JP2007194559A - Compound photoelectric conversion element, and method for manufacturing same - Google Patents

Compound photoelectric conversion element, and method for manufacturing same Download PDF

Info

Publication number
JP2007194559A
JP2007194559A JP2006013816A JP2006013816A JP2007194559A JP 2007194559 A JP2007194559 A JP 2007194559A JP 2006013816 A JP2006013816 A JP 2006013816A JP 2006013816 A JP2006013816 A JP 2006013816A JP 2007194559 A JP2007194559 A JP 2007194559A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
semiconductor layer
conversion element
substrate
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006013816A
Other languages
Japanese (ja)
Inventor
Hisahiro Ando
寿浩 安藤
Kiyoharu Nakagawa
清晴 中川
Mika Gamo
美香 蒲生
Shusuke Gamo
秀典 蒲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Toppan Inc
Original Assignee
National Institute for Materials Science
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Toppan Printing Co Ltd filed Critical National Institute for Materials Science
Priority to JP2006013816A priority Critical patent/JP2007194559A/en
Publication of JP2007194559A publication Critical patent/JP2007194559A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compound photoelectric conversion element exhibiting high conversion efficiency and high carrier transportation efficiency which can be manufactured inexpensively, and to provide a method for manufacturing the compound photoelectric conversion element. <P>SOLUTION: This compound photoelectric conversion element is provided with a substrate, a first electrode formed on the substrate; an n-type semiconductor layer formed on the first electrode, and oriented vertically to the substrate, in which nano carbon materials are included; a p-type organic semiconductor layer formed on the n-type semiconductor layer; and a second electrode formed on the p-type organic semiconductor layer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、紫外線、可視光線、近赤外線を含む太陽光、すなわちフォトンの入射により起電力を生ずる太陽電池や光センサ等の光電変換素子であって、特に、無機半導体と有機半導体をそれぞれ異種キャリアの生成層に用いた無機/有機積層(ヘテロ接合)型の複合光電変換素子及びその製造方法に関するものである。   The present invention relates to a photoelectric conversion element such as a solar cell or an optical sensor that generates an electromotive force when sunlight including ultraviolet rays, visible rays, or near-infrared rays, that is, photons, in particular, an inorganic semiconductor and an organic semiconductor are respectively different carriers. The present invention relates to an inorganic / organic multilayer (heterojunction) type composite photoelectric conversion element used for the generation layer and a method for producing the same.

石油資源の枯渇や地球温暖化といったエネルギー問題及び環境問題の解決策の一つとして、光電変換素子の一種である太陽電池が注目されている。このような太陽電池としては、現在、単結晶シリコン、多結晶シルコン、アモルファスシリコンを用いたシリコン型太陽電池が主流であるが、シリコン系太陽電池は、製造コストが高く、また、製造のために消費される電力が大きく、そのため、真にエネルギー問題及び環境問題を解決し得る切り札となるには、未だ課題が多い。   As one of solutions for energy problems and environmental problems such as the depletion of petroleum resources and global warming, a solar cell which is a kind of photoelectric conversion element has attracted attention. Currently, silicon solar cells using single crystal silicon, polycrystalline silcon, and amorphous silicon are the mainstream as such solar cells, but silicon-based solar cells are expensive to manufacture and for production purposes. The power consumed is large, so there are still many issues to become a trump card that can truly solve energy problems and environmental problems.

そこで、シリコンの代わりに、低コストで製造可能な有機化合物を用いる技術が提案され、近年、活発な研究開発が進められている。   Therefore, a technique using an organic compound that can be manufactured at low cost instead of silicon has been proposed, and active research and development has been promoted in recent years.

有機化合物を用いた太陽電池、すなわち有機太陽電池として、p型有機半導体と、仕事関数の小さい金属とのショットキー障壁を利用したものがある。また、p型有機半導体とn型有機半導体とのpn接合を利用したpn接合型有機太陽電池も提案されている。   As a solar cell using an organic compound, that is, an organic solar cell, there is one using a Schottky barrier between a p-type organic semiconductor and a metal having a small work function. A pn junction type organic solar cell using a pn junction between a p type organic semiconductor and an n type organic semiconductor has also been proposed.

このようなpn接合型有機太陽電池としては、p型有機半導体である銅フタロシアニンとn型有機半導体であるペリレン誘導体とを用いたものが知られている(例えば、非特許文献1参照)。   As such a pn junction type organic solar cell, one using a copper phthalocyanine which is a p-type organic semiconductor and a perylene derivative which is an n-type organic semiconductor is known (for example, see Non-Patent Document 1).

しかしながら、このようなpn接合型有機太陽電池は、エネルギー変換効率が0.01%以下と非常に低く、また有機半導体でn型半導体となる材料が希少であるため、改良のための材料の自由度が少ないという問題がある。   However, such a pn junction type organic solar cell has a very low energy conversion efficiency of 0.01% or less, and a material that becomes an n-type semiconductor as an organic semiconductor is rare. There is a problem that the degree is low.

一方、近年、n型半導体としてフラーレンを用い、p型有機半導体とポリマーブレンドした有機太陽電池が報告され、エネルギー変換効率3%が得られている(例えば、非特許文献2参照)。   On the other hand, in recent years, an organic solar cell using fullerene as an n-type semiconductor and polymer blended with a p-type organic semiconductor has been reported, and an energy conversion efficiency of 3% has been obtained (for example, see Non-Patent Document 2).

しかしながら、フラーレジは未だ工業的な生産プロセスが確立されておらず、高純度の材料の入手が困難であるのが実情である。
C.W.Tang、Appl,PhyE Lett.48(2)1 8 3 (1986)。 G.Yu,J.Gao,J.C.Hummelen,F.Wudl and A.J.Heeger,SCIENCE,270,1789(1995)。
However, fullerage has not yet established an industrial production process, and it is difficult to obtain high-purity materials.
C. W. Tang, Appl, PhyE Lett. 48 (2) 1 8 3 (1986). G. Yu, J .; Gao, J .; C. Hummelen, F.M. Wudl and A.W. J. et al. Heeger, SCIENCE, 270, 1789 (1995).

本発明は、以上のような事情の下になされ、高い変換効率及びキャリアの輸送効率を示し、低コストで製造可能な複合光電変換素子及びその製造方法を提供することを目的とする。   The present invention has been made under the circumstances as described above, and an object of the present invention is to provide a composite photoelectric conversion element that exhibits high conversion efficiency and carrier transport efficiency and can be manufactured at low cost, and a method for manufacturing the same.

上記課題を解決するため、本発明は、基体と、この基体上に形成された第1の電極と、この第1の電極上に形成され、前記基体に対し垂直に配向した、ナノカーボン材料を含むn型半導体層と、このn型半導体層上に形成されたp型有機半導体層と、このp型有機半導体層上に形成された第2の電極とを具備することを特徴とする複合光電変換素子を提供する。   In order to solve the above problems, the present invention provides a substrate, a first electrode formed on the substrate, and a nanocarbon material formed on the first electrode and oriented perpendicularly to the substrate. A composite photoelectric sensor comprising: an n-type semiconductor layer including the p-type organic semiconductor layer formed on the n-type semiconductor layer; and a second electrode formed on the p-type organic semiconductor layer. A conversion element is provided.

このように、n型半導体層として基体に対し垂直に配向したナノカーボン材料を含む層を用い、p型有機半導体とのpn接合を形成することにより、Donor/Acceptor(D/A)ネットワークを有する、無機/有機複合光電変換素子を得ることができる。   In this way, a layer containing a nanocarbon material oriented perpendicular to the substrate is used as the n-type semiconductor layer, and a pn junction is formed with the p-type organic semiconductor, thereby having a Donor / Acceptor (D / A) network. An inorganic / organic composite photoelectric conversion element can be obtained.

以上のように構成される本発明の複合光電変換素子において、ナノカーボン材料としては、カーボンナノチューブ、カーボンナノホーン、及びカーボンナノフィラメントからなる群から選ばれた少なくとも1種を用いることができる。   In the composite photoelectric conversion device of the present invention configured as described above, as the nanocarbon material, at least one selected from the group consisting of carbon nanotubes, carbon nanohorns, and carbon nanofilaments can be used.

