JP2007187146A - Controller for internal combustion engine - Google Patents

Controller for internal combustion engine Download PDF

Info

Publication number
JP2007187146A
JP2007187146A JP2006209495A JP2006209495A JP2007187146A JP 2007187146 A JP2007187146 A JP 2007187146A JP 2006209495 A JP2006209495 A JP 2006209495A JP 2006209495 A JP2006209495 A JP 2006209495A JP 2007187146 A JP2007187146 A JP 2007187146A
Authority
JP
Japan
Prior art keywords
fuel ratio
value
air
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006209495A
Other languages
Japanese (ja)
Other versions
JP4646868B2 (en
Inventor
Hisao Haga
久夫 羽賀
Norio Suzuki
典男 鈴木
Katsuji Wada
勝治 和田
Nobuhiro Komatsu
伸裕 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006209495A priority Critical patent/JP4646868B2/en
Publication of JP2007187146A publication Critical patent/JP2007187146A/en
Priority to US11/882,255 priority patent/US8028518B2/en
Priority to EP07015037A priority patent/EP1887202B1/en
Priority to DE602007004039T priority patent/DE602007004039D1/en
Priority to DE602007001740T priority patent/DE602007001740D1/en
Priority to EP07015038A priority patent/EP1887203B1/en
Application granted granted Critical
Publication of JP4646868B2 publication Critical patent/JP4646868B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a controller for an internal combustion engine capable of accurately carrying out sulfur purging of LNC without complication of structure or increase in manufacturing costs. <P>SOLUTION: In the controller for the internal combustion engine having a treating means for removing sulfur components adsorbed by the LNC provided in an exhaust passage, values of differences are integrated between a predetermined reference value and detected values of an upstream side air-fuel ratio detecting means for detecting a value corresponding to an air-fuel ratio in an upstream side of the LNC, and sulfur purging is ended when the integrated value reaches a predetermined value. Alternatively, values of differences between values corresponding to respective air-fuel ratios in an upstream side and a downstream side of the LNC are integrated, and sulfur purging is ended when the integrated value reaches a predetermined value. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内燃機関の制御装置に関し、特に、排出ガス中の窒素酸化物を浄化するための触媒装置から硫黄分を除去する処理を実行し得るように構成された内燃機関の制御装置に関するものである。   The present invention relates to a control device for an internal combustion engine, and more particularly to a control device for an internal combustion engine configured to be able to execute a process of removing sulfur from a catalyst device for purifying nitrogen oxides in exhaust gas. It is.

ディーゼル内燃機関の排気通路には、排出ガス中の窒素酸化物(以下、NOと略称する)を還元浄化するためのリーンNO浄化触媒(以下、LNCと略称する)が設けられることがある。このLNCにおいては、排出ガスの空燃比(以下、排気A/Fと略称する)が所定値よりも高い(以下、リーンと呼称する)時、換言すると酸素濃度が高い時に取り込んだNOを、排気A/Fが所定値よりも低い(以下、リッチと呼称する)時、換言すると酸素濃度が低下した時に放出し且つ還元して無害化する処理を行っている。またLNCは、NO吸収量が増大するとその吸収性能が低下するので、適時、燃焼状態を変化させ、還元剤であるCOやHC濃度を高めると共に酸素濃度を低下させ、それによってLNCからのNO放出を促進させ且つ十分に還元浄化させるようにしている。 The exhaust passage of a diesel internal combustion engine may be provided with a lean NO X purification catalyst (hereinafter abbreviated as LNC) for reducing and purifying nitrogen oxide (hereinafter abbreviated as NO X ) in exhaust gas. . In this LNC, when the air-fuel ratio of exhaust gas (hereinafter referred to as exhaust A / F) is higher than a predetermined value (hereinafter referred to as lean), in other words, NO X taken in when the oxygen concentration is high, When the exhaust A / F is lower than a predetermined value (hereinafter referred to as rich), in other words, when the oxygen concentration is reduced, the exhaust A / F is released and reduced to be harmless. Further, since the absorption performance of LNC decreases as the amount of NO X absorbed increases, the combustion state is changed in a timely manner, and the concentration of CO and HC as reducing agents is increased and the oxygen concentration is decreased. X release is promoted and reduced and purified sufficiently.

他方、燃料には硫黄分が含まれているため、硫黄酸化物(以下SOと略称する)や硫化水素(以下HSと略称する)も排出される。これらの硫黄分がLNCに吸収されると、LNCのNO浄化性能が低下するので、LNCに吸収された硫黄分を適時放出する必要がある。このLNCからの硫黄分の放出処理(以下、サルファパージと呼称する)として、吸入行程中に噴射される主燃料噴射に加えて、燃焼後補助燃料噴射( 以下ポスト噴射と略称する)を行うことにより、LNC温度を所定値以上に上昇させるのに必要な未燃燃料を排気通路に供給して排気A/Fをリッチ化することにより、LNCの発熱を誘起していた(特許文献1を参照されたい)。 On the other hand, since the fuel contains sulfur, sulfur oxides (hereinafter abbreviated as SO X ) and hydrogen sulfide (hereinafter abbreviated as H 2 S) are also discharged. If these sulfur is absorbed in LNC, so NO X purification performance LNC is reduced, it is necessary to timely release a sulfur absorbed by the LNC. As a process of releasing sulfur from the LNC (hereinafter referred to as sulfur purge), in addition to the main fuel injection injected during the intake stroke, post-combustion auxiliary fuel injection (hereinafter abbreviated as post injection) is performed. As a result, unburned fuel necessary to raise the LNC temperature to a predetermined value or more is supplied to the exhaust passage to enrich the exhaust A / F, thereby inducing heat generation of the LNC (see Patent Document 1) I want to be)

