JP2008231926A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2008231926A
JP2008231926A JP2007068163A JP2007068163A JP2008231926A JP 2008231926 A JP2008231926 A JP 2008231926A JP 2007068163 A JP2007068163 A JP 2007068163A JP 2007068163 A JP2007068163 A JP 2007068163A JP 2008231926 A JP2008231926 A JP 2008231926A
Authority
JP
Japan
Prior art keywords
fuel ratio
fuel
air
exhaust passage
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007068163A
Other languages
Japanese (ja)
Inventor
Yuji Kanto
勇二 関東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007068163A priority Critical patent/JP2008231926A/en
Publication of JP2008231926A publication Critical patent/JP2008231926A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology with which an air fuel ratio of exhaust gas flowing in a storage-reduction type NOx catalyst provided to an exhaust passage can be favorably controlled to a target air fuel ratio. <P>SOLUTION: A fuel addition valve 9 is provided to an exhaust passage 3 at the upstream side from a NOx catalyst 6. An upstream side air fuel ratio sensor 11 is provided to the exhaust passage 3 on the upstream side from the fuel addition valve 9. A downstream side air fuel ratio sensor 12 is provided to the exhaust passage 3 at the downstream side from the NOx catalyst 6. A catalyst 8 having oxidation function is provided to the exhaust passage 3 at the upstream side from the upstream side air fuel ratio sensor 11. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内燃機関の排気通路に設けられた吸蔵還元型NOx触媒を備えた内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine including an NOx storage reduction catalyst provided in an exhaust passage of the internal combustion engine.

内燃機関の排気通路に吸蔵還元型NOx触媒(以下、単にNOx触媒と称する)が設けられている場合、該NOx触媒に吸蔵されたNOxを還元するNOx還元制御や該NOx触媒に吸蔵されたSOxを還元するSOx被毒回復制御が行われる。NOx還元制御やSOx被毒回復制御の実行時においては、NOx触媒に流入する排気の空燃比を通常運転時(即ち、NOx還元制御やSOx被毒回復制御が実行されていない時)よりも低下させて制御毎に定めたれた目標空燃比に制御する必要がある。   When an NOx storage reduction catalyst (hereinafter simply referred to as NOx catalyst) is provided in the exhaust passage of the internal combustion engine, NOx reduction control for reducing NOx stored in the NOx catalyst and SOx stored in the NOx catalyst are stored. The SOx poisoning recovery control for reducing the amount is performed. When executing NOx reduction control or SOx poisoning recovery control, the air-fuel ratio of the exhaust gas flowing into the NOx catalyst is lower than during normal operation (that is, when NOx reduction control or SOx poisoning recovery control is not executed). Thus, it is necessary to control to the target air-fuel ratio determined for each control.

NOx触媒に流入する排気の空燃比を低下させる方法としては、内燃機関の気筒内での混合気の空燃比(以下、筒内空燃比と称する)を低下させると共に、NOx触媒よりも上流側の排気通路に設けられた燃料添加弁から排気中に燃料を添加する方法がある。   As a method for reducing the air-fuel ratio of the exhaust gas flowing into the NOx catalyst, the air-fuel ratio of the air-fuel mixture in the cylinder of the internal combustion engine (hereinafter referred to as the in-cylinder air-fuel ratio) is reduced, and at the upstream side of the NOx catalyst. There is a method of adding fuel into the exhaust from a fuel addition valve provided in the exhaust passage.

特許文献1には、ターボチャージャのタービンハウジングよりも下流側の排気通路に、空燃比センサ、燃料添加弁、NOx触媒、温度センサ、NOx触媒を担持したフィルタ、酸化触媒、温度センサ、空燃比センサを上流から順に設けた構成が開示されている。
特開2005−105821号公報 特開2005−105828号公報 特開2003−286878号公報 特開2005−069086号公報 特開2005−076603号公報
Patent Document 1 discloses an air-fuel ratio sensor, a fuel addition valve, a NOx catalyst, a temperature sensor, a filter carrying a NOx catalyst, an oxidation catalyst, a temperature sensor, and an air-fuel ratio sensor in an exhaust passage downstream of the turbine housing of the turbocharger. Is disclosed in order from the upstream.
JP 2005-105821 A Japanese Patent Laying-Open No. 2005-105828 JP 2003-286878 A Japanese Patent Laying-Open No. 2005-069086 JP 2005-076603 A

筒内空燃比を低下させることで内燃機関から排出される排気の空燃比を低下させることが出来る。そして、排気通路に設けられた燃料添加弁から排気中に燃料を添加することで排気の空燃比をさらに低下させることが出来る。   By reducing the in-cylinder air-fuel ratio, the air-fuel ratio of the exhaust discharged from the internal combustion engine can be reduced. The fuel / air ratio of the exhaust gas can be further reduced by adding fuel into the exhaust gas from the fuel addition valve provided in the exhaust passage.

しかしながら、燃料添加弁から添加された燃料は気化し難い。そのため、燃料添加弁からの燃料添加量が過剰に多くなると、燃料がNOx触媒をすり抜けることによる白煙の発生や、NOx触媒に付着した燃料が酸化することによるNOx触媒の過昇温を招く虞がある。また、燃料添加弁からの燃料添加量が過剰に多くなると、燃料が添加された排気の空燃比を空燃比センサの検出値に基づいて高精度で検出することが困難となる虞がある。   However, the fuel added from the fuel addition valve is difficult to vaporize. Therefore, if the amount of fuel added from the fuel addition valve becomes excessive, white smoke may be generated due to the fuel passing through the NOx catalyst, or the NOx catalyst may be excessively heated due to oxidation of the fuel adhering to the NOx catalyst. There is. If the amount of fuel added from the fuel addition valve is excessively large, it may be difficult to detect the air-fuel ratio of the exhaust gas to which fuel has been added with high accuracy based on the detection value of the air-fuel ratio sensor.

一方、筒内空燃比を過剰に低下させると失火等の問題を招く虞がある。   On the other hand, if the in-cylinder air-fuel ratio is excessively reduced, there is a risk of causing problems such as misfire.

本発明は、上記問題に鑑みてなされたものであって、排気通路に設けられたNOx触媒に流入する排気の空燃比をより好適に目標空燃比に制御することが可能な技術を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a technique capable of more suitably controlling the air-fuel ratio of exhaust flowing into the NOx catalyst provided in the exhaust passage to the target air-fuel ratio. With the goal.

本発明においては、NOx触媒よりも上流側の排気通路に燃料添加弁が設けられている。また、燃料添加弁よりも上流側の排気通路に上流側空燃比センサが設けられており、NOx触媒よりも下流側の排気通路に下流側空燃比センサが設けられている。さらに、上流
側空燃比センサよりも上流側の排気通路に酸化機能を有する触媒(以下、酸化機能触媒と称する)が設けられている。
In the present invention, a fuel addition valve is provided in the exhaust passage upstream of the NOx catalyst. An upstream air-fuel ratio sensor is provided in the exhaust passage upstream of the fuel addition valve, and a downstream air-fuel ratio sensor is provided in the exhaust passage downstream of the NOx catalyst. Further, a catalyst having an oxidation function (hereinafter referred to as an oxidation function catalyst) is provided in the exhaust passage upstream of the upstream air-fuel ratio sensor.

より詳しくは、本発明に係る内燃機関の排気浄化装置は、
内燃機関の排気通路に設けられた吸蔵還元型NOx触媒と、
該吸蔵還元型NOx触媒よりも上流側の前記排気通路に設けられ排気中に燃料を添加する燃料添加弁と、
該燃料添加弁よりも上流側の前記排気通路に設けられた上流側空燃比センサと、
前記吸蔵還元型NOx触媒よりも下流側の前記排気通路に設けられた下流側空燃比センサと、
前記上流側空燃比センサよりも上流側の前記排気通路に設けられた酸化機能を有する触媒と、を備えたことを特徴とする。
More specifically, the exhaust gas purification apparatus for an internal combustion engine according to the present invention is
An NOx storage reduction catalyst provided in the exhaust passage of the internal combustion engine;
A fuel addition valve that is provided in the exhaust passage upstream of the NOx storage reduction catalyst and adds fuel to the exhaust;
An upstream air-fuel ratio sensor provided in the exhaust passage upstream of the fuel addition valve;
A downstream air-fuel ratio sensor provided in the exhaust passage downstream of the NOx storage reduction catalyst;
And a catalyst having an oxidation function provided in the exhaust passage upstream of the upstream air-fuel ratio sensor.

本発明によれば、筒内空燃比を低下させると共に燃料添加弁から燃料を添加することで流入排気の空燃比を低下させることが出来る。そして、上流側空燃比センサの検出値に基づいて筒内空燃比を制御し、下流側空燃比センサの検出値に基づいて燃料添加弁からの燃料添加量を制御することで、流入排気の空燃比を目標空燃比に制御することが出来る。   According to the present invention, the air-fuel ratio of the inflowing exhaust gas can be reduced by reducing the in-cylinder air-fuel ratio and adding fuel from the fuel addition valve. The in-cylinder air-fuel ratio is controlled based on the detection value of the upstream air-fuel ratio sensor, and the fuel addition amount from the fuel addition valve is controlled based on the detection value of the downstream air-fuel ratio sensor, thereby The fuel ratio can be controlled to the target air fuel ratio.

また、本発明では、燃料添加弁よりも上流側の排気通路に酸化機能触媒が設けられている。この酸化機能触媒において排気中の燃料成分(COやHC等)が酸化され、そのときに排気中の酸素が消費される。そのため、流入排気の空燃比を目標空燃比まで低下させるために燃料添加弁から添加する燃料の量をより少ない量をすることが出来る。その結果、白煙の発生やNOx触媒の過昇温を抑制することが出来る。   In the present invention, the oxidation function catalyst is provided in the exhaust passage upstream of the fuel addition valve. In this oxidation functional catalyst, fuel components (CO, HC, etc.) in the exhaust are oxidized, and oxygen in the exhaust is consumed at that time. Therefore, the amount of fuel added from the fuel addition valve to reduce the air-fuel ratio of the inflowing exhaust gas to the target air-fuel ratio can be made smaller. As a result, generation of white smoke and excessive temperature rise of the NOx catalyst can be suppressed.

また、筒内空燃比を低下させることによって、内燃機関から粒径が大きく蒸発し難い燃料成分が排出される場合がある。本発明では、このような燃料成分が酸化機能触媒によって酸化される。そのため、上流側空燃比センサに燃料成分が付着することを抑制することが出来る。これにより、上流側空燃比センサによる排気の空燃比の検出精度を向上させることが出来るため、筒内空燃比をより高精度で制御することが可能となる。その結果、内燃機関での失火の発生等を抑制することが出来る。   Further, by reducing the in-cylinder air-fuel ratio, a fuel component that has a large particle size and is difficult to evaporate may be discharged from the internal combustion engine. In the present invention, such a fuel component is oxidized by the oxidation functional catalyst. Therefore, it is possible to suppress the fuel component from adhering to the upstream air-fuel ratio sensor. Thereby, the detection accuracy of the air-fuel ratio of the exhaust gas by the upstream air-fuel ratio sensor can be improved, so that the in-cylinder air-fuel ratio can be controlled with higher accuracy. As a result, the occurrence of misfire in the internal combustion engine can be suppressed.

さらに、燃料添加弁から添加する燃料の量をより少ない量とすることが出来ると共に筒内空燃比をより高精度で制御することが可能となることで、流入排気の空燃比をより高精度で目標空燃比に制御することが出来る。   Furthermore, the amount of fuel added from the fuel addition valve can be made smaller and the in-cylinder air-fuel ratio can be controlled with higher accuracy, so that the air-fuel ratio of the inflowing exhaust gas can be controlled with higher accuracy. The target air-fuel ratio can be controlled.

本発明は、排気通路に設けられたNOx触媒に流入する排気の空燃比をより好適に目標空燃比に制御することが出来る。   The present invention can more suitably control the air-fuel ratio of the exhaust gas flowing into the NOx catalyst provided in the exhaust passage to the target air-fuel ratio.

以下、本発明に係る内燃機関の排気浄化装置の具体的な実施形態について図面に基づいて説明する。   Hereinafter, specific embodiments of an exhaust emission control device for an internal combustion engine according to the present invention will be described with reference to the drawings.

<内燃機関の吸排気系の概略構成>
図1は、本実施例に係る内燃機関の吸排気系の概略構成を示す図である。内燃機関1は車両駆動用のディーゼルエンジンである。内燃機関1には吸気通路2および排気通路3が接続されている。吸気通路2にはターボチャージャ5のコンプレッサハウジング5aが設置されている。吸気通路2におけるコンプレッサハウジング5aよりも下流側にはスロットル弁4が設けられている。
<Schematic configuration of intake and exhaust system of internal combustion engine>
FIG. 1 is a diagram showing a schematic configuration of an intake / exhaust system of an internal combustion engine according to the present embodiment. The internal combustion engine 1 is a diesel engine for driving a vehicle. An intake passage 2 and an exhaust passage 3 are connected to the internal combustion engine 1. A compressor housing 5 a of a turbocharger 5 is installed in the intake passage 2. A throttle valve 4 is provided in the intake passage 2 on the downstream side of the compressor housing 5a.

排気通路3にはターボチャージャ5のタービンハウジング5bが設置されている。排気通路3におけるタービンハウジング5bより下流側にはNOx触媒6が設けられている。排気通路3において、NOx触媒6の直上流には第一酸化触媒7が設けられており、さらに酸化触媒7よりも上流側には燃料添加弁9が設けられている。燃料添加弁9は排気通路3を流れる排気中に燃料を添加する。   A turbine housing 5 b of the turbocharger 5 is installed in the exhaust passage 3. A NOx catalyst 6 is provided downstream of the turbine housing 5b in the exhaust passage 3. In the exhaust passage 3, a first oxidation catalyst 7 is provided immediately upstream of the NOx catalyst 6, and a fuel addition valve 9 is provided upstream of the oxidation catalyst 7. The fuel addition valve 9 adds fuel to the exhaust gas flowing through the exhaust passage 3.

排気通路3におけるタービンハウジング5bよりも下流側且つ燃料添加弁9よりも上流側には第二酸化触媒8が設けられている。さらに、排気通路3には、排気通路3を流れる排気の空燃比を検出する上流側空燃比センサ11および下流側空燃比センサ12が設けられている。上流側空燃比センサ11は第二酸化触媒8よりも下流側且つ燃料添加弁9よりも上流側に設けられており、下流側空燃比センサ12はNOx触媒6よりも下流側に設けられている。   A second dioxide catalyst 8 is provided in the exhaust passage 3 downstream of the turbine housing 5 b and upstream of the fuel addition valve 9. Further, the exhaust passage 3 is provided with an upstream air-fuel ratio sensor 11 and a downstream air-fuel ratio sensor 12 that detect the air-fuel ratio of the exhaust gas flowing through the exhaust passage 3. The upstream air-fuel ratio sensor 11 is provided downstream of the second dioxide catalyst 8 and upstream of the fuel addition valve 9, and the downstream air-fuel ratio sensor 12 is provided downstream of the NOx catalyst 6.

尚、本実施例においては、第二酸化触媒8が本発明に係る酸化機能触媒に相当する。該第二酸化触媒8は酸化触媒に限られるものではなく、酸化機能を有する触媒であればよい。また、NOx触媒6はパティキュレートフィルタに担持された状態であってもよい。   In this embodiment, the second dioxide catalyst 8 corresponds to the oxidation functional catalyst according to the present invention. The second dioxide catalyst 8 is not limited to an oxidation catalyst, and may be any catalyst having an oxidation function. Further, the NOx catalyst 6 may be in a state of being supported by a particulate filter.

また、内燃機関1には、電子制御ユニット(ECU)10が併設されている。このECU10は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御するユニットである。ECU10には上流側空燃比センサ11および下流側空燃比センサ12が電気的に接続されている。これらの出力信号がECU10に入力される。   The internal combustion engine 1 is also provided with an electronic control unit (ECU) 10. The ECU 10 is a unit that controls the operation state of the internal combustion engine 1 in accordance with the operation conditions of the internal combustion engine 1 and the request of the driver. An upstream air-fuel ratio sensor 11 and a downstream air-fuel ratio sensor 12 are electrically connected to the ECU 10. These output signals are input to the ECU 10.

また、ECU10には、内燃機関1の気筒内に燃料を噴射する燃料噴射弁およびスロットル弁4、燃料添加弁9が電気的に接続されている。ECU10によってこれらが制御される。   The ECU 10 is electrically connected to a fuel injection valve for injecting fuel into the cylinder of the internal combustion engine 1, a throttle valve 4, and a fuel addition valve 9. These are controlled by the ECU 10.

<SOx被毒回復制御>
本実施例においては、NOx触媒6に吸蔵されたSOxを還元すべくSOx被毒回復制御が行われる。NOx触媒6に吸蔵されたSOxを還元するためには、NOx触媒6の温度を上昇させると共にNOx触媒6に流入する排気(流入排気)の空燃比を通常運転時よりも低下させて目標空燃比に制御することが必要である。ここで、目標空燃比は、SOxの還元が可能となる空燃比であって実験等によって予め定められている。
<SOx poisoning recovery control>
In this embodiment, SOx poisoning recovery control is performed to reduce the SOx stored in the NOx catalyst 6. In order to reduce the SOx stored in the NOx catalyst 6, the temperature of the NOx catalyst 6 is raised and the air-fuel ratio of the exhaust gas (inflowing exhaust gas) flowing into the NOx catalyst 6 is lowered than in the normal operation to reduce the target air-fuel ratio. It is necessary to control. Here, the target air-fuel ratio is an air-fuel ratio at which SOx can be reduced, and is determined in advance by experiments or the like.

本実施例に係るSOx被毒回復制御は、内燃機関1の筒内空燃比を低下させると共に燃料添加弁9から燃料を添加することで実現される。内燃機関1の筒内空燃比を低下させる方法としては、スロットル弁4の開度を小さくすることで入空気量を減少させる方法や内燃機関1における燃料噴射量を増加させる方法等を例示することが出来る。   The SOx poisoning recovery control according to this embodiment is realized by reducing the in-cylinder air-fuel ratio of the internal combustion engine 1 and adding fuel from the fuel addition valve 9. Examples of methods for reducing the in-cylinder air-fuel ratio of the internal combustion engine 1 include a method of reducing the amount of intake air by reducing the opening of the throttle valve 4 and a method of increasing the fuel injection amount in the internal combustion engine 1. I can do it.

そして、SOx被毒回復制御の実行時においては、上流側空燃比センサ11の検出値に基づいて内燃機関1の筒内空燃比を制御し、下流側空燃比センサ12の検出値に基づいて燃料添加弁9からの燃料添加量を制御することで、流入排気の空燃比を目標空燃比に制御する。   When executing the SOx poisoning recovery control, the cylinder air-fuel ratio of the internal combustion engine 1 is controlled based on the detected value of the upstream air-fuel ratio sensor 11, and the fuel is determined based on the detected value of the downstream air-fuel ratio sensor 12. By controlling the amount of fuel added from the addition valve 9, the air-fuel ratio of the inflowing exhaust gas is controlled to the target air-fuel ratio.

本実施例においては、燃料添加弁9よりも上流側の排気通路3に第二酸化触媒8が設けられている。この第二酸化触媒8において排気中の燃料成分が酸化されることで排気中の酸素が消費される。そのため、第二酸化触媒8より下流側に流れる排気中の酸素量が減少する。従って、流入排気の空燃比を目標空燃比まで低下させるために燃料添加弁9から添加する燃料量をより少ない量とすることが出来る。   In the present embodiment, the second dioxide catalyst 8 is provided in the exhaust passage 3 upstream of the fuel addition valve 9. Oxygen in the exhaust is consumed by oxidizing the fuel component in the exhaust in the second dioxide catalyst 8. Therefore, the amount of oxygen in the exhaust gas flowing downstream from the second dioxide catalyst 8 is reduced. Therefore, the amount of fuel added from the fuel addition valve 9 to reduce the air-fuel ratio of the inflowing exhaust gas to the target air-fuel ratio can be made smaller.

燃料添加弁9からの燃料添加量をより少ない量とすることによって、NOx触媒6をす
り抜ける燃料の量やNOx触媒6に付着する燃料の量を減少させることが出来る。その結果、白煙の発生やNOx触媒6の過昇温を抑制することが出来る。
By making the amount of fuel added from the fuel addition valve 9 smaller, the amount of fuel passing through the NOx catalyst 6 and the amount of fuel adhering to the NOx catalyst 6 can be reduced. As a result, generation of white smoke and excessive temperature rise of the NOx catalyst 6 can be suppressed.

また、筒内空燃比を低下させることで、内燃機関1から粒径が大きく蒸発し難い燃料成分が排出された場合であっても、該燃料成分が第二酸化触媒8によって酸化される。そのため、上流側空燃比センサ11に燃料成分が付着することを抑制することが出来る。これにより、上流側空燃比センサ11による排気の空燃比の検出精度を向上させることが出来るため、筒内空燃比をより高精度で制御することが可能となる。その結果、内燃機関1での失火の発生等を抑制することが出来る。   Further, by reducing the in-cylinder air-fuel ratio, the fuel component is oxidized by the second dioxide catalyst 8 even when the fuel component having a large particle size and not easily evaporated is discharged from the internal combustion engine 1. Therefore, it is possible to suppress the fuel component from adhering to the upstream air-fuel ratio sensor 11. Thereby, the detection accuracy of the air-fuel ratio of the exhaust by the upstream air-fuel ratio sensor 11 can be improved, so that the in-cylinder air-fuel ratio can be controlled with higher accuracy. As a result, the occurrence of misfire in the internal combustion engine 1 can be suppressed.

さらに、燃料添加弁9から添加する燃料の量を減らすことが出来ると共に筒内空燃比をより高精度で制御することが可能となることで、流入排気の空燃比をより高精度で目標空燃比に制御することが出来る。   Further, the amount of fuel added from the fuel addition valve 9 can be reduced and the in-cylinder air-fuel ratio can be controlled with higher accuracy, so that the air-fuel ratio of the inflowing exhaust gas can be controlled with higher accuracy. Can be controlled.

従って、本実施例によれば、SOx被毒回復制御の実行時において、流入排気の空燃比をより好適に目標空燃比に制御することが出来る。   Therefore, according to the present embodiment, it is possible to more suitably control the air-fuel ratio of the inflowing exhaust gas to the target air-fuel ratio when executing the SOx poisoning recovery control.

また、本実施例の構成によれば、上流側空燃比センサ11の検出値と下流側空燃比センサ12の検出値とに基づいて燃料添加弁9の詰まり等の異常を検出することが出来る。   Further, according to the configuration of the present embodiment, an abnormality such as clogging of the fuel addition valve 9 can be detected based on the detected value of the upstream air-fuel ratio sensor 11 and the detected value of the downstream air-fuel ratio sensor 12.

尚、本実施例においては、NOx触媒6に吸蔵されたNOxを還元するNOx還元制御の実行時においても、上記説明したSOx被毒回復制御の実行時と同様の方法で流入排気の空燃比を目標空燃比に制御してもよい。   In the present embodiment, the air-fuel ratio of the inflowing exhaust gas is set in the same manner as in the execution of the SOx poisoning recovery control described above even when the NOx reduction control for reducing the NOx stored in the NOx catalyst 6 is executed. You may control to a target air fuel ratio.

また、本実施例では、SOx被毒回復制御の実行時に、燃料添加弁9による燃料添加に加えて内燃機関1における副燃料噴射を実行してもよい。この場合、副燃料噴射は、主燃料噴射よりも後の時期であって噴射された燃料が未燃の状態で内燃機関1から排出されるタイミングで実行される。本実施例において、このような副燃料噴射が実行されると、内燃機関1から排出された未燃燃料成分が第二酸化触媒8において酸化される。このときに生じる酸化熱によって排気を昇温させることが出来る。   Further, in this embodiment, when performing the SOx poisoning recovery control, the sub fuel injection in the internal combustion engine 1 may be executed in addition to the fuel addition by the fuel addition valve 9. In this case, the auxiliary fuel injection is executed at a timing after the main fuel injection and when the injected fuel is discharged from the internal combustion engine 1 in an unburned state. In this embodiment, when such sub fuel injection is executed, unburned fuel components discharged from the internal combustion engine 1 are oxidized in the second dioxide catalyst 8. The temperature of the exhaust can be raised by oxidation heat generated at this time.

本実施例に係る内燃機関の吸排気系の概略構成を示す図。The figure which shows schematic structure of the intake / exhaust system of the internal combustion engine which concerns on a present Example.

符号の説明Explanation of symbols

1・・・内燃機関
2・・・吸気通路
3・・・排気通路
4・・・スロットル弁
6・・・吸蔵還元型NOx触媒
7・・・第一酸化触媒
8・・・第二酸化触媒
9・・・燃料添加弁
10・・ECU
11・・上流側空燃比センサ
12・・下流側空燃比センサ
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 2 ... Intake passage 3 ... Exhaust passage 4 ... Throttle valve 6 ... NOx storage reduction catalyst 7 ... First oxidation catalyst 8 ... Second dioxide catalyst 9・ ・ Fuel addition valve 10 ・ ・ ECU
11. ・ Upstream air-fuel ratio sensor 12. ・ Downstream air-fuel ratio sensor

Claims (1)

内燃機関の排気通路に設けられた吸蔵還元型NOx触媒と、
該吸蔵還元型NOx触媒よりも上流側の前記排気通路に設けられ排気中に燃料を添加する燃料添加弁と、
該燃料添加弁よりも上流側の前記排気通路に設けられた上流側空燃比センサと、
前記吸蔵還元型NOx触媒よりも下流側の前記排気通路に設けられた下流側空燃比センサと、
前記上流側空燃比センサよりも上流側の前記排気通路に設けられた酸化機能を有する触媒と、を備えたことを特徴とする内燃機関の排気浄化装置。
An NOx storage reduction catalyst provided in the exhaust passage of the internal combustion engine;
A fuel addition valve that is provided in the exhaust passage upstream of the NOx storage reduction catalyst and adds fuel to the exhaust;
An upstream air-fuel ratio sensor provided in the exhaust passage upstream of the fuel addition valve;
A downstream air-fuel ratio sensor provided in the exhaust passage downstream of the NOx storage reduction catalyst;
An exhaust gas purification apparatus for an internal combustion engine, comprising: a catalyst having an oxidation function provided in the exhaust passage upstream of the upstream air-fuel ratio sensor.
JP2007068163A 2007-03-16 2007-03-16 Exhaust emission control device of internal combustion engine Withdrawn JP2008231926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007068163A JP2008231926A (en) 2007-03-16 2007-03-16 Exhaust emission control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007068163A JP2008231926A (en) 2007-03-16 2007-03-16 Exhaust emission control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008231926A true JP2008231926A (en) 2008-10-02

Family

ID=39905051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007068163A Withdrawn JP2008231926A (en) 2007-03-16 2007-03-16 Exhaust emission control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2008231926A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030419A1 (en) 2009-09-10 2011-03-17 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US20130017121A1 (en) * 2011-07-14 2013-01-17 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
US8707682B2 (en) 2011-08-25 2014-04-29 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
US9028763B2 (en) 2011-11-30 2015-05-12 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
US9623375B2 (en) 2010-03-15 2017-04-18 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030419A1 (en) 2009-09-10 2011-03-17 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US8584451B2 (en) 2009-09-10 2013-11-19 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for an internal combustion engine
US9623375B2 (en) 2010-03-15 2017-04-18 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
US20130017121A1 (en) * 2011-07-14 2013-01-17 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
US8820054B2 (en) * 2011-07-14 2014-09-02 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
US8707682B2 (en) 2011-08-25 2014-04-29 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
US9028763B2 (en) 2011-11-30 2015-05-12 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine

Similar Documents

Publication Publication Date Title
JP4706659B2 (en) Method for estimating N2O generation amount in ammonia oxidation catalyst and exhaust gas purification system for internal combustion engine
JP4333725B2 (en) Exhaust gas recirculation device for internal combustion engine
JP5045339B2 (en) Exhaust gas purification system for internal combustion engine
JP2008231926A (en) Exhaust emission control device of internal combustion engine
JP2007085198A (en) Supercharging pressure control system of internal combustion engine
JP4905327B2 (en) Exhaust gas purification system for internal combustion engine
JP2007315233A (en) Exhaust emission control system of internal combustion engine
US8061125B2 (en) Exhaust gas purification system and method for internal combustion engine
JP2008144688A (en) Control device of internal combustion engine
JP2007107474A (en) Exhaust emission control device for internal combustion engine
JP5472082B2 (en) Combustion mode control system for compression ignition internal combustion engine
JP4609299B2 (en) Exhaust gas purification device for internal combustion engine
JP4321623B2 (en) Control device for internal combustion engine
JP4529967B2 (en) Exhaust gas purification system for internal combustion engine
JP2010144625A (en) Exhaust emission control device of engine
JP2008069663A (en) Exhaust emission control device of internal combustion engine
JP4899955B2 (en) Control device for internal combustion engine
JP4893493B2 (en) Exhaust gas purification device for internal combustion engine
JP2004176632A (en) Exhaust emission control device for internal combustion engine
JP4063743B2 (en) Fuel injection timing control device for internal combustion engine
JP2008240559A (en) Exhaust emission control system for internal combustion engine
JP5062069B2 (en) Exhaust gas purification device for internal combustion engine
JP2009068470A (en) Exhaust emission control device of internal combustion engine
JP2007138768A (en) Exhaust emission control device of internal combustion engine
US20090077950A1 (en) Exhaust Purification System For Internal Combustion Engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091027

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110322