KR102232606B1 - 자기 공명 영상 장치 및 자기 공명 영상 생성 방법 - Google Patents

자기 공명 영상 장치 및 자기 공명 영상 생성 방법 Download PDF

Info

Publication number
KR102232606B1
KR102232606B1 KR1020200109987A KR20200109987A KR102232606B1 KR 102232606 B1 KR102232606 B1 KR 102232606B1 KR 1020200109987 A KR1020200109987 A KR 1020200109987A KR 20200109987 A KR20200109987 A KR 20200109987A KR 102232606 B1 KR102232606 B1 KR 102232606B1
Authority
KR
South Korea
Prior art keywords
magnetic resonance
partial data
data
image
acquiring
Prior art date
Application number
KR1020200109987A
Other languages
English (en)
Inventor
신태훈
Original Assignee
이화여자대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이화여자대학교 산학협력단 filed Critical 이화여자대학교 산학협력단
Priority to KR1020200109987A priority Critical patent/KR102232606B1/ko
Application granted granted Critical
Publication of KR102232606B1 publication Critical patent/KR102232606B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56509Correction of image distortions, e.g. due to magnetic field inhomogeneities due to motion, displacement or flow, e.g. gradient moment nulling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7285Specific aspects of physiological measurement analysis for synchronising or triggering a physiological measurement or image acquisition with a physiological event or waveform, e.g. an ECG signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4818MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5608Data processing and visualization specially adapted for MR, e.g. for feature analysis and pattern recognition on the basis of measured MR data, segmentation of measured MR data, edge contour detection on the basis of measured MR data, for enhancing measured MR data in terms of signal-to-noise ratio by means of noise filtering or apodization, for enhancing measured MR data in terms of resolution by means for deblurring, windowing, zero filling, or generation of gray-scaled images, colour-coded images or images displaying vectors instead of pixels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/567Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution gated by physiological signals, i.e. synchronization of acquired MR data with periodical motion of an object of interest, e.g. monitoring or triggering system for cardiac or respiratory gating
    • G01R33/5676Gating or triggering based on an MR signal, e.g. involving one or more navigator echoes for motion monitoring and correction

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Signal Processing (AREA)
  • Radiology & Medical Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Cardiology (AREA)
  • Power Engineering (AREA)
  • Pulmonology (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

본 발명은 자기 공명 영상 장치를 이용하여 자기 공명 영상을 생성하는 방법을 개시한다. 본 발명은 자기 공명 영상 장치에 의하여 대상체로부터 방출되는 자기 공명 영상 신호를 주기적으로 획득하되, 매 획득 시점별로 K공간의 미리 설정된 격자 패턴에 따라 언더 샘플링된 부분 데이터를 획득하고, 앞선 시점에서 샘플링 데이터를 획득한 이후에는 상기 격자 패턴을 특정 축을 따라 미리 설정된 거리만큼 이동시킨 상태에서 언더 샘플링된 부분 데이터를 획득하는 단계; 상기 각 시점에서 획득한 부분 데이터로부터 획득한 중첩 영상(aliasing image)들 간의 상관성에 기초하여, 중첩영상들 간의 위치 차이를 추정하는 단계; 및 상기 추정된 위치 차이를 반영하여 자기 공명 영상을 복원하는 단계를 포함하되, 상기 격자 패턴은 행방향으로 서로 인접한 격자점에서는 샘플링을 수행하지 않고, 열방향으로 서로 인접한 격자점에서는 샘플링을 수행하지 않도록 형성된 것이다.

Description

자기 공명 영상 장치 및 자기 공명 영상 생성 방법{DEVICE AND METHOD FOR DYNAMIC TAGGED MAGNET RESONANCE IMAGING}
본 발명은 자기 공명 영상 장치 및 자기 공명 영상 생성 방법에 관한 것으로서, 보다 구체적으로, 호흡 움직임의 영향을 최소화할 수 있는 자기 공명 영상을 복원하는 방법 및 그 장치에 관한 것이다.
일반적으로, 자기 공명 영상(MRI)을 처리하는 기기는 전자파에너지의 공급에 따른 공명현상을 이용하여 환자의 특정부위에 대한 단층 이미지를 획득하는 장치로서, X선이나 CT와 같은 촬영 기기에 비해 방사선 피폭이 없고 단층 이미지를 비교적 용이하게 얻을 수 있다. 예를 들어, MRI 기기는 뼈는 물론 디스크, 관절, 신경 인대 등을 원하는 각도에서 입체적으로 보여주기 때문에 정확한 질병 진단을 위해서 널리 이용되고 있다.
다만, 자기 공명 영상을 획득하기 위한 스캔시간이 길기 때문에, 환자의 호흡 움직임이 영향을 끼치는 흉부 및 복부 MRI 의 경우 영상 퀄러티가 저하된다는 문제점이 있다.
이를 해결하기 위해, 2차원 MRI의 경우에는 환자가 숨을 참는 중에 스캔을 하거나, 움직임이 생긴 경우 스캔을 반복하는 방법이 사용되고 있다. 그러나, 초고해상도 혹은 삼차원 MRI 의 경우 총 스캔시간이 최소 30초 이상으로 길기 때문에, 자유호흡중에 데이터를 얻을 수밖에 없다. 이러한 경우 호흡 움직임의 영향을 최소화하는 방법이 필요하다.
가장 흔히 사용되는 호흡 움직임 처리 방법은 소위 호흡 네비게이터 (navigator)방법으로서, 본 MRI 영상 데이터를 얻기 직전에 피검기관 (예: 심장, 폐, 간) 의 위치를 파악하기위한 신호를 짧게 얻는 과정을 수행한다. 이를 바탕으로 특정호흡 상태 (예: 날숨 상태) 인 경우에만 본 영상 데이터를 얻고, 그렇지 않은 경우 본 영상 데이터 획득을 생략함으로써 동일 위치에서의 데이터를 확보한다. 하지만 데이터 획득 생략시간이 길어져서, 원하는 본 영상 데이터를 모두 얻기까지의 총 스캔 시간이 매우 길어진다는 단점이 있다.
호흡 네비게이터 방법의 다른 하나의 적용예로써, 데이터 획득을 계속해서 하되 얻어진 위치 정보를 이용하여 적극적인 움직임 보정을 시행하는 방법도 있다. 그러나, 호흡 네비게이터를 통해 (위-아래 방향의) 일차원 위치만을 파악할 수 있으며, 네비게이터 데이터 획득 시간과 본 영상데이터 획득 시간 사이에 차이가 있어서 움직임 보정의 정확도가 떨어질 수 있다는 단점이 있다.
이에, 본 발명에서는 호흡 네비게이터를 사용하지 않으면서도 호흡 움직임의 보정을 수행할 수 있는 자기 공명 영상 생성 방법을 제안하고자 한다.
대한민국 등록특허 제 10-2092908 호(발명의 명칭: 호흡 움직임 보정을 위한 자기 공명 영상 장치)
본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서, 본 발명의 일부 실시예는, 미리 설정된 격자 패턴을 이용하여 언더샘플링된 데이터를 사용하는 방법을 통해 호흡 움직임을 보정할 수 있는 자기 공명 영상 생성 방법 및 장치를 제공하는데에 그 목적이 있다.
다만, 본 실시예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.
상술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본 발명의 제1 측면에 따른 자기 공명 영상을 생성하는 자기 공명 영상 장치는, 대상체로부터 획득된 MR 신호로부터 자기 공명 영상을 복원하는 프로그램을 저장하는 메모리; 및 상기 프로그램을 실행하는 프로세서(processor)를 포함하며, 상기 프로세서는, 상기 프로그램이 실행됨에 따라, 상기 자기 공명 영상 장치에 의하여 대상체로부터 방출되는 자기 공명 영상 신호를 주기적으로 획득하되, 매 획득 시점별로 K공간의 미리 설정된 격자 패턴에 따라 언더 샘플링된 부분 데이터를 획득하고, 앞선 시점에서 샘플링 데이터를 획득한 이후에는 상기 격자 패턴을 특정 축을 따라 미리 설정된 거리만큼 이동시킨 상태에서 언더 샘플링된 부분 데이터를 획득하고, 상기 각 시점에서 획득한 부분 데이터로부터 획득한 중첩 영상(aliasing image)들 간의 상관성에 기초하여, 중첩영상들 간의 위치 차이를 추정하고, 상기 추정된 위치 차이를 반영하여 자기 공명 영상을 복원한다. 이때, 격자 패턴은 행방향으로 서로 인접한 격자점에서는 샘플링을 수행하지 않고, 열방향으로 서로 인접한 격자점에서는 샘플링을 수행하지 않도록 형성된 것이다.
또한, 본 발명의 제2 측면에 따른 자기 공명 영상 장치를 이용하여 자기 공명 영상을 생성하는 방법은, 자기 공명 영상 장치에 의하여 대상체로부터 방출되는 자기 공명 영상 신호를 주기적으로 획득하되, 매 획득 시점별로 K공간의 미리 설정된 격자 패턴에 따라 언더 샘플링된 부분 데이터를 획득하고, 앞선 시점에서 샘플링 데이터를 획득한 이후에는 상기 격자 패턴을 특정 축을 따라 미리 설정된 거리만큼 이동시킨 상태에서 언더 샘플링된 부분 데이터를 획득하는 단계; 상기 각 시점에서 획득한 부분 데이터로부터 획득한 중첩 영상(aliasing image)들 간의 상관성에 기초하여, 중첩영상들 간의 위치 차이를 추정하는 단계; 및 상기 추정된 위치 차이를 반영하여 자기 공명 영상을 복원하는 단계를 포함하되, 상기 격자 패턴은 행방향으로 서로 인접한 격자점에서는 샘플링을 수행하지 않고, 열방향으로 서로 인접한 격자점에서는 샘플링을 수행하지 않도록 형성된 것이다.
전술한 본 발명의 과제 해결 수단에 의하면, 본 발명은 호흡 네비게이터를 사용하지 않으면서 자기 공명 영상 데이터만을 가지고, 피검기관의 위치를 파악할 수 있으므로, 이 정보를 바탕으로 삼차원 선형 움직임 보정을 수행하여 고화질의 영상을 획득할 수 있다.
특히, 영상 데이터를 격자 패턴으로 샘플링하는 경우 부분데이터 간에 움직임 연관성이 보존된다는 특성을 이용하여 피검기관의 삼차원 위치를 파악하기 때문에, 호흡 네비게이터를 사용하지 않고서도 피검기관의 위치를 파악할 수 있다.
도 1은 본 발명의 일 실시예에 따른 자기 공명 영상 장치를 전체적으로 나타낸 블록도이다.
도 2는 본 발명의 일 실시예에 따른 자기 공명 영상 장치의 구성을 도시한 도면이다.
도 3은 종래 기술에서 적용되는 K-공간에서의 샘플링 및 영상 복원 과정을 설명하기 위한 도면이다.
도 4는 본 발명의 일 실시예에 따른 자기 공명 영상 방법에 따라, K-공간에서의 샘플링 및 영상 복원 과정을 설명하기 위한 도면이다.
도 5는 본 발명의 일 실시예에 따른 자기 공명 영상 생성 방법을 도시한 순서도이다.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에서 "자기 공명 영상 (MRI: Magnetic Resonance Imaging) 장치"는 핵자기 공명(NMR, Nuclear Magnetic Resonace)이라는 물리학적 원리에 기반한 영상을 획득하기 위해 대상체로 자기장과 비전리 방사선(라디오 고주파)을 인가하는 장치를 의미한다.
또한, "영상(image)” 또는 “이미지"는 이산적인 요소들로 이루어진 다차원(multi-dimensional) 데이터를 의미하는 것으로, 2차원 이미지에서의 복수의 픽셀들 및 3차원 이미지에서의 복수의 복셀들로 구성된 것을 의미한다.
또한, "대상체(object)"는 자기 공명 영상장치의 영상 촬영의 대상이 되는 것으로, 사람이나 동물 또는 그 일부를 포함하는 것일 수 있다. 또한, 대상체는 심장, 뇌 또는 혈관과 같은 각종 장기나 다양한 종류의 팬텀(phantom)을 포함할 수 있다.
또한, "사용자"는 의료 전문가로서 의사, 간호사, 의료 영상 전문가 등이나 장치 수리 기술자가 될 수 있으나, 이에 한정되지 않는다.
또한, "펄스 시퀀스(또는 펄스열)"란, 자기 공명 영상장치에서 반복적으로 인가되는 신호를 의미한다. 펄스 시퀀스는 RF 펄스의 시간 파라미터로서 반복 시간(Repetition Time, TR)이나 에코 시간(Time to Echo, TE) 등을 포함할 수 있다.
이하, 첨부된 도면을 참조하여 자기 공명 영상장치의 실시예들에 대해서 설명하도록 한다.
도 1은 본 발명의 일 실시예에 따른 자기 공명 영상 장치를 전체적으로 나타낸 블록도이다.
자기 공명 영상 장치(1)는 MRI 스캐너(10), 신호 처리부(20), 제어부(40), 모니터링부(50) 및 인터페이스부(30)를 포함할 수 있다.
MRI 스캐너(10)는 자기장을 형성하고 원자핵에 대한 공명 현상을 발생시키는 것으로서, 대상체가 MRI 스캐너(10) 내부에 위치한 상태에서 자기 공명 영상이 촬영된다. MRI 스캐너(10)는 주 자석(12), 경사 코일(14), RF 코일(16) 등을 포함하고, 이를 통해 정자기장 및 경사자장이 형성되며, 대상체를 향하여 RF 신호가 조사된다.
주 자석(12), 경사 코일(14) 및 RF 코일(16)은 미리 설정된 방향에 따라 MRI 스캐너(10)내에 배치된다. 원통의 수평축을 따라 원통 내부로 삽입 가능한 테이블상에 대상체가 위치하며, 테이블의 이동에 따라 대상체가 MRI 스캐너(10)의 보어 내부에 위치할 수 있다.
주 자석(12)은 대상체에 포함된 원자핵들의 자기 쌍극자 모멘트(magnetic dipole moment)의 방향을 일정한 방향으로 정렬하는 정자기장(static magnetic field)을 생성한다.
경사 코일(Gradient coil)(14)은 서로 직교하는 X축, Y축 및 Z축 방향의 경사자기장을 발생시키는 X코일, Y 코일 및 Z 코일을 포함한다. 경사 코일(14)은 대상체의 각 부위 별로 공명 주파수를 서로 다르게 유도하여 대상체의 각 부위의 위치 정보를 획득할 수 있도록 한다.
RF 코일(16)은 대상체에게 RF 신호를 조사하고, 대상체로부터 방출되는 자기 공명 영상 신호를 수신할 수 있다. RF 코일(16)은 세차 운동을 하는 원자핵을 향하여 세차운동의 주파수와 동일한 주파수의 RF 신호를 출력한 후, 대상체로부터 방출되는 자기 공명 영상 신호를 수신할 수 있다.
예를 들어, RF 코일(16)은 원자핵을 낮은 에너지 상태로부터 높은 에너지 상태로 천이시키기 위하여, 해당 원자핵에 대응하는 주파수를 갖는 RF 신호를 생성하여 대상체에 인가한다. 이후에, RF 코일(16)이 RF 신호의 전송을 중단하면, 전자파가 가해졌던 원자핵은 높은 에너지 상태로부터 낮은 에너지 상태로 천이하면서 라모어 주파수를 갖는 전자파를 방사하게 되며, RF 코일(16)은 해당 전자파 신호를 수신한다.
RF 코일(16)은 원자핵의 종류에 대응하는 무선 주파수를 갖는 RF 신호를 송신하는 송신 RF 코일과 원자핵으로부터 방사된 전자파를 수신하는 수신 RF 코일을 각각 포함한다.
또한, RF 코일(16)은 MRI 스캐너(10)에 고정된 형태이거나, 착탈이 가능한 형태일 수 있다. 착탈이 가능한 RF 코일(16)은 대상체의 일부에 결합될 수 있는 머리 RF 코일, 흉부 RF 코일, 다리 RF 코일, 목 RF 코일, 어깨 RF 코일, 손목 RF 코일 및 발목 RF 코일 등과 같은 형태로 구현될 수 있다.
MRI 스캐너(10)는 디스플레이를 통해 사용자나 대상체에게 각종 정보를 제공할 수 있으며, 외측에 배치된 디스플레이(18)와 내측에 배치된 디스플레이(미도시)를 포함할 수 있다.
신호 처리부(20)는 소정의 MR 펄스 시퀀스(즉, 펄스열)에 따라 MRI 스캐너(10)의 내부에 형성되는 경사자장을 제어하고, RF 신호와 자기 공명 영상 신호의 송수신을 제어할 수 있다.
신호 처리부(20)는 경사자장 증폭부(22), 스위칭부(24), RF 송신부(26) 및 RF 수신부(28)를 포함할 수 있다.
경사자장 증폭부(Gradient Amplifier)(22)는 MRI 스캐너(10)에 포함된 경사 코일(14)을 구동하며, 경사자장 제어부(44)의 제어 하에 경사자장을 발생시키는 펄스 신호를 경사 코일(14)에 공급한다. 경사자장 증폭부(22)로부터 경사 코일(14)에 공급되는 펄스 신호를 제어함으로써, X축, Y축, Z축 방향의 경사 자장이 합성될 수 있다.
RF 송신부(26)는 RF 펄스를 RF 코일(16)에 공급하여 RF 코일(16)을 구동한다. RF 수신부(28)는 RF 코일(16)이 수신한 후 전달한 자기 공명 영상 신호를 수신한다.
스위칭부(24)는 RF 신호와 자기 공명 영상 신호의 송수신 방향을 조절할 수 있다. 예를 들어, 송신 동작 동안에는 RF 코일(16)을 통하여 대상체로 RF 신호가 조사되게 하고, 수신 동작 동안에는 RF 코일(16)을 통하여 대상체로부터의 자기 공명 영상 신호가 수신되게 한다. 스위칭부(24)는 RF 제어부(46)로부터의 제어 신호에 의하여 스위칭 동작이 제어된다.
인터페이스부(30)는 사용자의 조작에 따라 제어부(40)에 펄스 시퀀스 정보를 지령하는 것과 동시에, MRI 시스템 전체의 동작을 제어하는 명령을 전달할 수 있다. 인터페이스부(30)는 RF 수신부(28)로부터 수신되는 자기 공명 영상 신호를 처리하는 영상 처리부(36), 출력부(34) 및 입력부(32)를 포함할 수 있다.
영상 처리부(36)는 RF 수신부(28)로부터 수신되는 자기 공명 영상 신호를 처리하여, 대상체에 대한 MR 화상 데이터를 생성할 수 있다.
영상 처리부(36)는 RF 수신부(28)가 수신한 자기 공명 영상 신호에 증폭, 주파수 변환, 위상 검파, 저주파 증폭, 필터링(filtering) 등과 같은 각종의 신호 처리를 가한다.
영상 처리부(36)는, 예를 들어, k 공간에 디지털 데이터를 배치하고, 이러한 데이터를 2차원 또는 3차원 푸리에 변환을 하여 화상 데이터로 재구성할 수 있다.
또한, 영상 처리부(36)가 자기 공명 영상 신호에 대해 적용하는 각종 신호 처리는 병렬적으로 수행될 수 있다. 예를 들어, 다채널 RF 코일에 의해 수신되는 복수의 자기 공명 영상 신호에 신호 처리를 병렬적으로 가하여 복수의 자기 공명 영상 신호를 화상 데이터로 재구성할 수도 있다.
출력부(34)는 영상 처리부(36)에 의해 생성된 화상 데이터 또는 재구성 화상 데이터를 사용자에게 출력할 수 있다. 또한, 출력부(34)는 UI(user interface), 사용자 정보 또는 대상체 정보 등 사용자가 MRI 시스템을 조작하기 위해 필요한 정보를 출력할 수 있다. 출력부(34)는 스피커, 프린터 또는 각종 영상 디스플레이 수단을 포함할 수 있다.
사용자는 입력부(32)를 통해 대상체 정보, 파라미터 정보, 스캔 조건, 펄스 시퀀스, 화상 합성이나 차분의 연산에 관한 정보 등을 입력할 수 있다. 입력부(32)는 키보드, 마우스, 트랙볼, 음성 인식부, 제스처 인식부, 터치 스크린 등을 포함할 수 있고, 기타 당업자에게 자명한 범위 내에서 다양한 입력 장치들을 포함할 수 있다.
제어부(40)는 MRI 스캐너(10) 내부에서 형성되는 신호들의 시퀀스를 제어하는 시퀀스 제어부(42), 및 MRI 스캐너(10)와 MRI 스캐너(10)에 장착된 기기들을 제어하는 스캐너 제어부(48)를 포함할 수 있다.
시퀀스 제어부(42)는 경사자장 증폭부(22)를 제어하는 경사자장 제어부(44), 및 RF 송신부(26), RF 수신부(28) 및 스위칭부(24)를 제어하는 RF 제어부(46)를 포함한다. 시퀀스 제어부(42)는 인터페이스부(30)로부터 수신된 펄스 시퀀스에 따라 경사자장 증폭부(22), RF 송신부(26), RF 수신부(28) 및 스위칭부(24)를 제어할 수 있다. 펄스 시퀀스는 경사자장 증폭부(22), RF 송신부(26), RF 수신부(28) 및 스위칭부(24)를 제어하기 위해 필요한 모든 정보를 포함하며, 예를 들면 경사 코일(14)에 인가하는 펄스(pulse) 신호의 강도, 인가 시간, 인가 타이밍(timing) 등에 관한 정보 등을 포함할 수 있다.
모니터링부(50)는 MRI 스캐너(10) 또는 MRI 스캐너(10)에 장착된 기기들을 모니터링 또는 제어한다. 모니터링부(50)는 시스템 모니터링부(52), 대상체 모니터링부(54), 테이블 제어부(56) 및 디스플레이 제어부(58)를 포함할 수 있다.
시스템 모니터링부(52)는 정자기장의 상태, 경사자장의 상태, RF 신호의 상태, RF 코일의 상태, 테이블의 상태, 대상체의 신체 정보를 측정하는 기기의 상태, 전원 공급 상태, 열 교환기의 상태, 컴프레셔의 상태 등을 모니터링하고 제어할 수 있다.
대상체 모니터링부(54)는 대상체의 상태를 모니터링하는 것으로, 대상체의 움직임 또는 위치를 촬영하는 카메라, 대상체의 호흡을 측정하는 호흡 측정기, 대상체의 심전도를 측정하기 위한 ECG 측정기, 또는 대상체의 체온을 측정하는 체온 측정기를 포함할 수 있다.
테이블 제어부(56)는 대상체가 위치하는 테이블의 이동을 제어한다. 테이블 제어부(56)는 시퀀스 제어부(42)가 출력하는 시퀀스 제어 신호에 동기하여 테이블의 이동을 제어할 수 있다. 예를 들어, 대상체의 이동 영상 촬영(moving imaging)에 있어서, 테이블 제어부(56)는 시퀀스 제어에 따라 테이블을 이동시킬 수 있으며, 이에 의해, MRI 스캐너의 FOV(field of view)보다 큰 FOV로 대상체를 촬영할 수 있다.
디스플레이 제어부(58)는 MRI 스캐너(10)의 외측 및 내측에 위치하는 디스플레이를 온/오프 또는 디스플레이에 출력될 화면 등을 제어한다. 또한, MRI 스캐너(10) 내측 또는 외측에 스피커가 위치하는 경우, 디스플레이 제어부(58)는 스피커의 온/오프 또는 스피커를 통해 출력될 사운드 등을 제어할 수도 있다.
MRI 스캐너(10), RF 코일(16), 신호 처리부(20), 모니터링부(50), 제어부(40) 및 인터페이스부(30)는 서로 무선 또는 유선으로 연결될 수 있고, 무선으로 연결된 경우에는 서로 간의 클럭(clock)을 동기화하기 위한 장치(미도시)를 더 포함할 수 있다.
본 발명의 일 실시예에 따른 자기 공명 영상 장치(1)는 영상 처리부(36)의 구성에 특징을 가진다. 이때, 자기 공명 영상 장치(1)는 도 2에 도시된 바와 같이, 별도의 컴퓨팅 장치 형태의 자기 공명 영상 장치(100)로 구현될 수 있으며, 컴퓨팅 장치에 탑재된 메모리(110)와 프로세서(120)를 이용하여 후술할 자기 공명 영상 복원 동작을 수행할 수 있다.
이때, 메모리(110)에는 자기 공명 영상을 복원하는 프로그램이 저장된다. 메모리(110)는 전원이 공급되지 않아도 저장된 정보를 계속 유지하는 비휘발성 저장장치 및 저장된 정보를 유지하기 위하여 전력이 필요한 휘발성 저장장치를 통칭하는 것이다.
프로세서(120)는 메모리(110)에 저장된 프로그램의 실행에 따라, 도 1의 신호 처리부(20)로 이미징 펄스열을 지시하고, 신호 처리부(20)로부터 자기 공명 신호를 제공받는다. 이하, 도 3 내지 도 5를 참조하여 상세히 설명한다.
도 2는 본 발명의 일 실시예에 따른 자기 공명 영상 장치의 구성을 도시한 도면이다.
실시예에 따라 자기 공명 영상 장치(100)는 자기 공명 영상 촬영에 의해서 획득되는 자기 공명 신호를 이용하여 자기 공명 영상을 복원할 수 있는 모든 영상 처리 장치가 될 수 있다. 또한, 자기 공명 영상 장치(100)는 자기 공명 영상 촬영에서 자기 공명 신호의 획득을 제어할 수 있는 자기 컴퓨팅 장치가 될 수 있다.
도 2를 참조하면, 실시예에 따른 자기 공명 영상 장치(100)는 메모리(110) 및 프로세서(120)를 포함할 수 있다.
구체적으로, 자기 공명 영상 장치(100)는 도 1에서 설명한 MRI 시스템(1)에 포함될 수 있다. 이 경우, 자기 공명 영상 장치(100)의 프로세서(120)는 각각 도 1에 도시된 제어부(40)에 대응된다.
메모리(110)는 다양한 프로그램과 다양한 정보를 저장한다. 메모리(110)는 대상체로 펄스 시퀀스를 인가하고, 해당 펄스 시퀀스에 대응되어 획득된 MR 신호를 이용하여 자기 공명 영상을 복원하는 프로그램을 저장할 수 있다.
프로세서(120)는 자기 공명 영상 장치(100)의 전반적인 동작을 제어한다. 예를 들어, 프로세서(120)는 메모리(110)에 저장된 프로그램을 실행함으로써, 스캐너(10)의 내부에 정자장 및 경사자장을 형성하고 RF 신호를 대상체로 인가하기 위한 제어 신호를 스캐너(10)로 전달한다.
또한, 프로세서(120)는 메모리(110)에 저장된 프로그램을 실행함으로써, 스캐너(10)로부터 대상체에서 방출된 MR 신호를 제공받아 자기 공명 영상을 복원할 수 있다.
도 3은 종래 기술에서 적용되는 K-공간에서의 샘플링 및 영상 복원 과정을 설명하기 위한 도면이다.
자기공명영상 장치에서는 원하는 이미지의 푸리에 트랜스폼 도메인(소위 k-공간)에서 데이터를 획득하며, 이를 3D kx-ky-kz 공간에서의 Nx * Ny * Nz 삼차원 행렬형태로 표현한다. TR (repetition time) 이라는 5-10 ms 길이의 시간동안 k-공간 에서 한줄의 데이터를 획득할 수 있는데, 이는 특정 ky, kz 값에 대한 일차원 kx 데이터에 해당한다. 도 3에 도시된 바와 같이, kx 방향으로는 항상 전체 샘플링이 이루어지고, ky, kz 값을 변경시켜가면서 데이터를 얻음으로서 ky-kz 평면을 채워나가게 된다. 이후, 이렇게 획득된 3D k-공간 행렬 데이터에 역 푸리에 변환을 (inverse Fourier transform) 적용하게 됨으로써, 원하는 3D 자기 공명 영상을 획득한다.
도 4는 본 발명의 일 실시예에 따른 자기 공명 영상 방법에 따라, K-공간에서의 샘플링 및 영상 복원 과정을 설명하기 위한 도면이다.
도시된 바와 같이, 매 심장 주기(cardiac cycle) 마다 심장의 움직임이 가장 적은 이완기(diastole phase)에 동기하여 자기 공명 영상 신호를 획득하되, 도시된 바와 같이, 미리 설정된 격자(lattice) 패턴에 따라 언더 샘플링된 부분 데이터(segmented acquisition data)를 획득한다. 이때, 심장 주기의 이완기에 대한 정보는 환자의 가슴에 부착된 ECG 패드를 통해 수집되는 심전도 정보를 기초로 획득할 수 있다. 도 4의 (a) 도시된 바와 같이, 심전도 정보가 그래프 형태로 획득되고, 피크 발생 지점 이후 미리 정해진 시간 경과 이후(대략 600ms) 데이터를 획득하도록 한다.
도면에서 도시된 각각의 원은 앨리어싱(aliasing) 없는 영상을 얻기위해 필요한 모든 데이터 샘플 위치를 표시한 것으로, 흑색원은 샘플링을 수행하는 위치를 나타내는 것이고, 백색원은 샘플링을 수행하지 않는 위치를 나타내는 것이다.
이때, 획득해야하는 k 공간 데이터의 크기가 Ny*Nz라고 가정할 때, 격자 패턴은 도시된 바와 같이, 행방향(ky방향)으로 일정한 정수배 간격으로 언더샘플링을 수행하고, 열방향(kz 방향)으로 일정한 정수배 간격으로 언더샘플링을 수행하도록 형성된 것이다. 이때, 두 가지 정수값은 독립적으로 정해지며, 각각 최소 2부터 최대 Ny/2 (ky 방향) 혹은 Nz/2 (kz방향) 값을 가질수 있다. 이때, Ny, Nz는 각각 ky, kz 방향으로 획득해야할 샘플 개수를 나타낸다.
예를 들어, 도면에서는 행방향(ky방향)으로 2배 간격으로 언더샘플링을 수행하고 있고, 열방향(kz 방향)으로 3배 간격으로 언더샘플링을 수행하고 있다. 즉, 행방향 또는 열방향으로 서로 인접한 위치에서는 샘플링이 수행되지 않도록 하여, 샘플링을 하는 위치와 샘플링의 하지 않는 위치가 서로 번갈아서 나타나도록 한다. 이에 따라, Nx * Ny * Nz가 10*10*10 인 경우에는 최대 5배 간격으로 언더샘플링을 수행하게 되는데, 제 1 샘플링 위치와 제 2 샘플링 위치 사이에는 샘플링 위치가 차지하는 공간의 4배 만큼의 영역에서 샘플링이 수행되지 않도록 한다.
그리고, 샘플링 데이터를 획득하는 다음 시점에서는 상기 격자 패턴을 특정 축(예를 들면, ky 축또는 kz 축)을 따라 미리 설정된 거리만큼 이동시킨 상태에서 언더 샘플링을 수행하여 데이터를 획득한다. 예를 들어, 도면의 제 2 시점에서는 서는 제 1 시점과 대비하여 격자 패턴을 ky 축을 따라 1만큼 이동하고 있으며, 제 3 시점에서도 제 2 시점과 대비하여 격자 패턴을 ky 축을 따라 1만큼 이동하고 있다. 즉, 제 2 시점에 이미 격자 패턴이 마지막 지점에 도달하였으므로, 그 다음 라인의 첫번째 좌표에서 샘플링을 시작하게 된다.
이와 같은 과정을 반복적으로 수행하며, 이와 같이 획득한 각 시점별 부분 데이터 간에는 움직임 연관성이 보존된다는 특성을 이용하여 피검기관의 삼차원 위치를 파악한다.
즉, 도면에 도시된 바와 같이, 격자 패턴이 이동함에 따라 데이터가 획득되는 위치가 달라지지만, 데이터를 획득하는 위치의 형태가 동일한 격자 패턴을 유지하기 때문에, 각 격자 패턴에서 역푸리에변환을 통해 얻어지는 중첩 영상(aliased image)의 패턴이 동일하다는 점을 확인할 수 있다.
이와 같이, 중첩 영상 사이에도 여전히 선형 움직임의 상관성 (correlation) 이 보존되기 때문에, 특정 시점에서의 부분 데이더 획득시의 피검기관 위치를 기준으로, 나머지 시점 에서의 부분 데이터 획득시의 피검 기관의 상대 위치를 예측할 수 있다.
상대 위치 예측을 위한 상관 메트릭(correlation metric)으로써 다양한 공식을 이용할 수 있으며, 그 대표적인 예로서 상호 상관(cross correlation), 최소제곱오차 (least square error) 기법 등을 사용할수 있다.
상호 상관을 이용한 상대위치예측은 수학식1로 표현될수 있다.
[수학식 1]
Figure 112021002517091-pat00001

이때, Iref(x, y, z) 는 임의의 기준시점에서의 3D 중첩영상, I(x-Δx, y-Δy, z-Δz) 는 움직임 보정이 필요한 나머지 시점에서의 3D 중첩영상을 x,y,z 축으로 각각 Δx, Δy, Δz 만큼 이동시킨 영상을 나타낸다.
최소제곱오차를 이용한 상대위치예측은 수학식 2로 표현될 수 있다.
[수학식 2]
Figure 112021002517091-pat00012
위와 같이, 삼차원 상대위치를 계산 한 후에는 그에 상응하는 움직임 보정을 k-공간 데이터에 선형 위상을 가해줌으로서 보정할 수 있다. 즉, 상대위치가
Figure 112020091519236-pat00003
로 계산된 k-공간 데이터를
Figure 112020091519236-pat00004
라 할때, 보정후의 k-공간 데이터
Figure 112020091519236-pat00005
를 수학식 3에 따라 계산한다.
[수학식 3]
Figure 112020091519236-pat00006
도 5는 본 발명의 일 실시예에 따른 자기 공명 영상 생성 방법을 도시한 순서도이다.
먼저, 제 1 데이터 획득 시점에서 격자 패턴에 따라 언더 샘플링을 수행하여 부분 데이터를 획득한다(S510).
다음으로, 제 1 데이터 획득 시점 이후에 도래하는 제 2 데이터 획득 시점에서, 위치가 이동된 격자 패턴에 따라 언더 샘플링을 수행하여 부분 데이터를 획득한다(S520).
위의 단계를 반복적으로 수행한 후, 각 부분 데이터로부터 획득한 중첩 영상들 간의 상관성에 기초하여, 중첩영상들 간의 위치 차이를 추정한다(S530). 앞서 살펴본 바와 같이, 상호 상관을 이용한 상대위치예측과 최소제곱오차를 이용한 상 대위치예측을 이용하여 위치 차이를 추정한다.
그리고, 이와 같이 추정된 위치 차이를 보정하여 자기 공명 영상을 복원한다(S540). 즉, 앞서 살펴본 수학식 3에서와 같이, 위치 차이를 보정한 공간 데이터를 확보하여 자기 공명 영상을 복원한다.
한편, 본 발명의 일 실시예는 컴퓨터에 의해 실행되는 프로그램 모듈과 같은 컴퓨터에 의해 실행 가능한 명령어를 포함하는 기록 매체의 형태로도 구현될 수 있다. 컴퓨터 판독 가능 매체는 컴퓨터에 의해 액세스될 수 있는 임의의 가용 매체일 수 있고, 휘발성 및 비휘발성 매체, 분리형 및 비분리형 매체를 모두 포함한다. 또한, 컴퓨터 판독가능 매체는 컴퓨터 저장 매체를 모두 포함할 수 있다. 컴퓨터 저장 매체는 컴퓨터 판독가능 명령어, 데이터 구조, 프로그램 모듈 또는 기타 데이터와 같은 정보의 저장을 위한 임의의 방법 또는 기술로 구현된 휘발성 및 비휘발성, 분리형 및 비분리형 매체를 모두 포함한다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
1: MRI 시스템
10: MRI 스캐너
20: 신호 처리부
30: 인터페이스부
40: 제어부
50: 모니터링부
100: 자기 공명 영상 장치
110: 메모리
120: 프로세서

Claims (9)

  1. 자기 공명 영상을 생성하는 자기 공명 영상 장치에 있어서,
    대상체로부터 획득된 MR 신호로부터 자기 공명 영상을 복원하는 프로그램을 저장하는 메모리; 및
    상기 프로그램을 실행하는 프로세서(processor)를 포함하며,
    상기 프로세서는, 상기 프로그램이 실행됨에 따라, 상기 자기 공명 영상 장치에 의하여 대상체로부터 방출되는 자기 공명 영상 신호를 주기적으로 획득하되, 매 획득 시점별로 k-공간의 미리 설정된 격자 패턴에 따라 언더 샘플링된 부분 데이터를 획득하고, 상기 매 획득 시점 중 앞선 획득 시점에서 언더 샘플링된 부분 데이터를 획득한 이후에는 상기 격자 패턴을 특정 축을 따라 미리 설정된 거리만큼 이동시킨 상태에서 언더 샘플링된 부분 데이터를 획득하고, 상기 매 획득 시점에서 획득한 부분 데이터로부터 획득한 중첩 영상(aliasing image)들 간의 상관성에 기초하여, 중첩영상들 간의 위치 차이를 추정하고, 상기 추정된 위치 차이를 반영하여 자기 공명 영상을 복원하되,
    상기 격자 패턴은 행방향으로 서로 인접한 격자점에서는 샘플링을 수행하지 않고, 열방향으로 서로 인접한 격자점에서는 샘플링을 수행하지 않도록 형성된 것인, 자기 공명 영상 장치.
  2. 제 1 항에 있어서,
    상기 프로세서는 매 심장 주기 중 이완기 마다 상기 부분 데이터를 획득하는 것인, 자기 공명 영상 장치.
  3. 제 1 항에 있어서,
    데이터를 획득하고자하는 k-공간의 크기가 N*N(N은 자연수)이라고 할 때, 상기 프로세서는 상기 격자 패턴에 따라 행방향으로 정수배 간격으로 언더 샘플링을 수행하고, 열방향으로 정수배 간격으로 언더 샘플링을 수행하되, 최소 2배 간격 부터 최대 N/2의 정수배 간격으로 언더샘플링을 수행하는 것인, 자기 공명 영상 장치.
  4. 제 1 항에 있어서,
    상기 프로세서는 상기 중첩영상들 간의 위치 차이를 추정하기 위해 상호 상관(cross correlation)을 이용한 상대 위치 예측 또는 최소제곱오차 (least square error) 를 이용한 상대 위치 예측을 수행하는 것인, 자기 공명 영상 장치.
  5. 자기 공명 영상 장치를 이용하여 자기 공명 영상을 생성하는 방법에 있어서,
    자기 공명 영상 장치에 의하여 대상체로부터 방출되는 자기 공명 영상 신호를 주기적으로 획득하되, 매 획득 시점별로 k-공간의 미리 설정된 격자 패턴에 따라 언더 샘플링된 부분 데이터를 획득하고, 상기 매 획득 시점 중 앞선 획득 시점에서 언더 샘플링된 부분 데이터를 획득한 이후에는 상기 격자 패턴을 특정 축을 따라 미리 설정된 거리만큼 이동시킨 상태에서 언더 샘플링된 부분 데이터를 획득하는 단계;
    상기 매 획득 시점에서 획득한 부분 데이터로부터 획득한 중첩 영상(aliasing image)들 간의 상관성에 기초하여, 중첩영상들 간의 위치 차이를 추정하는 단계; 및
    상기 추정된 위치 차이를 반영하여 자기 공명 영상을 복원하는 단계를 포함하되,
    상기 격자 패턴은 행방향으로 서로 인접한 격자점에서는 샘플링을 수행하지 않고, 열방향으로 서로 인접한 격자점에서는 샘플링을 수행하지 않도록 형성된 것인, 자기 공명 영상 생성 방법.
  6. 제 5 항에 있어서,
    상기 부분 데이터를 획득하는 단계는 매 심장 주기 중 이완기 마다 상기 부분 데이터를 획득하는 것인, 자기 공명 영상 생성 방법.
  7. 제 5 항에 있어서,
    데이터를 획득할 수 있는 k-공간의 크기가 N*N(N은 자연수)이라고 할 때, 상기 부분 데이터를 획득하는 단계는 상기 격자 패턴에 따라 행방향으로 정수배 간격으로 언더 샘플링을 수행하고, 열방향으로 정수배 간격으로 언더 샘플링을 수행하되, 최소 2배 간격부터 최대 N/2의 정수배 간격으로 언더 샘플링을 수행하는 것인, 자기 공명 영상 생성 방법.
  8. 제 5 항에 있어서,
    상기 언더 샘플링된 k-공간 데이터로부터 얻어지는 중첩영상들 간의 위치 차이를 추정하는 단계는 상호 상관(cross correlation)을 이용한 상대 위치 예측 또는 최소제곱오차 (least square error) 를 이용한 상대 위치 예측을 수행하는 것인, 자기 공명 영상 생성 방법.
  9. 제 5 항 내지 제 8 항 중 어느 한 항의 방법을 수행하기 위한 컴퓨터 프로그램이 기록된 컴퓨터 판독가능 기록매체.
KR1020200109987A 2020-08-31 2020-08-31 자기 공명 영상 장치 및 자기 공명 영상 생성 방법 KR102232606B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200109987A KR102232606B1 (ko) 2020-08-31 2020-08-31 자기 공명 영상 장치 및 자기 공명 영상 생성 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200109987A KR102232606B1 (ko) 2020-08-31 2020-08-31 자기 공명 영상 장치 및 자기 공명 영상 생성 방법

Publications (1)

Publication Number Publication Date
KR102232606B1 true KR102232606B1 (ko) 2021-03-26

Family

ID=75259222

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200109987A KR102232606B1 (ko) 2020-08-31 2020-08-31 자기 공명 영상 장치 및 자기 공명 영상 생성 방법

Country Status (1)

Country Link
KR (1) KR102232606B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220138481A (ko) * 2021-03-31 2022-10-13 주식회사 에어스 메디컬 페이즈 레졸루션 향상이 적용된 자기 공명 영상 처리 장치 및 그 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060293585A1 (en) * 2003-08-27 2006-12-28 Beck Gabriele M Mehtod for cardiac magnetic resonance imaging
KR20160029586A (ko) * 2014-09-05 2016-03-15 삼성전자주식회사 자기 공명 영상 장치 및 그 동작방법
KR102092908B1 (ko) 2019-01-15 2020-03-24 연세대학교 산학협력단 호흡 움직임 보정을 위한 자기 공명 영상 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060293585A1 (en) * 2003-08-27 2006-12-28 Beck Gabriele M Mehtod for cardiac magnetic resonance imaging
KR20160029586A (ko) * 2014-09-05 2016-03-15 삼성전자주식회사 자기 공명 영상 장치 및 그 동작방법
KR102092908B1 (ko) 2019-01-15 2020-03-24 연세대학교 산학협력단 호흡 움직임 보정을 위한 자기 공명 영상 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
T.K.Foo 외 1인,'A computational efficient method for tracking reference position displacements for motion compensation in magnetic resonance imaging',Magnetic Resonance in Medicine,1999,Vol.42,pp548-553* *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220138481A (ko) * 2021-03-31 2022-10-13 주식회사 에어스 메디컬 페이즈 레졸루션 향상이 적용된 자기 공명 영상 처리 장치 및 그 방법
KR102467290B1 (ko) 2021-03-31 2022-11-16 주식회사 에어스메디컬 페이즈 레졸루션 향상이 적용된 자기 공명 영상 처리 장치 및 그 방법

Similar Documents

Publication Publication Date Title
US8368401B2 (en) Techniques for correcting measurement artifacts in magnetic resonance thermometry
US9301704B2 (en) Magnetic resonance imaging system for non-contrast MRA and magnetic resonance signal acquisition method employed by the same
US7239136B2 (en) Motion compensation for magnetic resonance imaging
KR101775028B1 (ko) 자기 공명 영상 장치 및 자기 공명 영상 획득 방법
KR101605130B1 (ko) 자기 공명 영상 장치 및 그에 따른 자기 공명 영상의 이미징 방법
KR101811720B1 (ko) 자기 공명 영상 장치 및 그에 따른 자기 공명 영상 생성 방법
KR101579110B1 (ko) 자기 공명 영상 생성 방법, 그에 따른 위상 대조 영상의 위상 정보 획득 방법, 그에 따른 자화율 강조 영상의 위상 정보 획득 방법 및 그에 따른 자기 공명 영상 생성 장치
US20170131374A1 (en) Magnetic resonance imaging apparatus and image processing method thereof
JP2007190114A (ja) 磁気共鳴イメージング装置
US11071469B2 (en) Magnetic resonance method and apparatus for determining a characteristic of an organ
KR102232606B1 (ko) 자기 공명 영상 장치 및 자기 공명 영상 생성 방법
US10631814B2 (en) Acquisition and processing of measurement data by a combined magnetic resonance and X-ray device
KR102386797B1 (ko) 위상 대조 속도 측정을 이용한 자기 공명 영상 생성 장치 및 방법
KR101980893B1 (ko) 자기 공명 영상 장치 및 자기 공명 영상 생성 방법
KR102393288B1 (ko) 자기공명영상장치 및 그 제어방법
KR101958093B1 (ko) 자기 공명 영상 장치 및 이를 이용한 혈류 영상 복원 방법
KR102016422B1 (ko) 자기 공명 영상 장치 및 이를 이용한 혈류 영상 복원 방법
JP5371620B2 (ja) 核磁気共鳴イメージング装置
JP5421600B2 (ja) 核磁気共鳴イメージング装置および核磁気共鳴イメージング装置の作動方法
US20210330271A1 (en) Medical imaging apparatus and medical imaging processing method
KR102601861B1 (ko) 혈관벽 영상을 획득하기 위한 자기 공명 영상 생성 장치 및 방법
KR20190013103A (ko) 자기 공명 영상 장치 및 자기 공명 영상 생성 방법
KR102468547B1 (ko) 혈관 조영 영상을 생성하기 위한 자기 공명 영상 생성 장치 및 방법
JP7489949B2 (ja) 磁気共鳴イメージング装置、その制御方法、および、制御プログラム
KR102257963B1 (ko) 호흡 연동 신호의 히스토그램 누적 분포를 이용한 호흡 구간 검출 장치

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant