JP2007186752A - Particle deposition method and substrate-cleaning device used therefor - Google Patents

Particle deposition method and substrate-cleaning device used therefor Download PDF

Info

Publication number
JP2007186752A
JP2007186752A JP2006005604A JP2006005604A JP2007186752A JP 2007186752 A JP2007186752 A JP 2007186752A JP 2006005604 A JP2006005604 A JP 2006005604A JP 2006005604 A JP2006005604 A JP 2006005604A JP 2007186752 A JP2007186752 A JP 2007186752A
Authority
JP
Japan
Prior art keywords
substrate
particles
opening
resist
particle deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006005604A
Other languages
Japanese (ja)
Inventor
Kazumitsu Itabashi
一光 板橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EEJA Ltd
Original Assignee
Electroplating Engineers of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electroplating Engineers of Japan Ltd filed Critical Electroplating Engineers of Japan Ltd
Priority to JP2006005604A priority Critical patent/JP2007186752A/en
Publication of JP2007186752A publication Critical patent/JP2007186752A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology for uniformly depositing particles in an opening of a resist by using an electrophoretic technique. <P>SOLUTION: In a particle deposition process of immersing a substrate coated with the resist having the opening for depositing the particles therein into a suspension liquid having the particles dispersed therein, and applying voltage to the substrate to electrophoretically deposit the particles in the opening, this particle deposition method comprises the steps of: immersing the substrate having the particles deposited in the opening in a cleaning liquid that has a composition similar to the suspension liquid but contains no particle, in the state of directing the opening upward; and swinging the substrate like a pendulum to remove the particles remaining on the resist. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は電気泳動を利用した粒子の堆積技術に関する。   The present invention relates to a particle deposition technique using electrophoresis.

半導体ウェハーやプリント配線板、BGA、LGAなどの半導体パッケージなどの電子部品では、銅、金、半田などの様々な金属材料を用いて、電気的接合のためのバンプや配線回路などの導電部が形成される。このような導電部を形成するためには、所定形状の開口部を有するレジストを使用して、その開口部に金属材料を充填して導電部を形成することが行われるが、この金属材料を充填させる方法としては、めっき法やスクリーン印刷法が一般的に用いられる。   In electronic parts such as semiconductor packages such as semiconductor wafers, printed wiring boards, BGAs, and LGAs, various metal materials such as copper, gold, and solder are used to provide conductive parts such as bumps and wiring circuits for electrical bonding. It is formed. In order to form such a conductive portion, a resist having a predetermined-shaped opening is used, and the conductive portion is formed by filling the opening with a metal material. As a filling method, a plating method or a screen printing method is generally used.

レジストの開口部に金属材料を充填する際に、めっき法を採用する場合、その開口部の大きさによっては、そのめっき処理時間が長時間必要となり、効率的な製造を行えない場合がある。また、スクリーン印刷法によりレジストの開口部に導電ペーストなどを充填する場合には、厚いレジストを使用した開口部のような深穴に対しては導電ペーストが不十分な状態で充填されてしまうことがある。   When a plating method is employed when filling the opening of the resist with a metal material, depending on the size of the opening, the plating treatment time may be required for a long time, and efficient manufacture may not be possible. In addition, when a conductive paste or the like is filled in the resist openings by screen printing, the conductive paste is filled in an insufficient state for deep holes such as openings using thick resist. There is.

このようなめっき法やスクリーン印刷法の問題を解消すべく、電気泳動を利用した粒子の堆積方法が提案されている(特許文献1参照)。この粒子堆積法は、導電部を形成する金属材料からなる粒子を用い、この粒子を堆積させるための開口部を有するレジストが被覆された基材と当該基材に対向する電極との間に、粒子を分散させた懸濁液を流通し、基材に電圧を印加して電気泳動により粒子を開口部に堆積させるものである。
米国特許出願公開第2005/106329号明細書
In order to solve such problems of the plating method and the screen printing method, a particle deposition method using electrophoresis has been proposed (see Patent Document 1). In this particle deposition method, particles made of a metal material forming a conductive portion are used, and a resist-coated substrate having an opening for depositing the particles and an electrode facing the substrate are used. The suspension in which the particles are dispersed is circulated, and a voltage is applied to the substrate to deposit the particles on the opening by electrophoresis.
US Patent Application Publication No. 2005/106329

この粒子堆積法をより具体的に説明すると、所定形状の開口部を有するレジストを被覆した、半導体ウェハーのような基板を、半田などの金属材料からなる粒子を含有する溶液からなる懸濁液中に配置し、その基板に対向させて電極を配置した状態で、電圧を印加して、開口部内に粒子を堆積させる。そして、粒子を開口部に堆積した後は、懸濁液から基板を取り出して、乾燥後、加熱処理を行って、開口部内に堆積した粒子を溶融する。この粒子の溶融処理により開口部内には、半田などの金属材料からなる球状の導電部が形成されるのである。   This particle deposition method will be described more specifically. A substrate such as a semiconductor wafer coated with a resist having an opening having a predetermined shape is suspended in a suspension made of a solution containing particles made of a metal material such as solder. In the state where the electrodes are arranged facing the substrate, a voltage is applied to deposit particles in the openings. Then, after depositing the particles in the opening, the substrate is taken out from the suspension, dried, and subjected to heat treatment to melt the particles deposited in the opening. By this particle melting process, a spherical conductive portion made of a metal material such as solder is formed in the opening.

このような粒子堆積法によれば、レジストの開口部に比較的短時間で粒子を堆積させることができ、堆積させる粒子の粒径を変更すれば、開口面積やレジスト厚みが異なっても、開口部内に粒子を満遍なく堆積させることができる。しかしながら、この粒子堆積法においては、電気泳動の作用にのみよって開口部に粒子を堆積させるだけでは、粒子の堆積量にバラツキが生じ、不均一な導電部を形成する場合がある。特に、開口部以外の場所に粒子が残留している場合、つまり、レジスト上に粒子が残留した状態であると、その後の溶融処理において、その残留した粒子が開口部内に形成される導電部の形状を不均一にさせてしまうことが生じる。   According to such a particle deposition method, particles can be deposited in the resist openings in a relatively short time. By changing the particle size of the deposited particles, the openings can be formed even if the opening area and resist thickness are different. Particles can be uniformly deposited in the part. However, in this particle deposition method, if the particles are merely deposited on the opening only by the action of electrophoresis, the amount of deposited particles may vary, and a non-uniform conductive portion may be formed. In particular, when particles remain in a place other than the opening, that is, in a state where the particles remain on the resist, in the subsequent melting process, the remaining particles are formed in the opening. The shape may be made uneven.

本発明は、上述のような事情を鑑みてなされたもので、電気泳動を利用した粒子の堆積方法において、レジストの開口部に均一な粒子の堆積量を実現できる技術を提案するものであり、そのような粒子堆積法に好適な基板洗浄装置を提供するものである。   The present invention has been made in view of the circumstances as described above, and proposes a technique capable of realizing a uniform deposition amount of particles in a resist opening in a particle deposition method using electrophoresis, A substrate cleaning apparatus suitable for such a particle deposition method is provided.

かかる課題を解決するために、本発明は、粒子を堆積させるための開口部を有するレジストが被覆された基材を、粒子を分散させた懸濁液に浸漬し、電圧を印加することで電気泳動により粒子を開口部に堆積させる粒子堆積方法において、開口部に粒子を堆積させた基板を、前記懸濁液と同じ組成で粒子を含まない洗浄液中に、開口部を上方に向けた状態で浸漬し、当該基板を揺動させることによりレジストに残留する粒子を除去するものとした。   In order to solve such a problem, in the present invention, a substrate coated with a resist having an opening for depositing particles is immersed in a suspension in which particles are dispersed, and an electric voltage is applied by applying a voltage. In the particle deposition method in which particles are deposited on the opening by electrophoresis, the substrate on which the particles are deposited on the opening is placed in a cleaning solution that has the same composition as the suspension and does not contain particles, with the opening facing upward. The particles remaining in the resist were removed by dipping and rocking the substrate.

本発明の粒子体積方法では、洗浄液として、懸濁液と同じ組成であって、粒子を含有していない溶液を用いるようにしている。懸濁液と異なる組成の溶液を洗浄液として用いることも可能であるが、懸濁液と同じ組成で有れば、他の不純物の混入もなく、レジストに残留した粒子の除去が効率的に行えるからである。   In the particle volume method of the present invention, a solution that has the same composition as the suspension and does not contain particles is used as the cleaning liquid. A solution having a composition different from that of the suspension can be used as a cleaning solution. However, if the composition is the same as that of the suspension, it is possible to efficiently remove particles remaining in the resist without mixing other impurities. Because.

そして、粒子堆積後の基板洗浄は、開口部を上方に向けた状態で基板を洗浄液中に浸漬して、基板を揺動させるものとしている。これは、開口部を下方向きまたは横向き(基板を垂直に立てた状態)にして基板洗浄を行うと、開口部内に堆積させた粒子が漏れ落ちて、開口部内の粒子の堆積量が不均一になるためである。なぜなら、開口部に堆積させる粒子は、半田、銅、金などの金属粒子であるため、沈降し易い性質があり、基材配置の仕方により、開口部内の堆積粒子が重力の影響により開口部から離脱しやすいためである。   The substrate cleaning after the particle deposition is performed by immersing the substrate in the cleaning liquid with the opening portion facing upward to swing the substrate. This is because if the substrate is cleaned with the opening facing downward or sideways (with the substrate standing vertically), the particles deposited in the opening will leak and the amount of particles deposited in the opening will be uneven. It is to become. This is because the particles deposited in the opening are metal particles such as solder, copper, and gold, and thus have a property of being easily settled. Depending on how the substrate is arranged, the deposited particles in the opening are separated from the opening by the influence of gravity. It is because it is easy to leave.

また、基板の揺動は、開口部を上に向けた状態の基板を、上下左右に移動させたり、水平面内で基板を回転させたりすることが可能である。本発明のようにして、粒子堆積後、レジストに残留した粒子の除去を行っておけば、基板の乾燥後、溶融処理によって開口部内に形成される導電部の形状を極めて均一にできる。   In addition, the substrate can be swung by moving the substrate with the opening facing upward, up and down, left and right, or rotating the substrate in a horizontal plane. If the particles remaining in the resist are removed after the particles are deposited as in the present invention, the shape of the conductive portion formed in the opening by the melting process can be made extremely uniform after the substrate is dried.

本発明に係る粒子堆積方法においては、基板の揺動は振り子運動とすることが好ましい。本発明者の研究によると、粒子堆積後に行う基板洗浄時の揺動運動は、その運動状態の強弱によって、レジストに残留する粒子の除去効率や開口部内の堆積粒子の脱離量に影響することを確認している。その結果、洗浄時の基板の揺動運動として基板の振り子運動を採用すると、開口部内の堆積した粒子の漏れ落ちを極力抑制するとともに、レジストに残留する粒子を効率的に除去できることを見出したのである。この基板の振り子運動は、開口部を上に向けた状態の基板、即ち、水平状態に配置した基板を基準にして振り角度−15°〜15°の範囲内で、その振り子運動回数を制御して洗浄することが好ましい。この振り角度が、あまり小さいと洗浄効率が悪くなり、あまり大きすぎると開口部から堆積粒子の脱落を促すことになりやすい。また、振り子運動の回数についても、回数が少ないと洗浄効率が悪くなり、回数を多くしすぎても洗浄効率の向上はあまり期待できない。そして、振り子運動速度は、あまり小さいと洗浄効率が悪くなり、あまり大きすぎると開口部から堆積粒子の脱落を促すことになりやすい。   In the particle deposition method according to the present invention, the swing of the substrate is preferably a pendulum motion. According to the research of the present inventor, the swinging motion during the substrate cleaning performed after the particle deposition affects the removal efficiency of the particles remaining in the resist and the amount of the deposited particles desorbed in the opening due to the strength of the motion state. Have confirmed. As a result, it has been found that if the pendulum motion of the substrate is adopted as the swing motion of the substrate during cleaning, leakage of particles deposited in the opening is suppressed as much as possible and particles remaining in the resist can be efficiently removed. is there. This substrate pendulum movement controls the number of pendulum movements within a range of a swing angle of -15 ° to 15 ° with respect to a substrate with the opening facing upward, ie, a substrate placed in a horizontal state. It is preferable to wash it. If the swing angle is too small, the cleaning efficiency is deteriorated. If the swing angle is too large, it is easy to promote the removal of the deposited particles from the opening. Also, with regard to the number of pendulum movements, if the number is small, the cleaning efficiency deteriorates, and even if the number is increased too much, improvement in the cleaning efficiency cannot be expected. If the pendulum movement speed is too small, the cleaning efficiency is deteriorated, and if it is too large, the deposition particles are liable to be removed from the opening.

上述した本発明の粒子堆積方法は、洗浄液を貯留する洗浄容器と、開口部を有するレジストが被覆された基板表面を上方に向けた状態で基板を、保持するための基板保持手段と、備え、当該基板保持手段が、洗浄液中での基板の浸漬深さを調整可能であり、基板を振り子運動できるようにされた基板洗浄装置を用いることで実現可能である。   The particle deposition method of the present invention described above includes a cleaning container for storing a cleaning liquid, and a substrate holding means for holding the substrate in a state where the substrate surface coated with a resist having an opening is directed upward, The substrate holding means can adjust the immersion depth of the substrate in the cleaning liquid, and can be realized by using a substrate cleaning apparatus that is capable of pendulum movement of the substrate.

この基板洗浄装置で有れば、洗浄液中に、任意の深さで基板を浸漬して、その浸漬した基板を所定の振り角度で振り子運動させることができるからである。この浸漬深さを調整すると、様々な洗浄状態を実現できる。例えば、基板を完全に洗浄液中に浸漬した状態で基板を洗浄したり、基板を振り子運動させながら徐々に洗浄液に浸漬させて洗浄したり、逆に洗浄液から取り出しながら洗浄したりすることができ、最適な洗浄状態を行うことが可能となる。本発明の基板洗浄装置では、基板表面に流動する洗浄液量を浸漬深さで調整し、基板の振り角度や振り子運動回数などにより洗浄能力をコントロールすることができる。   This is because with this substrate cleaning apparatus, the substrate can be immersed in the cleaning liquid at an arbitrary depth, and the immersed substrate can be moved in a pendulum manner at a predetermined swing angle. By adjusting the immersion depth, various cleaning states can be realized. For example, the substrate can be cleaned in a state where the substrate is completely immersed in the cleaning solution, or the substrate can be cleaned by gradually immersing it in the cleaning solution while moving the pendulum, and conversely, it can be cleaned while being taken out from the cleaning solution, It is possible to perform an optimal cleaning state. In the substrate cleaning apparatus of the present invention, the amount of cleaning liquid flowing on the substrate surface is adjusted by the immersion depth, and the cleaning ability can be controlled by the swing angle of the substrate and the number of pendulum movements.

上述した本発明における粒子堆積方法においては、基材として、半導体ウェハー、プリント配線板などに適用できる。また、懸濁液は、粒子として、銅、金、銀、錫、これらの合金、或いは半田、金属ろう材などの金属材料、或いはセラミックなどの金属材料以外のものにも適用でき、液成分としては炭化水素溶液、フッ素系不活性液体或いはエタノールや水などの種々のものを適用できる。また、レジストについては、公知のものを適用できる。   The particle deposition method in the present invention described above can be applied to a semiconductor wafer, a printed wiring board, or the like as a base material. In addition, the suspension can be applied to particles other than copper, gold, silver, tin, alloys thereof, metal materials such as solder, metal brazing material, or metal materials such as ceramic, as a liquid component. Can be applied to various solutions such as hydrocarbon solutions, fluorine-based inert liquids, ethanol and water. Moreover, about a resist, a well-known thing is applicable.

本発明によれば、電気泳動を利用した粒子の堆積方法において、レジストの開口部に、均一に粒子を堆積させることが可能となる。そのため、半導体ウェハーなどの基材に、バンプや半田ボールと呼ばれる導電部を均一な形状で形成することができ、高い生産効率を実現できる。   According to the present invention, in the particle deposition method using electrophoresis, it is possible to deposit particles uniformly in the opening of the resist. Therefore, conductive parts called bumps or solder balls can be formed in a uniform shape on a base material such as a semiconductor wafer, and high production efficiency can be realized.

以下、本発明の一実施形態を説明する。図1には、本実施形態の粒子堆積装置及び基板洗浄装置の概略断面図を示している。   Hereinafter, an embodiment of the present invention will be described. FIG. 1 shows a schematic cross-sectional view of the particle deposition apparatus and the substrate cleaning apparatus of this embodiment.

図1に示す粒子堆積装置1は、粒子を含有した懸濁液を貯留できる懸濁液容器10と、その懸濁液を攪拌するための攪拌機11とからなる。そして、この粒子堆積装置1では、開口部を有するレジストを被覆したウェハーWを垂直状態にして配置可能であり、このウェハーWに対向して電極Aを配置できるようになっている。このウェハーWと電極Aとは、図示を省略した電源装置に接続されている。   A particle deposition apparatus 1 shown in FIG. 1 includes a suspension container 10 capable of storing a suspension containing particles, and a stirrer 11 for stirring the suspension. In the particle deposition apparatus 1, the wafer W coated with the resist having the opening can be placed in a vertical state, and the electrode A can be placed facing the wafer W. The wafer W and the electrode A are connected to a power supply device (not shown).

また、図1に示す基板洗浄装置2は、洗浄液を貯留する洗浄液容器20と、基板保持器21とからなっている。この基板保持機21は、ウェハーWの縁端部分を保持して、ウェハーを洗浄液中に浸漬することができ、また、保持した基板を振り子運動させることが可能とされている。この基板洗浄装置2は、粒子堆積装置1において粒子堆積後の基板を、基板保持機21に保持させて基板の洗浄処理を行う。   The substrate cleaning apparatus 2 shown in FIG. 1 includes a cleaning liquid container 20 that stores a cleaning liquid and a substrate holder 21. The substrate holder 21 can hold the edge portion of the wafer W, immerse the wafer in the cleaning liquid, and can move the held substrate in a pendulum manner. The substrate cleaning apparatus 2 performs the substrate cleaning process by holding the substrate after the particle deposition in the particle deposition apparatus 1 on the substrate holder 21.

次に、図1で示した粒子堆積装置及び基板洗浄装置を用い、基板としてのウェハーWの表面に、目標粒径65μmのSn−Ag−Cu合金ボールを形成する試験を行った結果について説明する。200mm径のウェハー表面に厚み75μmのレジストを被覆し、そのレジストに直径100μmの開口を150μm間隔で合計約10万個形成したものを準備した。尚、このレジストに形成した直径100μmの各開口には、その開口中心に直径75μmの濡れ性付与のための電極パッドを予め形成したものである。そして、このような開口を有するレジストを被覆した状態のウェハーを、粒子堆積装置に取り付け、ウェハーと同面積のステンレス製電極をウェハーと対向配置した。このとき、電極表面とウェハー表面との間隔を7mmに設定した。   Next, a description will be given of the results of a test for forming Sn—Ag—Cu alloy balls having a target particle size of 65 μm on the surface of a wafer W as a substrate using the particle deposition apparatus and the substrate cleaning apparatus shown in FIG. . A resist having a thickness of 75 μm was coated on the surface of a 200 mm diameter wafer, and a total of about 100,000 openings having a diameter of 100 μm were formed at intervals of 150 μm on the resist. Each opening having a diameter of 100 μm formed in the resist is previously formed with an electrode pad having a diameter of 75 μm for imparting wettability at the center of the opening. And the wafer of the state which coat | covered the resist which has such an opening was attached to the particle deposition apparatus, and the stainless steel electrode of the same area as a wafer was arrange | positioned facing the wafer. At this time, the distance between the electrode surface and the wafer surface was set to 7 mm.

粒子堆積用の懸濁液は、界面活性剤を含有させて導電率5〜15PS/cmに調整したパラフィン系炭化水素溶液に、帯電コート処理を行ったSn−3wt%Ag−0.5wt%Cu合金粒子(粒径5μm〜25μm)を150g/L濃度となるように加えて作製した。この懸濁液を懸濁液容器中に投入し、攪拌器より攪拌した。この粒子堆積装置内の懸濁液は、容器内の上方にある懸濁液粒子濃度が50g/L以上になるよう攪拌した。この懸濁液の攪拌は、粒子堆積処理中も行うもので、懸濁液中の粒子が非常に沈降しやすい傾向があるため、開口部への粒子の堆積量を均一にし、その堆積効率を向上させるための操作である。 The suspension for particle deposition was Sn-3 wt% Ag-0.5 wt% Cu obtained by subjecting a paraffinic hydrocarbon solution containing a surfactant to a conductivity of 5 to 15 PS / cm to a charge coating treatment. Alloy particles (particle size 5 μm to 25 μm) were added to a concentration of 150 g / L. The suspension was introduced into the suspension vessel, and stirred more stirrer. The suspension in the particle deposition apparatus was stirred so that the concentration of the suspension particles above the container was 50 g / L or more. The stirring of the suspension is also performed during the particle deposition process, and the particles in the suspension tend to settle very easily. Therefore, the amount of particles deposited on the opening is made uniform, and the deposition efficiency is increased. This is an operation to improve.

上記のように懸濁液を攪拌した状態で、AC120Hz400Vの電圧を20秒間印加した後、電圧印加を停止して約5秒間保持した後にウェハーを取り出した。   While the suspension was stirred as described above, a voltage of AC 120 Hz 400 V was applied for 20 seconds, and then the voltage application was stopped and held for about 5 seconds, and then the wafer was taken out.

そして、この粒子堆積処理を行ったウェハーを、基板洗浄装置の基板保持器に取り付け、洗浄液中に浸漬して洗浄処理を行った。洗浄液としては、Sn−3wt%Ag−0.5wt%Cu合金粒子を含有していない、パラフィン系炭化水素溶液を用いた。   And the wafer which performed this particle deposition process was attached to the board | substrate holder | retainer of a board | substrate washing | cleaning apparatus, and it immersed in the washing | cleaning liquid, and performed the washing process. As the cleaning liquid, a paraffinic hydrocarbon solution not containing Sn-3 wt% Ag-0.5 wt% Cu alloy particles was used.

洗浄処理は、洗浄液中、深さ100mmまで浸漬した水平状態のウェハーを、振り角度−15°〜15°で、振り子運動速度200回転/秒にして、振り子運動を3回行った。   In the cleaning process, a horizontal wafer immersed in a cleaning solution to a depth of 100 mm was subjected to a pendulum motion three times at a swing angle of -15 ° to 15 ° with a pendulum motion speed of 200 revolutions / second.

この洗浄処理を行ったウェハーを取り出し、大気中60℃で乾燥処理をした。そして、ウェハー表面に塩素系フラックスをスプレー噴霧した後、窒素ガス雰囲気中、260℃に加熱して、粒子の溶融処理を行った。その後、水洗し、アミン系溶剤によりレジストを溶解除去した。   The wafer subjected to the cleaning treatment was taken out and dried at 60 ° C. in the atmosphere. Then, after spraying chlorine-based flux onto the wafer surface, the particles were melted by heating to 260 ° C. in a nitrogen gas atmosphere. Thereafter, it was washed with water, and the resist was dissolved and removed with an amine solvent.

このようにしてウェハー表面に形成されたボール状導電部(10個)の寸法測定を行ったところ、ボール状導電部の高さが平均65μm、標準偏差2μmという結果が得られた。また、各導電部の形状を確認したところ、形状不良と思われる導電部は見あたらなかった。   As a result of measuring the dimensions of the ball-shaped conductive portions (10 pieces) formed on the wafer surface in this way, the results were obtained that the height of the ball-shaped conductive portions was an average of 65 μm and a standard deviation of 2 μm. Moreover, when the shape of each conductive part was confirmed, the conductive part considered to be a defective shape was not found.

比較として、上記した洗浄処理を行わず、粒子堆積処理のみを行ったウェハーについて、そのボール状導電部の寸法の測定を行った。粒子堆積処理及びその後の乾燥処理、溶融処理の各条件は、上記と同様とした。その結果、洗浄処理を行わない場合のボール状導電部は、各導電部に形状不良は見られなかったけれども、ボール状導電部の高さが平均67μm、標準偏差4μmというものであった。   As a comparison, the dimension of the ball-shaped conductive portion was measured for a wafer that was subjected only to the particle deposition process without performing the above-described cleaning process. The conditions for the particle deposition process, the subsequent drying process, and the melting process were the same as described above. As a result, the ball-shaped conductive portions in the case where the cleaning process was not performed had no average shape in each conductive portion, but the height of the ball-shaped conductive portions was an average of 67 μm and a standard deviation of 4 μm.

本実施形態の粒子堆積装置及び基板洗浄装置の断面概略図。1 is a schematic cross-sectional view of a particle deposition apparatus and a substrate cleaning apparatus of an embodiment.

符号の説明Explanation of symbols

1 粒子堆積装置
10 懸濁液容器
11 攪拌機
2 基板洗浄装置
20 洗浄液容器
21 基板保持機
A 電極
W ウェハー
DESCRIPTION OF SYMBOLS 1 Particle deposition apparatus 10 Suspension container 11 Stirrer 2 Substrate cleaning apparatus 20 Cleaning liquid container 21 Substrate holder A Electrode W Wafer

Claims (3)

粒子を堆積させるための開口部を有するレジストが被覆された基材を、粒子を分散させた懸濁液に浸漬し、電圧を印加することで電気泳動により粒子を開口部に堆積させる粒子堆積方法において、
開口部に粒子を堆積させた基板を、前記懸濁液と同じ組成で粒子を含まない洗浄液中に、開口部を上方に向けた状態で浸漬し、当該基板を揺動させることによりレジストに残留する粒子を除去することを特徴とする粒子堆積方法。
A particle deposition method in which a resist-coated substrate having an opening for depositing particles is immersed in a suspension in which particles are dispersed, and particles are deposited on the opening by electrophoresis by applying a voltage. In
The substrate on which the particles are deposited in the opening is immersed in a cleaning solution having the same composition as the suspension and does not contain particles with the opening facing upward, and the substrate remains on the resist by swinging the substrate. A method for depositing particles, characterized in that particles to be removed are removed.
基板の揺動は、振り子運動である請求項1に記載の粒子堆積方法。   The particle deposition method according to claim 1, wherein the swing of the substrate is a pendulum motion. 請求項1又は請求項2に記載の粒子堆積方法に用いる基板洗浄装置であって、
洗浄液を貯留する洗浄容器と、
開口部を有するレジストが被覆された基板表面を上方に向けた状態で、基板を保持する基板保持手段と、備え、
当該基板保持手段が、洗浄液中での基板の浸漬深さを調整可能であり、基板を振り子運動できるようにされたことを特徴とする基板洗浄装置。
A substrate cleaning apparatus for use in the particle deposition method according to claim 1 or 2,
A cleaning container for storing cleaning liquid;
A substrate holding means for holding the substrate in a state where the substrate surface coated with the resist having the opening is directed upward,
A substrate cleaning apparatus, wherein the substrate holding means is capable of adjusting the immersion depth of the substrate in the cleaning liquid and is capable of pendulum movement of the substrate.
JP2006005604A 2006-01-13 2006-01-13 Particle deposition method and substrate-cleaning device used therefor Pending JP2007186752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006005604A JP2007186752A (en) 2006-01-13 2006-01-13 Particle deposition method and substrate-cleaning device used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006005604A JP2007186752A (en) 2006-01-13 2006-01-13 Particle deposition method and substrate-cleaning device used therefor

Publications (1)

Publication Number Publication Date
JP2007186752A true JP2007186752A (en) 2007-07-26

Family

ID=38342117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006005604A Pending JP2007186752A (en) 2006-01-13 2006-01-13 Particle deposition method and substrate-cleaning device used therefor

Country Status (1)

Country Link
JP (1) JP2007186752A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100934876B1 (en) * 2008-01-31 2010-01-06 성균관대학교산학협력단 Plating method for liga process
CN113046814A (en) * 2021-03-10 2021-06-29 江苏特丽亮镀膜科技有限公司 Electrophoresis working platform and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100934876B1 (en) * 2008-01-31 2010-01-06 성균관대학교산학협력단 Plating method for liga process
CN113046814A (en) * 2021-03-10 2021-06-29 江苏特丽亮镀膜科技有限公司 Electrophoresis working platform and method

Similar Documents

Publication Publication Date Title
JP4805141B2 (en) Electroplating equipment
KR102092416B1 (en) Cleaning electroplating substrate holders using reverse current deplating
TWI431169B (en) Method and system for depositing alloy composition
KR101306856B1 (en) Electroplating aqueous solution and method of making and using same
US7918383B2 (en) Methods for placing substrates in contact with molten solder
KR20130130000A (en) Electroplated lead-free bump deposition
JP5780496B2 (en) Plating method and plating apparatus
US9686871B2 (en) Soldering device, soldering method, and substrate and electronic component produced by the soldering device or the soldering method
CN115135618A (en) Plating method and plating apparatus
TW200414853A (en) Solder supply method , solder bump using said method, formation method and device for said solder-coating film
JP2010010557A (en) Method of forming conductive material structure
JP2005008911A (en) Stirring method of plating solution and plating apparatus
JP2007186752A (en) Particle deposition method and substrate-cleaning device used therefor
JP5749302B2 (en) Plating method
CN101369533B (en) Plating apparatus
JP4203281B2 (en) Surface treatment method
CN103628105A (en) Electroplating device
WO2012060022A1 (en) Method for forming tin or solder coat film and device therefor
JP2007186751A (en) Particle deposition method and particle deposition apparatus
TW202133297A (en) Substrate liquid processing method and substrate liquid processing device
JP6204832B2 (en) Plating apparatus and plating method
JP2007277619A (en) Method of depositing particle according to electrophoresis
JP4153723B2 (en) Cleaning protection method, cleaning protection solution and apparatus unit
JP2007258409A (en) Particle deposition method
JP2019011500A (en) Partial plating method