JP2004158661A - Organic light to electricity transducing device and its manufacturing method - Google Patents

Organic light to electricity transducing device and its manufacturing method Download PDF

Info

Publication number
JP2004158661A
JP2004158661A JP2002323449A JP2002323449A JP2004158661A JP 2004158661 A JP2004158661 A JP 2004158661A JP 2002323449 A JP2002323449 A JP 2002323449A JP 2002323449 A JP2002323449 A JP 2002323449A JP 2004158661 A JP2004158661 A JP 2004158661A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
electrode
organic photoelectric
conversion element
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002323449A
Other languages
Japanese (ja)
Inventor
Takahiro Komatsu
隆宏 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002323449A priority Critical patent/JP2004158661A/en
Publication of JP2004158661A publication Critical patent/JP2004158661A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/83Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising arrangements for extracting the current from the cell, e.g. metal finger grid systems to reduce the serial resistance of transparent electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic light to electricity transducing device which restrains voltage drop due to electric resistance of an electrode used in the light to electricity transducing device as much as possible, and can take out electric power effectively to an external circuit. <P>SOLUTION: In the organic light to electricity transducing device having a photoelectric transducing region 3 composed of at least one kind of electron donative organic material 4 and electronic receptive material 5 between an anode 2 and a cathode 6, an auxiliary electrode 7 whose electric resistance is lower than the anode 2 is put at least at a part of anode 2. The voltage drop due to the electric resistance of the anode 2 is restrained by the auxiliary electrode 7 which is put side by side. Consequently, the organic light to electricity transducing device which can take out electric power to the external circuit efficiently can be obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、有機半導体材料の光起電力効果を利用した有機光電変換素子及びその製造方法に関する。
【0002】
【従来の技術】
化石燃料の枯渇や、地球環境保全の問題などから、クリーンな代替エネルギーへの関心が高まっている。中でも無尽蔵に降り注ぐ太陽光を利用した光電変換素子いわゆる太陽電池は、二酸化炭素等の排出がなくクリーンであることや、炭化水素等の燃料が必要なくどこででも利用可能であること、さらにはその静粛性や安全性等から代替エネルギーとして大いに期待されている。
【0003】
このような太陽電池は、シリコン半導体や化合物半導体を利用した無機太陽電池と、有機半導体を利用した有機太陽電池との二つに分類される。これまでは主に前者の無機太陽電池の開発が行われてきた。しかしながら、無機太陽電池は材料が高価であることや、製造工程が複雑であることなどからコスト削減が難しく、これが普及の足かせとなっている。
【0004】
そこで最近になって再び注目を集めているのが有機太陽電池である。その理由の1つは、より低コストで製造可能と考えられることであるが、有機EL(Electro Luminescent)素子の開発等により有機半導体に関する研究が進んだことも要因の一つである。
【0005】
有機太陽電池は、原理的には無機物のものと同様であり、二つの電極間に挟み込んだ有機物半導体の光起電力効果を利用して素子外部に電力を供給するものである。有機太陽電池(有機光電変換素子)にはいくつかの方式があり、Gratzelらによって報告された湿式のものや、積層構造をとるもの、さらには電子供与性有機物と電子受容性有機物とを混合したもの等が提唱されている。
【0006】
このうち変換効率の高さと言う点ではGratzel型が最も高く、10%程度の変換効率が得られることが報告されている(例えば、非特許文献1を参照。)が、湿式法であるが所以の安定性や信頼性、耐久性といった課題も多い。また、積層構造型も最近になって精力的に研究が進められ、高効率のものが報告され始めている(例えば、非特許文献2を参照。)が、キャリア分離の効率をいかにして向上させるかという点や、励起子の拡散長による膜厚の制限等といった課題も多い。
【0007】
さらに最近になって注目を集めているのが混合型有機光電変換素子である(例えば、非特許文献3を参照。)。これは電子供与性有機材料と電子受容性材料とを混合した膜を形成し、この膜中の全域で光吸収、励起、電子の授受を行うものであり、非常に簡単な構造でありながら3%程度の比較的高い変換効率を有するという特徴がある。
【0008】
ここで、一般的な有機光電変換素子の構成について説明する。
【0009】
図5は一般的な有機光電変換素子の要部断面図である。
【0010】
図5に示す有機光電変換素子は、ガラス等の光透過性の基板1上にスパッタリング法や抵抗加熱蒸着法等により形成されたITO(インジウム錫酸化物)等の透明な導電性膜からなる陽極2と、陽極2上に電子供与性有機材料4と電子受容性材料5をそれぞれスピンコートまたは抵抗加熱蒸着法により成膜することによって形成された光電変換領域3と、さらにその上部に抵抗加熱蒸着法等により形成された金属からなる陰極6とを備えている。
【0011】
上記構成の有機太陽電池に光照射を行うと、まず光電変換領域3にて光吸収が起こり、励起子が形成される。続いてキャリアが分離され、電子はn型の半導体材料を通して陰極6へ、正孔はp型の半導体材料を通して陽極2へと移動する。これにより両電極間に起電力が発生し、外部回路をつなげることで電力を取り出すことが可能となる。
【0012】
【非特許文献1】
エム・グラッツェルら(M.Gratzel et.al.),ジャーナル・オブ・アメリカン・ケミカル・ソサイエティ(Journal of the American Chemical Society),1993年,6382,115
【非特許文献2】
エス・アール・フォレストら(S.R.forrest et.al.),アプライド・フィジクス・レターズ(Applied Physics Letters),2001年,126,79
【非特許文献3】
ジー・ユー(G.Yu)、ジェイ・シー・ヒューメレン(J.C.Hummelen)、エフ・ヴドル(F.Wudl)、エイ・ジェイ・ヒーガー(A.J.Heeger),サイエンス(Science),1995年,1789,270
【0013】
【発明が解決しようとする課題】
光電変換素子の効率を向上させるためには、光電変換膜の光吸収特性を太陽光のスペクトルに合わせ込むなどして光を効率良く吸収すること、電荷分離を効率良く行わせる材料設計やデバイス構造の検討を行うこと、構成材料のキャリアモビリティーを向上させ、電極まで効率良くキャリアを輸送すること等の様々なアプローチがあり、これらについては鋭意研究がなされている。
【0014】
しかしながら、いくら効率良くキャリアを電極まで輸送しても、それらを外部回路へ有効に取り出すことができなければ、実質的には光電変換効率を向上させたことにはならない。
【0015】
例えば、一般的な有機太陽電池の電極としては、陽極にITOを、陰極にAl等の金属をそれぞれ使用するが、前者のITOは陰極に比べると電気抵抗が高い。そのため、ITO中をキャリアが輸送されるときに電圧の低下を招き、結果として発電電力の低下を引き起こす。この影響は、使用する電極の電気抵抗が高ければ高いほど顕著に現れ、これを防ぐには高価な低抵抗電極を使用するしかなく、コスト高を招く結果となる。
【0016】
そこで、本発明においては、光電変換デバイスに使用する電極の電気抵抗のために低下する電圧を極力抑え、効率良く外部回路に電力を取り出すことができる有機光電変換素子及びその製造方法を提供することを目的とする。
【0017】
【課題を解決するための手段】
本発明の有機光電変換素子は、電極間に少なくとも一種の電子供与性有機材料および電子受容性材料からなる光電変換領域を有する有機光電変換素子において、前記電極の少なくとも一部分に、前記電極よりも電気抵抗の低い補助電極を併設し、前記電極の電気抵抗による電圧降下をこの併設した補助電極によって抑制するように構成したものである。
【0018】
本発明によれば、発電効率の低下を防いで、効率良く外部回路に電力を取り出すことができる有機光電変換素子が得られる。
【0019】
【発明の実施の形態】
請求項1に記載の発明は、電極間に少なくとも電子供与性有機材料および電子受容性材料からなる光電変換領域を有する有機光電変換素子において、前記電極の少なくとも一部分に、前記電極よりも電気抵抗の低い補助電極を併設したことを特徴とする有機光電変換素子であり、電力を外部回路に取り出す際に生じる電極抵抗による電圧損失を低減することができるため、高効率の有機光電変換素子が得られる。
【0020】
請求項2に記載の発明は、前記補助電極を併設した電極が、光透過性導電膜からなることを特徴とする請求項1記載の有機光電変換素子であり、抵抗値の高い光透過性導電膜であっても低抵抗の補助電極を併設することにより電力を外部回路に取り出す際に生じる電極抵抗による電圧損失を低減することができるため、高効率の有機光電変換素子が得られる。また、光透過性導電膜の抵抗値に対する要求特性が緩和されることから、電極の厚さを薄くし光透過性を向上させることが可能になる。さらに、材料、製法の選択肢が広がるため、より低コストでの電極形成が可能となる。
【0021】
請求項3に記載の発明は、前記補助電極を併設した電極が、塗布法によって成膜された光透過性導電膜からなることを特徴とする請求項1または2に記載の有機光電変換素子であり、通常は抵抗値を下げ、電圧損失を抑制するためにスパッタリング法やイオンビーム蒸着法等の真空プロセスで形成していた光透過性導電膜を、より簡便に塗布、焼成工程のみで形成することにより製造コストを大幅に低減することができる。なお、光透過性導電膜としては光電変換領域に所定の光が到達するだけの透過率を有し、かつ抵抗値が低いものであればどのようなものであってもよいが、好ましくはITOを用いるのがよい。
【0022】
請求項4に記載の発明は、前記補助電極を併設した電極が、導電性高分子単体、もしくは導電性高分子と他の導電性材料とを混合した材料からなることを特徴とする請求項1から3のいずれかに記載の有機光電変換素子であり、電極材料の選択肢が広がり、多少抵抗が高い材料であっても電極として使用することが可能となる。また、低温で形成可能な電極材料を選択することによって、耐熱性の低い高分子フィルム基板等も使用することが可能となり、フレキシブルな有機光電変換素子が得られる。
【0023】
請求項5に記載の発明は、前記補助電極によって、二つ以上の有機光電変換素子が電気的に直列または並列に接続されていることを特徴とする請求項1から4のいずれかに記載の有機光電変換素子であり、予め任意の方向に有機光電変換素子を並べられるように補助電極を形成することで、有機光電変換素子の各構成層の形成時に特にパターニング等を行わなくても、並列または直列に任意に接続された有機光電変換素子が得られる。
【0024】
請求項6に記載の発明は、前記外部回路との接続が、前記補助電極によって行われることを特徴とする請求項1から5のいずれかに記載の有機光電変換素子であり、低抵抗の補助電極によって電極の引き回しや配線等を行うことによって、電圧損失することなく外部に電力を取り出すことが可能となる。
【0025】
請求項7に記載の発明は、前記光電変換領域が、少なくとも電子供与性有機材料およびフラーレン類材料からなることを特徴とする請求項1から6のいずれかに記載の有機光電変換素子であり、より安価な材料、より簡便な製法によって有機光電変換素子を作製することが可能となり、低コスト化を図ることができる。
【0026】
請求項8に記載の発明は、電極間に少なくとも一種の電子供与性有機材料および電子受容性材料からなる光電変換領域を有する有機光電変換素子の製造方法であって、前記電極よりも電気抵抗の低い補助電極を形成した後に前記電極を形成して、前記電極の少なくとも一部分に前記補助電極を併設することを特徴とする有機光電変換素子の製造方法であり、補助電極を電極よりも先に形成することでパターニングが容易になる。
【0027】
以下、本発明の実施の形態について、図1から図4を用いて説明する。
【0028】
(実施の形態1)
図1は本発明の第1実施の形態における有機光電変換素子の要部断面図である。
【0029】
図1において、基板1、陽極2、光電変換領域3(電子供与性有機材料4,電子受容性材料5)、陰極6は、図5において既に説明した従来の光電変換素子と同様であるので、同一の符号を付して説明を省略する。
【0030】
本実施の形態における有機光電変換素子が従来の光電変換素子と異なっているのは、電極としての陽極2の少なくとも一部に補助電極7を有している点である。この補助電極7は陽極2に比べて十分に低い抵抗値を持つ。光電変換領域3で発生したキャリアは、この補助電極7を介して素子外部へと輸送されるため、光電変換領域3と接触する光透過性の電極(陽極2)の抵抗値の制限は従来よりも緩和され、材料、製造法ともに選択肢が広がる。
【0031】
したがって、より安価な材料および製造法を用いることにより素子の低コスト化が可能となるのはもちろんのこと、フレキシブル基板への応用等も容易になる。例えば、陽極2として抵抗値が高く従来は使用が困難であった光透過性導電膜である塗布型のITOも十分使用可能であり、さらにPEDOT(ポリチオフェン)やPPV(ポリフェニレンビニレン)といった導電性高分子化合物であっても補助電極7を併設することで電極として機能させることが可能となる。これにより、必ずしも高価な真空系での電極形成が必要ではなくなり、全工程塗布での電極形成も可能となる。
【0032】
また、本実施の形態における有機光電変換素子では、補助電極7を形成した後に陽極2を形成することが可能である。したがって、補助電極7を陽極2よりも先に形成することで、パターニングが容易になる。
【0033】
なお、素子構成については、この構成に限定するものではなく、例えば陽極2と光電変換領域3の界面や、光電変換領域3と陰極6の界面等にカーボンや各種ポルフィリン化合物、金属酸化物や金属弗化物等を導入することで、短絡電流の発生を防止したり、取り出し電流を向上させたりすることも有効である。
【0034】
(実施の形態2)
図2は本発明の第2実施の形態における有機光電変換素子の要部断面図である。
【0035】
図2において、基板1、陽極2、補助電極7は第1実施の形態において説明したのと同様であるので、同一の符号を付して説明を省略する。第1実施の形態における有機光電変換素子との相違点は、光電変換領域3において電子受容性材料5が電子供与性有機材料4に埋包されている点である。
【0036】
このような混合型の有機光電変換素子は、構造が簡便であることから製造コストを大幅に低減することが可能となる。
【0037】
なお、素子構成については、この構成に限定するものではなく、例えば陽極2と光電変換領域3の界面や、光電変換領域3と陰極6の界面等にカーボンや各種ポルフィリン化合物、金属酸化物や金属弗化物等を導入することで、短絡電流の発生を防止したり、取り出し電流を向上させたりすることも有効である。
【0038】
(実施の形態3)
図3は本発明の第3実施の形態における有機光電変換素子の上部平面図である。
【0039】
図3において、基板1、陽極2、光電変換領域3、陰極6、補助電極7は、図1の有機光電変換素子と同様のものであるので、同一の符号を付して説明を省略する。
【0040】
本実施の形態における有機光電変換素子では、二つ以上の有機光電変換素子が補助電極7によって電気的に接続されている。なお、本実施の形態においては二つの有機光電変換素子が直列に接続されているが、特にこの態様に制限されるものではなく、目的に応じて接続素子数、接続方法(直列・並列)は任意に変更することが可能である。
【0041】
また、本実施の形態における有機光電変換素子は、基板1上での電極配線を補助電極7により行っている。これにより、配線抵抗を最小限に抑制することが可能となり、素子外部へ効率良く電力を供給することができる。
【0042】
なお、本発明の有機光電変換素子に用いられる基板1は、機械的、熱的強度を有し、太陽光を有効に透過するものであれば特に限定されるものではない。例えば、ガラス基板、ポリエチレンテレフタレート、ポリカーボネート、ポリメチルメタクリレート、ポリエーテルスルフォン、ポリフッ化ビニル、ポリプロピレン、ポリエチレン、ポリアクリレート、非晶質ポリオレフィンやフッ素系樹脂等の、可視光領域について透明度の高い材料を用いることができる。また、これらの材料をフィルム化した可撓性を有するフレキシブル基板であっても良い。
【0043】
また、基板1は、用途によっては特定波長のみを透過する材料、光−光変換機能をもった特定の波長の光へ変換する材料などを用いることもできる。さらに、基板1は、絶縁性であることが好ましいが、特に限定されるものではなく、有機光電変換素子の動作を妨げない範囲あるいは用途によって、導電性を有していても良い。
【0044】
一般的な光電変換素子の電極(陽極2,陰極6)のうち少なくとも一つは、光を透過する必要があり、この透過率が光電変換特性に大きく影響する。そのため、陽極2としては、ITO、ATO(SbをドープしたSnO)、AZO(AlをドープしたZnO)等をスパッタリング法や、イオンビーム蒸着法等によって成膜した光透過性導電膜、いわゆる一般に透明電極と呼ばれるものが用いられる。しかしながら、本発明の有機光電変換素子は、補助電極7により導電性を補うため、通常よりも高抵抗の電極材料であっても使用することが可能となり、例えば、塗布型のITO、PEDOT、PPVやポリフルオレン等の導電性高分子化合物等の導電性高分子と他の導電性材料とを混合した材料の他、導電性高分子単体の材料を用いることができる。
【0045】
補助電極7の材料としては、電気抵抗が低く、均質な膜が形成できるものであればどのようなものであってもよいが、例えばCr、Ag、Au、Al、Cu等を用いることができる。また、その形成方法は、スパッタした後にフォトリソグラフィーを使用する方法や、印刷法等どのようなものであってもよい。
【0046】
光電変換領域3を構成する電子供与性有機材料4としては、フェニレンビニレン、フルオレン、カルバゾール、インドール、ピレン、ピロール、ピコリン、チオフェン、アセチレン、ジアセチレン等の重合体や、その誘導体が用いられる。また、電子供与性有機材料4は、高分子に限定されるものではなく、例えばポルフィン、テトラフェニルポルフィン銅、フタロシアニン、銅フタロシアニン、チタニウムフタロシアニンオキサイド等のポリフィリン化合物、1,1−ビス{4−(ジ−P−トリルアミノ)フェニル}シクロヘキサン、4,4’,4”−トリメチルトリフェニルアミン、N,N,N’,N’−テトラキス(P−トリル)−P−フェニレンジアミン、1−(N,N−ジ−P−トリルアミノ)ナフタレン、4,4’−ビス(ジメチルアミノ)−2−2’−ジメチルトリフェニルメタン、N,N,N’,N’−テトラフェニル−4,4’−ジアミノビフェニル、N、N’−ジフェニル−N、N’−ジ−m−トリル−4、4’−ジアミノビフェニル、N−フェニルカルバゾ−ル等の芳香族第三級アミンや、4−ジ−P−トリルアミノスチルベン、4−(ジ−P−トリルアミノ)−4’−〔4−(ジ−P−トリルアミノ)スチリル〕スチルベン等のスチルベン化合物、トリアゾール誘導体、オキサジザゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アニールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、シラザン誘導体、ポリシラン系アニリン系共重合体、高分子オリゴマー、スチリルアミン化合物、芳香族ジメチリディン系化合物や、ポリ−メチルチオフェン等も用いられる。
【0047】
光電変換領域3を構成する電子受容性材料5としては、C60、C70をはじめとするフラーレン類、カーボンナノチューブ、およびこれらの誘導体、1,3−ビス(4−tert−ブチルフェニル−1,3,4−オキサジアゾリル)フェニレン(OXD−7)等のオキサジアゾール誘導体、アントラキノジメタン誘導体や、ジフェニルキノン誘導体等が用いられる。
【0048】
陰極6としては、発生した電荷を外部回路に効率良く取り出すことができるものであればどのようなものであってもよく、Al、Au、Cr、Cu、In、Mg、Ni、Si、Ti等の金属、Mg−Ag合金、Mg−In合金等のMg合金や、Al−Li合金、Al−Sr合金、Al−Ba合金等のAl合金等が用いられる。
【0049】
なお、素子構成については、この構成に限定するものではなく、例えば陽極2と光電変換領域3の界面や、光電変換領域3と陰極6の界面等にカーボンや各種ポルフィリン化合物、金属酸化物や金属弗化物等を導入することで、短絡電流の発生を防止したり、取り出し電流を向上させたりすることも有効である。
【0050】
【実施例】
まず、基板1としてのガラス基板を、洗剤(フルウチ化学社製、セミコクリーン)による5分間の超音波洗浄、純水による10分間の超音波洗浄、アンモニア水1(体積比)に対して過酸化水素水1と水5を混合した溶液による5分間の超音波洗浄、70℃の純水による5分間の超音波洗浄の順に洗浄処理した後、このガラス基板に付着した水分を窒素ブロアーで除去し、さらに250℃に加熱して乾燥した。
【0051】
このガラス基板上に、真空チャンバー内で所定のマスクを介して約1μmのCr膜をスパッタリング法によって形成した。
【0052】
続いてこの基板を真空チャンバーから取り出し、上部にポリ(3,4)エチレンジオキシチオフェン/ポリスチレンスルフォネート(PEDT/PSS)を0.45μmのフィルターを通して滴下し、スピンコート法によって均一に塗布した。これを200℃のクリーンオーブン中で10分間加熱することで補助電極7としてのCr補助電極を有する陽極2を得た。
【0053】
次に、この陽極2上にポリ(2−メトキシ−5−(2’−エチルヘキシルオキシ)−1,4−フェニレンビニレン)(MEH−PPV)と[5,6]−フェニル C61 ブチリックアシッドメチルエステル([5,6]−PCBM)との重量比1:4のクロロベンゼン溶液をスピンコートした後、100℃のクリーンオーブン中で30分間加熱処理し、約100nmの光電変換領域3を形成した。
【0054】
最後に、この光電変換領域3上部に0.27mPa(=2×10−6Torr)以下の真空度まで減圧した抵抗加熱蒸着装置内にて、LiFを約2nm、続いてAlを約100nmの膜厚で成膜し、有機光電変換素子を得た。
【0055】
このようにして形成した有機光電変換素子の変換効率を測定した結果を図4に示す。
【0056】
図4から分かるように、補助電極のない従来のものに比べ、本実施例の有機光電変換素子では、開放端電圧が0.63Vから0.72Vへ、また短絡電流は3.0mA/cmから4.7mA/cmへと大きく向上し、高効率な特性を示した。
【0057】
なお、照射条件は、AM(空気透過量)1.5である。
【0058】
【発明の効果】
以上のように、本発明によれば、電極間に少なくとも一種の電子供与性有機材料および電子受容性材料からなる光電変換領域を有する有機光電変換素子において、前記電極の少なくとも一部分に、前記電極よりも電気抵抗の低い補助電極を併設することによって、発電効率の低下を防いで、効率良く外部回路に電力を取り出すことができる有機光電変換素子が得られる。
【0059】
また、補助電極の併設により、電極自体の抵抗は多少高くても効率の低下を招くことがなくなるため、従来のITOだけでなく導電性高分子等も使用可能となるため、材料の選択肢が増え、フレキシブル化や低コスト化への対応が容易になる。
【図面の簡単な説明】
【図1】本発明の第1実施の形態における有機光電変換素子の要部断面図
【図2】本発明の第2実施の形態における有機光電変換素子の要部断面図
【図3】本発明の第3実施の形態における有機光電変換素子の上部平面図
【図4】本発明の一実施例における有機光電変換素子の電流密度―電圧特性を示す図
【図5】一般的な有機光電変換素子の要部断面図
【符号の説明】
1 基板
2 陽極
3 光電変換領域
4 電子供与性有機材料
5 電子受容性材料
6 陰極
7 補助電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an organic photoelectric conversion element using a photovoltaic effect of an organic semiconductor material and a method for manufacturing the same.
[0002]
[Prior art]
Due to the depletion of fossil fuels and the problem of global environmental conservation, interest in clean alternative energy is increasing. Above all, photoelectric conversion elements that use infinite sunlight fall, so-called solar cells, are clean without emission of carbon dioxide, etc., can be used anywhere without the need for fuels such as hydrocarbons, and are quiet. It is greatly expected as an alternative energy because of its safety and safety.
[0003]
Such solar cells are classified into two types, an inorganic solar cell using a silicon semiconductor or a compound semiconductor, and an organic solar cell using an organic semiconductor. Until now, the former inorganic solar cells have been mainly developed. However, it is difficult to reduce the cost of the inorganic solar cell because of its expensive material and complicated manufacturing process, and this has hindered its spread.
[0004]
Therefore, organic solar cells have recently attracted attention again. One of the reasons is that it can be manufactured at a lower cost, but one of the factors is that research on organic semiconductors has been advanced due to the development of organic EL (Electro Luminescent) elements and the like.
[0005]
An organic solar cell is similar to an inorganic solar cell in principle, and supplies electric power to the outside of the element using the photovoltaic effect of an organic semiconductor sandwiched between two electrodes. There are several types of organic solar cells (organic photoelectric conversion elements), including a wet type reported by Gratzel et al., A laminated type, and a mixture of an electron donating organic substance and an electron accepting organic substance. Things have been proposed.
[0006]
Among them, the Gratzel type is the highest in terms of high conversion efficiency, and it is reported that a conversion efficiency of about 10% can be obtained (for example, see Non-Patent Document 1). There are many issues such as stability, reliability, and durability. Also, recently, the stacked structure type has been energetically studied, and high efficiency ones have been reported (for example, see Non-Patent Document 2), but how to improve the efficiency of carrier separation. There are also many issues such as the limitation of the film thickness due to the exciton diffusion length.
[0007]
More recently, attention has been focused on mixed-type organic photoelectric conversion elements (for example, see Non-Patent Document 3). This is to form a film in which an electron-donating organic material and an electron-accepting material are mixed, and to perform light absorption, excitation, and electron transfer throughout the film. % Is relatively high.
[0008]
Here, a configuration of a general organic photoelectric conversion element will be described.
[0009]
FIG. 5 is a sectional view of a main part of a general organic photoelectric conversion element.
[0010]
The organic photoelectric conversion element shown in FIG. 5 has an anode made of a transparent conductive film such as ITO (indium tin oxide) formed on a light-transmitting substrate 1 such as glass by a sputtering method or a resistance heating evaporation method. 2, a photoelectric conversion region 3 formed by depositing an electron donating organic material 4 and an electron accepting material 5 on the anode 2 by spin coating or resistance heating evaporation, respectively, and further, a resistance heating evaporation And a cathode 6 made of metal formed by a method or the like.
[0011]
When the organic solar cell having the above configuration is irradiated with light, first, light absorption occurs in the photoelectric conversion region 3 and excitons are formed. Subsequently, the carriers are separated, and the electrons move to the cathode 6 through the n-type semiconductor material, and the holes move to the anode 2 through the p-type semiconductor material. As a result, an electromotive force is generated between the two electrodes, and power can be taken out by connecting an external circuit.
[0012]
[Non-patent document 1]
M. Gratzel et. Al., Journal of the American Chemical Society, 1993, 6382, 115.
[Non-patent document 2]
S. R. Forest, et al. (SR forrest et. Al.), Applied Physics Letters, 2001, 126, 79.
[Non-Patent Document 3]
G. Yu, J. C. Hummeren, F. Wudl, A. J. Heeger, Science, 1995 Year, 1789, 270
[0013]
[Problems to be solved by the invention]
In order to improve the efficiency of the photoelectric conversion element, it is necessary to adjust the light absorption characteristics of the photoelectric conversion film to the spectrum of sunlight to absorb light efficiently, and to design materials and devices to efficiently perform charge separation. There are various approaches such as studying the above, improving the carrier mobility of the constituent materials, and efficiently transporting the carriers to the electrodes, and intensive research has been made on these.
[0014]
However, no matter how efficiently carriers are transported to the electrodes, if they cannot be effectively taken out to an external circuit, the photoelectric conversion efficiency is not substantially improved.
[0015]
For example, as an electrode of a general organic solar cell, ITO is used for an anode and a metal such as Al is used for a cathode. The former ITO has higher electric resistance than the cathode. Therefore, when carriers are transported in the ITO, the voltage is reduced, and as a result, the generated power is reduced. This effect becomes more conspicuous as the electrical resistance of the electrode used increases, and the only way to prevent this is to use an expensive low-resistance electrode, resulting in an increase in cost.
[0016]
In view of the above, the present invention provides an organic photoelectric conversion element capable of minimizing a voltage drop due to electric resistance of an electrode used for a photoelectric conversion device and efficiently extracting power to an external circuit, and a method of manufacturing the same. With the goal.
[0017]
[Means for Solving the Problems]
The organic photoelectric conversion element of the present invention is an organic photoelectric conversion element having a photoelectric conversion region comprising at least one kind of an electron donating organic material and an electron accepting material between electrodes, wherein at least a part of the electrodes is more electrically charged than the electrodes. An auxiliary electrode having a low resistance is provided, and a voltage drop due to the electric resistance of the electrode is suppressed by the provided auxiliary electrode.
[0018]
ADVANTAGE OF THE INVENTION According to this invention, the organic photoelectric conversion element which can take out electric power to an external circuit efficiently by preventing the fall of power generation efficiency is obtained.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 is an organic photoelectric conversion element having a photoelectric conversion region including at least an electron-donating organic material and an electron-accepting material between electrodes, wherein at least a part of the electrodes has a higher electrical resistance than the electrodes. An organic photoelectric conversion element characterized by having a low auxiliary electrode, which can reduce voltage loss due to electrode resistance when power is taken out to an external circuit, so that a highly efficient organic photoelectric conversion element can be obtained. .
[0020]
The invention according to claim 2 is the organic photoelectric conversion element according to claim 1, wherein the electrode provided with the auxiliary electrode is formed of a light-transmitting conductive film. Even in the case of a film, by providing a low-resistance auxiliary electrode, voltage loss due to electrode resistance generated when power is taken out to an external circuit can be reduced, so that a highly efficient organic photoelectric conversion element can be obtained. In addition, since the required characteristics with respect to the resistance value of the light-transmitting conductive film are relaxed, it is possible to reduce the thickness of the electrode and improve the light-transmitting property. Further, since the choices of materials and manufacturing methods are expanded, it is possible to form electrodes at lower cost.
[0021]
The invention according to claim 3 is the organic photoelectric conversion element according to claim 1 or 2, wherein the electrode provided with the auxiliary electrode is formed of a light-transmitting conductive film formed by a coating method. Yes, usually, a light-transmitting conductive film that has been formed by a vacuum process such as a sputtering method or an ion beam evaporation method in order to reduce the resistance value and suppress voltage loss is more simply formed by a simple application and firing process only. As a result, the manufacturing cost can be significantly reduced. The light-transmitting conductive film may have any transmittance as long as predetermined light reaches the photoelectric conversion region and has a low resistance value. It is better to use
[0022]
According to a fourth aspect of the present invention, the electrode provided with the auxiliary electrode is made of a conductive polymer alone or a material obtained by mixing a conductive polymer with another conductive material. The organic photoelectric conversion element according to any one of Items 1 to 3, wherein the choice of electrode material is widened, and even if the material has a somewhat high resistance, it can be used as an electrode. Further, by selecting an electrode material that can be formed at a low temperature, a polymer film substrate having low heat resistance can be used, and a flexible organic photoelectric conversion element can be obtained.
[0023]
The invention according to claim 5 is characterized in that two or more organic photoelectric conversion elements are electrically connected in series or parallel by the auxiliary electrode. It is an organic photoelectric conversion element, and by forming auxiliary electrodes in advance so that the organic photoelectric conversion elements can be arranged in an arbitrary direction, even if patterning or the like is not particularly performed at the time of forming each constituent layer of the organic photoelectric conversion element, it is parallel. Alternatively, an organic photoelectric conversion element arbitrarily connected in series is obtained.
[0024]
The invention according to claim 6 is the organic photoelectric conversion element according to any one of claims 1 to 5, wherein the connection to the external circuit is performed by the auxiliary electrode. By arranging and wiring the electrodes with the electrodes, it is possible to extract power to the outside without voltage loss.
[0025]
The invention according to claim 7 is the organic photoelectric conversion element according to any one of claims 1 to 6, wherein the photoelectric conversion region is made of at least an electron-donating organic material and a fullerene material. An organic photoelectric conversion element can be manufactured by a cheaper material and a simpler manufacturing method, and cost reduction can be achieved.
[0026]
The invention according to claim 8 is a method for manufacturing an organic photoelectric conversion element having a photoelectric conversion region comprising at least one kind of an electron-donating organic material and an electron-accepting material between electrodes, and has a higher electric resistance than the electrodes. A method for manufacturing an organic photoelectric conversion element, comprising forming the electrode after forming a low auxiliary electrode, and attaching the auxiliary electrode to at least a part of the electrode, wherein the auxiliary electrode is formed before the electrode. By doing so, patterning becomes easy.
[0027]
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
[0028]
(Embodiment 1)
FIG. 1 is a sectional view of a main part of an organic photoelectric conversion element according to a first embodiment of the present invention.
[0029]
In FIG. 1, a substrate 1, an anode 2, a photoelectric conversion region 3 (an electron donating organic material 4, an electron accepting material 5), and a cathode 6 are the same as the conventional photoelectric conversion element already described in FIG. The same reference numerals are given and the description is omitted.
[0030]
The organic photoelectric conversion device in the present embodiment is different from the conventional photoelectric conversion device in that an auxiliary electrode 7 is provided on at least a part of the anode 2 as an electrode. The auxiliary electrode 7 has a sufficiently lower resistance value than the anode 2. Since the carriers generated in the photoelectric conversion region 3 are transported to the outside of the device via the auxiliary electrode 7, the resistance of the light-transmissive electrode (anode 2) in contact with the photoelectric conversion region 3 is more restricted than in the conventional case. And the choice of both materials and manufacturing methods is widened.
[0031]
Therefore, by using cheaper materials and manufacturing methods, not only can the cost of the element be reduced, but also the application to a flexible substrate becomes easy. For example, a coating type ITO, which is a light-transmitting conductive film having a high resistance value and which has been difficult to use in the past, can be sufficiently used as the anode 2, and furthermore, a highly conductive material such as PEDOT (polythiophene) or PPV (polyphenylenevinylene) can be used. Even with a molecular compound, it is possible to function as an electrode by providing the auxiliary electrode 7 together. Accordingly, it is not always necessary to form an electrode in an expensive vacuum system, and the electrode can be formed in all steps of application.
[0032]
Further, in the organic photoelectric conversion element according to the present embodiment, it is possible to form anode 2 after forming auxiliary electrode 7. Therefore, patterning is facilitated by forming the auxiliary electrode 7 before the anode 2.
[0033]
The element configuration is not limited to this configuration. For example, carbon, various porphyrin compounds, metal oxides, metal oxides, and the like may be provided at the interface between the anode 2 and the photoelectric conversion region 3 or the interface between the photoelectric conversion region 3 and the cathode 6. By introducing a fluoride or the like, it is also effective to prevent the occurrence of a short-circuit current or to improve the take-out current.
[0034]
(Embodiment 2)
FIG. 2 is a sectional view of a main part of an organic photoelectric conversion element according to a second embodiment of the present invention.
[0035]
In FIG. 2, the substrate 1, the anode 2, and the auxiliary electrode 7 are the same as those described in the first embodiment. The difference from the organic photoelectric conversion element in the first embodiment is that the electron-accepting material 5 is embedded in the electron-donating organic material 4 in the photoelectric conversion region 3.
[0036]
Such a mixed-type organic photoelectric conversion element has a simple structure, so that the manufacturing cost can be significantly reduced.
[0037]
The element configuration is not limited to this configuration. For example, carbon, various porphyrin compounds, metal oxides, metal oxides, and the like may be provided at the interface between the anode 2 and the photoelectric conversion region 3 or the interface between the photoelectric conversion region 3 and the cathode 6. By introducing a fluoride or the like, it is also effective to prevent the occurrence of a short-circuit current or to improve the take-out current.
[0038]
(Embodiment 3)
FIG. 3 is a top plan view of the organic photoelectric conversion element according to the third embodiment of the present invention.
[0039]
3, the substrate 1, the anode 2, the photoelectric conversion region 3, the cathode 6, and the auxiliary electrode 7 are the same as those of the organic photoelectric conversion device shown in FIG.
[0040]
In the organic photoelectric conversion element in the present embodiment, two or more organic photoelectric conversion elements are electrically connected by the auxiliary electrode 7. In the present embodiment, two organic photoelectric conversion elements are connected in series. However, the present invention is not particularly limited to this mode, and the number of connection elements and the connection method (series / parallel) are determined according to the purpose. It can be changed arbitrarily.
[0041]
Further, in the organic photoelectric conversion element according to the present embodiment, the electrode wiring on the substrate 1 is performed by the auxiliary electrode 7. As a result, the wiring resistance can be minimized, and power can be efficiently supplied to the outside of the element.
[0042]
The substrate 1 used in the organic photoelectric conversion device of the present invention is not particularly limited as long as it has mechanical and thermal strength and transmits sunlight effectively. For example, a material having high transparency in the visible light region, such as a glass substrate, polyethylene terephthalate, polycarbonate, polymethyl methacrylate, polyether sulfone, polyvinyl fluoride, polypropylene, polyethylene, polyacrylate, amorphous polyolefin, or a fluororesin is used. be able to. Further, a flexible substrate having flexibility in which these materials are formed into a film may be used.
[0043]
The substrate 1 may be made of a material that transmits only a specific wavelength or a material that has a light-to-light conversion function and converts the light into light of a specific wavelength, depending on the application. Furthermore, the substrate 1 is preferably insulative, but not particularly limited, and may have conductivity depending on the range or application in which the operation of the organic photoelectric conversion element is not hindered.
[0044]
At least one of the electrodes (anode 2 and cathode 6) of a general photoelectric conversion element needs to transmit light, and this transmittance greatly affects the photoelectric conversion characteristics. Therefore, as the anode 2, a light-transmitting conductive film formed of ITO, ATO (SnO 2 doped with Sb), AZO (ZnO doped with Al), or the like by a sputtering method, an ion beam evaporation method, or the like, so-called generally What is called a transparent electrode is used. However, since the organic photoelectric conversion element of the present invention supplements the conductivity by the auxiliary electrode 7, it can be used even with an electrode material having a higher resistance than usual. For example, coating type ITO, PEDOT, PPV In addition to a material obtained by mixing a conductive polymer such as a conductive polymer compound such as polyolefin and polyfluorene with another conductive material, a material of a conductive polymer alone can be used.
[0045]
The material of the auxiliary electrode 7 may be any material as long as it has a low electric resistance and can form a uniform film. For example, Cr, Ag, Au, Al, Cu, or the like can be used. . Further, the formation method may be any method such as a method using photolithography after sputtering and a printing method.
[0046]
As the electron donating organic material 4 constituting the photoelectric conversion region 3, a polymer such as phenylenevinylene, fluorene, carbazole, indole, pyrene, pyrrole, picoline, thiophene, acetylene, diacetylene, or a derivative thereof is used. The electron-donating organic material 4 is not limited to a polymer, and may be, for example, a porphyrin compound such as porphine, tetraphenylporphine copper, phthalocyanine, copper phthalocyanine, or titanium phthalocyanine oxide, or 1,1-bis @ 4- ( Di-P-tolylamino) phenyl} cyclohexane, 4,4 ′, 4 ″ -trimethyltriphenylamine, N, N, N ′, N′-tetrakis (P-tolyl) -P-phenylenediamine, 1- (N, N-di-P-tolylamino) naphthalene, 4,4'-bis (dimethylamino) -2-2-2'-dimethyltriphenylmethane, N, N, N ', N'-tetraphenyl-4,4'-diamino Aroma such as biphenyl, N, N'-diphenyl-N, N'-di-m-tolyl-4, 4'-diaminobiphenyl, N-phenylcarbazole Tertiary amines, stilbene compounds such as 4-di-P-tolylaminostilbene, 4- (di-P-tolylamino) -4 ′-[4- (di-P-tolylamino) styryl] stilbene, triazole derivatives, Oxazizazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, annealed amine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styryl anthracene derivatives, fluorenone derivatives, hydrazone derivatives, silazane derivatives, polysilane-based anilines Copolymers, polymer oligomers, styrylamine compounds, aromatic dimethylidin compounds, poly-methylthiophene, and the like are also used.
[0047]
Examples of the electron-accepting material 5 constituting the photoelectric conversion region 3 include fullerenes such as C 60 and C 70 , carbon nanotubes, and derivatives thereof, and 1,3-bis (4-tert-butylphenyl-1,1). Oxadiazole derivatives such as 3,4-oxadiazolyl) phenylene (OXD-7), anthraquinodimethane derivatives, diphenylquinone derivatives, and the like are used.
[0048]
The cathode 6 may be of any type as long as the generated charges can be efficiently taken out to an external circuit, such as Al, Au, Cr, Cu, In, Mg, Ni, Si, Ti, etc. Metal, Mg alloy such as Mg-Ag alloy and Mg-In alloy, and Al alloy such as Al-Li alloy, Al-Sr alloy and Al-Ba alloy.
[0049]
The element configuration is not limited to this configuration. For example, carbon, various porphyrin compounds, metal oxides, metal oxides, and the like may be provided at the interface between the anode 2 and the photoelectric conversion region 3 or the interface between the photoelectric conversion region 3 and the cathode 6. By introducing a fluoride or the like, it is also effective to prevent the occurrence of a short-circuit current or to improve the take-out current.
[0050]
【Example】
First, a glass substrate as the substrate 1 was subjected to ultrasonic cleaning for 5 minutes with a detergent (Semico Clean, manufactured by Furuuchi Chemical Co., Ltd.), ultrasonic cleaning for 10 minutes with pure water, and peroxidized with ammonia water 1 (volume ratio). After performing a cleaning process in the order of ultrasonic cleaning with a mixed solution of hydrogen water 1 and water 5 for 5 minutes and ultrasonic cleaning with pure water at 70 ° C. for 5 minutes, moisture adhering to the glass substrate is removed with a nitrogen blower. And further dried by heating to 250 ° C.
[0051]
On this glass substrate, a Cr film of about 1 μm was formed in a vacuum chamber through a predetermined mask by a sputtering method.
[0052]
Subsequently, the substrate was taken out of the vacuum chamber, and poly (3,4) ethylenedioxythiophene / polystyrenesulfonate (PEDT / PSS) was dropped on the upper part through a 0.45 μm filter, and was uniformly applied by a spin coating method. . This was heated in a clean oven at 200 ° C. for 10 minutes to obtain an anode 2 having a Cr auxiliary electrode as the auxiliary electrode 7.
[0053]
Next, poly (2-methoxy-5- (2′-ethylhexyloxy) -1,4-phenylenevinylene) (MEH-PPV) and [5,6] -phenyl C 61 butyric acid methyl were placed on the anode 2. After spin-coating a chlorobenzene solution with an ester ([5,6] -PCBM) at a weight ratio of 1: 4, the mixture was heated in a clean oven at 100 ° C. for 30 minutes to form a photoelectric conversion region 3 of about 100 nm.
[0054]
Finally, a film of LiF having a thickness of about 2 nm and Al having a thickness of about 100 nm is formed on the upper part of the photoelectric conversion region 3 in a resistance heating vapor deposition apparatus in which the degree of vacuum is reduced to 0.27 mPa (= 2 × 10 −6 Torr) or less. A film was formed to have a large thickness to obtain an organic photoelectric conversion element.
[0055]
FIG. 4 shows the result of measuring the conversion efficiency of the organic photoelectric conversion element thus formed.
[0056]
As can be seen from FIG. 4, the open-circuit voltage of the organic photoelectric conversion element of this example is changed from 0.63 V to 0.72 V and the short-circuit current is 3.0 mA / cm 2 , as compared with the conventional device having no auxiliary electrode. From 4.7 to 4.7 mA / cm 2 , showing high efficiency characteristics.
[0057]
The irradiation condition is AM (air permeation amount) 1.5.
[0058]
【The invention's effect】
As described above, according to the present invention, in an organic photoelectric conversion element having a photoelectric conversion region composed of at least one kind of an electron donating organic material and an electron accepting material between electrodes, at least a part of the electrodes, Also, by providing an auxiliary electrode having a low electric resistance, an organic photoelectric conversion element capable of efficiently extracting electric power to an external circuit while preventing a decrease in power generation efficiency can be obtained.
[0059]
Also, by providing the auxiliary electrode, even if the resistance of the electrode itself is slightly high, a decrease in efficiency does not occur, so that not only the conventional ITO but also a conductive polymer can be used, so that the choice of materials is increased. Therefore, it is easy to respond to flexibility and cost reduction.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a main part of an organic photoelectric conversion element according to a first embodiment of the present invention. FIG. 2 is a cross-sectional view of a main part of an organic photoelectric conversion element according to a second embodiment of the present invention. FIG. 4 is a top plan view of an organic photoelectric conversion device according to a third embodiment of the present invention. FIG. 4 is a diagram showing current density-voltage characteristics of the organic photoelectric conversion device according to one embodiment of the present invention. Cross section of main part of [Description of reference numerals]
Reference Signs List 1 substrate 2 anode 3 photoelectric conversion region 4 electron donating organic material 5 electron accepting material 6 cathode 7 auxiliary electrode

Claims (8)

電極間に少なくとも一種の電子供与性有機材料および電子受容性材料からなる光電変換領域を有する有機光電変換素子において、
前記電極の少なくとも一部分に、前記電極よりも電気抵抗の低い補助電極を併設したことを特徴とする有機光電変換素子。
In an organic photoelectric conversion element having a photoelectric conversion region composed of at least one electron donating organic material and an electron accepting material between the electrodes,
An organic photoelectric conversion element, wherein an auxiliary electrode having a lower electric resistance than the electrode is provided in at least a part of the electrode.
前記補助電極を併設した電極が、光透過性導電膜からなることを特徴とする請求項1記載の有機光電変換素子。The organic photoelectric conversion element according to claim 1, wherein the electrode provided with the auxiliary electrode is made of a light-transmitting conductive film. 前記補助電極を併設した電極が、塗布法によって成膜された光透過性導電膜からなることを特徴とする請求項1または2に記載の有機光電変換素子。The organic photoelectric conversion element according to claim 1, wherein the electrode provided with the auxiliary electrode is formed of a light-transmitting conductive film formed by a coating method. 前記補助電極を併設した電極が、導電性高分子単体、もしくは、導電性高分子と他の導電性材料とを混合した材料からなることを特徴とする請求項1から3のいずれかに記載の有機光電変換素子。4. The electrode according to claim 1, wherein the electrode provided with the auxiliary electrode is made of a conductive polymer alone or a material obtained by mixing a conductive polymer and another conductive material. Organic photoelectric conversion element. 前記補助電極によって、二つ以上の有機光電変換素子が電気的に直列または並列に接続されていることを特徴とする請求項1から4のいずれかに記載の有機光電変換素子。The organic photoelectric conversion device according to any one of claims 1 to 4, wherein two or more organic photoelectric conversion devices are electrically connected in series or in parallel by the auxiliary electrode. 外部回路との接続が、前記補助電極によって行われることを特徴とする請求項1から5のいずれかに記載の有機光電変換素子。The organic photoelectric conversion element according to claim 1, wherein connection to an external circuit is performed by the auxiliary electrode. 前記光電変換領域が、少なくとも電子供与性有機材料およびフラーレン類材料からなることを特徴とする請求項1から6のいずれかに記載の有機光電変換素子。The organic photoelectric conversion device according to claim 1, wherein the photoelectric conversion region is made of at least an electron donating organic material and a fullerene-based material. 電極間に少なくとも一種の電子供与性有機材料および電子受容性材料からなる光電変換領域を有する有機光電変換素子の製造方法であって、
前記電極よりも電気抵抗の低い補助電極を形成した後に前記電極を形成して、前記電極の少なくとも一部分に前記補助電極を併設することを特徴とする有機光電変換素子の製造方法。
A method for producing an organic photoelectric conversion element having a photoelectric conversion region composed of at least one electron donating organic material and an electron accepting material between electrodes,
A method for manufacturing an organic photoelectric conversion element, comprising: forming an auxiliary electrode having an electric resistance lower than that of the electrode, forming the electrode, and attaching the auxiliary electrode to at least a part of the electrode.
JP2002323449A 2002-11-07 2002-11-07 Organic light to electricity transducing device and its manufacturing method Pending JP2004158661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002323449A JP2004158661A (en) 2002-11-07 2002-11-07 Organic light to electricity transducing device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002323449A JP2004158661A (en) 2002-11-07 2002-11-07 Organic light to electricity transducing device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004158661A true JP2004158661A (en) 2004-06-03

Family

ID=32803310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002323449A Pending JP2004158661A (en) 2002-11-07 2002-11-07 Organic light to electricity transducing device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004158661A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006521700A (en) * 2003-03-24 2006-09-21 コナルカ テクノロジーズ インコーポレイテッド Photoelectric cell with mesh electrode
JP2006351721A (en) * 2005-06-14 2006-12-28 Matsushita Electric Works Ltd Stacked organic solar cell and its manufacturing method
WO2007023881A1 (en) * 2005-08-26 2007-03-01 Kansai Paint Co., Ltd. Method for forming electrode pattern, method for connecting electrode patterns, method for forming dye sensitized semiconductor electrode and photoelectric cell module
JP2007056345A (en) * 2005-08-26 2007-03-08 Kansai Paint Co Ltd Electrode pattern forming method, and photoelectric cell module
JP2007194557A (en) * 2006-01-23 2007-08-02 Toppan Printing Co Ltd Compound photoelectric conversion element, and method for manufacturing same
JP2007194559A (en) * 2006-01-23 2007-08-02 National Institute For Materials Science Compound photoelectric conversion element, and method for manufacturing same
JP2009076668A (en) * 2007-09-20 2009-04-09 Dainippon Printing Co Ltd Organic thin-film solar cell
WO2010064709A1 (en) * 2008-12-04 2010-06-10 大日本印刷株式会社 Organic thin film solar battery and method for manufacturing same
JP2010177615A (en) * 2009-02-02 2010-08-12 Konica Minolta Holdings Inc Organic electronic element, and method of manufacturing the same
JP2010232351A (en) * 2009-03-26 2010-10-14 Dainippon Printing Co Ltd Organic thin film solar cell
JP2010272466A (en) * 2009-05-25 2010-12-02 Fujifilm Corp Transparent conductor and its manufacturing method
JP2011018890A (en) * 2009-06-11 2011-01-27 Dainippon Printing Co Ltd Organic thin-film solar cell and manufacturing method thereof
JP2011124494A (en) * 2009-12-14 2011-06-23 Dainippon Printing Co Ltd Organic thin film solar battery module
JP2011142217A (en) * 2010-01-07 2011-07-21 Dainippon Printing Co Ltd Organic thin-film solar cell
JP2011244020A (en) * 2011-09-09 2011-12-01 Dainippon Printing Co Ltd Organic thin-film solar cell
JP2011529264A (en) * 2008-07-25 2011-12-01 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Integrated encapsulated electronic device
JP2012023407A (en) * 2011-10-28 2012-02-02 Dainippon Printing Co Ltd Organic thin-film solar cell
JP2012503874A (en) * 2008-09-24 2012-02-09 サン−ゴバン グラス フランス Solar cell front electrode with anti-reflective coating
WO2012053520A1 (en) * 2010-10-21 2012-04-26 コニカミノルタホールディングス株式会社 Organic electronic device
WO2012056946A1 (en) * 2010-10-26 2012-05-03 住友化学株式会社 Power generating device
WO2013051849A2 (en) * 2011-10-04 2013-04-11 Lg Innotek Co., Ltd. Solar apparatus and method of fabricating the same
US8421064B2 (en) * 2010-04-09 2013-04-16 Electronics And Telecommunications Research Institute Organic-light-emitting-diode flat-panel light-source apparatus
KR101403407B1 (en) 2010-04-09 2014-06-11 한국전자통신연구원 Organic Light Emitting Diodes Flat Panel Light Source Apparatus and Method Manufacturing the Same
US9184317B2 (en) 2007-04-02 2015-11-10 Merck Patent Gmbh Electrode containing a polymer and an additive

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006521700A (en) * 2003-03-24 2006-09-21 コナルカ テクノロジーズ インコーポレイテッド Photoelectric cell with mesh electrode
JP2006351721A (en) * 2005-06-14 2006-12-28 Matsushita Electric Works Ltd Stacked organic solar cell and its manufacturing method
WO2007023881A1 (en) * 2005-08-26 2007-03-01 Kansai Paint Co., Ltd. Method for forming electrode pattern, method for connecting electrode patterns, method for forming dye sensitized semiconductor electrode and photoelectric cell module
JP2007056345A (en) * 2005-08-26 2007-03-08 Kansai Paint Co Ltd Electrode pattern forming method, and photoelectric cell module
JP2007194557A (en) * 2006-01-23 2007-08-02 Toppan Printing Co Ltd Compound photoelectric conversion element, and method for manufacturing same
JP2007194559A (en) * 2006-01-23 2007-08-02 National Institute For Materials Science Compound photoelectric conversion element, and method for manufacturing same
US9184317B2 (en) 2007-04-02 2015-11-10 Merck Patent Gmbh Electrode containing a polymer and an additive
JP2009076668A (en) * 2007-09-20 2009-04-09 Dainippon Printing Co Ltd Organic thin-film solar cell
JP2011529264A (en) * 2008-07-25 2011-12-01 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Integrated encapsulated electronic device
JP2012503874A (en) * 2008-09-24 2012-02-09 サン−ゴバン グラス フランス Solar cell front electrode with anti-reflective coating
WO2010064709A1 (en) * 2008-12-04 2010-06-10 大日本印刷株式会社 Organic thin film solar battery and method for manufacturing same
JP2010157681A (en) * 2008-12-04 2010-07-15 Dainippon Printing Co Ltd Organic thin-film solar cell and method for manufacturing same
CN102217112A (en) * 2008-12-04 2011-10-12 大日本印刷株式会社 Organic thin film solar battery and method for manufacturing same
JP2010177615A (en) * 2009-02-02 2010-08-12 Konica Minolta Holdings Inc Organic electronic element, and method of manufacturing the same
JP2010232351A (en) * 2009-03-26 2010-10-14 Dainippon Printing Co Ltd Organic thin film solar cell
JP2010272466A (en) * 2009-05-25 2010-12-02 Fujifilm Corp Transparent conductor and its manufacturing method
JP2011018890A (en) * 2009-06-11 2011-01-27 Dainippon Printing Co Ltd Organic thin-film solar cell and manufacturing method thereof
JP2011124494A (en) * 2009-12-14 2011-06-23 Dainippon Printing Co Ltd Organic thin film solar battery module
JP2011142217A (en) * 2010-01-07 2011-07-21 Dainippon Printing Co Ltd Organic thin-film solar cell
KR101403407B1 (en) 2010-04-09 2014-06-11 한국전자통신연구원 Organic Light Emitting Diodes Flat Panel Light Source Apparatus and Method Manufacturing the Same
US8421064B2 (en) * 2010-04-09 2013-04-16 Electronics And Telecommunications Research Institute Organic-light-emitting-diode flat-panel light-source apparatus
US8871563B2 (en) 2010-04-09 2014-10-28 Electronics And Telecommunications Research Institute Method of manufacturing organic-light-emitting-diode flat-panel light-source apparatus
JP6073681B2 (en) * 2010-10-21 2017-02-01 コニカミノルタ株式会社 Organic electroluminescence device
WO2012053520A1 (en) * 2010-10-21 2012-04-26 コニカミノルタホールディングス株式会社 Organic electronic device
WO2012056946A1 (en) * 2010-10-26 2012-05-03 住友化学株式会社 Power generating device
CN103180992A (en) * 2010-10-26 2013-06-26 住友化学株式会社 Power generating device
JP2011244020A (en) * 2011-09-09 2011-12-01 Dainippon Printing Co Ltd Organic thin-film solar cell
KR101338615B1 (en) * 2011-10-04 2014-01-10 엘지이노텍 주식회사 Solar apparatus and method of fabricating the same
WO2013051849A3 (en) * 2011-10-04 2013-06-13 Lg Innotek Co., Ltd. Solar apparatus and method of fabricating the same
WO2013051849A2 (en) * 2011-10-04 2013-04-11 Lg Innotek Co., Ltd. Solar apparatus and method of fabricating the same
US9991402B2 (en) 2011-10-04 2018-06-05 Lg Innotek Co., Ltd. Solar apparatus and method of fabricating the same
JP2012023407A (en) * 2011-10-28 2012-02-02 Dainippon Printing Co Ltd Organic thin-film solar cell

Similar Documents

Publication Publication Date Title
JP2004158661A (en) Organic light to electricity transducing device and its manufacturing method
Hadipour et al. Organic tandem and multi‐junction solar cells
US7180110B2 (en) Organic photoelectric conversion element
Spanggaard et al. A brief history of the development of organic and polymeric photovoltaics
JP5064034B2 (en) Organic electrical element
TWI402981B (en) Organic double-heterostructure photovoltaic cells having reciprocal-carrier exciton blocking layer
Armstrong et al. Organic/organic′ heterojunctions: organic light emitting diodes and organic photovoltaic devices
KR101131711B1 (en) High efficiency organic photovoltaic cells employing hybridized mixed-planar heterojunctions
US9722197B2 (en) Inverted organic electronic device and method for manufacturing the same
US7309833B2 (en) Photovoltaic devices comprising layer(s) of photoactive organics dissolved in high Tg polymers
US9105848B2 (en) Composite organic materials and applications thereof
US20120118368A1 (en) Method for Increasing the Efficiency of Organic Photovoltaic Cells
US20080149178A1 (en) Composite organic materials and applications thereof
WO2010134432A1 (en) Organic photoelectric conversion element
CN102217112A (en) Organic thin film solar battery and method for manufacturing same
EP2506328A1 (en) Organic solar cell
EP2346106A1 (en) Organic solar battery
ES2923405T3 (en) Organic photosensitive devices with exciton blocking charge carrier filters
JP5673343B2 (en) Organic photoelectric conversion element and manufacturing method thereof
KR102251818B1 (en) Hybrid planar-mixed heterojunction for organic photovoltaics
Benten et al. Design of Multilayered Nanostructures and Donor–Acceptor Interfaces in Solution‐Processed Thin‐Film Organic Solar Cells
WO2011052510A1 (en) Organic thin film solar cell and method for manufacturing same
JP2007115849A (en) Laminated organic solar cell
JP2009267196A (en) Tandem photovoltaic device
WO2011052509A1 (en) Method for production of organic photoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051102

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090714