また、本発明は、基体上に第1の電極を形成する工程、前記第1の電極上に、化学的成長法により、ナノカーボン材料を含むn型半導体層を形成する工程、前記n型半導体層上に、p型有機半導体層を形成する工程、及び前記p型有機半導体層上に第2の電極を形成する工程を具備することを特徴とする複合光電変換素子の製造方法を提供する。   The present invention also includes a step of forming a first electrode on a substrate, a step of forming an n-type semiconductor layer containing a nanocarbon material on the first electrode by a chemical growth method, and the n-type semiconductor. There is provided a method for producing a composite photoelectric conversion element comprising a step of forming a p-type organic semiconductor layer on a layer and a step of forming a second electrode on the p-type organic semiconductor layer.

以上のように構成される本発明の複合光電変換素子の製造方法において、化学的成長法として、固液平衡化学的成長法を用いることができる。固液平衡化学的成長法によると、n型半導体層として高配向のナノカーボン材料を含む層を低温で得ることができ、またこのようなn型半導体層を用いた複合光電変換素子を低コストで製造することができる。   In the method for producing a composite photoelectric conversion element of the present invention configured as described above, a solid-liquid equilibrium chemical growth method can be used as the chemical growth method. According to the solid-liquid equilibrium chemical growth method, a layer containing a highly oriented nanocarbon material can be obtained at a low temperature as an n-type semiconductor layer, and a composite photoelectric conversion element using such an n-type semiconductor layer can be manufactured at low cost. Can be manufactured.

本発明によると、n型無機半導体とp型有機半導体とのpn接合を用いて無機/有機複合光電変換素子を構成するに際し、n型無機半導体として、基板に対し垂直方向に配向した高配向のナノカーボン材料を用いることにより、(D/A)ネットワークの表面積の増加により、高い変換効率及びキャリアの輸送効率を示す光電変換素子を得ることが可能である。特に、高配向のナノカーボン材料の成膜を固液平衡化学的成長法を用いて行うことにより、低温での成膜が可能であり、選択される基板の自由度を大幅に上げることができ、光電変換素子を低コストで製造することができる。   According to the present invention, when an inorganic / organic composite photoelectric conversion element is configured using a pn junction of an n-type inorganic semiconductor and a p-type organic semiconductor, the n-type inorganic semiconductor is a highly oriented material oriented in a direction perpendicular to the substrate. By using the nanocarbon material, it is possible to obtain a photoelectric conversion element exhibiting high conversion efficiency and carrier transport efficiency by increasing the surface area of the (D / A) network. In particular, highly oriented nanocarbon materials can be deposited using solid-liquid equilibrium chemical growth, enabling deposition at low temperatures and greatly increasing the degree of freedom of the selected substrate. The photoelectric conversion element can be manufactured at a low cost.

以下、発明を実施するための最良の形態について説明する。   The best mode for carrying out the invention will be described below.

図1は、本発明の一実施形態に係る複合光電変換素子を示す断面図である。図1において、絶縁基板11上に、下部電極12、ナノカーボン材料を含むn型半導体層13、p型有機半導体層14、及び上部電極15が順次積層されて、複合光電変換素子が構成される。   FIG. 1 is a cross-sectional view showing a composite photoelectric conversion element according to an embodiment of the present invention. In FIG. 1, a lower electrode 12, an n-type semiconductor layer 13 containing a nanocarbon material, a p-type organic semiconductor layer 14, and an upper electrode 15 are sequentially stacked on an insulating substrate 11 to form a composite photoelectric conversion element. .

図1に示す複合光電変換素子において、絶縁基板11としては、ガラス基板、シリコン単結晶基板、プラスチック基板、セラミック基板等を用いることができる。特に、後述する固液平衡化学的成長法を用いてナノカーボン材料を含むn型半導体層13を成膜する場合には、低温での成膜が可能であるため、高温に耐えることができないガラス基板、プラスチック基板を用いることが可能である。   In the composite photoelectric conversion element shown in FIG. 1, as the insulating substrate 11, a glass substrate, a silicon single crystal substrate, a plastic substrate, a ceramic substrate, or the like can be used. In particular, when an n-type semiconductor layer 13 containing a nanocarbon material is formed using a solid-liquid equilibrium chemical growth method described later, glass that cannot withstand high temperatures can be formed at low temperatures. A substrate or a plastic substrate can be used.

下部電極12としては、アルミニウムや銀等の光を反射する金属が使用される。また、n型半導体層13を構成するナノカーボンとしては、カーボンナノチューブ、カーボンナノホーン、及びカーボンナノフィラメントを挙げることができる。n型半導体層13の膜厚は、100nm〜10μmであるのが望ましい。   As the lower electrode 12, a metal that reflects light such as aluminum or silver is used. Examples of the nanocarbon constituting the n-type semiconductor layer 13 include carbon nanotubes, carbon nanohorns, and carbon nanofilaments. The film thickness of the n-type semiconductor layer 13 is desirably 100 nm to 10 μm.

p型有機半導体層14を構成するp型有機半導体としては、ポリチオフェン誘導体等を用いることができる。p型有機半導体層14の膜厚は、10nm〜10μmであるのが望ましい。   A polythiophene derivative or the like can be used as the p-type organic semiconductor constituting the p-type organic semiconductor layer 14. The film thickness of the p-type organic semiconductor layer 14 is desirably 10 nm to 10 μm.

上部電極15としては、ITOやSnO等の透明導電体が用いられる。
ナノカーボンからなるn型半導体層は、化学的成長法により成膜することができる。化学的成長法としては、固液平衡化学的成長法(液相CVD)または化学的気相成長法(気相CVD)を挙げることができる。これらの方法により、高配向のナノカーボン層を上部電極15上に形成することができる。これらの方法では、特に、低温でナノカーボン層の形成が可能な固液平衡化学的成長法を用いるのが好ましい。固液平衡化学的成長法によるナノカーボンからなるn型半導体層の形成プロセスについて、以下に説明する。
As the upper electrode 15, a transparent conductor such as ITO or SnO 2 is used.
The n-type semiconductor layer made of nanocarbon can be formed by a chemical growth method. Examples of the chemical growth method include solid-liquid equilibrium chemical growth method (liquid phase CVD) and chemical vapor deposition method (vapor phase CVD). By these methods, a highly oriented nanocarbon layer can be formed on the upper electrode 15. In these methods, it is particularly preferable to use a solid-liquid equilibrium chemical growth method capable of forming a nanocarbon layer at a low temperature. A process for forming an n-type semiconductor layer made of nanocarbon by a solid-liquid equilibrium chemical growth method will be described below.

固液平衡化学的成長法によるナノカーボンからなるn型半導体層の形成は、図2に示す構造を有する固液平衡化学的成長装置を用いて行われる。図2に示す固液平衡化学的成長装置では、有機液体22を収容する液体槽21が、蓋23により密封されて、装置本体を構成する。液体槽21の外側には、液体槽21を冷却するための水冷手段24が設けられている。液体槽21内の有機液体22中には、基板25が浸漬されており、基板25は、基板ホルダー26に取り付けられているとともに、一対の電極27a,27bを介して蓋23に保持されている。基板25は、一対の電極27a,27bを通して通電される。   The formation of the n-type semiconductor layer made of nanocarbon by the solid-liquid equilibrium chemical growth method is performed using a solid-liquid equilibrium chemical growth apparatus having the structure shown in FIG. In the solid-liquid equilibrium chemical growth apparatus shown in FIG. 2, a liquid tank 21 containing an organic liquid 22 is sealed with a lid 23 to constitute the apparatus main body. Outside the liquid tank 21, water cooling means 24 for cooling the liquid tank 21 is provided. A substrate 25 is immersed in the organic liquid 22 in the liquid tank 21, and the substrate 25 is attached to the substrate holder 26 and is held by the lid 23 via a pair of electrodes 27a and 27b. . The substrate 25 is energized through a pair of electrodes 27a and 27b.

蓋23には、液体槽21内から蒸発する有機液体蒸気を冷却凝縮して液体槽21に戻すための水冷パイプからなる凝縮手段28と、液体槽21内に窒素ガスを導入するバルブ29とが取り付けられている。   The lid 23 has a condensing means 28 comprising a water cooling pipe for cooling and condensing the organic liquid vapor evaporated from the liquid tank 21 and returning it to the liquid tank 21, and a valve 29 for introducing nitrogen gas into the liquid tank 21. It is attached.

次に、以上のように構成される固液平衡化学的成長装置により、基板25の表面にカーボンナノチューブ層を形成する手順について説明する。   Next, a procedure for forming a carbon nanotube layer on the surface of the substrate 25 using the solid-liquid equilibrium chemical growth apparatus configured as described above will be described.

まず、図2に示すように、基板25を基板ホルダー26に取り付け、液体槽21内の有機液体22中に浸漬する。有機液体22としては、メタノール、エタノール、オクタノール等を用いることができる。なお、基板25の表面には、触媒としての鉄金属膜が形成されている。電極27a,27bを通して基板25に直流電流を通電する。   First, as shown in FIG. 2, the substrate 25 is attached to the substrate holder 26 and immersed in the organic liquid 22 in the liquid tank 21. As the organic liquid 22, methanol, ethanol, octanol, or the like can be used. Note that an iron metal film as a catalyst is formed on the surface of the substrate 25. A direct current is passed through the substrate 25 through the electrodes 27a and 27b.

通電により、基板25の温度が600〜900℃に昇温すると、基板25の表面で触媒の存在下での有機液体22の熱分解反応が生じ、鉄金属膜上にカーボンナノチューブが析出され、カーボンナノチューブ層が形成される。   When the temperature of the substrate 25 is raised to 600 to 900 ° C. by energization, a thermal decomposition reaction of the organic liquid 22 in the presence of the catalyst occurs on the surface of the substrate 25, carbon nanotubes are deposited on the iron metal film, and carbon A nanotube layer is formed.

このようにして成膜されたカーボンナノチューブ層は、高密度、高配向であり、光電変換素子のn型半導体層として好適なものである。   The carbon nanotube layer thus formed has high density and high orientation, and is suitable as an n-type semiconductor layer of a photoelectric conversion element.

以下、本発明の光電変換素子の製造に係る実施例を示し、本発明をより具体的に説明する。   EXAMPLES Hereinafter, the Example which concerns on manufacture of the photoelectric conversion element of this invention is shown, and this invention is demonstrated more concretely.

実施例
図1に示す構造を有する光電変換素子を以下のようにして製造した。
Example A photoelectric conversion element having the structure shown in FIG. 1 was produced as follows.

基板11として、シリコン単結晶基板を用い、このシリコン単結晶基板11上に、スパッタ法により下部電極としてアルミニウム薄膜12を形成した。このアルミニウム薄膜12上に、スバッタ法にて鉄の薄膜を3nmの膜厚に形成した。なお、鉄は、固液平衡化学的成長によりカーボンナノチューブ層を形成するに際し、有機液体の熱分解反応の触媒として働く。   A silicon single crystal substrate was used as the substrate 11, and an aluminum thin film 12 was formed on the silicon single crystal substrate 11 as a lower electrode by sputtering. An iron thin film having a thickness of 3 nm was formed on the aluminum thin film 12 by a sputtering method. Iron forms a carbon nanotube layer by solid-liquid equilibrium chemical growth and serves as a catalyst for thermal decomposition reaction of organic liquid.

次いで、表面に鉄薄膜が形成されたシリコン単結晶基板25を、図2に示す装置の基板ホルダー26に取り付け、バルブ29から窒素ガスを導入しつつ、電極27a,27bを通して基板25に直流電流を通電し、固液平衡化学的成長法(液相CVD)により、有機液体中で高配向カーポンナノチューブ層13を成膜した。固液平衡化学的成長法による成膜条件は、下記の通りである。   Next, the silicon single crystal substrate 25 on which the iron thin film is formed is attached to the substrate holder 26 of the apparatus shown in FIG. 2, and a direct current is applied to the substrate 25 through the electrodes 27a and 27b while introducing nitrogen gas from the valve 29. A highly oriented carbon nanotube layer 13 was formed in an organic liquid by energization and solid-liquid equilibrium chemical growth (liquid phase CVD). The film forming conditions by the solid-liquid equilibrium chemical growth method are as follows.

有機液体:メタノール
基板温度:900℃
合成時間:0.5時間
以上の条件で成膜されたカーボンナノチューブの膜厚は約3μmであり、カーボンナノチューブの長さは約3μmであり、それぞれのカーボンナノチューブは、基板に対し、垂直に配向していた。
Organic liquid: methanol Substrate temperature: 900 ° C
Synthesis time: 0.5 hours The film thickness of carbon nanotubes formed under the conditions of more than 0.5 hours is about 3 μm, the length of carbon nanotubes is about 3 μm, and each carbon nanotube is oriented perpendicular to the substrate Was.

次に、ポリチオフェン誘導体をペースト化して、これを印刷法によりカーボンナノチューブ層13上に塗布し、p型有機半導体層14を形成した。続いて、p型有機半導体層14上にITO膜をスパッタ法により室温下で成膜し、上部電極15を形成し、図1に示す構造の光電変換素子を得た。   Next, the polythiophene derivative was made into a paste and applied onto the carbon nanotube layer 13 by a printing method to form a p-type organic semiconductor layer 14. Subsequently, an ITO film was formed on the p-type organic semiconductor layer 14 at room temperature by sputtering to form the upper electrode 15 to obtain a photoelectric conversion element having the structure shown in FIG.

このようにして製造された光電変換素子の光電変換特性を評価したところ、5Vで6桁以上の高いオンオフ比が得られた。   When the photoelectric conversion characteristics of the photoelectric conversion element thus manufactured were evaluated, a high on / off ratio of 6 digits or more was obtained at 5V.

比較例
基板温度を700℃としたことを除いて、上記実施例と同様にして、固液平衡化学的成長法によりカーボンナノチューブ層を成膜した。成膜されたカーボンナノチューブは、無配向であった。上記実施例と同様に光電変換素子を製造し、その光電変換特性を評価したところ、5Vで2〜3桁という低いオンオフ比しか得られなかった。
Comparative Example A carbon nanotube layer was formed by a solid-liquid equilibrium chemical growth method in the same manner as in the above example except that the substrate temperature was 700 ° C. The formed carbon nanotubes were non-oriented. When the photoelectric conversion element was manufactured similarly to the said Example and the photoelectric conversion characteristic was evaluated, only the low on-off ratio of 2-3 digits was obtained at 5V.

本発明の一実施形態に係る複合光電変換素子を示す断面図である。It is sectional drawing which shows the composite photoelectric conversion element which concerns on one Embodiment of this invention. 本発明の一実施形態に用いた固液平衡化学的成長装置を示す図である。It is a figure which shows the solid-liquid equilibrium chemical growth apparatus used for one Embodiment of this invention.

符号の説明Explanation of symbols

11・・・ 絶縁基板、12・・・下部電極、13・・・n型半導体層、14・・・p型有機半導体層、15・・・上部電極、21・・・液体槽、22・・・有機液体、23・・・蓋、24・・・水冷手段、25・・・基板、26・・・基板ホルダー、27a,27b・・・基板、28・・・凝縮手段、29・・・バルブ。   DESCRIPTION OF SYMBOLS 11 ... Insulating substrate, 12 ... Lower electrode, 13 ... N-type semiconductor layer, 14 ... P-type organic semiconductor layer, 15 ... Upper electrode, 21 ... Liquid tank, 22 ... Organic liquid, 23 ... Lid, 24 ... Water cooling means, 25 ... Substrate, 26 ... Substrate holder, 27a, 27b ... Substrate, 28 ... Condensing means, 29 ... Valve .

Claims (5)

基体と、この基体上に形成された第1の電極と、この第1の電極上に形成され、前記基体に対し垂直に配向した、ナノカーボン材料を含むn型半導体層と、このn型半導体層上に形成されたp型有機半導体層と、このp型有機半導体層上に形成された第2の電極とを具備することを特徴とする複合光電変換素子。   A base, a first electrode formed on the base, an n-type semiconductor layer formed on the first electrode and oriented perpendicularly to the base and including a nanocarbon material, and the n-type semiconductor A composite photoelectric conversion element comprising a p-type organic semiconductor layer formed on a layer and a second electrode formed on the p-type organic semiconductor layer. 前記ナノカーボン材料は、カーボンナノチューブ、カーボンナノホーン、及びカーボンナノフィラメントからなる群から選ばれた少なくとも1種であることを特徴とする請求項1に記載の複合光電変換素子。   2. The composite photoelectric conversion element according to claim 1, wherein the nanocarbon material is at least one selected from the group consisting of carbon nanotubes, carbon nanohorns, and carbon nanofilaments. 基体上に第1の電極を形成する工程、
前記第1の電極上に、化学的成長法により、ナノカーボン材料を含むn型半導体層を形成する工程、
前記n型半導体層上に、p型有機半導体層を形成する工程、及び
前記p型有機半導体層上に第2の電極を形成する工程
を具備することを特徴とする複合光電変換素子の製造方法。
Forming a first electrode on a substrate;
Forming an n-type semiconductor layer containing a nanocarbon material on the first electrode by a chemical growth method;
A method for producing a composite photoelectric conversion element comprising: forming a p-type organic semiconductor layer on the n-type semiconductor layer; and forming a second electrode on the p-type organic semiconductor layer. .
前記ナノカーボン材料は、カーボンナノチューブ、カーボンナノホーン、及びカーボンナノフィラメントからなる群から選ばれた少なくとも1種であることを特徴とする請求項3に記載の複合光電変換素子の製造方法。   The method for producing a composite photoelectric conversion element according to claim 3, wherein the nanocarbon material is at least one selected from the group consisting of carbon nanotubes, carbon nanohorns, and carbon nanofilaments. 前記化学的成長法は、固液平衡化学的成長法であることを特徴とする請求項3または4に記載の複合光電変換素子の製造方法。   The method for manufacturing a composite photoelectric conversion element according to claim 3 or 4, wherein the chemical growth method is a solid-liquid equilibrium chemical growth method.
JP2006013816A 2006-01-23 2006-01-23 Compound photoelectric conversion element, and method for manufacturing same Pending JP2007194559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006013816A JP2007194559A (en) 2006-01-23 2006-01-23 Compound photoelectric conversion element, and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006013816A JP2007194559A (en) 2006-01-23 2006-01-23 Compound photoelectric conversion element, and method for manufacturing same

Publications (1)

Publication Number Publication Date
JP2007194559A true JP2007194559A (en) 2007-08-02

Family

ID=38449987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006013816A Pending JP2007194559A (en) 2006-01-23 2006-01-23 Compound photoelectric conversion element, and method for manufacturing same

Country Status (1)

Country Link
JP (1) JP2007194559A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038787A1 (en) * 2008-09-30 2010-04-08 国立大学法人岡山大学 Photoelectric conversion element and method for manufacturing the photoelectric conversion element
JP2011096914A (en) * 2009-10-30 2011-05-12 Mitsubishi Chemicals Corp Solar cell and method of manufacturing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003012312A (en) * 2001-06-26 2003-01-15 Japan Science & Technology Corp Synthesis method for high orientational alignment carbon nanotube by organic liquid, and its synthesis apparatus
JP2004152787A (en) * 2002-10-28 2004-05-27 Sharp Corp Semiconductor element and its manufacturing method
JP2004158661A (en) * 2002-11-07 2004-06-03 Matsushita Electric Ind Co Ltd Organic light to electricity transducing device and its manufacturing method
JP2004523129A (en) * 2001-06-11 2004-07-29 ザ、トラスティーズ オブ プリンストン ユニバーシティ Organic photovoltaic device
WO2005002745A1 (en) * 2003-06-25 2005-01-13 The Trustees Of Princeton University Improved solar cells
JP2005032852A (en) * 2003-07-09 2005-02-03 Matsushita Electric Ind Co Ltd Organic photoelectric conversion device
WO2005018012A1 (en) * 2003-08-14 2005-02-24 Sony Deutschland Gmbh Carbon nanotubes based solar cells
WO2005101524A2 (en) * 2004-04-13 2005-10-27 The Trustees Of Princeton University Method of fabricating an optoelectronic device having a bulk heterojunction

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004523129A (en) * 2001-06-11 2004-07-29 ザ、トラスティーズ オブ プリンストン ユニバーシティ Organic photovoltaic device
JP2003012312A (en) * 2001-06-26 2003-01-15 Japan Science & Technology Corp Synthesis method for high orientational alignment carbon nanotube by organic liquid, and its synthesis apparatus
JP2004152787A (en) * 2002-10-28 2004-05-27 Sharp Corp Semiconductor element and its manufacturing method
JP2004158661A (en) * 2002-11-07 2004-06-03 Matsushita Electric Ind Co Ltd Organic light to electricity transducing device and its manufacturing method
WO2005002745A1 (en) * 2003-06-25 2005-01-13 The Trustees Of Princeton University Improved solar cells
JP2007525010A (en) * 2003-06-25 2007-08-30 ザ、トラスティーズ オブ プリンストン ユニバーシティ Improved solar cell
JP2005032852A (en) * 2003-07-09 2005-02-03 Matsushita Electric Ind Co Ltd Organic photoelectric conversion device
WO2005018012A1 (en) * 2003-08-14 2005-02-24 Sony Deutschland Gmbh Carbon nanotubes based solar cells
JP2007502531A (en) * 2003-08-14 2007-02-08 ソニー ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Solar cell using carbon nanotubes
WO2005101524A2 (en) * 2004-04-13 2005-10-27 The Trustees Of Princeton University Method of fabricating an optoelectronic device having a bulk heterojunction
JP2007533165A (en) * 2004-04-13 2007-11-15 ザ、トラスティーズ オブ プリンストン ユニバーシティ Method of manufacturing an optoelectronic device having a bulk heterojunction

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038787A1 (en) * 2008-09-30 2010-04-08 国立大学法人岡山大学 Photoelectric conversion element and method for manufacturing the photoelectric conversion element
JP5360838B2 (en) * 2008-09-30 2013-12-04 国立大学法人 岡山大学 Photoelectric conversion element and manufacturing method thereof
JP2011096914A (en) * 2009-10-30 2011-05-12 Mitsubishi Chemicals Corp Solar cell and method of manufacturing the same

Similar Documents

Publication Publication Date Title
Batmunkh et al. Black phosphorus: synthesis and application for solar cells
Sun et al. Self‐powered, flexible, and solution‐processable perovskite photodetector based on low‐cost carbon cloth
Hao et al. Electrical and photovoltaic characteristics of MoS2/Si pn junctions
Peng et al. Silicon nanowires for photovoltaic solar energy conversion
Bhopal et al. Past and future of graphene/silicon heterojunction solar cells: a review
Wei et al. Research progress on hybrid organic–inorganic perovskites for photo-applications
Kant et al. Review of next generation photovoltaic solar cell technology and comparative materialistic development
Tiwari et al. Functionalised graphene as flexible electrodes for polymer photovoltaics
Zhu et al. More solar cells for less
Sumesh Towards efficient photon management in nanostructured solar cells: Role of 2D layered transition metal dichalcogenide semiconductors
CN102897750A (en) PrPrearation method for graphene film
Wang et al. Monocrystalline perovskite wafers/thin films for photovoltaic and transistor applications
Liu et al. Recent progress of heterostructures based on two dimensional materials and wide bandgap semiconductors
Liu et al. Preparation of monodispersed CuInS 2 nanopompons and nanoflake films and application in dye-sensitized solar cells
Das et al. The photovoltaic performance of ZnO nanorods in bulk heterojunction solar cells
Yang et al. Self-powered narrowband visible-light photodetection enabled by organolead halide perovskite CH3NH3PbBr3/p-Si heterojunction
Gan et al. Transferrable polymeric carbon nitride/nitrogen-doped graphene films for solid state optoelectronics
Suragtkhuu et al. Graphene‐like monoelemental 2D materials for perovskite solar cells
Choi et al. Overview and outlook on graphene and carbon nanotubes in perovskite photovoltaics from single‐junction to tandem applications
CN103534204A (en) Graphene sheet, transparent electrode including graphene sheet, active layer, and display device, electronic device, photovoltaic device, battery, solar cell, and dye-sensitized solar cell employing transparent electrode
Rehman et al. Development of directly grown‐graphene–silicon Schottky barrier solar cell using co‐doping technique
Ren et al. 50° C low-temperature ALD SnO2 driven by H2O2 for efficient perovskite and perovskite/silicon tandem solar cells
Sun et al. Synthesis of ultrathin topological insulator β‐Ag2Te and Ag2Te/WSe2‐based high‐performance photodetector
Li et al. CuI-Si heterojunction solar cells with carbon nanotube films as flexible top-contact electrodes
Nagal et al. Emerging Applications of g-C3N4 films in Perovskite-based solar cells

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120515

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120529