触媒を0.5〜15重量部、熱分解型有機系発泡剤を0.5〜15重量部、アスペクト比が2:1以上の無機系充填剤を50〜200重量部、気泡防止剤を2〜15重量部、含んで成ることを特徴とする。
That is, the metal resin composite structure of the present invention is a three-layer metal resin composite structure in which a metal plate and a fiber reinforced resin composition are joined via a foamed resin composition,
The foamed resin composition comprises 2 to 30 parts by weight of a carbon fiber and / or glass fiber having a fiber length of 1 to 3 mm and a fiber diameter of 5 to 20 μm with respect to 100 parts by weight of the epoxy resin. 3 to 30 parts by weight, 0.5 to 15 parts by weight of thermally activated curing catalyst for epoxy resin, 0.5 to 15 parts by weight of thermally decomposable organic foaming agent, and an inorganic system having an aspect ratio of 2: 1 or more It comprises 50 to 200 parts by weight of a filler and 2 to 15 parts by weight of an anti-bubble agent.

また、本発明の自動車用車体構造は、上記金属樹脂複合構造体を用いた自動車用車体構造であって、該金属板が車体鋼板であることを特徴とする。   The vehicle body structure of the present invention is a vehicle body structure using the metal resin composite structure, wherein the metal plate is a vehicle body steel plate.

更に、本発明の金属樹脂複合構造体の製造方法は、上記金属樹脂複合構造体を製造するに当たり、金属板又は繊維強化樹脂組成物の上に発泡体樹脂組成物を配設し、更に繊維強化樹脂組成物又は金属板を配設した後に、該発泡樹脂組成物を発泡させ硬化させることを特徴とする。   Furthermore, in the method for producing a metal resin composite structure according to the present invention, in producing the metal resin composite structure, a foam resin composition is disposed on a metal plate or a fiber reinforced resin composition, and further fiber reinforced. After the resin composition or the metal plate is disposed, the foamed resin composition is foamed and cured.

本発明によれば、金属板と繊維強化樹脂組成物を、エポキシ樹脂を主成分とし、炭素繊維やガラス繊維、エポキシ樹脂用熱活性型硬化剤、エポキシ樹脂用熱活性型硬化触媒、熱分解型有機系発泡剤、無機系充填剤、気泡防止剤を所定量含めた発泡樹脂組成物を用いて接合することとしたため、加熱硬化後のそり発生を抑制し、短期間で製造でき、使用時の補強効果が十分な金属樹脂複合構造体及びその製造方法を提供できる。   According to the present invention, the metal plate and the fiber reinforced resin composition are mainly composed of epoxy resin, carbon fiber or glass fiber, thermally activated curing agent for epoxy resin, thermally activated curing catalyst for epoxy resin, thermal decomposition type. Since it was decided to join using a foamed resin composition containing a predetermined amount of an organic foaming agent, inorganic filler, and anti-bubble agent, it can be produced in a short period of time by suppressing warpage after heat curing. A metal-resin composite structure having a sufficient reinforcing effect and a method for producing the same can be provided.

以下、本発明の金属樹脂複合構造体について説明する。なお、本明細書において、「%」は特記しない限り、質量百分率を表わすものとする。   Hereinafter, the metal resin composite structure of the present invention will be described. In the present specification, “%” represents mass percentage unless otherwise specified.

本発明の金属樹脂複合構造体は、金属板と繊維強化樹脂組成物が、発泡樹脂組成物を介して接合されている3層構造をなす。
また、上記発泡樹脂組成物は、エポキシ系の発泡樹脂組成物であり、以下(a)〜(g)の材料、
(a)エポキシ樹脂
エポキシ樹脂100重量部に対して、
(b)繊維長1〜3mm、繊維径5〜20μmの炭素繊維、ガラス繊維のいずれか一方又は双方を2〜30重量部、
(c)エポキシ樹脂用熱活性型硬化剤を3〜30重量部、
(d)エポキシ樹脂用熱活性型硬化触媒を0.5〜15重量部、
(e)熱分解型有機系発泡剤を0.5〜15重量部、
(f)アスペクト比が2:1以上の無機系充填剤を50〜200重量部、
(g)気泡防止剤を2〜15重量部、
を含んで成る。
The metal resin composite structure of the present invention has a three-layer structure in which a metal plate and a fiber reinforced resin composition are joined via a foamed resin composition.
The foamed resin composition is an epoxy-based foamed resin composition, and the following materials (a) to (g):
(A) Epoxy resin For 100 parts by weight of epoxy resin,
(B) 2 to 30 parts by weight of one or both of carbon fiber and glass fiber having a fiber length of 1 to 3 mm and a fiber diameter of 5 to 20 μm,
(C) 3 to 30 parts by weight of a thermally activated curing agent for epoxy resin,
(D) 0.5 to 15 parts by weight of a thermally activated curing catalyst for epoxy resin,
(E) 0.5 to 15 parts by weight of a pyrolytic organic foaming agent,
(F) 50 to 200 parts by weight of an inorganic filler having an aspect ratio of 2: 1 or more,
(G) 2 to 15 parts by weight of an anti-bubble agent,
Comprising.

接合部に用いる発泡樹脂組成物を上記構成とすることで、十分な発泡反応が起こり、衝撃吸収性の高い発泡体層が得られる。
例えば、図1に示すような、金属板A/発泡樹脂組成物C/繊維強化樹脂組成物Bの3層構造体となる。
By setting the foamed resin composition used for the joint part to the above-described configuration, a sufficient foaming reaction occurs, and a foam layer having high impact absorption is obtained.
For example, a three-layer structure of metal plate A / foamed resin composition C / fiber reinforced resin composition B as shown in FIG.

ここで、エポキシ樹脂(a)は、接着性、機械的な性質、電気的性質、化学的性質、寸法精度などに優れているという観点から、ビスフェノール型であることが好ましい。
また、上記無機系充填剤(f)は、代表的には、針状、柱状、板状などの形状のものを用いることができる。
Here, the epoxy resin (a) is preferably a bisphenol type from the viewpoint of excellent adhesion, mechanical properties, electrical properties, chemical properties, dimensional accuracy, and the like.
Moreover, the said inorganic type filler (f) can use the thing of shapes, such as needle shape, column shape, and plate shape, typically.

更に、本発明の金属樹脂複合構造体は、上記発泡樹脂組成物の板厚に対して、上記金属板の板厚は0.02〜0.5倍、上記繊維強化樹脂組成物の板厚は0.02〜1.0倍であることが好ましい。   Further, in the metal resin composite structure of the present invention, the plate thickness of the metal plate is 0.02 to 0.5 times the plate thickness of the foamed resin composition, and the plate thickness of the fiber reinforced resin composition is It is preferable that it is 0.02-1.0 times.

上記金属板の板厚が0.02倍よりも小さければ、発泡体に対する接着強度が低下してしまい、補強効果を得るための十分な強度が保持されないことがある。また、0.5倍より大きければ、衝撃エネルギー吸収特性を発揮することができない。例えば、金属板平面への衝撃により大きな荷重がかかったとき、その衝撃で金属板から繊維強化樹脂組成物が剥がれてしまい、衝撃を受け止めるのが金属板単体となってしまうことがある。   If the thickness of the metal plate is smaller than 0.02 times, the adhesive strength to the foam is lowered, and sufficient strength for obtaining a reinforcing effect may not be maintained. Moreover, if it is larger than 0.5 times, the impact energy absorption characteristic cannot be exhibited. For example, when a large load is applied due to an impact on the flat surface of the metal plate, the fiber reinforced resin composition may be peeled off from the metal plate by the impact, and the metal plate alone may receive the impact.

上記繊維強化樹脂組成物の板厚が0.02倍よりも小さければ、補強効果を得るために十分な強度が得られないことがある。1.0倍より大きければ、強度は得られるが、より多くの成形時間とコストがかかり、値段と性能が見合わなくなる。   If the plate thickness of the fiber reinforced resin composition is smaller than 0.02 times, sufficient strength may not be obtained to obtain a reinforcing effect. If it is larger than 1.0 times, the strength can be obtained, but more molding time and cost are required, and the price and performance are not matched.

また、上記発泡樹脂組成物は、比重が0.3〜0.8g/cmであることが好ましい。
比重が0.3g/cmより小さいと、複合構造体に力が加わって曲げられたときに十分な強度が得られないことがある。0.8g/ cmより大きいと、軽量化効果が得られないことがある。
The foamed resin composition preferably has a specific gravity of 0.3 to 0.8 g / cm 3 .
If the specific gravity is less than 0.3 g / cm 3 , sufficient strength may not be obtained when the composite structure is bent by applying force. If it is greater than 0.8 g / cm 3 , the lightening effect may not be obtained.

更に、上記発泡樹脂組成物は、衝撃剪断強度が高いことが好ましく、代表的には、金属板や繊維強化樹脂組成物との接合剪断強度が0.1〜10MPaの範囲内であることが良い。   Further, the foamed resin composition preferably has a high impact shear strength, and typically has a joining shear strength with a metal plate or a fiber reinforced resin composition in the range of 0.1 to 10 MPa. .

上記金属板としては、特にその材質は限定されないが、代表的には、鋼板、アルミニウム板、チタニウム板など、又はこれらを任意に組合わせた合金等を使用できる。特に、アルミニウム板の線膨張係数は、23×10−6−1と、鋼板の10×10−6−1に比べて大きく、加熱時に伸びる割合も大きいため、発泡樹脂組成物使用によるそりを防ぐ効果を高めることができる。 Although the material in particular is not limited as said metal plate, Typically, a steel plate, an aluminum plate, a titanium plate etc. or the alloy etc. which combined these arbitrarily can be used. In particular, the linear expansion coefficient of the aluminum plate, a 23 × 10 -6 k -1, 10 × 10 -6 k -1 greater than that of steel, for larger proportion of extending the time of heating, warping due to foaming resin composition used The effect which prevents can be heightened.

また、上記金属板には、比重が1〜9g/cmの範囲内の金属を使用するのが良い。このときは、金属樹脂複合構造体を軽量化でき、輸送機器に用いた場合には燃料消費を抑えることができるとともに、取り付け/組み立て作業時の取扱い性が容易となるので有効である。 Moreover, it is good to use the metal in the range whose specific gravity is 1-9 g / cm < 3 > for the said metal plate. In this case, the metal-resin composite structure can be reduced in weight, and when used in transportation equipment, fuel consumption can be suppressed, and handling at the time of attachment / assembly is facilitated, which is effective.

上記繊維強化樹脂組成物は、補強繊維成分とマトリックス樹脂成分とから構成することができる。
ここで、補強繊維成分としては、例えば、(1)炭素繊維、黒鉛繊維、炭化ケイ素繊維、アルミナ繊維、ボロン繊維、タングステンカーバイド繊維、ガラス繊維等の無機繊維、(2)全芳香族ポリエステル繊維(高強力ポリアリレート繊維を含む)、ポリエチレンテレフタレート繊維、ポリエチレン−2,6−ナフタレート繊維等のポリエステル繊維、ポリパラフェニレンベンゾビスオキサゾール繊維(以下PBO繊維)、パラ型アラミド繊維、メタ型アラミド繊維、ポリアセタール繊維、超高分子量ポリエチレン繊維等の耐熱性合成繊維、ポリアクリロニトリル繊維等の有機繊維、及び(3)セルロース系繊維等の天然繊維、を使用できる。
これら補強繊維成分であれば特に限定されないが、鋼性・強度に優れることから炭素繊維が好ましい。また、炭素繊維の中でも更に構造材としての強度と弾性率のバランスが良い、強度3.5〜10GPaの範囲内、弾性率200〜500GPaの範囲内のポリアクリルニトリル系の炭素繊維を使用するのが特に好ましい。
The fiber reinforced resin composition can be composed of a reinforcing fiber component and a matrix resin component.
Here, as the reinforcing fiber component, for example, (1) inorganic fiber such as carbon fiber, graphite fiber, silicon carbide fiber, alumina fiber, boron fiber, tungsten carbide fiber, glass fiber, (2) wholly aromatic polyester fiber ( High-strength polyarylate fibers), polyester fibers such as polyethylene terephthalate fibers, polyethylene-2,6-naphthalate fibers, polyparaphenylene benzobisoxazole fibers (hereinafter PBO fibers), para-type aramid fibers, meta-type aramid fibers, polyacetals Fibers, heat resistant synthetic fibers such as ultra high molecular weight polyethylene fibers, organic fibers such as polyacrylonitrile fibers, and (3) natural fibers such as cellulosic fibers can be used.
Although it will not specifically limit if it is these reinforcement fiber components, Since it is excellent in steel property and intensity | strength, carbon fiber is preferable. In addition, among the carbon fibers, polyacrylonitrile-based carbon fibers having a good balance between strength and elastic modulus as a structural material, strength in the range of 3.5 to 10 GPa, and elastic modulus in the range of 200 to 500 GPa are used. Is particularly preferred.

なお、上記繊維強化樹脂組成物は連続繊維であることが好ましい。ここで言う「連続繊維」とは、50mm以上の長さをもつものを言う。   In addition, it is preferable that the said fiber reinforced resin composition is a continuous fiber. The “continuous fiber” referred to here is one having a length of 50 mm or more.

一方、上記繊維強化樹脂組成物のマトリックス樹脂成分としては、例えば、(1)エポキシ樹脂、フェノール樹脂、ビニルエステル樹脂、ウレタン樹脂、不飽和ポリエステル樹脂などの熱硬化性樹脂、(2)ポリエチレン、ポリプロピレン樹脂、ポリアミド樹脂、ポリスチレン、ABS樹脂、メタクリル樹脂、ポリ塩化ビニル、ポリエチレンテレフタレート、PBTなどのポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミノアミド樹脂、PES(ポリエーテルサルフォン)樹脂、PEEK(ポリエーテルエーテルケトン樹脂)、ナイロン、ポリアセタール、ポリカーボネート、ポリアミドイミドなどの熱可塑性樹脂、を使用できる。
これらマトリックス樹脂成分であれば特に限定されないが、優れた成形性、耐薬品性及び耐候性を付与する観点からは、エポキシ樹脂、ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂を使用するのが好ましい。
On the other hand, examples of the matrix resin component of the fiber reinforced resin composition include (1) thermosetting resins such as epoxy resins, phenol resins, vinyl ester resins, urethane resins and unsaturated polyester resins, and (2) polyethylene and polypropylene. Resin, polyamide resin, polystyrene, ABS resin, methacrylic resin, polyvinyl chloride, polyethylene terephthalate, polyester resin such as PBT, polyamide resin, polyimide resin, polyaminoamide resin, PES (polyethersulfone) resin, PEEK (polyetherether) Ketone resin), nylon, polyacetal, polycarbonate, polyamideimide and other thermoplastic resins.
Although it will not specifically limit if it is these matrix resin components, From a viewpoint of providing the outstanding moldability, chemical resistance, and a weather resistance, it is preferable to use an epoxy resin, a polyester resin, a vinyl ester resin, and a phenol resin.

これらマトリックス樹脂成分は、繊維強化樹脂組成物の強度が高められる観点からは、樹脂の伸びが上記補強繊維成分より大きい方が好ましい。また、発泡樹脂組成物の発泡工程における加熱・加圧処理時の変形を小さくする観点からは、熱硬化性樹脂の方が好ましい。   From the viewpoint of increasing the strength of the fiber-reinforced resin composition, these matrix resin components preferably have a resin elongation larger than that of the reinforcing fiber component. Moreover, the thermosetting resin is more preferable from the viewpoint of reducing deformation during the heating / pressurizing process in the foaming process of the foamed resin composition.

上述した本発明の金属樹脂複合構造体は、金属板/発泡樹脂組成物/繊維強化樹脂組成物の3層構造体であり、優れた衝撃吸収効果を有する。これにより、用途としては、自動車などの輸送機器や、家屋や棚の梁などの建築物、建造物が挙げられる。
特に、自動車用車体構造として代表的な適用箇所には、図2に示すように、ダッシュ(I)、サイドドア(G)、バンパー(H)、バンパー補強材、ボンネット、各種フレーム、サブフレーム、各種ロッド、インパクトビーム、サイドビーム、サイドピラーなどがあり、広い範囲で適用が可能である。
また、自動車のダッシュやサイドドアとして適用した場合には、車室内の騒音を低減することができる。即ち、単に接着材で鋼板に繊維強化樹脂組成物を貼り付けた従来品に比べて、吸音性能、遮音性能がともに向上し、高い吸音・遮音性能を発現できる。
なお、吸音性能を表す垂直入射率はJIS A1405、遮音性能を洗わず透過損失はJIS A1416によって測定することができる。
The metal resin composite structure of the present invention described above is a three-layer structure of metal plate / foamed resin composition / fiber reinforced resin composition, and has an excellent impact absorbing effect. Thereby, as a use, buildings and structures, such as transport equipment, such as a car, a house, and a beam of a shelf, are mentioned.
In particular, as shown in FIG. 2, typical application locations for automobile body structures include a dash (I), side door (G), bumper (H), bumper reinforcement, bonnet, various frames, subframes, There are various rods, impact beams, side beams, side pillars, etc., which can be applied in a wide range.
Moreover, when applied as a dash or a side door of an automobile, noise in the passenger compartment can be reduced. That is, both the sound absorption performance and the sound insulation performance are improved as compared with the conventional product in which the fiber reinforced resin composition is simply bonded to the steel sheet with an adhesive, and high sound absorption / sound insulation performance can be expressed.
Note that the normal incidence rate representing the sound absorption performance can be measured according to JIS A1405, and the transmission loss can be measured according to JIS A1416 without washing the sound insulation performance.

次に、本発明の金属樹脂複合構造体の製造方法について説明する。
本発明の製造方法では、上述した金属樹脂複合構造体を製造するに当たり、金属板又は繊維強化樹脂組成物の上に発泡体樹脂組成物を配設し、更に繊維強化樹脂組成物又は金属板を配設した後に、該発泡樹脂組成物を発泡させ硬化させる。
Next, the manufacturing method of the metal resin composite structure of this invention is demonstrated.
In the production method of the present invention, in producing the above-described metal resin composite structure, the foam resin composition is disposed on the metal plate or the fiber reinforced resin composition, and the fiber reinforced resin composition or the metal plate is further disposed. After disposing, the foamed resin composition is foamed and cured.

例えば、金属板及び繊維強化樹脂組成物を予め成形しておき、これらを発泡体樹脂組成物を介して張り合わせ、加熱処理を行い発泡体樹脂組成物を発泡させ、硬化させることによって、金属樹脂複合構造体が得られる。   For example, a metal plate and a fiber reinforced resin composition are preliminarily molded, bonded together via a foam resin composition, heat-treated to foam and cure the foam resin composition, and thus a metal resin composite A structure is obtained.

また、本発明の製造方法では、金属板、発泡体樹脂組成物及び繊維強化樹脂組成物を3層構造に形成した後に、該金属板と繊維強化樹脂組成物との距離を一定に保持しながら、該発泡樹脂組成物を発泡させ硬化させることが好ましい。   In the production method of the present invention, the metal plate, the foam resin composition, and the fiber reinforced resin composition are formed in a three-layer structure, and then the distance between the metal plate and the fiber reinforced resin composition is kept constant. The foamed resin composition is preferably foamed and cured.

具体的には、例えば、金属板と、発泡樹脂組成物を貼り付けた繊維強化樹脂組成物とを、該発泡樹脂組成物を介してこれらが一定の距離を保つように固定具を用いて金属樹脂複合構造体を得ることができる。
また、発泡樹脂組成物を貼り付けた金属板と、繊維強化樹脂組成物とを、該発泡樹脂組成物を介してこれらが一定の距離を保つように固定具を用いて金属樹脂複合構造体を得ることができる。
更に、上記固定具の代わりに、又は上記固定具と併用して、発泡樹脂組成物の発泡時に金属板、繊維強化樹脂組成物のいずれか一方又は双方を外側から押止できる治具を配設することもできる。
更にまた、図3に示すように、金属板、発泡体樹脂組成物及び繊維強化樹脂組成物の3層構造体を、部品形状に成形された型内に固定した後に、加熱発泡させ、硬化させることによって金属樹脂複合構造体を得ることもできる。
かかる固定具や治具や型を用いることで、加熱発泡の際に任意の厚さに制御することが可能となり、密着力、衝撃剪断強度の高い金属樹脂複合構造体が得られる。
Specifically, for example, a metal plate and a fiber reinforced resin composition to which a foamed resin composition is attached are bonded to a metal using a fixture so that they maintain a certain distance through the foamed resin composition. A resin composite structure can be obtained.
In addition, the metal plate composite structure with the metal plate with the foamed resin composition and the fiber reinforced resin composition is fixed using a fixture so that the foamed resin composition keeps a certain distance through the foamed resin composition. Obtainable.
Furthermore, a jig that can hold either or both of the metal plate and the fiber reinforced resin composition from the outside when the foamed resin composition is foamed is provided in place of the fixture or in combination with the fixture. You can also
Furthermore, as shown in FIG. 3, a three-layer structure of a metal plate, a foam resin composition, and a fiber reinforced resin composition is fixed in a mold formed into a part shape, and then heated, foamed and cured. Thus, a metal resin composite structure can be obtained.
By using such a fixture, jig, or mold, it is possible to control the thickness to any value during heating and foaming, and a metal resin composite structure with high adhesion and impact shear strength can be obtained.

更に、本発明の製造方法で用いる発泡樹脂組成物は、熱をかけると内部に気孔が発生し、発泡する。この発泡反応は、140℃〜230℃の加熱処理を行うことで促進できる。
かかる温度域で発泡樹脂組成物は柔らかくなり、加熱により伸びた金属板及び繊維強化樹脂組成物と共に伸びる。この発泡樹脂組成物の柔らかい状態は、完全に冷えて固まるまで保たれるため、金属板や繊維強化樹脂組成物が冷えて収縮した際にも該発泡樹脂組成物が追従し、線膨張係数の差による反りを生じることなく、硬化することができる。
Furthermore, when the foamed resin composition used in the production method of the present invention is heated, pores are generated inside and foamed. This foaming reaction can be promoted by performing a heat treatment at 140 ° C. to 230 ° C.
In such a temperature range, the foamed resin composition becomes soft and stretches together with the metal plate and the fiber reinforced resin composition stretched by heating. Since the soft state of the foamed resin composition is maintained until it is completely cooled and solidified, the foamed resin composition follows even when the metal plate or the fiber reinforced resin composition is cooled and contracted, and the linear expansion coefficient is reduced. It can be cured without causing warping due to the difference.

更にまた、発泡樹脂組成物は、金属や繊維強化樹脂組成物と接触するだけで粘着するものであるが、衝撃剪断強度を向上させるためには、加熱した後に冷却して硬化させることが有効である。
目安としては、140℃〜230℃で10〜30分間の加熱処理を行うことが適切である。140℃より低い温度では十分な発泡反応が起こりにくく、230℃より高温度では、発泡樹脂組成物が変性してしまい、十分な性能が得られないことがある。
Furthermore, the foamed resin composition adheres only to contact with a metal or fiber reinforced resin composition, but in order to improve the impact shear strength, it is effective to cool and cure after heating. is there.
As a guideline, it is appropriate to perform heat treatment at 140 to 230 ° C. for 10 to 30 minutes. When the temperature is lower than 140 ° C., a sufficient foaming reaction hardly occurs, and when the temperature is higher than 230 ° C., the foamed resin composition is denatured and sufficient performance may not be obtained.

なお、金属板/発泡樹脂組成物/繊維強化樹脂組成物の3層構造体において、発泡樹脂組成物を発泡させ3層を接合する際は、ネジ、ボルト、リベット、クリップなどの機械接合を併用して脱落を防止しても差し支えない。
また、金属板として車体鋼板を用いた車体部品を製造する際は、加熱発泡工程は、製造ラインでの電着塗装焼付け工程を利用できるため、新たな工程、設備投入の必要もなく、経済的となる。
In the three-layer structure of metal plate / foamed resin composition / fiber reinforced resin composition, when joining the three layers by foaming the foamed resin composition, mechanical joints such as screws, bolts, rivets, clips, etc. are also used. It is safe to prevent the dropout.
In addition, when manufacturing car body parts using car body steel plates as metal plates, the heating and foaming process can use the electrodeposition coating baking process on the production line, so there is no need for new processes and equipment input, making it economical. It becomes.

以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.

(実施例1)
ビスフェノールA型エポキシ樹脂(a)に、このエポキシ樹脂を100重量部とすると、繊維長2mm、繊維径10μmの炭素繊維(b)を5重量部、硬化剤(c)であるジシアンジアミドを11重量部、硬化触媒(d)であるアミンアダクト(エポキシ化合物付加ポリアミン)を6重量部、有機系発泡剤(e)であるアゾジカルボンアミドを6重量部、無機系充填剤(f)である珪酸カルシウムを130重量部、及び気泡防止剤(g)である酸化カルシウムを9重量部、プラネタリーミキサーを用いて室温で混合し、発泡樹脂組成物を調製した。
Example 1
When 100 parts by weight of this epoxy resin is added to bisphenol A type epoxy resin (a), 5 parts by weight of carbon fiber (b) having a fiber length of 2 mm and a fiber diameter of 10 μm, and 11 parts by weight of dicyandiamide as a curing agent (c) 6 parts by weight of amine adduct (epoxy compound-added polyamine) as curing catalyst (d), 6 parts by weight of azodicarbonamide as organic foaming agent (e), and calcium silicate as inorganic filler (f) 130 parts by weight and 9 parts by weight of calcium oxide as an anti-bubble agent (g) were mixed at room temperature using a planetary mixer to prepare a foamed resin composition.

鋼板(幅25mm、長さ250mm、厚さ0.7mm)に、上記発泡樹脂組成物を貼り付けた。この発泡樹脂組成物に対向するように、繊維強化樹脂組成物(幅25mm、長さ250mm、厚さ0.6mm)を、鋼板からの距離を20mmに保った状態で治具にて固定し、恒温槽にて150℃で30分間加熱し、エポキシ系発泡樹脂組成物を発泡、硬化させ、はみ出した部分をカッターナイフで切り落として、本例の金属樹脂複合構造体を得た。
なお、上記繊維強化樹脂組成物の構成は、強化繊維として炭素繊維(引張強度5GPa、弾性率230GPa、破断伸度1.5%)の織物、マトリックス樹脂としてエポキシ樹脂を使用し、予め硬化させておいたものである。
The foamed resin composition was attached to a steel plate (width 25 mm, length 250 mm, thickness 0.7 mm). Fix the fiber reinforced resin composition (width 25 mm, length 250 mm, thickness 0.6 mm) with a jig in a state where the distance from the steel plate is kept at 20 mm so as to face this foamed resin composition, The epoxy resin foamed resin composition was foamed and cured by heating at 150 ° C. for 30 minutes in a thermostatic bath, and the protruding part was cut off with a cutter knife to obtain a metal resin composite structure of this example.
In addition, the structure of the said fiber reinforced resin composition uses the woven fabric of carbon fiber (tensile strength 5GPa, elastic modulus 230GPa, breaking elongation 1.5%) as a reinforced fiber, uses an epoxy resin as a matrix resin, and makes it harden | cure beforehand. It is a thing.

(実施例2)
発泡樹脂組成物において、(b)成分として、繊維長2mm、繊維径10μmの炭素繊維1重量部用いたこと以外は、実施例1と同様の操作を繰返して、本例の金属樹脂複合構造体を得た。
(Example 2)
In the foamed resin composition, the same operation as in Example 1 was repeated except that 1 part by weight of carbon fiber having a fiber length of 2 mm and a fiber diameter of 10 μm was used as the component (b). Got.

(実施例3)
発泡樹脂組成物において、(b)成分として、繊維長2mm、繊維径10μmの炭素繊維20重量部用いたこと以外は、実施例1と同様の操作を繰返して、本例の金属樹脂複合構造体を得た。
(Example 3)
In the foamed resin composition, the same operation as in Example 1 was repeated except that 20 parts by weight of carbon fiber having a fiber length of 2 mm and a fiber diameter of 10 μm was used as the component (b). Got.

(実施例4)
鋼板と繊維強化樹脂組成物の距離を5mmに保った状態で治具にて固定したこと以外は、実施例1と同様の操作を繰返して、本例の金属樹脂複合構造体を得た。
Example 4
Except that the distance between the steel sheet and the fiber reinforced resin composition was fixed with a jig while maintaining a distance of 5 mm, the same operation as in Example 1 was repeated to obtain a metal resin composite structure of this example.

(実施例5)
繊維強化樹脂組成物の強化繊維に、ガラス繊維(引張強度3GPa、弾性率70GPa、破断伸度4%)の織物を用いたこと、発泡樹脂組成物の(b)成分として、繊維長2mm、繊維径17μmのガラス繊維を5重量部用いたこと以外は、実施例1と同様の操作を繰返して、本例の金属樹脂複合構造体を得た。
(Example 5)
Glass fiber (tensile strength 3 GPa, elastic modulus 70 GPa, elongation at break 4%) was used as the reinforcing fiber of the fiber reinforced resin composition, and the fiber length 2 mm, fiber as component (b) of the foamed resin composition Except for using 5 parts by weight of glass fiber having a diameter of 17 μm, the same operation as in Example 1 was repeated to obtain a metal resin composite structure of this example.

(実施例6)
繊維強化樹脂組成物の強化繊維に、高強力ポリアリレート繊維(引張強度3GPa、弾性率104GPa、破断伸度2.7%)の織物を用いたこと以外は、実施例1と同様の操作を繰返して、本例の金属樹脂複合構造体を得た。
(Example 6)
The same operation as in Example 1 was repeated, except that a high-strength polyarylate fiber (tensile strength 3 GPa, elastic modulus 104 GPa, elongation at break 2.7%) was used as the reinforcing fiber of the fiber-reinforced resin composition. Thus, a metal resin composite structure of this example was obtained.

(実施例7)
繊維強化樹脂組成物の強化繊維に、パラ型アラミド繊維(引張強度2.8GPa、弾性率109GPa、破断伸度2.4%)の織物を用いたこと以外は、実施例1と同様の操作を繰返して、本例の金属樹脂複合構造体を得た。
(Example 7)
The same operation as in Example 1 was performed except that a woven fabric of para-type aramid fiber (tensile strength 2.8 GPa, elastic modulus 109 GPa, breaking elongation 2.4%) was used as the reinforcing fiber of the fiber reinforced resin composition. The metal resin composite structure of this example was obtained by repeating.

(実施例8)
繊維強化樹脂組成物の強化繊維に、炭素繊維(引張強度5GPa、弾性率230GPa、破断伸度1.5%)を一方向に配置したものを用いたこと以外は、実施例1と同様の操作を繰返して、本例の金属樹脂複合構造体を得た。
(Example 8)
The same operation as in Example 1 except that a carbon fiber (tensile strength 5 GPa, elastic modulus 230 GPa, elongation at break 1.5%) was used in one direction as the reinforcing fiber of the fiber reinforced resin composition. Was repeated to obtain a metal-resin composite structure of this example.

(実施例9)
金属板に厚さ0.7mmのアルミニウム板を使用したこと以外は、実施例1と同様の操作を繰返して、本例の金属樹脂複合構造体を得た。
Example 9
Except that a 0.7 mm thick aluminum plate was used as the metal plate, the same operation as in Example 1 was repeated to obtain a metal resin composite structure of this example.

(比較例1)
鋼板(幅25mm、長さ250mm、厚さ0.7mm)に、エポキシ系室温硬化型接着材を塗布し、塗布厚さ1mmになるようスペーサー(ガラスビーズ使用)を入れ、その上から遷移強化樹脂組成物(幅25mm、長さ250mm、厚さ0.6mm)を貼り付け、クリップにて固定し、23℃にて2日間静置し硬化させ、本例の構造体を得た。
このとき使用した遷移強化樹脂組成物の構成は、実施例1と同様のものである。また、この時要した作業時間は、接着剤の調合に10分、塗布に5分、硬化に2日であった。
(Comparative Example 1)
Apply an epoxy room temperature curing adhesive to a steel plate (width 25 mm, length 250 mm, thickness 0.7 mm), and insert a spacer (using glass beads) to a coating thickness of 1 mm. A composition (25 mm in width, 250 mm in length, 0.6 mm in thickness) was applied, fixed with a clip, allowed to stand at 23 ° C. for 2 days and cured to obtain the structure of this example.
The structure of the transition reinforcing resin composition used at this time is the same as that of Example 1. The working time required at this time was 10 minutes for the preparation of the adhesive, 5 minutes for the application, and 2 days for the curing.

(比較例2)
鋼板(幅25mm、長さ250mm、厚さ0.7mm)に、エポキシ系加熱硬化型接着剤を塗布し、塗布厚さ1mmになるようスペーサー(ガラスビーズ使用)を入れ、その上から遷移強化樹脂組成物(幅25mm、長さ250mm、厚さ0.6mm)を貼り付け、クリップにて固定し、80℃にて60分間加熱し硬化させ、本例の構造体を得た。
このとき使用した繊維強化樹脂組成物の構成は、実施例1と同様のものである。
(Comparative Example 2)
Apply an epoxy-based thermosetting adhesive to a steel plate (width 25 mm, length 250 mm, thickness 0.7 mm), and insert a spacer (using glass beads) to a coating thickness of 1 mm. A composition (25 mm in width, 250 mm in length, 0.6 mm in thickness) was attached, fixed with a clip, and cured by heating at 80 ° C. for 60 minutes to obtain the structure of this example.
The structure of the fiber reinforced resin composition used at this time is the same as that of Example 1.

(比較例3)
鋼板と繊維強化樹脂組成物の距離を5mmに保った状態で治具にて固定し、恒温槽にて150℃で30分間加熱し、ウレタン系発泡樹脂組成物を発泡、硬化させたこと以外は、比較例1と同様の操作を繰返して、本例の構造体を得た。
(Comparative Example 3)
Except that the distance between the steel plate and the fiber reinforced resin composition was kept at 5 mm with a jig and heated at 150 ° C. for 30 minutes in a thermostatic bath to foam and cure the urethane-based foamed resin composition. The same operation as in Comparative Example 1 was repeated to obtain the structure of this example.

(比較例4)
鋼板と繊維強化樹脂組成物の距離を5mmに保った状態で治具にて固定し、恒温槽にて150℃で30分間過熱し、ポリプロピレン系発泡樹脂組成物(EPP:発泡ポリプロピレン)を発泡、硬化させたこと以外は、比較例1と同様の操作を繰返して、本例の構造体を得た。
(Comparative Example 4)
The distance between the steel sheet and the fiber reinforced resin composition is fixed with a jig while maintaining a distance of 5 mm, heated at 150 ° C. for 30 minutes in a thermostatic bath, and foamed polypropylene-based foamed resin composition (EPP: expanded polypropylene). Except for curing, the same operation as in Comparative Example 1 was repeated to obtain the structure of this example.

(比較例5)
鋼板(幅25mm、長さ250mm、厚さ0.7mm)の上から繊維強化樹脂組成物(幅25mm、長さ250mm、厚さ0.6mm)を配置し、長さ4mmのリベットにて2箇所接合し、本例の構造体を得た。
このとき使用した繊維強化樹脂組成物の構成は、実施例1と同様のものである。
(Comparative Example 5)
A fiber reinforced resin composition (width 25 mm, length 250 mm, thickness 0.6 mm) is placed on the steel plate (width 25 mm, length 250 mm, thickness 0.7 mm), and two places with 4 mm length rivets The structure of this example was obtained by bonding.
The structure of the fiber reinforced resin composition used at this time is the same as that of Example 1.

実施例及び比較例で得た構造体について、以下の4つの評価を行った。結果一覧を表2に示す。   The following four evaluations were performed on the structures obtained in the examples and comparative examples. Table 2 shows the result list.

(1)硬化後のそり
本鋼板/C繊維強化樹脂組成物部材を平面上に置き、硬化後のそり高さをノギスにて計測した。測定箇所の詳細を図4に示す。
硬化後の変形量が、試験片長さの0.2%未満であるときを◎、0.2%以上0.5%未満であるとき○、それ以上を×として評価した。
(1) Warpage after curing The steel plate / C fiber reinforced resin composition member was placed on a flat surface, and the height of the warp after curing was measured with calipers. The details of the measurement location are shown in FIG.
When the amount of deformation after curing was less than 0.2% of the length of the test piece, it was evaluated as ◎, when it was 0.2% or more and less than 0.5%, ○ was evaluated as x.

(2)曲げ弾性
本鋼板/C繊維強化樹脂組成物部材を用いて、3点曲げ試験を行った。なお、3点曲げ試験は、JIS K7171に準じて測定した。
強度については、0.7mm鋼板の曲げ強度の2倍より大きい強度を有するものを◎、0.7mm鋼板の曲げ強度の1倍より大きく2倍以下の強度を有するものを○、10mm曲げたときに試験片が座屈したものを△、10mm曲げたときに試験片が剥がれたものを×として評価した。
弾性については、曲げ試験測定値の弾性域における傾きが、0.7mmの鋼板の2倍より大きいものを◎、1倍より大きく2倍以下を○、0.7mmの鋼板とほぼ同等のものを△、0.7mmの鋼板より小さい場合を×として評価した。
(2) Flexural elasticity Using this steel plate / C fiber reinforced resin composition member, a three-point bending test was conducted. The three-point bending test was measured according to JIS K7171.
As for the strength, when the bending strength of the 0.7 mm steel plate is greater than twice the bending strength, ◎, when the bending strength of the 0.7 mm steel plate is greater than 1 time and less than 2 times, the bending strength is 10 mm. When the test piece was buckled, Δ was evaluated as x when the test piece was peeled off when bent by 10 mm.
For elasticity, the inclination in the elastic range of the bending test measurement value is greater than twice that of a 0.7 mm steel sheet, ◎ greater than 1 time, less than 2 times less, and approximately the same as a 0.7 mm steel sheet. Δ, the case smaller than 0.7 mm steel plate was evaluated as x.

(3)シャルピー衝撃
本鋼板/C繊維強化樹脂組成物部材を用いて、シャルピー衝撃試験を行った。なお、シャルピー衝撃試験は、JIS K7111に準じて測定した。
試験は、鋼板面よりハンマー入射をする形で実施した。このときの試験後の試験片の状態が、変形あるいは剥がれのないものを◎、変形がわずかに見られるが剥がれのないものを○、変形が大きいが剥がれのないものを△、変形及び剥がれがあるものを×として評価した。
(3) Charpy impact The Charpy impact test was done using this steel plate / C fiber reinforced resin composition member. The Charpy impact test was measured according to JIS K7111.
The test was conducted in the form of hammer incidence from the steel plate surface. The state of the test piece after the test at this time is ◎ if there is no deformation or peeling, ○ if there is a slight deformation but no peeling, △ if there is a large deformation but no peeling, and deformation and peeling. Some were evaluated as x.

(4)総合評価
すべての試験結果において◎又は○のみ、あるいは△が2個以下のときを○、△が3個以上あるとき又は×が1つでもあるときを×として評価した。
(4) Comprehensive evaluation In all the test results, ◎ or ○ alone, or when Δ was 2 or less, ○, when there were 3 or more Δ, or when there was at least 1 ×, were evaluated as ×.

Figure 2007196545
Figure 2007196545

Figure 2007196545
Figure 2007196545

表1及び表2に示した結果から明らかなように、実施例1〜9の金属樹脂複合構造体は、いずれも比較例2に対し、成型後のそりが生じないことで優れていた。
また、強度・衝撃特性は、金属樹脂複合構造体としての要求性能を満足することがわかる。
更に、実施例1と比較例3の結果より、発泡樹脂組成物がウレタン系では、そりは妨げるものの、十分な強度が得られず、また衝撃性能も低い。
更にまた、ポリプロピレン系やボルト接合では、いっそう強度・衝撃特性が低下する。よって、本発明で規定するエポキシ系の発泡樹脂組成物を使用すると十分な強度・衝撃性能が得られることがわかる。
As is clear from the results shown in Tables 1 and 2, the metal resin composite structures of Examples 1 to 9 were all superior to Comparative Example 2 in that no warpage occurs after molding.
Further, it can be seen that the strength and impact characteristics satisfy the required performance as a metal resin composite structure.
Furthermore, from the results of Example 1 and Comparative Example 3, when the foamed resin composition is urethane, warping is prevented but sufficient strength cannot be obtained and impact performance is low.
Furthermore, the strength and impact characteristics are further deteriorated in polypropylene and bolted joints. Therefore, it is understood that sufficient strength and impact performance can be obtained when the epoxy foamed resin composition defined in the present invention is used.

本発明の金属樹脂複合構造体は、建材、家屋等の構造物や、自動車、鉄道車両等の輸送機器などに好適に適用できる。   The metal resin composite structure of the present invention can be suitably applied to structures such as building materials and houses, and transportation equipment such as automobiles and railway vehicles.

本発明の金属樹脂複合構造体の一例を示す概略図である。It is the schematic which shows an example of the metal resin composite structure of this invention. 本発明を車体に適用する際の、適用可能場所を示した図である。It is the figure which showed the applicable place at the time of applying this invention to a vehicle body. 本発明の発泡体加熱時に取り付けた治具の概略図である。It is the schematic of the jig | tool attached when the foam of this invention was heated. 本発明を評価する試験の様子の概略図である。It is the schematic of the mode of the test which evaluates this invention.

符号の説明Explanation of symbols

A:金属板
B:繊維強化樹脂組成物
C:発泡樹脂組成物
D:補強繊維
E:マトリックス樹脂
F:加熱発泡時に使用する固定治具
G:ドア
H:バンパー
I:ダッシュ
A: Metal plate B: Fiber reinforced resin composition C: Foamed resin composition D: Reinforcing fiber E: Matrix resin F: Fixing jig used during heating and foaming G: Door H: Bumper I: Dash

Claims (13)

金属板と繊維強化樹脂組成物が、発泡樹脂組成物を介して接合されている3層の金属樹脂複合構造体であって、
上記発泡樹脂組成物は、エポキシ樹脂100重量部に対して、繊維長1〜3mm、繊維径5〜20μmの炭素繊維及び/又はガラス繊維を2〜30重量部、エポキシ樹脂用熱活性型硬化剤を3〜30重量部、エポキシ樹脂用熱活性型硬化触媒を0.5〜15重量部、熱分解型有機系発泡剤を0.5〜15重量部、アスペクト比が2:1以上の無機系充填剤を50〜200重量部、気泡防止剤を2〜15重量部、含んで成ることを特徴とする金属樹脂複合構造体。
The metal plate and the fiber reinforced resin composition is a three-layer metal resin composite structure joined through a foamed resin composition,
The foamed resin composition comprises 2 to 30 parts by weight of a carbon fiber and / or glass fiber having a fiber length of 1 to 3 mm and a fiber diameter of 5 to 20 μm with respect to 100 parts by weight of the epoxy resin. 3 to 30 parts by weight, 0.5 to 15 parts by weight of thermally activated curing catalyst for epoxy resin, 0.5 to 15 parts by weight of thermally decomposable organic foaming agent, and an inorganic system having an aspect ratio of 2: 1 or more A metal-resin composite structure comprising 50 to 200 parts by weight of a filler and 2 to 15 parts by weight of an anti-bubble agent.
上記発泡樹脂組成物のエポキシ樹脂は、ビスフェノール型であることを特徴とする金属樹脂複合構造体。   The epoxy resin of the foamed resin composition is a bisphenol type metal resin composite structure. 上記発泡樹脂組成物の板厚に対して、上記金属板の板厚が0.02〜0.5倍、上記繊維強化樹脂組成物の板厚が0.02〜1.0倍であることを特徴とする請求項1又は2に記載の金属樹脂複合構造体。   The plate thickness of the metal plate is 0.02 to 0.5 times the plate thickness of the foamed resin composition, and the plate thickness of the fiber reinforced resin composition is 0.02 to 1.0 times. The metal resin composite structure according to claim 1 or 2, characterized in that 上記発泡樹脂組成物は、比重が0.3〜0.8g/cmであることを特徴とする請求項1〜3のいずれか1つの項に記載の金属樹脂複合構造体。 4. The metal resin composite structure according to claim 1, wherein the foamed resin composition has a specific gravity of 0.3 to 0.8 g / cm 3 . 上記金属板が鋼板又はアルミニウム板であることを特徴とする請求項1〜4のいずれか1つの項に記載の金属樹脂複合構造体。   The metal resin composite structure according to any one of claims 1 to 4, wherein the metal plate is a steel plate or an aluminum plate. 上記繊維強化樹脂組成物が補強繊維成分とマトリックス樹脂成分とから構成され、該補強繊維成分は、炭素繊維、黒鉛繊維、炭化ケイ素繊維、アルミナ繊維、ボロン繊維、タングステンカーバイド繊維、ガラス繊維、全芳香族ポリエステル繊維、ポリエチレンテレフタレート繊維、ポリエチレン−2,6−ナフタレート繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、パラ型アラミド繊維、メタ型アラミド繊維、ポリフェニレンサルファイド繊維、ポリアミド繊維、ポリイミド繊維、ポリプロピレン繊維、ポリアセタール繊維、超高分子量ポリエチレン繊維、ポリアクリロニトリル繊維及びセルロース系繊維から成る群より選ばれた少なくとも1種のものであり、連続繊維であることを特徴とする請求項1〜5のいずれか1つの項に記載の金属樹脂複合構造体。   The fiber reinforced resin composition is composed of a reinforcing fiber component and a matrix resin component, and the reinforcing fiber component includes carbon fiber, graphite fiber, silicon carbide fiber, alumina fiber, boron fiber, tungsten carbide fiber, glass fiber, total aroma. Group polyester fiber, polyethylene terephthalate fiber, polyethylene-2,6-naphthalate fiber, polyparaphenylene benzobisoxazole fiber, para type aramid fiber, meta type aramid fiber, polyphenylene sulfide fiber, polyamide fiber, polyimide fiber, polypropylene fiber, polyacetal fiber Or at least one selected from the group consisting of ultra high molecular weight polyethylene fiber, polyacrylonitrile fiber and cellulosic fiber, and is a continuous fiber. Metal-resin composite structure of mounting. 上記補強繊維成分は、織物又は一方向に配設されていることを特徴とする請求項6に記載の金属樹脂複合構造体。   The metal-resin composite structure according to claim 6, wherein the reinforcing fiber component is disposed in a woven fabric or in one direction. 上記繊維強化樹脂組成物のマトリックス樹脂成分は、エポキシ樹脂、フェノール樹脂、ビニルエステル樹脂、ウレタン樹脂、不飽和ポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミノアミド樹脂、ポリエーテルサルフォン樹脂、ポリエーテルエーテルケトン樹脂、ナイロン樹脂、ポリアセタール樹脂、ポリカーボネート樹脂及びポリアミドイミド樹脂から成る群より選ばれた少なくとも1種のものであることを特徴とする請求項6又は7に記載の金属樹脂複合構造体。   The matrix resin component of the fiber reinforced resin composition includes epoxy resin, phenol resin, vinyl ester resin, urethane resin, unsaturated polyester resin, polyethylene resin, polypropylene resin, polyamide resin, polyimide resin, polyaminoamide resin, and polyethersulfone. 8. The metal resin composite according to claim 6, wherein the metal resin composite is at least one selected from the group consisting of a resin, a polyether ether ketone resin, a nylon resin, a polyacetal resin, a polycarbonate resin, and a polyamideimide resin. Structure. 請求項1〜8のいずれか1つの項に記載の金属樹脂複合構造体を用いた自動車用車体構造であって、
該金属板が車体鋼板であることを特徴とする自動車用車体構造。
A vehicle body structure using the metal resin composite structure according to any one of claims 1 to 8,
A vehicle body structure for an automobile, wherein the metal plate is a vehicle body steel plate.
請求項1〜8のいずれか1つの項に記載の金属樹脂複合構造体を製造するに当たり、
金属板又は繊維強化樹脂組成物の上に発泡体樹脂組成物を配設し、更に繊維強化樹脂組成物又は金属板を配設した後に、該発泡樹脂組成物を発泡させ硬化させることを特徴とする金属樹脂複合構造体の製造方法。
In producing the metal resin composite structure according to any one of claims 1 to 8,
Disposing a foam resin composition on a metal plate or a fiber reinforced resin composition, further disposing a fiber reinforced resin composition or a metal plate, and then foaming and curing the foam resin composition A method for producing a metal resin composite structure.
金属板、発泡体樹脂組成物及び繊維強化樹脂組成物を3層構造に形成した後に、該金属板と繊維強化樹脂組成物との距離を一定に保持しながら、該発泡樹脂組成物を発泡させ硬化させることを特徴とする請求項10に記載の金属樹脂複合構造体の製造方法。   After forming the metal plate, the foam resin composition and the fiber reinforced resin composition into a three-layer structure, the foamed resin composition is foamed while keeping the distance between the metal plate and the fiber reinforced resin composition constant. The method for producing a metal resin composite structure according to claim 10, wherein the metal resin composite structure is cured. 上記発泡樹脂組成物を、140〜230℃、10〜30分間の加熱処理により発泡させることを特徴とする請求項10又は11に記載の金属樹脂複合構造体の製造方法。   The method for producing a metal resin composite structure according to claim 10 or 11, wherein the foamed resin composition is foamed by a heat treatment at 140 to 230 ° C for 10 to 30 minutes. 金属板、発泡体樹脂組成物及び繊維強化樹脂組成物を3層構造に形成した後に、該金属板に電着塗装処理を行い、この処理の焼付け工程で該発泡樹脂組成物を発泡させることを特徴とする請求項10〜12のいずれか1つの項に記載の金属樹脂複合構造体の製造方法。   After forming the metal plate, the foam resin composition and the fiber reinforced resin composition into a three-layer structure, the metal plate is subjected to an electrodeposition coating treatment, and the foamed resin composition is foamed in the baking step of this treatment. The method for producing a metal-resin composite structure according to any one of claims 10 to 12,
JP2006018588A 2006-01-27 2006-01-27 Metal-resin composite structure and its manufacturing method Pending JP2007196545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006018588A JP2007196545A (en) 2006-01-27 2006-01-27 Metal-resin composite structure and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006018588A JP2007196545A (en) 2006-01-27 2006-01-27 Metal-resin composite structure and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007196545A true JP2007196545A (en) 2007-08-09

Family

ID=38451621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006018588A Pending JP2007196545A (en) 2006-01-27 2006-01-27 Metal-resin composite structure and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007196545A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090576A (en) * 2007-10-10 2009-04-30 Mino Kogyo Kk Molding member
JP2009172950A (en) * 2008-01-28 2009-08-06 Mitsubishi Electric Corp Composite material sheet and composite component equipped therewith
CN103373833A (en) * 2013-07-05 2013-10-30 燕山大学 Preparation method of aluminum oxide-polyvinylidene fluoride-aluminum silicate ceramic fiber flame-retardant heat preservation composite material
CN103481590A (en) * 2012-06-12 2014-01-01 明安国际企业股份有限公司 Production method of fiber reinforced product capable of preventing electromagnetic wave interference
KR101536448B1 (en) * 2013-12-12 2015-07-13 주식회사 포스코 Resin Composition For Coating Steel Sheet With Improved Printability, Coated Steel Sheet Using The Same And Method For Manufacturing Thereof
JP2015160524A (en) * 2014-02-27 2015-09-07 本田技研工業株式会社 Vehicle body structure
JP2015527226A (en) * 2012-07-10 2015-09-17 ティッセンクルップ スチール ヨーロッパ アーゲーThyssenkrupp Steel Europe Ag Sandwich sheet metal and manufacturing method thereof
JP2016070389A (en) * 2014-09-30 2016-05-09 積水化成品工業株式会社 Vibration-damping structure and vibration-damping material
CN106183262A (en) * 2016-08-31 2016-12-07 唐山博泰安新材料科技有限公司 A kind of structural material plate and preparation method thereof
JP2017507807A (en) * 2014-02-10 2017-03-23 バイエリシエ・モトーレンウエルケ・アクチエンゲゼルシヤフト Method of manufacturing composite part and composite part
JP2017071106A (en) * 2015-10-06 2017-04-13 積水化学工業株式会社 Resin laminate
CN111005286A (en) * 2019-11-28 2020-04-14 安徽省交通控股集团有限公司 Whole car formula weighing equipment steel sheet mesa polymer of highway is compound to be paved structure
JPWO2021066183A1 (en) * 2019-10-04 2021-04-08
CN113646164A (en) * 2019-04-02 2021-11-12 日本制铁株式会社 Metal-carbon fiber reinforced resin material composite
CN114230975A (en) * 2021-12-29 2022-03-25 钱清廉 Light anti-scorching conductive shielding material and preparation method thereof
KR20220116189A (en) 2019-12-25 2022-08-22 미쯔비시 케미컬 주식회사 Laminate and manufacturing method thereof, and exterior material for automobiles
WO2023143040A1 (en) * 2022-01-28 2023-08-03 比亚迪股份有限公司 Protective plate for battery pack, battery pack, and vehicle

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090576A (en) * 2007-10-10 2009-04-30 Mino Kogyo Kk Molding member
JP2009172950A (en) * 2008-01-28 2009-08-06 Mitsubishi Electric Corp Composite material sheet and composite component equipped therewith
CN103481590A (en) * 2012-06-12 2014-01-01 明安国际企业股份有限公司 Production method of fiber reinforced product capable of preventing electromagnetic wave interference
JP2015527226A (en) * 2012-07-10 2015-09-17 ティッセンクルップ スチール ヨーロッパ アーゲーThyssenkrupp Steel Europe Ag Sandwich sheet metal and manufacturing method thereof
CN103373833A (en) * 2013-07-05 2013-10-30 燕山大学 Preparation method of aluminum oxide-polyvinylidene fluoride-aluminum silicate ceramic fiber flame-retardant heat preservation composite material
KR101536448B1 (en) * 2013-12-12 2015-07-13 주식회사 포스코 Resin Composition For Coating Steel Sheet With Improved Printability, Coated Steel Sheet Using The Same And Method For Manufacturing Thereof
US10773463B2 (en) 2014-02-10 2020-09-15 Bayerische Motoren Werke Aktiengesellschaft Method for producing a composite part, and composite part
JP2017507807A (en) * 2014-02-10 2017-03-23 バイエリシエ・モトーレンウエルケ・アクチエンゲゼルシヤフト Method of manufacturing composite part and composite part
JP2015160524A (en) * 2014-02-27 2015-09-07 本田技研工業株式会社 Vehicle body structure
JP2016070389A (en) * 2014-09-30 2016-05-09 積水化成品工業株式会社 Vibration-damping structure and vibration-damping material
JP2017071106A (en) * 2015-10-06 2017-04-13 積水化学工業株式会社 Resin laminate
CN106183262A (en) * 2016-08-31 2016-12-07 唐山博泰安新材料科技有限公司 A kind of structural material plate and preparation method thereof
CN113646164A (en) * 2019-04-02 2021-11-12 日本制铁株式会社 Metal-carbon fiber reinforced resin material composite
CN113646164B (en) * 2019-04-02 2023-06-06 日本制铁株式会社 Metal-carbon fiber reinforced resin material composite
JPWO2021066183A1 (en) * 2019-10-04 2021-04-08
WO2021066183A1 (en) * 2019-10-04 2021-04-08 日本製鉄株式会社 Metal-(fiber-reinforced resin material) complex, metal-(fiber-reinforced resin) complex unit, method for producing metal-(fiber-reinforced resin material) complex, and automotive component
EP4039462A4 (en) * 2019-10-04 2022-11-02 Nippon Steel Corporation Metal-(fiber-reinforced resin material) complex, metal-(fiber-reinforced resin) complex unit, method for producing metal-(fiber-reinforced resin material) complex, and automotive component
JP7188613B2 (en) 2019-10-04 2022-12-13 日本製鉄株式会社 Metal-fiber reinforced resin material composite, metal-fiber reinforced resin composite unit, method for manufacturing metal-fiber reinforced resin material composite, and automobile part
US11964699B2 (en) 2019-10-04 2024-04-23 Nippon Steel Corporation Metal - fiber reinforced plastic composite, metal - fiber reinforced plastic composite unit, method of production of metal - fiber reinforced plastic composite, and auto part
CN111005286A (en) * 2019-11-28 2020-04-14 安徽省交通控股集团有限公司 Whole car formula weighing equipment steel sheet mesa polymer of highway is compound to be paved structure
KR20220116189A (en) 2019-12-25 2022-08-22 미쯔비시 케미컬 주식회사 Laminate and manufacturing method thereof, and exterior material for automobiles
CN114230975A (en) * 2021-12-29 2022-03-25 钱清廉 Light anti-scorching conductive shielding material and preparation method thereof
WO2023143040A1 (en) * 2022-01-28 2023-08-03 比亚迪股份有限公司 Protective plate for battery pack, battery pack, and vehicle

Similar Documents

Publication Publication Date Title
JP2007196545A (en) Metal-resin composite structure and its manufacturing method
US11873428B2 (en) Thermosetting adhesive films
JP5082030B2 (en) Improvements in or related to composite materials
EP1940653B1 (en) Panel structure
US20090269547A1 (en) Repair of honeycomb structures
US5151327A (en) Adhesive sheet for reinforcing thin rigid plates
US8105460B2 (en) Handling layer and adhesive parts formed therewith
US20070095475A1 (en) Adhesive material and method of using same
JP5023498B2 (en) Resin composition for prepreg sheet and prepreg sheet
JPH11170417A (en) Laminate structural bulkhead
JP2005513226A (en) Expandable epoxy resin system modified with thermoplastic polymer
US10279514B2 (en) Relating to foam filled honeycomb structures
EP2671716A1 (en) Low density composite materials, their production and use
US20080060757A1 (en) Multiple or single stage cure adhesive material and method of use
JP2013504460A (en) Improvement of cavity filler
WO2009112259A1 (en) Edging system for panels having a cellular structure, particularly for honeycomb panels
JP3087393B2 (en) Panel reinforcing sheet material and vehicle outer panel structure using the same
WO2019198672A1 (en) T-shaped joint structure
US20150197068A1 (en) Method of making composite materials
JPS58136435A (en) Laminating reinforcing material
JP6943646B2 (en) Method for manufacturing restrictive damping material and restrictive damping material
JP2019503281A (en) Improvements in or related to fiber reinforced composites
WO2020223053A1 (en) Bilayer reinforcement structures
Cantwell et al. The impact behavior of composites and sandwich structures