このサルファパージは、燃料消費率の悪化やLNCの熱劣化を招くので、過度に行うことは好ましいことではない。そこでサルファパージの終了時期を正確に判断できることが望まれている。このために、燃料消費量からSOの蓄積量を推定し、この推定蓄積量から逆算してサルファパージ中のSO放出量を推定し、推定放出量が所定値に到達した時点でサルファパージを終了させる手法(特許文献2を参照されたい)や、LNCの前後にSOセンサを設置し、LNCから放出されるSOが所定量以下になった時点でサルファパージを終了させる手法(特許文献3を参照されたい)が知られている。
特開2001−173498号公報 特開2000−110552号公報 特開2001−3782号公報
Since this sulfur purge causes deterioration of the fuel consumption rate and thermal deterioration of the LNC, it is not preferable to perform it excessively. Therefore, it is desired that the end time of sulfur purge can be accurately determined. For this purpose, the accumulated amount of SO X is estimated from the fuel consumption, and the SO X released amount during sulfur purge is estimated by calculating backward from this estimated accumulated amount, and when the estimated released amount reaches a predetermined value, the sulfur purge (See Patent Document 2), or a method of installing SO X sensors before and after the LNC and ending the sulfur purge when the SO X released from the LNC falls below a predetermined amount (patent Reference 3) is known.
JP 2001-173498 A JP 2000-110552 A JP 2001-3782 A

しかるに、文献2に記載の手法は、あくまでも推定値によるものなので、サルファパージが不十分であるのに終了してしまったり、サルファパージが既に終了しているのに必要以上に継続されたりすることがあり得た。   However, since the method described in Document 2 is based on an estimated value, it may end even if the sulfur purge is insufficient, or may continue more than necessary even if the sulfur purge has already ended. Could be.

また、文献3に記載の手法は、サルファパージの終了を正確に判断できる反面、複数のセンサを隣接させて設置しなければならないため、設置スペースの確保が問題となる上、製造コストを圧迫するといった問題がある。   In addition, while the method described in Document 3 can accurately determine the end of the sulfur purge, a plurality of sensors must be installed adjacent to each other, so that securing the installation space becomes a problem and the manufacturing cost is reduced. There is a problem.

本発明は、このような従来技術の不都合を解消すべく案出されたものであり、その主な目的は、構造の複雑化や製造コストの増大を招かずにLNCのサルファパージを的確に実行することが可能な内燃機関の制御装置を提供することにある。   The present invention has been devised to eliminate such disadvantages of the prior art, and its main purpose is to accurately execute the LNC sulfur purge without complicating the structure and increasing the manufacturing cost. An object of the present invention is to provide a control device for an internal combustion engine that can be used.

このような目的を達成するために本発明は、排気通路に設けられたLNCに吸着された硫黄分を除去するための処理手段を有する内燃機関の制御装置において、LNCの上流側の空燃比に対応する値を検出する上流側空燃比検出手段(Oセンサ27U)を有し、該上流側空燃比検出手段の検出値をサルファパージ終了時期の判断に含ませることを特徴とするものとした(請求項1)。特に、上流側空燃比検出手段の検出値と所定の基準値(理論空燃比)との差の値の積算値をサルファパージ終了時期の判断に含ませるようにする(請求項2)と良く、更に、LNCにおけるCO消費率に対応する値を検出し、この検出値をサルファパージ終了時期の判断に含ませるようにする(請求項3)と良い。
また、LNCの上流側空燃比検出手段(Oセンサ27U)と下流側空燃比検出手段(Oセンサ27L)との検出値をサルファパージ終了時期の判断に含ませることを特徴とするものとした(請求項4)。この場合は特に、上流側空燃比検出手段の検出値と下流側空燃比検出手段の検出値との差の値の積算値をサルファパージ終了時期の判断に含ませると良い(請求項5)。
さらに、LNCに流入する排気の空間速度を検出し、この検出値をサルファパージ終了時期の判断に含ませるものとすると良い(請求項6)。
In order to achieve such an object, the present invention provides a control device for an internal combustion engine having a processing means for removing sulfur adsorbed by an LNC provided in an exhaust passage. An upstream air-fuel ratio detecting means (O 2 sensor 27U) for detecting a corresponding value is provided, and the detected value of the upstream air-fuel ratio detecting means is included in the determination of the sulfur purge end timing. (Claim 1). In particular, the integrated value of the difference between the detection value of the upstream air-fuel ratio detection means and the predetermined reference value (theoretical air-fuel ratio) may be included in the determination of the sulfur purge end time. Furthermore, a value corresponding to the CO consumption rate in the LNC is detected, and this detected value may be included in the determination of the sulfur purge end time.
The detection values of the upstream air-fuel ratio detection means (O 2 sensor 27U) and the downstream air-fuel ratio detection means (O 2 sensor 27L) of the LNC are included in the determination of the sulfur purge end timing. (Claim 4). In this case, in particular, the integrated value of the difference between the detection value of the upstream air-fuel ratio detection means and the detection value of the downstream air-fuel ratio detection means may be included in the determination of the sulfur purge end timing.
Further, it is preferable that the space velocity of the exhaust gas flowing into the LNC is detected, and this detected value is included in the determination of the sulfur purge end time.

