JP2007190114A - 磁気共鳴イメージング装置 - Google Patents

磁気共鳴イメージング装置 Download PDF

Info

Publication number
JP2007190114A
JP2007190114A JP2006009489A JP2006009489A JP2007190114A JP 2007190114 A JP2007190114 A JP 2007190114A JP 2006009489 A JP2006009489 A JP 2006009489A JP 2006009489 A JP2006009489 A JP 2006009489A JP 2007190114 A JP2007190114 A JP 2007190114A
Authority
JP
Japan
Prior art keywords
magnetic field
sequence
gradient magnetic
magnetic resonance
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006009489A
Other languages
English (en)
Inventor
Hiroyuki Itagaki
博幸 板垣
Tetsuhiko Takahashi
哲彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2006009489A priority Critical patent/JP2007190114A/ja
Publication of JP2007190114A publication Critical patent/JP2007190114A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

【課題】タギングシーケンスとシネ画像シーケンスとを併用して撮像対象の変形挙動を画像化する撮像シーケンスを実行するMRI装置であって、撮像時間を殆ど延長せず、心臓の位置をモニタすることのできるMRI装置を提供する。
【解決手段】タギングシーケンスにおいて、傾斜磁場パルスを追加することにより、エコー信号を発生させる。このエコー信号を一次元フーリエ変換したプロ受アクションデータを用いて、撮像対象の位置変動をモニタすることができる。よって、位置変動モニタ用のナビゲーションシーケンスを別途行う必要がなく、撮像時間を延長しない。位置変動のモニタにより、体動がシネ画像に与える影響を除去できるため、精度よく心臓の変形挙動等を検出できる。
【選択図】図2

Description

本発明は、磁気共鳴イメージング(MRI)装置において、プリサチレーションパルスを印加して撮像対象の核磁化を変調し、MRI画像上にストライプ状あるいは格子状のタグを付与した後、撮像を行う装置に関するものである。
MRI画像上にストライプ状のタグを付与するシーケンス(タギングシーケンス)は、例えば非特許文献1に記載されているものが知られている。具体的には、例えば図9(a)のように、フリップ角度が90度である2回の高周波磁場(RF)パルス911と、1回のX方向傾斜磁場パルス912とで構成される。タギングシーケンス実行後に、スライス方向をZ方向、位相エンコード方向をY方向、リードアウト方向をX軸方向とする撮像シーケンスを実行すると、図9(b)のMRI画像に示す様に、X軸に直交するストライプ状のタグが付与される。このストライプは、信号が抑圧された領域(図9(b)における黒線部)と抑圧されていない領域とが交互に並んだ構成であり、タギングシーケンスのRFパルスのフリップ角、および傾斜磁場パルス912の印加量により、抑圧の割合やストライプの間隔を調整することができる。
また、タギングシーケンスとシネ撮像シーケンスとを実行して心壁の変形挙動を画像化する技術は、例えば非特許文献2に記載されている。例えば、図10に示すように、X軸に直交するタグとY軸に直交するタグとを作成するタギングシーケンス901をプリパルスとし、シネ撮像シーケンス902により心臓のシネ画像を撮像する。図10のタギングシーケンス901は、図9(a)のパルス系列を2回実施することを基本とし、傾斜磁場方向をX方向・Y方向に変更し、アーチファクトを低減するためにスポイラー用の傾斜磁場をZ方向に印加している。また、図10のシネ撮像シーケンス902は、核磁化を定常状態にしてエコー信号を取得する撮像法を適用している。このため、シネ撮像シーケンス902は、タギングシーケンス901直後の空打ち期間903と、所定の心時相数の画像再構成に使用するエコー信号の取得期間904とで構成される。
図10のようなタギングシーケンス901を適用した場合、X軸に直交するストライプ状のタグと、Y軸に直交するストライプ状のタグが交わることにより、信号強度の高い部分は格子点状に分布する(図11)。よって、シネ撮像シーケンス902で取得したシネ画像上で特定の格子点に着目し、その位置の遷移を検出することにより、心壁の変形挙動を把握することができる。
また、図10の空打ち期間903は、核磁化を定常状態にするまでの準備期間であり、空打ち期間903中のRFパルスと傾斜磁場パルスの印加タイミングは、画像再構成に使用するエコー信号を取得するシーケンスとほぼ同じである。したがって、空打ち期間903においてもエコー信号は発生するが、非定常状態のエコー信号を画像再構成に用いると画質が劣化することが知られているため、空打ち期間903のエコー信号はサンプリングされない。
図10に示したシーケンスのように、タギングシーケンス901とシネ撮像シーケンス902とを行う撮像方法は、1回の息止めで心臓全体の撮像を終了することが最善である。しかし、心臓全体を所定の空間分解能で撮像するためには、シネ撮像シーケンス902に所定の時間が必要であり、1回の息止めで行おうとすると、息止め期間が約1分にも及ぶ場合がある。そのため、10秒前後の息止めを4〜6回程度繰り返して心臓全体の撮像を行うのが一般的である。
Radiology,vol.171,p841-845(1989) J.Magn.Reson.Imaging,vol.16,p320-325(2002)
図10に示した撮像パルスシーケンスを10秒前後の息止めを4〜6回程度繰り返して心臓全体の撮像を行う場合、良好な画質を実現するためには、呼吸性体動等の体動の影響を除去する必要があり、各息止め期間中の体動モニタリングが重要である。呼吸性体動をモニタする手法としては、横隔膜ナビゲート法が知られており、心臓の位置は横隔膜の位置に依存していることも知られている。しかしながら、タギングシーケンスとシネ撮像シーケンスに加えてナビゲートシーケンスを行うと、撮像時間のさらなる延長につながる。
本発明の目的は、タギングシーケンスとシネ画像シーケンスとを併用して撮像対象の変形挙動等を画像化する撮像シーケンスを実行するMRI装置であって、撮像時間を殆ど延長せず、撮像対象の位置変動をモニタすることのできるMRI装置を提供することにある。
上記課題を解決するために、本発明では、以下のようなMRI装置が提供される。静磁場を発生する静磁場発生手段と、複数の軸方向についての傾斜磁場を発生する傾斜磁場発生手段と、撮像対象に高周波磁場を照射する高周波磁場発生手段と、撮像対象から発生する核磁気共鳴信号を検出する信号検出手段と、検出された核磁気共鳴信号に対して演算処理を適用し、画像再構成を行う演算処理手段と、傾斜磁場発生手段と高周波磁場発生手段と信号検出手段との動作を制御して所定の撮像パルスシーケンスを実行させる制御手段とを有するMRI装置において、撮像パルスシーケンスは、撮像対象から取得した生体信号に同期して、核磁気共鳴信号強度の空間分布を変調するタギングシーケンスと、生体信号からの時間経過の異なる複数の画像を撮像するシネ撮像シーケンスとを、複数心拍の期間実行する。このとき、タギングシーケンスは、信号強度の空間分布の変調のための、高周波磁場および少なくとも一つの軸方向についての傾斜磁場パルスを印加するとともに、傾斜磁場パルスとは極性の異なる傾斜磁場パルスを印加して核磁気共鳴信号を発生させる。演算処理手段は、異なる心拍において実行したタギングシーケンスで取得した核磁気共鳴信号から、撮像対象の位置変動を求める。このように、タギングシーケンスにおいて傾斜磁場パルスを追加して核磁気共鳴信号発生を発生させることにより、撮像パルスシーケンスを延長させることなく、撮像対象の位置変動のモニタを行うことができる。
上述のタギングシーケンスは、核磁気共鳴信号強度の空間分布を2方向に変調するために、2以上の高周波磁場の照射と2つの軸方向についての傾斜磁場パルスの印加を行う構成にすることができ、この場合には、2つの軸方向についての傾斜磁場パルスについて、それぞれ極性の異なる傾斜磁場パルスを追加することにより、それぞれ核磁気共鳴信号を発生させることが可能である。これにより、演算処理手段は、2つの核磁気共鳴信号から、2つの軸方向についての撮像対象の位置変動をそれぞれ求めることができる。よって、2方向についての位置変動をモニタすることができる。
タギングシーケンスは、前述の極性の異なる傾斜磁場パルスを、信号強度の空間分布変調のための傾斜磁場パルスの前に印加し、該傾斜磁場パルスの後には、前述の極性の異なる傾斜磁場パルスと磁化回転量が等しく極性が逆向きの傾斜磁場パルスをさらに印加する構成にすることができる。これにより、核磁気共鳴信号発生のための傾斜磁場パルスによる磁化回転を打ち消すことができる。
上述のシネ撮像シーケンスは、核磁化を定常状態にするために、高周波磁場パルスと傾斜磁場パルスを所定のシーケンスで繰り返し印加する空打ち期間を有する構成とすることができ、この場合には、空打ち期間の少なくとも1つの繰り返しで、位相エンコード用傾斜磁場パルスを印加せず、核磁気共鳴信号を発生させて信号検出手段により取得することができる。演算処理手段は、異なる心拍において実行した空打ち期間で取得した核磁気共鳴信号から、撮像対象の位置変動を求めることが可能である。これにより、空打ち期間に取得した核磁気共鳴信から撮像対象の位置変動をモニタすることができる。
上述の空打ち期間では、核磁気共鳴信号を取得する際に所定の軸方向の読み出し用傾斜磁場パルスを印加する場合、読み出し用傾斜磁場パルスの軸方向は、タギングシーケンスにおいて印加する前述の極性の異なる傾斜磁場パルスの軸方向とは、異なる方向に設定することができる。これにより、タギングシーケンスおよび空打ち期間でそれぞれ得た核磁気共鳴信号から、異なる2方向について位置変動をモニタすることができる。
上述のシネ撮像シーケンスにおいて、空打ち期間のエコー信号の取得を、空打ち期間の前半に行う構成にすることができる。これにより、空打ち期間の後半では、空打ち後の最初の繰り返し時間での位相エンコード量と同量の傾斜磁場を印加することができるため、渦電流の影響を抑制することができる。
本発明では、タギングシーケンスとシネ画像シーケンスとを併用する撮像パルスシーケンスにおいて、タギングシーケンスにおいてエコー信号を取得することにより、位置変動をモニタすることができる。よって、撮像時間を殆ど延長せず、撮像対象の位置をモニタすることができる。
本発明の実施の形態のMRI装置について説明する。
まず、MRI装置の機器構成を図1を用いて説明する。本実施の形態のMRI装置は、撮像空間に静磁場を発生する静磁場発生装置101、患者などの撮像対象102を搭載し、撮像空間に配置するためのベッド103、高周波磁場(RF)パルスを撮像対象102に印加し、核磁気共鳴(NMR)信号を検出するためのRFコイル104、ならびに、撮像空間にX方向、Y方向、Z方向の傾斜磁場をそれぞれ発生させる傾斜磁場発生コイル105、106、107を有している。
RFコイル104には、RFパルスを発生させるための高周波電流を供給する高周波電源108と、受信したNMR信号を増幅する増幅器114が接続されている。高周波電源108には、変調器113と、高周波信号を発振する発振器112が接続されている。増幅器114には、増幅後の信号をA/D変換し検波する受信器115が接続されている。受信器115が検出したNMR信号は、計算機118に受け渡される。計算機118は、内蔵するCPUが記憶媒体117に格納されている画像再構成プログラムを読み込んで実行することにより、受信器115から受け取ったNMR信号と、接続されている記憶媒体117に格納されている撮像条件などのデータ等とを参照して画像再構成を行う。再構成した画像は、計算機に接続されているディスプレイ119に表示される。
傾斜磁場発生コイル105、106、107には、それぞれ電流を供給するための傾斜磁場電源109、110、111が接続されている。傾斜磁場電源109、110、111、発振器112、高周波電源108、増幅器114および受信器115は、これらの動作を制御するシーケンサ116が接続されている。計算機118は、入力部121を介してオペレーターから受け付けた所望の撮像方法を所望の撮像条件で実現するために、所定のタイミングで各部を動作させる撮像パルスシーケンスを作成し、シーケンサ116に受け渡す。シーケンサ116は、計算機118から受け取った撮像パルスシーケンスに従って、制御信号を出力して各部を動作させる。本実施の形態では、タギングシーケンスとシネ画像シーケンスとを併用して撮像対象の変形挙動を画像化する撮像パルスシーケンスを実行することができる。なお、シーケンサ116には、撮像対象102である患者に取り付けられた心電計120が接続され、その出力信号を受け取っており、心拍周期に同期させて撮像パルスシーケンスを行うことが可能である。
本実施の形態では、タギングシーケンスとシネ画像シーケンスとを併用する撮像パルスシーケンスを実行する際、撮像時間を殆ど延長せず、心臓の位置をモニタすることを可能にする。具体的には、第1の手法として、タギングシーケンスを利用してNMR信号(エコー信号)を発生させ、心臓の位置をモニタする。あるいは、第2の手法として、シネ撮像シーケンスにおける空打ち期間に発生するエコー信号を、心臓の位置のモニタに使用する。これら第1および第2の手法は、いずれか一方のみを採用することも、併用することも可能である。タギングシーケンスおよび空打ち期間はいずれも心電計120の心電図R波直後に実行するため、心臓の位置を毎心拍でモニタすることが可能である。
(第1の実施の形態)
まず、第1の実施の形態として、タギングシーケンスを利用して、位置変動モニタ用のエコー信号を取得する撮像パルスシーケンスについて図2を用いて説明する。
図2に示した撮像パルスシーケンスは、心電図R波200に同期して、X軸に直交するタグとY軸に直交するタグとを作成するタギングシーケンス201を実施した後、シネ撮像シーケンス202により心臓のシネ画像を撮像するものである。10秒前後の息止めを4〜6回程度繰り返しながら、息止め期間中に図2に示したシーケンスを繰り返し実行して心臓全体の撮像を行う。
タギングシーケンス201は、タギングをX軸方向とY軸方向にそれぞれ実施するため、X軸方向のタギング用の2回のRFパルス211およびX軸方向の傾斜磁場パルス212と、Y軸方向のタギング用の2回のRFパルス213およびY軸方向の傾斜磁場パルス214とを含む。さらに核磁化の乱れを低減するためにスポイラー用の傾斜磁場パルス215,216をZ軸方向に印加する。
このとき、本実施の形態では、図3(a)に示したように、X軸方向傾斜磁場パルス212の直前と直後に、ディフェイズ用傾斜磁場パルス301と、ディフェイズ用傾斜磁場パルス301と強度と印加時間が等しく極性の異なる調整用傾斜磁場パルス302をそれぞれ追加している。傾斜磁場パルス301を追加したことにより、傾斜磁場パルス212の印加時に、X方向傾斜磁場の印加量の時間積分が0となる時間が生じ、エコー信号217が発生する。この信号をRFコイル104により取得し、計算機118がX軸方向について、一次元フーリエ変換を施しプロジェクションデータを作成する演算を行う。さらに、プロジェクションデータから指標となる部位の位置を検出し、各心拍のプロジェクションデータ間を比較することにより、呼吸等の体動によるX方向の心臓位置の変動をモニタすることができる。なお、指標となる部位としては、心臓そのもの、または、横隔膜等心臓位置と相関することが明らかな部位を用いることができる。指標部位は、予めオペレータが入力部121を介して指定するか、もしくは、所定のプログラムにしたがってプロジェクションデータから自動検出することができる。
また、傾斜磁場パルス302を印加することにより、2回のRFパルス211の間に印加されるX軸方向の傾斜磁場量は、従来のタギング(図9(a)参照)と等しいので、従来と同様にX軸方向のタグを付与できる。また、Y軸方向については、従来と同様のRFパルス213とY軸方向傾斜磁場パルス214の組み合わせであるので、Y軸方向にもタグが付与される。よって、図1のタギングシーケンス201により、従来と同様に図11のようにX軸に直交するストライプ状のタグと、Y軸に直交するストライプ状のタグが交わることにより、信号強度の高い部分が格子点状に分布する。
一方、図2のシネ撮像シーケンス202は、核磁化を定常状態にした後、エコー信号を取得する撮像法を実現するものであり、タギングシーケンス201直後の空打ち期間203と、所定の心時相数の画像再構成に使用するエコー信号の取得期間204とを含んでいる。エコー信号取得期間204は、ここでは定常状態でグラディエントエコー法により繰り返し時間(TR)毎にエコー信号を取得する。具体的には、スライス選択のためのZ方向傾斜磁場パルス245と同時にRFパルス241を印加した後、位相エンコード用のY軸方向の傾斜磁場パルス243を印加し、読み出し用のX軸方向傾斜磁場パルス242の印加により発生したエコー信号246を取得する。その後、リワインド用傾斜磁場パルス244をY軸方向に印加する。これをTR毎に位相エンコード量を変えながら繰り返す。
空打ち期間205では、エコー信号取得期間204のRFパルス241と傾斜磁場パルス242〜245と同様に、RFパルス231と傾斜磁場パルス232〜235を印加する。エコー信号は、発生するが取得しない。ここでは2TRの空打ちにより、磁化を定常状態にする。
このように、本実施の形態では、タギングシーケンス201においてエコー信号を発生させることができるため、呼吸等の体動によるX方向の心臓位置の変動をモニタすることが可能である。検出した心臓位置変動量は、種々の用途に利用することができる。例えば、その心拍のシネ撮像シーケンス202で取得したエコー信号246に対して、検出された位置変動量だけ位置を補正する補正処理を施した後、画像再構成を実行することができる。これにより、心臓位置が変動している場合であっても、補正により位置合わせをして画像を再構成することができるという効果が得られる。また、検出した心臓位置変動量が、所定量を超える場合には、その心拍に取得したエコー信号246を破棄し、画像再構成に適用しないというゲーティングを行うことも可能である。
このように、呼吸性体動等の撮像対象の位置変動をモニタすることにより、10秒前後の息止めを4〜6回程度繰り返して心臓全体の撮像を行う場合であっても、体動から受ける影響を除去することができる。これにより、シネ撮像シーケンス902で取得したシネ画像上で特定の格子点に着目し、その位置の遷移を精度よく検出することができ、心壁の変形挙動等を精度良く把握することができる。
また、第1の実施の形態の撮像パルスシーケンスでは、タギングシーケンス201を利用して体動モニタを行うため、体動モニタのために撮像時間を延長する必要がない。
なお、図3(a)では、タギングシーケンス201において、X軸方向について位置変動をモニタする構成を示したが、図3(b)のように傾斜磁場パルス303,304をY軸方向の傾斜磁場パルス214の直前、直後に追加し、エコー信号218を発生させることにより、Y軸方向のプロジェクションデータを作成することも可能である。これにより、X軸方向のみならずY軸方向の位置変動も検出できる。また、図3(b)のタギングシーケンス201において、X軸方向の傾斜磁場パルス301,302を追加せず、Y軸方向の傾斜磁場パルス303、304のみを追加することにより、Y軸方向の位置変動のみを検出する構成にすることも可能である。
また、タギングシーケンス201において、図4(a)に示したように、RFパルス211、213の印加と同時にZ方向傾斜磁場パルス401を印加し、図4(b)のようにエコー信号217、218を生じるZ軸方向のスライス411の厚さを限定することも可能である。例えば、スライス411を、心臓のZ軸方向の幅に一致させることにより、エコー信号発生領域412(図4(b)参照)をZ軸方向に制限しない図3(b)のシーケンスの場合と比較して、位置変動モニタに不要な背景部分(心臓以外の領域)の信号量を低減することが可能である。これにより、位置変動をさらに精度よくモニタすることができる。
なお、図4(a)のタギングシーケンスの様に、RFパルス211、213と同時にZ方向傾斜磁場パルス401を印加すると、傾斜磁場を印加しない図3(b)の場合と比較して、タグが付与される領域も変化する。図3(b)のようZ軸方向傾斜磁場パルスを印加しないタギングシーケンスでは、タグが付与される領域は、全撮像領域(エコー信号発生領域412)であるのに対し、図4(a)のシーケンスでタグが付与されるのは傾斜磁場パルス401で限定されたスライス411に狭められる。よって、図4(a)のタギングシーケンスを用いてタグを付与する空間(スライス411)を限定する場合には、タグが付与されるスライス411が、シネ撮像シーケンス202におけるZ方向傾斜磁場パルス235,245で定まる撮像スライスを含むように、傾斜磁場パルス401を設定する必要がある。すなわち、シネ画像の撮像対象となるスライスよりも、タギングシーケンス201におけるスライス範囲を広くする。これにより、特定スライスにおいてタグが付与されないことを防止でき、図3(b)のタギングシーケンス適用時と同様のタグを、図4(a)のタギングシーケンス201により再構成画像上に付与することができる。
(第2の実施の形態)
次に、第2の実施の形態として、核磁化を定常状態に移行するまでの期間(空打ち期間)に発生するエコー信号を用いて、心臓の位置変動をモニタする撮像パルスシーケンスについて図5を用いて説明する。
図5に示した撮像パルスシーケンスは、心電図R波200に同期して、タギングシーケンス501を実施した後、シネ撮像シーケンス502により心臓のシネ画像を撮像するものであり、第1の実施の形態で説明した図2の撮像パルスシーケンスと類似しているが、2TRの空打ち期間503の1回目のTRにおいて、位相エンコード傾斜磁場パルス233,234を印加せずにエコー信号531を発生させる点が図2のシーケンスとは異なっている。また、図5では、タギングシーケンス501において傾斜磁場パルス301、302を追加せず、エコー信号を発生させない。
図5のシネ撮像シーケンス502を抜粋した図6を用いてさらに説明する。空打ち期間503は、R波直後に、タギングシーケンス501に続いて実行する2回のTR分であり、エコー信号取得期間204と同様のパルスシーケンスあるが、本実施の形態では、2TRのうちの1回で位相エンコード傾斜磁場233,234を印加せず、発生したエコー信号を取得して、心臓位置のモニタに用いる。すなわち、図6の例では、第1回目のTRで位相エンコード傾斜磁場(Gy)233,234を印加せず、発生するエコー信号を前記位置変動のモニタに適用する。エコー信号取得時にはX軸方向の傾斜磁場(Gx)232のみが印加されているので、取得したエコー信号をX軸方向について一次元フーリエ変換して、プロジェクションデータを作成することにより、X方向の位置変動のモニタが可能である。この他の条件については、第1の実施の形態と同様であるので説明を省略する。
このように、第2の実施の形態では、従来はエコー信号を取得していなかった空打ち期間503において、位相エンコード用傾斜磁場パルスGyを印加せずにエコー信号を取得することにより、撮像時間を殆ど延長せず、心臓の位置をモニタすることができる。
なお、空打ち期間503が複数TRに及ぶ場合、少なくとも1つのTRにおいて、エコー信号を取得すれば心臓位置をモニタすることが可能であるが、エコー信号取得期間204で最適な状態でエコー信号を取得することを考慮して、モニタ用のエコー信号の取得時期を最適化することが可能である。例えば、エコー信号取得期間204の最初の心時相(心phase1)において最初に印加されるy軸方向傾斜磁場パルス243によって付与される位相エンコード量がk空間の高周波成分に相当する場合、空打ち期間503のエコー信号531を、空打ち期間503の前半で取得することが望ましい。例えば、空打ち期間503の最初にモニタ用のエコー信号531を取得する。以後の空打ち期間503では、心phase1にて最初に印加される位相エンコード量と同量の傾斜磁場を印加することが望ましい。これにより、心phase1と最初のエコー信号取得時と同量の位相エンコード量を付与された状態で磁化を定常状態にすることができるため、渦電流の影響を抑制することが可能である。
(第3の実施の形態)
上述した心臓の位置変動をモニタする2つの方法、すなわち、第1の実施の形態のようにタギングシーケンス201でモニタ用エコー信号を発生する方法と、第2の実施の形態のように空打ち期間503でエコー信号を取得する方法は、併用することが可能である。図7は前記2つの方法を併用する撮像シーケンスの一例であり、タギングシーケンス701中に位相エンコード方向(Y軸方向)の位置ずれ検出用のエコー信号717を取得し、シネ撮像シーケンス702の空打ち期間703中にリードアウト方向(X軸方向)の位置ずれ検出用のエコー信号731を取得する。
図7に示した様に、グラディエントシーケンスを用いる空打ち期間703の場合、取得するエコー信号731で位置変動をモニタ可能な方向は、リードアウト方向(X軸方向)である。一方、タギングシーケンス701ではX軸,Y軸のいずれの方向でもモニタ可能である。よって、タギングシーケンス701では位相エンコード方向の位置変動のモニタを、空打ち期間703でリードアウト方向の位置変動のモニタを実施することにより、リードアウト方向(X軸)および位相エンコード方向(Y軸)の両方について位置変動をモニタするができる。また、スライス方向の位置変動をモニタする場合は、タギングシーケンス701にて位置変動をモニタすることが望ましい。
なお、第1〜第3の実施の形態で使用したタギングシーケンスは、2回のRFパルス211,213を1組として一次元方向のタグを付与するタギングシーケンスを例に説明したが、本発明は3回以上のRFパルスで一次元方向のタグを付与するタギングシーケンスに対しても適用可能である。
図8(a)は、4回のRFパルスを801〜804を一組として一次元方向のタグを付与する従来のタギングシーケンスである。各RFパルス801〜804の間に3回の傾斜磁場パルス(Gx)805〜807を印加する。傾斜磁場パルス805〜807は、すべて同極性であり、その印加量(傾斜磁場強度と時間の積)も等しい。このように3以上のRFパルスを印加することにより、画像に現れるタグのストライプの境界がにじみにくく、明確になることが知られている。
図8(a)のタギングシーケンスにおいて、第1および第3の実施の形態のようにエコー信号を発生させる場合には、図8(b)に示すように、いずれかのRFパルス、例えば第1回目のRFパルス801の直後にディフェイズ用傾斜磁場パルス813を追加する。また、各RFパルス801〜804間の傾斜磁場印加量が従来の図8(a)と等しくなるよう、調整用傾斜磁場パルス814を印加する。このように、3回以上のRFパルスを一組として一次元方向のタグを付与する場合も、傾斜磁場の極性反転を行うことにより、位置変動モニタ用のエコー信号821を発生させることが可能である。すなわち、2回のRFパルスを1組として一次元方向のタグを付与する場合について説明した第1および第3の実施の形態の場合と同様に、3回以上のRFパルスを一組として一次元方向のタグを付与するタギングシーケンスについても位置変動のモニタが可能である。
なお、図8(b)では、第1のRFパルス801直後にエコー信号を取得したが、他の任意のRFパルス802〜804の後にエコー信号を発生させることも可能である。
以上、本発明によれば、タギングシーケンスとシネ画像シーケンスとを併用して心壁の変形挙動を画像化する撮像シーケンスにおいて、撮像時間を殆ど延長せず、心臓の位置をモニタすることが可能になる。
本発明の一実施の形態のMRI装置の機器構成を示すブロック図。 第1の実施の形態のタギングシーケンス201とシネ撮像シーケンス202を実施する撮像パルスシーケンスを示す説明図。 (a)図2のタギングシーケンス201のRFパルスとX軸方向の傾斜磁場パルスとエコー信号の内容を具体的に示す説明図、(b)タギングシーケンス201においてX軸及びY軸方向の位置変動をモニタする場合のパルスシーケンスを示す説明図。 タギングシーケンス201において、エコー信号を生じるZ軸方向のスライスの厚さを限定する場合のパルスシーケンスを示す説明図。 第2の実施の形態のタギングシーケンス501とシネ撮像シーケンス502を実施する撮像パルスシーケンスを示す説明図。 図5のシネ撮像シーケンス202において、空打ち期間503のパルスシーケンスを示す説明図。 第3の実施の形態のR波直後にタギングシーケンス701を実施後、シネ撮像シーケンス202を実施する撮像パルスシーケンスを示す説明図。 (a)従来の4回のRFパルスを印加するタギングシーケンスを示す説明図、(b)一実施の形態の4回のRFパルスを印加するタギングシーケンスにおいてエコー信号を発生させる場合のパルスシーケンスを示す説明図。 (a)従来のタギングシーケンスの一例を示す説明図、(b)MRI画像に現れるストライプ状のタグを示す説明図。 従来のタギングシーケンス901とシネ撮像シーケンス202とを実施する撮像パルスシーケンスを示す説明図。 図10のタギングシーケンスよりMRI画像に現れる格子状のタグを示す説明図。
符号の説明
301・・・ディフェイズ用の傾斜磁場パルス、302・・・調整用の傾斜磁場パルス、303・・・ディフェイズ用の傾斜磁場パルス、304・・・調整用の傾斜磁場パルス、101・・・静磁場発生装置、102・・・撮像対象、103・・・ベッド、104・・・高周波磁場(RF)コイル、105・・・X方向傾斜磁場コイル、106・・・Y方向傾斜磁場コイル、107・・・Z方向傾斜磁場コイル、108・・・高周波磁場電源、109・・・X方向傾斜磁場電源、110・・・Y方向傾斜磁場電源、111・・・Z方向傾斜磁場電源、112・・・発振器、113・‥変調器、114・・・増幅器、115・・・受信器、116・・・シーケンサ、117・・・記憶媒体、118・・・計算機、119・・・ディスプレイ、121・・・入力部。

Claims (6)

  1. 静磁場を発生する静磁場発生手段と、複数の軸方向についての傾斜磁場を発生する傾斜磁場発生手段と、撮像対象に高周波磁場を照射する高周波磁場発生手段と、前記撮像対象から発生する核磁気共鳴信号を検出する信号検出手段と、検出された核磁気共鳴信号に対して演算処理を適用し、画像再構成を行う演算処理手段と、前記傾斜磁場発生手段と前記高周波磁場発生手段と前記信号検出手段との動作を制御して所定の撮像パルスシーケンスを実行させる制御手段とを有する磁気共鳴イメージング装置において、
    前記撮像パルスシーケンスは、前記撮像対象から取得した生体信号に同期して、核磁気共鳴信号強度の空間分布を変調するタギングシーケンスと、前記生体信号からの時間経過の異なる複数の画像を撮像するシネ撮像シーケンスとを、複数心拍の期間実行するものであり、
    前記タギングシーケンスは、前記信号強度の空間分布の変調のために、高周波磁場および少なくとも一つの軸方向についての傾斜磁場パルスを印加するとともに、該傾斜磁場パルスに極性の異なる傾斜磁場パルスを追加して核磁気共鳴信号を発生させ、
    前記演算処理手段は、異なる心拍において実行した前記タギングシーケンスで取得した前記核磁気共鳴信号から、前記撮像対象の位置変動を求めることを特徴とする磁気共鳴イメージング装置。
  2. 請求項1に記載の磁気共鳴イメージング装置において、前記タギングシーケンスは、前記核磁気共鳴信号強度の空間分布を2方向に変調するために、2以上の高周波磁場の照射と2つの軸方向についての前記傾斜磁場パルスの印加を行うものであり、前記2つの軸方向についての傾斜磁場パルスについて、それぞれ極性の異なる傾斜磁場パルスを追加することにより、それぞれ核磁気共鳴信号を発生させ、
    前記演算処理手段は、前記2つの核磁気共鳴信号から、前記2つの軸方向についての前記撮像対象の位置変動を求めることを特徴とする磁気共鳴イメージング装置。
  3. 請求項1または2に記載の磁気共鳴イメージング装置において、前記タギングシーケンスは、前記極性の異なる傾斜磁場パルスを、前記信号強度の空間分布変調のための前記傾斜磁場パルスの前に印加し、該傾斜磁場パルスの後には、前記極性の異なる傾斜磁場パルスと磁化回転量が等しく極性が逆向きの傾斜磁場パルスをさらに印加することを特徴とする磁気共鳴イメージング装置。
  4. 請求項1ないし3のうちのいずれか1項に記載の磁気共鳴イメージング装置において、前記シネ撮像シーケンスは、核磁化を定常状態にするために、高周波磁場パルスと傾斜磁場パルスを所定のシーケンスで繰り返し印加する空打ち期間を含み、前記空打ち期間の少なくとも1つの繰り返しでは、位相エンコード用傾斜磁場パルスを印加せず、核磁気共鳴信号を発生させて前記信号検出手段により取得し、
    前記演算処理手段は、異なる心拍において実行した前記空打ち期間で取得した前記核磁気共鳴信号から、前記撮像対象の位置変動を求めることを特徴とする磁気共鳴イメージング装置。
  5. 請求項4に記載の磁気共鳴イメージング装置において、前記空打ち期間では、前記核磁気共鳴信号を取得する際に所定の軸方向の読み出し用傾斜磁場パルスを印加し、該読み出し用傾斜磁場パルスの軸方向は、前記タギングシーケンスにおいて印加する前記極性の異なる前記傾斜磁場パルスの軸方向とは、異なる方向であることを特徴とする磁気共鳴イメージング装置。
  6. 請求項4または5に記載の磁気共鳴イメージング装置において、前記シネ撮像シーケンスにおいて、前記空打ち期間のエコー信号の取得を、前記空打ち期間の前半に行うことを特徴とする磁気共鳴イメージング装置。
JP2006009489A 2006-01-18 2006-01-18 磁気共鳴イメージング装置 Pending JP2007190114A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006009489A JP2007190114A (ja) 2006-01-18 2006-01-18 磁気共鳴イメージング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006009489A JP2007190114A (ja) 2006-01-18 2006-01-18 磁気共鳴イメージング装置

Publications (1)

Publication Number Publication Date
JP2007190114A true JP2007190114A (ja) 2007-08-02

Family

ID=38446263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006009489A Pending JP2007190114A (ja) 2006-01-18 2006-01-18 磁気共鳴イメージング装置

Country Status (1)

Country Link
JP (1) JP2007190114A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009160378A (ja) * 2007-12-10 2009-07-23 Toshiba Corp 磁気共鳴イメージング装置
WO2010027059A1 (ja) * 2008-09-04 2010-03-11 株式会社 東芝 磁気共鳴映像装置
WO2010125832A1 (ja) * 2009-04-30 2010-11-04 国立大学法人京都大学 タギングmr画像における撮像対象の運動解析方法及びmri装置
JP2011092670A (ja) * 2009-09-30 2011-05-12 Toshiba Corp 磁気共鳴イメージング装置、および、磁気共鳴イメージング方法
JP2011177245A (ja) * 2010-02-26 2011-09-15 Ge Medical Systems Global Technology Co Llc 磁気共鳴イメージング装置
WO2013168809A1 (ja) * 2012-05-11 2013-11-14 株式会社東芝 磁気共鳴イメージング装置及び画像処理装置
JP5536665B2 (ja) * 2008-11-18 2014-07-02 株式会社日立メディコ 磁気共鳴イメージング装置及び磁気共鳴イメージング方法
CN103930023A (zh) * 2012-05-11 2014-07-16 株式会社东芝 磁共振成像装置以及图像处理装置
US10980492B2 (en) 2012-05-11 2021-04-20 Toshiba Medical Systems Corporation Magnetic resonance imaging apparatus and image processing apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009160378A (ja) * 2007-12-10 2009-07-23 Toshiba Corp 磁気共鳴イメージング装置
WO2010027059A1 (ja) * 2008-09-04 2010-03-11 株式会社 東芝 磁気共鳴映像装置
JP2010082436A (ja) * 2008-09-04 2010-04-15 Toshiba Corp 磁気共鳴映像装置
US9517033B2 (en) 2008-09-04 2016-12-13 Toshiba Medical Systems Corporation Magnetic resonance imaging apparatus
US9259189B2 (en) 2008-09-04 2016-02-16 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus
JP5536665B2 (ja) * 2008-11-18 2014-07-02 株式会社日立メディコ 磁気共鳴イメージング装置及び磁気共鳴イメージング方法
WO2010125832A1 (ja) * 2009-04-30 2010-11-04 国立大学法人京都大学 タギングmr画像における撮像対象の運動解析方法及びmri装置
JP5419024B2 (ja) * 2009-04-30 2014-02-19 国立大学法人京都大学 タギングmr画像における撮像対象の運動解析方法及びmri装置
US8538104B2 (en) 2009-04-30 2013-09-17 Kyoto University Method of analyzing motion of imaging target by means of tagged MR images, and MRI device
JP2011092670A (ja) * 2009-09-30 2011-05-12 Toshiba Corp 磁気共鳴イメージング装置、および、磁気共鳴イメージング方法
JP2011177245A (ja) * 2010-02-26 2011-09-15 Ge Medical Systems Global Technology Co Llc 磁気共鳴イメージング装置
WO2013168809A1 (ja) * 2012-05-11 2013-11-14 株式会社東芝 磁気共鳴イメージング装置及び画像処理装置
CN103930023A (zh) * 2012-05-11 2014-07-16 株式会社东芝 磁共振成像装置以及图像处理装置
US8855743B2 (en) 2012-05-11 2014-10-07 Kabushiki Kaisha Toshiba Non-contrast magnetic resonance perfusion imaging
US10980492B2 (en) 2012-05-11 2021-04-20 Toshiba Medical Systems Corporation Magnetic resonance imaging apparatus and image processing apparatus

Similar Documents

Publication Publication Date Title
JP5002222B2 (ja) 磁気共鳴イメージング装置
JP3668816B1 (ja) 磁気共鳴イメージング装置
JP5366484B2 (ja) 磁気共鳴イメージング装置およびこの磁気共鳴イメージング装置における脂肪抑制効果の分析方法
JP2007190114A (ja) 磁気共鳴イメージング装置
US9297876B2 (en) Magnetic resonance imaging apparatus and eddy current compensation method
JP2008508070A (ja) 位相マッピングと、位相基準として用いる基準媒体が関係するmri温度測定
JP4864969B2 (ja) 磁気共鳴イメージング装置
JP5740307B2 (ja) 磁気共鳴イメージング装置及び傾斜磁場印加方法
US20060244445A1 (en) Motion compensation for magnetic resonance imaging
JP6008839B2 (ja) 磁気共鳴イメージング装置および磁気共鳴イメージング方法
JP5304987B2 (ja) 磁気共鳴イメージング装置
JP5372015B2 (ja) 磁気共鳴イメージング装置および同期撮像方法
JP5378149B2 (ja) Mri装置及び撮影領域設定用制御プログラム
KR102232606B1 (ko) 자기 공명 영상 장치 및 자기 공명 영상 생성 방법
JP7308097B2 (ja) 励起領域の設定方法および磁気共鳴イメージング装置
JP5116257B2 (ja) 磁気共鳴撮影装置
JP5319835B2 (ja) 磁気共鳴イメージング装置
JP4994786B2 (ja) 磁気共鳴イメージング装置
JP2005021488A (ja) 磁気共鳴イメージング装置
JPWO2005102162A1 (ja) 磁気共鳴イメージング装置及び方法
JP4265783B2 (ja) 核磁気共鳴撮像装置
WO2012005137A1 (ja) 磁気共鳴イメージング装置及びrfパルス制御方法
JP6233965B2 (ja) 磁気共鳴イメージング装置及びrfシミング方法
JP5514293B2 (ja) 磁気共鳴イメージング装置
JP5284422B2 (ja) 磁気共鳴イメージング装置