このような本発明によれば、S被毒量を常時監視してその時のS被毒量に対応したサルファパージに必要な還元剤量を把握し、その値をサルファパージの終了判断基準値とすることができるので、S被毒量が変化した場合や、格別なサルファパージ制御を実行していないとき(自然パージ可能環境下など)であっても、サルファパージ実行期間の最適化を図ることができる。また、硫黄分を検出するためのセンサを設置する必要がないので、コスト増大や設置スペースの問題を生ずることもない。
特に、LNCにおけるCO消費率やLNCに流入する排気の空間速度の検出値でサルファパージ終了時期の判断基準値を補正するものとすれば、触媒との接触、反応確率変化の影響による還元剤消費量の変化度合いを考慮することができ、サルファパージの終了時期の判断をより一層的確に行うことができる。
According to the present invention, the sulfur poisoning amount is constantly monitored, the amount of reducing agent necessary for sulfur purge corresponding to the sulfur poisoning amount at that time is grasped, and this value is used as the reference value for determining the end of sulfur purge. Therefore, the sulfur purge execution period should be optimized even when the amount of sulfur poisoning changes or when special sulfur purge control is not being executed (such as in a naturally purgeable environment). Can do. Further, since there is no need to install a sensor for detecting the sulfur content, there is no problem of cost increase and installation space.
In particular, if the judgment reference value of the sulfur purge end timing is corrected by the detected value of the CO consumption rate in the LNC and the space velocity of the exhaust gas flowing into the LNC, the consumption of the reducing agent due to the contact with the catalyst and the influence of the reaction probability change The degree of change in the amount can be taken into consideration, and the end time of sulfur purge can be determined more accurately.

以下に添付の図面を参照して本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明が適用される内燃機関Eの基本的な構成図である。この内燃機関(ディーゼルエンジン)Eは、その機械的な構成自体は周知のものと何ら変わるところはなく、過給圧可変機構付きターボチャージャ1を備えるものであり、ターボチャージャ1のコンプレッサ側に吸気通路2が連結され、ターボチャージャ1のタービン側に排気通路3が連結されている。そして吸気通路2の上流端にエアクリーナ4が接続され、吸気通路2の適所に燃焼室に流入する新気の流量を調節するための吸気制御弁5と、低回転低負荷運転域で流路断面積を絞って吸気流速を高めるためのスワールコントロール弁6とが設けられている。また排気通路3の下流端には、酸化触媒(以下、DOCと略称する)7と、煤などの粒子状物質を除去するフィルタ(以下、DPFと略称する)8と、前記したLNC9とを、排気の流れに沿ってこの順に連設してなる排気浄化装置10が接続されている。   FIG. 1 is a basic configuration diagram of an internal combustion engine E to which the present invention is applied. The internal combustion engine (diesel engine) E has a mechanical configuration that is not different from that of a known one, and includes a turbocharger 1 with a supercharging pressure variable mechanism. A passage 2 is connected, and an exhaust passage 3 is connected to the turbine side of the turbocharger 1. An air cleaner 4 is connected to the upstream end of the intake passage 2, and an intake control valve 5 for adjusting the flow rate of fresh air flowing into the combustion chamber at an appropriate position of the intake passage 2, and a flow passage disconnection in the low rotation and low load operation region. A swirl control valve 6 is provided for reducing the area and increasing the intake flow velocity. Further, at the downstream end of the exhaust passage 3, an oxidation catalyst (hereinafter abbreviated as DOC) 7, a filter (hereinafter abbreviated as DPF) 8 for removing particulate matter such as soot, and the LNC 9 described above, An exhaust gas purification device 10 connected in this order along the flow of exhaust gas is connected.

スワールコントロール弁6と排気通路3における燃焼室の直後との間は、排出ガス再循環(以下、EGRと略称す)通路11を介して互いに連結されている。このEGR通路11は、切換弁12を介して分岐されたクーラー通路11aとバイパス通路11bとからなり、その合流部に、燃焼室に流入するEGR量を調節するEGR制御弁13が設けられている。   The swirl control valve 6 and the exhaust passage 3 immediately after the combustion chamber are connected to each other via an exhaust gas recirculation (hereinafter abbreviated as EGR) passage 11. The EGR passage 11 includes a cooler passage 11a and a bypass passage 11b branched via a switching valve 12, and an EGR control valve 13 for adjusting the amount of EGR flowing into the combustion chamber is provided at the junction. .

内燃機関Eのシリンダヘッドには、その先端を燃焼室に臨ませた燃料噴射弁14が設けられている。この燃料噴射弁14は、燃料を所定の高圧状態で蓄えるコモンレール15に連結され、コモンレール15には、クランク軸にて駆動されて燃料タンク16から燃料を汲み上げる燃料ポンプ17が接続されている。   The cylinder head of the internal combustion engine E is provided with a fuel injection valve 14 with its tip facing the combustion chamber. The fuel injection valve 14 is connected to a common rail 15 that stores fuel in a predetermined high pressure state, and a fuel pump 17 that is driven by a crankshaft and pumps fuel from the fuel tank 16 is connected to the common rail 15.

これらのターボチャージャ1の過給圧可変機構19、吸気制御弁5、EGR通路切換弁12およびEGR制御弁13、燃料噴射弁14、燃料ポンプ17・・・等は、電子制御装置(以下、ECUと略称する)18からの制御信号によって作動するように構成されている(図2参照)。   These turbocharger 1 supercharging pressure variable mechanism 19, intake control valve 5, EGR passage switching valve 12 and EGR control valve 13, fuel injection valve 14, fuel pump 17... (Referred to as “abbreviated”) 18 (see FIG. 2).

一方、ECU18には、図2に示すように、内燃機関Eの所定箇所に配置された吸気弁開度センサ20、クランク軸回転速度センサ21、吸気流量センサ22、過給圧センサ23、EGR弁開度センサ24、コモンレール圧センサ25、アクセルペダル操作量センサ26、Oセンサ27U・27L、NOセンサ28U・28L、LNC温度センサ29・・・等からの出力信号が入力されている。 On the other hand, as shown in FIG. 2, the ECU 18 includes an intake valve opening sensor 20, a crankshaft rotation speed sensor 21, an intake flow rate sensor 22, a supercharging pressure sensor 23, and an EGR valve disposed at predetermined locations of the internal combustion engine E. Output signals from the opening sensor 24, the common rail pressure sensor 25, the accelerator pedal operation amount sensor 26, the O 2 sensors 27U and 27L, the NO X sensors 28U and 28L, the LNC temperature sensor 29, etc. are input.

ECU18のメモリには、クランク軸回転速度および要求トルク(アクセルペダル操作量)に応じて実験等によって予め求めた最適燃料噴射量をはじめとする各制御対象の制御目標値を設定したマップが格納されており、内燃機関Eの負荷状況に応じて最適な燃焼状態が得られるように、各部の制御が行われる。   The memory of the ECU 18 stores a map in which control target values for each control object including the optimum fuel injection amount obtained in advance by experiments or the like according to the crankshaft rotation speed and the required torque (accelerator pedal operation amount) are set. Therefore, each part is controlled so that an optimal combustion state is obtained according to the load state of the internal combustion engine E.

次に本発明によるサルファパージに係わる制御フローについて図3を参照して説明する。   Next, a control flow relating to sulfur purge according to the present invention will be described with reference to FIG.

先ず、LNC9のS(硫黄分)被毒量を推定すると共に、サルファパージに必要な還元剤量を把握する(ステップ1)。   First, the S (sulfur content) poisoning amount of LNC 9 is estimated, and the amount of reducing agent necessary for sulfur purge is grasped (step 1).

S被毒量は、図4に示すように、NO浄化率と逆比例の関係にあり、NO浄化率が高いとS被毒量は小さく、S被毒が進行するとNO浄化率は低下する。この関係より、NO浄化率の低下度合いからS被毒量を推定することができる。ここでNO浄化率は、LNC9の上流側(入口)と下流側(出口)とのそれぞれに設置した2つのNOセンサ28U・28Lの出力差の比率を求めることで算出できる。そしてサルファパージに必要な還元剤量は、S被毒量と正比例の関係にあるので(図5)、S被毒量が分かれば自ずと得られる。なお、LNC9のS被毒量は、走行距離、運転時間、燃料消費量などからも推定することができる。 S poisoning amount, as shown in FIG. 4, NO have a relation of X purification rate and inversely, the NO X purification rate is higher S poisoning amount is small, S the poisoning progresses NO X purification rate descend. From this relationship, the degree of decrease of the NO X purification rate can be estimated S poisoning amount. Wherein NO X purification rate can be calculated by determining the ratio of the upstream side (inlet) and the downstream two of the NO X sensor 28U · output difference between 28L installed in each of the (exit) of the LNC 9. Since the amount of reducing agent necessary for sulfur purge is directly proportional to the S poisoning amount (FIG. 5), it is naturally obtained if the S poisoning amount is known. Note that the S poisoning amount of the LNC 9 can be estimated from a travel distance, an operation time, a fuel consumption amount, and the like.

次に、S被毒量推定値が予め設定した規定値を超えたか否かを判断する(ステップ2)。ここでS被毒量が規定値を超えていると判断された時は、サルファパージを実行するものとし、LNC9の上流側に設置されたLNC温度センサ29の出力値により、LNC9がサルファパージ実行可能温度以上であるか否かを判断する(ステップ3)。ここでLNC温度センサ29の出力値が所定値(例えば摂氏650度)に達していなければ、昇温制御を行う(ステップ4)。   Next, it is determined whether or not the estimated amount of S poisoning exceeds a preset specified value (step 2). When it is determined that the sulfur poisoning amount exceeds the specified value, sulfur purge is executed, and the LNC 9 executes sulfur purge according to the output value of the LNC temperature sensor 29 installed on the upstream side of the LNC 9. It is determined whether or not the temperature is higher than the possible temperature (step 3). If the output value of the LNC temperature sensor 29 does not reach a predetermined value (for example, 650 degrees Celsius), temperature increase control is performed (step 4).

昇温制御は、メイン噴射タイミングの遅角、ポスト噴射の増量、吸入空気量の減量などを適宜に併用することにより、サルファパージが可能なLNC温度を維持するようにフィードバック制御する。   In the temperature rise control, feedback control is performed so as to maintain the LNC temperature at which sulfur purge can be performed by appropriately using a delay of the main injection timing, an increase in the post injection, a decrease in the intake air amount, and the like.

LNC9がサルファパージ可能な温度に達していたならば、サルファパージのための排気A/Fリッチ化制御を実行する(ステップ5)。この排気A/Fリッチ化制御は、基本的には昇温制御と同様であるが、昇温制御よりもポスト噴射量を更に増加させ、且つ吸入空気量を更に減量することにより行う。   If the temperature of the LNC 9 has reached the temperature at which sulfur purge is possible, exhaust A / F enrichment control for sulfur purge is executed (step 5). This exhaust A / F enrichment control is basically the same as the temperature rise control, but is performed by further increasing the post injection amount and further reducing the intake air amount than the temperature rise control.

このようなLNC9がサルファパージ可能なリッチ環境にある時に、LNC9の上流側と下流側とのそれぞれに設置した2つのOセンサ27U・27Lの出力を監視し、上流側Oセンサ27Uの出力とある所定の基準値(例えば理論空燃比=ストイキ)との差の積算値に基づいてLNC9への還元剤供給量を推定するか(ステップ6)、あるいは、上流側Oセンサ27Uと下流側Oセンサ27Lとの出力差の積算値に基づいてLNC9での還元剤消費量を推定する(ステップ7)。そしてこれらの積算値を監視してステップ1で求めた還元剤必要量と比較し(ステップ8、9)、積算値が還元剤必要量に達したことが判別されたならば、サルファパージ終了判定信号を出力する(ステップ10)。 When the LNC 9 is in a rich environment capable of sulfur purge, the outputs of the two O 2 sensors 27U and 27L installed on the upstream side and the downstream side of the LNC 9 are monitored, and the outputs of the upstream O 2 sensor 27U are monitored. Whether the reducing agent supply amount to the LNC 9 is estimated based on the integrated value of the difference from a predetermined reference value (for example, stoichiometric air-fuel ratio = stoichiometric) (step 6), or the upstream O 2 sensor 27U and the downstream side Based on the integrated value of the output difference from the O 2 sensor 27L, the amount of reducing agent consumed in the LNC 9 is estimated (step 7). Then, these integrated values are monitored and compared with the reducing agent required amount obtained in step 1 (steps 8 and 9). If it is determined that the integrated value has reached the reducing agent required amount, the sulfur purge end determination is made. A signal is output (step 10).

具体的には、排気中の酸素濃度から排気A/Fが分かり、上流側Oセンサ27Uから得られた排気A/Fと理論空燃比(ストイキ)との差の積算値からLNC9への還元剤供給量が分かり、上流側Oセンサ27Uと下流側Oセンサ27Lとの出力差の積算値からLNC9での還元剤消費量が分かるので、サルファパージ処理中の2つのOセンサの出力を監視すれば、サルファパージ中に供給、または消費された還元剤量を推定することができる。つまり、あるS被毒量をサルファパージするのに必要な還元剤量を予め求めておけば、供給量あるいは消費量が必要量に到達した時点をもってサルファパージの終了時期を判断することができる。 Specifically, the exhaust A / F is known from the oxygen concentration in the exhaust, and the reduction value to the LNC 9 is calculated from the integrated value of the difference between the exhaust A / F obtained from the upstream O 2 sensor 27U and the stoichiometric air-fuel ratio (stoichiometric). Since the agent supply amount is known and the reducing agent consumption amount in the LNC 9 is known from the integrated value of the output difference between the upstream O 2 sensor 27U and the downstream O 2 sensor 27L, the outputs of the two O 2 sensors during the sulfur purge process Is monitored, the amount of reducing agent supplied or consumed during sulfur purge can be estimated. That is, if the amount of reducing agent necessary for sulfur purging a certain amount of sulfur is obtained in advance, the end time of sulfur purging can be determined at the time when the supply amount or consumption amount reaches the necessary amount.

なお、還元剤の供給量と消費量とのいずれか一方だけでもサルファパージの終了時期を判断できるが、両者を互いに比較することでより一層精度を高めることができる。   Note that the end time of sulfur purge can be determined by only one of the supply amount and consumption amount of the reducing agent, but the accuracy can be further improved by comparing the two with each other.

図6は、サルファパージ実行中のLNC9の上流側と下流側とのそれぞれに設置した2つのOセンサ27U・27Lの出力差とS濃度との推移を示したものである。サルファパージ初期は、2つのOセンサの出力差が大きく、SO濃度あるいはHS濃度の低下、つまりサルファパージの進行と共に2つのOセンサの出力差が減少している。このことから、2つのOセンサの出力差からSの放出量を推定することが可能なことが分かる。 FIG. 6 shows the transition of the output difference and the S concentration of the two O 2 sensors 27U and 27L installed on the upstream side and the downstream side of the LNC 9 during execution of sulfur purge. Sulfur purge initial, output difference between the two O 2 sensors is large, reduction of SO X concentration or the concentration of H 2 S, that is, the output difference between the two O 2 sensors with the progress of sulfur purge is reduced. From this, it can be seen that the amount of S released can be estimated from the output difference between the two O 2 sensors.

サルファパージは、図7に示すように、LNC9の温度が高い方が、その処理に要する時間が減少する傾向にある。これはLNC9における還元剤としてのCO消費率との相関があり、図8に示すように、LNC温度が高いほどCO消費率が高いことを表している。即ち、単に上流側Oセンサ27Uから得られた排気A/Fと理論空燃比(ストイキ)との差の積算値から判断するのみならず、この積算値にLNC温度から求めたCO消費率を乗ずることにより、還元剤消費量を正確に把握することができ、LNCのサルファパージ終了時期の判断精度をより一層高めることが可能となる。 As shown in FIG. 7, the sulfur purge tends to reduce the time required for the process when the temperature of the LNC 9 is higher. This has a correlation with the CO consumption rate as the reducing agent in LNC9, and as shown in FIG. 8, the higher the LNC temperature, the higher the CO consumption rate. That is, it is not only determined from the integrated value of the difference between the exhaust A / F obtained from the upstream O 2 sensor 27U and the stoichiometric air-fuel ratio (stoichiometric), but the CO consumption rate obtained from the LNC temperature is added to this integrated value. By multiplying, it is possible to accurately grasp the amount of reducing agent consumed, and it is possible to further increase the accuracy of determining the LNC sulfur purge end timing.

更に、空間速度SVが高いほど還元剤の供給量が高まるので、空間速度SVを考慮することにより、還元剤の供給量(消費量)を正確に把握することができ、LNCのサルファパージ終了時期の判断をより一層的確に行うことができる。ここで空間速度SVとは、還元剤供給容積速度の反応器容積に対する割合であり、
(吸入空気量+燃料供給量)/LNC容積
で与えられる。なお、吸入空気量は吸気流量センサ22の出力値であり、燃料供給量は、主にアクセルペダル操作量センサ26の出力に対するECU18からの燃料噴射弁13の制御量から求めた推定値であり、LNC容積は、予め実測して求めた値である。
Furthermore, since the supply amount of the reducing agent increases as the space velocity SV increases, the supply amount (consumption amount) of the reducing agent can be accurately grasped by considering the space velocity SV. Can be determined more accurately. Here, the space velocity SV is a ratio of the reducing agent supply volume velocity to the reactor volume,
(Intake air amount + fuel supply amount) / LNC volume. The intake air amount is an output value of the intake flow rate sensor 22, and the fuel supply amount is an estimated value obtained mainly from the control amount of the fuel injection valve 13 from the ECU 18 with respect to the output of the accelerator pedal operation amount sensor 26. The LNC volume is a value obtained by actual measurement in advance.

図3におけるステップ6の処理において、上流側Oセンサ27Uの出力と理論空燃比との差の積算値に上述したSV値およびCO消費率を乗ずることにより、触媒との接触、反応確率変化の影響による還元剤消費量の変化度合いを考慮することができ、各運転状態に応じた還元剤の量をより一層正確に把握することができる。 In the process of step 6 in FIG. 3, by multiplying the integrated value of the difference between the output of the upstream O 2 sensor 27U and the theoretical air-fuel ratio by the SV value and the CO consumption rate, the contact with the catalyst and the reaction probability change are changed. The degree of change of the reducing agent consumption due to the influence can be taken into account, and the amount of reducing agent corresponding to each operating state can be grasped more accurately.

また図3におけるステップ7の処理においては、2つのOセンサ27U・27Lの出力差には既にCO消費率の変化が含まれた値となるので、空間速度SVのみを乗じれば良い。 In the process of step 7 in FIG. 3, since the output difference between the two O 2 sensors 27U and 27L already has a value including the change in the CO consumption rate, it is sufficient to multiply only the space velocity SV.

このように、CO消費率並びにSV値を加味するものとすれば、上流側Oセンサ27Uの出力と理論空燃比との差の積算値だけでも充分に正確な還元剤の消費量を把握し得るので、Oセンサを1本設ければ済むことになり、製造コスト並びに設置スペースの増大を回避する上に寄与することができる。 As described above, if the CO consumption rate and the SV value are taken into account, a sufficiently accurate reducing agent consumption can be grasped only by the integrated value of the difference between the output of the upstream O 2 sensor 27U and the theoretical air-fuel ratio. Therefore, only one O 2 sensor needs to be provided, which can contribute to avoiding an increase in manufacturing cost and installation space.

本発明が適用される内燃機関の全体構成図である。1 is an overall configuration diagram of an internal combustion engine to which the present invention is applied. 本発明が適用される制御装置のブロック図である。It is a block diagram of a control device to which the present invention is applied. 本発明による制御フロー図である。It is a control flow figure by this invention. S被毒量とNO浄化率との関係を示す線図である。S is a graph showing the relationship between the poisoning amount and NO X purification rate. S被毒量とサルファパージに要する還元剤量との関係を示す線図である。It is a diagram which shows the relationship between S poison amount and the amount of reducing agents required for sulfur purge. 2つのOセンサの出力差とS濃度との推移を示す線図である。Is a diagram showing the transition between the two O 2 output difference and S concentration sensor. サルファパージ速度とLNC温度との関係を示す線図である。It is a diagram which shows the relationship between a sulfur purge speed | rate and LNC temperature. CO消費率とLNC温度との関係を示す線図である。It is a diagram which shows the relationship between CO consumption rate and LNC temperature.

符号の説明Explanation of symbols

3 排気通路
9 LNC
18 ECU
27U・27L Oセンサ
3 Exhaust passage 9 LNC
18 ECU
27U / 27L O 2 sensor

Claims (6)

排気通路に設けられたNO触媒に吸着された硫黄分を除去するための処理手段を有する内燃機関の制御装置であって、
前記NO触媒の上流側の空燃比に対応する値を検出する上流側空燃比検出手段を有し、
該上流側空燃比検出手段の検出値を硫黄分除去処理の終了時期の判断に含ませることを特徴とする内燃機関の制御装置。
A control apparatus for an internal combustion engine having a processing means for removing the sulfur adsorbed to the NO X catalyst provided in an exhaust passage,
Upstream air-fuel ratio detection means for detecting a value corresponding to the air-fuel ratio upstream of the NO X catalyst;
A control device for an internal combustion engine, characterized in that the detection value of the upstream air-fuel ratio detection means is included in the determination of the end time of the sulfur content removal process.
前記上流側空燃比検出手段の検出値と所定の基準値との差の値を積算する積算手段を有し、
該積算手段の積算値を硫黄分除去処理の終了時期の判断に含ませることを特徴とする請求項1に記載の内燃機関の制御装置。
Integrating means for integrating the difference value between the detection value of the upstream air-fuel ratio detection means and a predetermined reference value;
2. The control apparatus for an internal combustion engine according to claim 1, wherein the integrated value of the integrating means is included in the determination of the end time of the sulfur content removing process.
前記NO触媒におけるCO消費率に対応する値を検出するCO消費率検出手段を有し、該CO消費率検出手段の検出値を硫黄分除去処理の終了時期の判断に含ませることを特徴とする請求項1に記載の内燃機関の制御装置。 And characterized in that contained in the NO has a CO consumption rate detector for detecting a value corresponding to the CO consumption rate in the X catalyst, end timing of the judgment of the sulfur removal process the detection value of the CO consumption rate detector The control device for an internal combustion engine according to claim 1. 排気通路に設けられたNO触媒に吸着された硫黄分を除去するための処理手段を有する内燃機関の制御装置であって、
前記NO触媒の上流側の空燃比に対応する値を検出する上流側空燃比検出手段と、
前記NO触媒の下流側の空燃比に対応する値を検出する下流側空燃比検出手段とを有し、
前記上流側空燃比検出手段と前記下流側空燃比検出手段との検出値を硫黄分除去処理の終了時期の判断に含ませることを特徴とする内燃機関の制御装置。
A control apparatus for an internal combustion engine having a processing means for removing the sulfur adsorbed to the NO X catalyst provided in an exhaust passage,
An upstream side air-fuel ratio detecting means for detecting a value corresponding to the air-fuel ratio of the upstream side of the NO X catalyst,
And a downstream air-fuel ratio detecting means for detecting a value corresponding to the air-fuel ratio on the downstream side of the NO X catalyst,
A control apparatus for an internal combustion engine, wherein detected values of the upstream air-fuel ratio detection means and the downstream air-fuel ratio detection means are included in the determination of the end time of the sulfur content removal process.
前記上流側空燃比検出手段の検出値と前記下流側空燃比検出手段の検出値との差の値を積算する積算手段を有し、
該積算手段の積算値を硫黄分除去処理の終了時期の判断に含ませることを特徴とする請求項4に記載の内燃機関の制御装置。
Integrating means for integrating the difference value between the detection value of the upstream air-fuel ratio detection means and the detection value of the downstream air-fuel ratio detection means;
5. The control apparatus for an internal combustion engine according to claim 4, wherein the integrated value of the integrating means is included in the determination of the end time of the sulfur content removal process.
前記NO触媒に流入する排気の空間速度を検出する空間速度検出手段を有し、該空間速度検出手段の検出値を硫黄分除去処理の終了時期の判断に含ませることを特徴とする請求項1乃至5のいずれか1つに記載の内燃機関の制御装置。 Claims, characterized in that said a space velocity detecting means for detecting a space velocity of the exhaust gas flowing to the NO X catalyst, to include detected values of the space velocity detecting means for determining ending timing of the sulfur removal process The control apparatus for an internal combustion engine according to any one of 1 to 5.
JP2006209495A 2005-12-13 2006-08-01 Control device for internal combustion engine Expired - Fee Related JP4646868B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006209495A JP4646868B2 (en) 2005-12-13 2006-08-01 Control device for internal combustion engine
US11/882,255 US8028518B2 (en) 2006-08-01 2007-07-31 Sulfur purge control device for an internal combustion engine
EP07015037A EP1887202B1 (en) 2006-08-01 2007-07-31 Sulfur purge control device for an internal combustion engine
DE602007004039T DE602007004039D1 (en) 2006-08-01 2007-07-31 Sulfur purification control device for an internal combustion engine
DE602007001740T DE602007001740D1 (en) 2006-08-01 2007-07-31 Sulfur purification control device for an internal combustion engine
EP07015038A EP1887203B1 (en) 2006-08-01 2007-07-31 Sulfur purge control device for an internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005358855 2005-12-13
JP2006209495A JP4646868B2 (en) 2005-12-13 2006-08-01 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007187146A true JP2007187146A (en) 2007-07-26
JP4646868B2 JP4646868B2 (en) 2011-03-09

Family

ID=38342473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006209495A Expired - Fee Related JP4646868B2 (en) 2005-12-13 2006-08-01 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4646868B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047086A (en) * 2007-08-21 2009-03-05 Denso Corp Exhaust emission control device of internal combustion engine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001152837A (en) * 1999-11-22 2001-06-05 Mazda Motor Corp Exhaust emission control device of engine
JP2001214734A (en) * 2000-02-03 2001-08-10 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2003293744A (en) * 2002-04-04 2003-10-15 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2003328739A (en) * 2002-05-16 2003-11-19 Nissan Motor Co Ltd Exhaust emission control device of internal-combustion engine
JP2004225665A (en) * 2003-01-27 2004-08-12 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2005113763A (en) * 2003-10-07 2005-04-28 Mazda Motor Corp Exhaust emission control device for internal combustion engine
JP2005139968A (en) * 2003-11-05 2005-06-02 Isuzu Motors Ltd Sulfur purge control method and exhaust emission control system
JP2005180324A (en) * 2003-12-19 2005-07-07 Isuzu Motors Ltd Exhaust emission control method and exhaust emission control system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001152837A (en) * 1999-11-22 2001-06-05 Mazda Motor Corp Exhaust emission control device of engine
JP2001214734A (en) * 2000-02-03 2001-08-10 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2003293744A (en) * 2002-04-04 2003-10-15 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2003328739A (en) * 2002-05-16 2003-11-19 Nissan Motor Co Ltd Exhaust emission control device of internal-combustion engine
JP2004225665A (en) * 2003-01-27 2004-08-12 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2005113763A (en) * 2003-10-07 2005-04-28 Mazda Motor Corp Exhaust emission control device for internal combustion engine
JP2005139968A (en) * 2003-11-05 2005-06-02 Isuzu Motors Ltd Sulfur purge control method and exhaust emission control system
JP2005180324A (en) * 2003-12-19 2005-07-07 Isuzu Motors Ltd Exhaust emission control method and exhaust emission control system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047086A (en) * 2007-08-21 2009-03-05 Denso Corp Exhaust emission control device of internal combustion engine
US8307633B2 (en) 2007-08-21 2012-11-13 Denso Corporation Engine exhaust gas purification apparatus enabling accurate judgement of appropriate time for terminating NOx catalyst regeneration procedure
DE102008041242B4 (en) 2007-08-21 2021-10-21 Denso Corporation An exhaust gas purification device of an engine that enables an accurate judgment of an appropriate time for ending a regeneration process of a NOx catalyst
DE102008041242B8 (en) 2007-08-21 2022-01-27 Denso Corporation An exhaust gas purification device of an engine that enables accurate judgment of an appropriate time to complete a regeneration process of a NOx catalyst

Also Published As

Publication number Publication date
JP4646868B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
JP4355003B2 (en) Control device for internal combustion engine
JP2008038812A (en) Control device for internal combustion engine
EP3133258B1 (en) Control system for internal combustion engine and control method
US7827783B2 (en) Exhaust gas purifying apparatus for internal combustion engine
JP4561656B2 (en) Catalyst temperature estimation device for internal combustion engine
US8028518B2 (en) Sulfur purge control device for an internal combustion engine
JP2006169997A (en) Deterioration determining device of catalyst
US20090031705A1 (en) Exhaust Gas Purification Device of Compression Ignition Type Internal Combustion Engine
JP4435300B2 (en) Control device for internal combustion engine
JP5039367B2 (en) Exhaust gas purification device for internal combustion engine
JP4613787B2 (en) Exhaust gas purification device for internal combustion engine
JP2008231926A (en) Exhaust emission control device of internal combustion engine
JP2004285947A (en) Exhaust emission control device for internal combustion engine
JP2005240716A (en) Deterioration diagnostic device for catalyst
JP4609299B2 (en) Exhaust gas purification device for internal combustion engine
JP4646868B2 (en) Control device for internal combustion engine
EP3260675B1 (en) Exhaust gas purification system for internal combustion engine, internal combustion engine, and exhaust gas purification method for internal combustion engine
JP2009036153A (en) Exhaust-emission purifying apparatus of internal combustion engine
JP4063743B2 (en) Fuel injection timing control device for internal combustion engine
KR20180067898A (en) Method for reducing exhaust gas of engine in case of controlling scavenging
JP2005163724A (en) Exhaust emission control device for internal combustion engine
JP2005030272A (en) Exhaust emission control device for internal combustion engine
JP2010053842A (en) Exhaust emission control device for diesel engine
JP4328758B2 (en) Control device for internal combustion engine
JP2007071111A (en) Fuel property determining device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100730

A131 Notification of reasons for refusal

Effective date: 20100803

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20101124

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20101207

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees