JP2005008911A - Stirring method of plating solution and plating apparatus - Google Patents

Stirring method of plating solution and plating apparatus Download PDF

Info

Publication number
JP2005008911A
JP2005008911A JP2003171177A JP2003171177A JP2005008911A JP 2005008911 A JP2005008911 A JP 2005008911A JP 2003171177 A JP2003171177 A JP 2003171177A JP 2003171177 A JP2003171177 A JP 2003171177A JP 2005008911 A JP2005008911 A JP 2005008911A
Authority
JP
Japan
Prior art keywords
plating
paddle
plated
substrate
reciprocating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003171177A
Other languages
Japanese (ja)
Other versions
JP4365143B2 (en
Inventor
Takashi Takemura
隆 竹村
Yoshitaka Mukoyama
佳孝 向山
Masaaki Kimura
誠章 木村
Nobutoshi Saito
信利 齋藤
Fumio Kuriyama
文夫 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2003171177A priority Critical patent/JP4365143B2/en
Publication of JP2005008911A publication Critical patent/JP2005008911A/en
Application granted granted Critical
Publication of JP4365143B2 publication Critical patent/JP4365143B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stirring method of a plating solution whereby a plating solution or a chemical solution is effectively stirred, even without increasing reciprocation speed of a paddle, the ruffle or scatter of the plating solution or the drug solution is inhibited and the treatment speed can be increased, and a plating apparatus. <P>SOLUTION: The paddle 34 which reciprocates parallel with a surface W1 to be plated of a substrate W and stirs the plating solution 12 is installed. A fin 41 made of an elastic body which bends along with the reciprocation of the paddle 34 is attached to the paddle 34. The flow of the plating solution 12 along the bent fin 41 enables the plating solution 12 to smoothly flow toward the surface W1 to be plated and vigorously stirs the plating solution 12 near the surface W1 to be plated. The flow of the plating solution 12 loses its direction at the entire surface W1 to be plated, and a plating film with a uniform thickness can be formed on the entire surface W1 to be plated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば半導体基板の表面にパッケージの電極等と電気的に接続するバンプ(突起状電極)を形成したりするのに使用されるめっき用処理液の撹拌方法及びめっき用処理装置に関するものである。
【0002】
【従来の技術】
例えば、TAB(Tape Automated Bonding)やフリップチップにおいては、配線が形成された半導体チップの表面の所定箇所(電極)に金、銅、はんだ、或いはニッケル、更にはこれらを多層に積層した突起状接続電極(バンプ)を形成し、このバンプを介してパッケージの電極やTAB電極と電気的に接続することが広く行われている。このバンプの形成方法としては、電解めっき法、蒸着法、印刷法、ボールバンプ法といった種々の手法があるが、半導体チップのI/O数の増加、細ピッチ化に伴い、微細化が可能で性能が比較的安定している電解めっき法が多く用いられるようになってきている。
【0003】
ここで、電解めっき法は、半導体ウェーハ等の基板の被めっき面を下向き(フェースダウン)にして水平に置き、めっき液を下から噴き上げてめっきを施す噴流式またはカップ式と、めっき槽の中に基板を垂直に立て、めっき液をめっき槽の下から注入しオーバーフローさせつつめっきを施すディップ式に大別される。ディップ方式を採用した電解めっき法は、めっきの品質に悪影響を与える泡の抜けが良く、フットプリントが小さいという利点を有しており、このため、めっき穴の寸法が比較的大きく、めっきにかなりの時間を要するバンプめっきに適していると考えられる。
【0004】
図15はいわゆるディップ方式を採用した従来の電解めっき装置の一例の概略構成図である。この電解めっき装置は、半導体ウェーハ等の基板Wを着脱自在に保持する基板ホルダ10と、めっき液12を収容するめっき槽16と、めっき槽16内のめっき液12中において基板ホルダ10で保持した基板Wと対面するように配置されるアノード(陽極電極)14と、アノード14と基板Wの被めっき面(表面)に設けた給電層(シード層)との間にめっき電圧を印加してめっき電流を流すめっき電源18とを備えて構成されている。めっき槽16の側方には、このめっき槽16をオーバーフローしためっき液12を収納するオーバーフロー槽22が設けられている。またオーバーフロー槽22とめっき槽16とは循環ライン24で結ばれており、この循環ライン24には、循環ポンプ26、恒温ユニット28及びフィルタ30が取り付けられている。そして循環ポンプ26の駆動に伴ってめっき槽16内に供給されためっき液12は、めっき槽16の内部を満たした後に、めっき槽16からオーバーフローしてオーバーフロー槽22に流れ込み、循環ポンプ26に戻って循環される。
【0005】
そしてこのめっき装置においては、循環ポンプ26によってめっき液12を循環させた状態で、めっき電源18によってアノード14と基板Wの被めっき面に設けた給電層との間にめっき電圧を印加することで、基板Wの被めっき面にめっき膜が形成されていく。
【0006】
ところで従来のディップ方式を採用しためっき装置にあっては上述のように、めっき液12がめっき槽16の下部から供給され、めっき槽16の内部を上方に向けて流れた後、めっき槽16をオーバーフローして循環するので、めっき処理中にめっき液12を基板Wの被めっき面に沿って被めっき面の全域に亘って均一に流すことがかなり困難であった。
【0007】
この問題点を解決するため、めっき装置、特に上述のような電解めっきによるめっき装置においては、めっき槽16内の基板ホルダ10とアノード14との間の位置にパドル型撹拌機構31を設置している。パドル型撹拌機構31は、めっき槽16の上方で、めっき液12の液面に水平且つ基板ホルダ10に保持した基板Wの被めっき面に平行にパドルシャフト32を配置し、このパドルシャフト32に複数本(又は一本)のパドル(掻き混ぜ棒)34をほぼ垂直下方に向けて取り付けて構成されている。
【0008】
ここで図16(a)は前記基板Wとパドル34の設置位置関係を示す側面図、図16(b)乃至(l)は各種パドル34の横断面図(図16(a)のA−A断面であって、図の上方向が基板W側を向いている)である。同図(b)乃至(l)に示すようにパドル34はその断面形状が丸や楕円、多角形又はそれらを組み合わせた形状に形成されている。そして、めっき処理中に、パドルシャフト32を介してパドル34を基板Wの被めっき面W1に対して平行(パドルシャフト32の軸方向)に往復運動させることでめっき槽16内のめっき液12を撹拌し、基板Wの被めっき面W1に沿っためっき液12の流れを被めっき面W1の全面でより均等にして(めっき液12の流れの方向性をなくして)、基板Wの被めっき面W1の全面に亘ってより均一な膜厚のめっき膜を形成するようにしている。
【0009】
また上記パドル34を用いる方法の他に、図15に示すめっき装置において、めっき槽16の底面のめっき液の噴出口の位置を工夫することで、噴出口より噴出するめっき液12の噴流自体によってめっき槽16内のめっき液12を撹拌し、基板Wの被めっき面W1に沿っためっき液12の流れを被めっき面W1の全面でより均等にして(めっき液12の流れの方向性をなくして)、基板Wの被めっき面W1の全面に亘ってより均一な膜厚のめっき膜を形成する方法も採られていた。
【0010】
一方上記めっき装置において、基板Wのめっき膜の成膜速度を高速化するには、めっき槽16内のめっき液12を激しく撹拌する必要があるため、前記パドル34の往復運動の速度や前記めっき液噴流速度を上げる必要があった。
【0011】
しかしながら、パドル34の往復運動速度を上げると、めっき槽16内のめっき液12が大きく波立ち、めっき液12のミストを激しく飛散させめっき装置の周囲の他の機械器具を汚染且つ腐食させたり隣接して設置した他のめっき槽16内に前記ミストが混入して他のめっき槽16内のめっき液や薬液を汚染してしまうという問題があった。また、スロッシングという槽形状により定まる流体力学的共振点によりパドルの往復運動速度を上げるには自ずと限界があった。さらに撹拌の目的は、基板Wの被めっき面W1近傍のめっき液12を大きく撹拌することにあるが、従来のパドル形状では、図17に示すように、基板Wに平行にパドル34を往復運動させた際、パドル34の移動空間の液をほぼ往復運動方向に排除・移動させ、排除・移動した空間に周囲のめっき液12を巻き込み、さらに排除・移動する際にパドル端よりパドル34の形状に沿ってその一部が基板Wに当たるような漏れ流れと後流渦が生じる撹拌状態となっていた。そして本来基板W近傍のめっき液を撹拌するためには、基板W表面をめっき液12が速い流速で流れるか若しくは基板W表面にめっき液12が強く当たることが要求されるが、上記従来のパドル34ではパドル34の往復運動方向にめっき液12が大きく揺動する割には、基板W近傍の撹拌度合いは概して大きいとは言えず、撹拌を十分に行うことは困難であった。
【0012】
一方めっき液12の噴流自体によってめっき槽16内のめっき液12の撹拌を激しく行う方法の場合は、循環ポンプ26を大型化する必要が生じたり、めっき槽16の深さ方向に撹拌ムラを生じ易くその問題を取り除くのは困難であった。
【0013】
【特許文献1】
特開平5−331679号公報
【0014】
【発明が解決しようとする課題】
本発明は上述の点に鑑みてなされたものでありその目的は、パドルの往復運動の速度を上げなくても効果的にめっき液や薬液の撹拌が行え、めっき液や薬液の波立ちや飛散を抑えて処理速度を上げることができるめっき用処理液の撹拌方法及びめっき用処理装置を提供することにある。
【0015】
【課題を解決するための手段】
本願の請求項1にかかる発明は、めっき用処理液中に配置した被めっき体の被めっき面に対向する位置に設置したパドルを前記被めっき面に対して平行に往復運動することで前記処理液を撹拌するめっき用処理液の撹拌方法において、前記パドルに取り付けた弾性体からなるフィンを、パドルの往復運動の際に湾曲させることで湾曲したフィンに沿う処理液の流れを被めっき面近傍に向かう流れにすることを特徴とするめっき用処理液の撹拌方法である。
即ちフィンは弾性を有するので、パドルの往復運動の際に流体抵抗によってパドルの進行方向とは逆方向に湾曲する。言い換えればフィンはパドルの往復運動に連動して魚の尾ヒレ運動を行う。このため湾曲したフィンに沿うめっき液の流れは、めっき液を基板の被めっき面近傍にスムーズに向かわせる流れとなり、被めっき面近傍のめっき液を強く撹拌する。これによって基板の被めっき面に沿っためっき液の流れを被めっき面の全面でより均等にしてめっき液の流れの方向性をなくし、基板の被めっき面の全面に亘ってより均一な膜厚のめっき膜を形成できる。
【0016】
本願の請求項2にかかる発明は、めっき用処理液中に配置した被めっき体の被めっき面に対向する位置に設置したパドルを前記被めっき面に対して平行に往復運動することで前記処理液を撹拌するめっき用処理液の撹拌方法において、前記パドルの往復運動方向を向く両側面を、被めっき面に対して垂直な方向から傾斜させ、パドルを往復運動した際に生じる処理液の流れをパドルの往復運動方向とこれに垂直な方向とに分散させ、分散した処理液の流れによって被めっき面近傍の処理液を撹拌することを特徴とするめっき用処理液の撹拌方法である。
即ちパドルは基板の被めっき面に対して傾斜しているので、パドルの往復運動に応じて生じるめっき液の流れはパドルの傾斜形状に沿った流れを形成し、つまりパドルの往復運動方向の成分とこれに垂直な方向の成分とに分散され、この垂直方向の成分によって基板に向かう成分と遠ざかる成分が生じて、パドルの往復運動方向のみならずその垂直方向にも流れを形成し、基板の被めっき面近傍のめっき液を強く撹拌する。これによって基板の被めっき面近傍のめっき液の撹拌を被めっき面の全面でより均等にしてめっき液の流れの方向性をなくし、基板の被めっき面の全面に亘ってより均一な膜厚のめっき膜を形成することができる。
【0017】
本願の請求項3にかかる発明は、めっき用処理液中に配置した被めっき体の被めっき面に対向する位置に設置したパドルを前記被めっき面に対して平行に往復運動することで前記処理液を撹拌するめっき用処理液の撹拌方法において、前記パドルの横断面形状をL字型又はT字型とすることで、パドルを往復運動した際に処理液の流れの一部を前記パドルの断面形状に沿って被めっき面に向かう流れにすることを特徴とするめっき用処理液の撹拌方法である。
即ちパドルに当たっためっき液の流れの一部は、パドルの形状に沿って向きを変えられ基板の被めっき面方向に向かう流れとなり、この流れによって基板の被めっき面近傍のめっき液を強く撹拌することができる。これによって基板の被めっき面近傍のめっき液の撹拌を被めっき面の全面でより均等にしてめっき液の流れの方向性をなくし、基板の被めっき面の全面に亘ってより均一な膜厚のめっき膜を形成することができる。
【0018】
本願の請求項4にかかる発明は、めっき用処理液中に配置した被めっき体の被めっき面に対向する位置に設置したパドルを前記被めっき面に対して平行に往復運動することで前記処理液を撹拌するめっき用処理液の撹拌方法において、前記パドルの横断面形状をH字型とし、且つパドルの被めっき面に対向する側の面にスリット又は細孔を設けておき、パドルを往復運動した際に処理液の流れの一部を前記パドルの断面形状に沿い且つ前記スリット又は細孔を通して被めっき面に向かう流れにすることを特徴とするめっき用処理液の撹拌方法である。
即ちパドルに当たっためっき液の流れの一部は、パドルの形状に沿って向きを変えられスリット若しくは細孔(細孔群)を通って基板の被めっき面方向に向かう流れとなり、この流れによって基板の被めっき面近傍のめっき液を強く撹拌することができる。これによって基板の被めっき面近傍のめっき液の撹拌を被めっき面の全面でより均等にしてめっき液の流れの方向性をなくし、基板の被めっき面の全面に亘ってより均一な膜厚のめっき膜を形成することができる。
【0019】
本願の請求項5にかかる発明は、めっき用処理液中に配置した被めっき体の被めっき面に対向する位置に、前記被めっき面に対して平行に往復運動することで前記処理液を撹拌するパドルを設置してなるめっき用処理装置において、前記パドルに、パドルの往復運動に伴って湾曲してその湾曲面に沿う処理液の流れを前記被めっき体の被めっき面近傍に向かう流れにする弾性体からなるフィンを取り付けたことを特徴とするめっき用処理装置である。
【0020】
本願の請求項6にかかる発明は、めっき用処理液中に配置した被めっき体の被めっき面に対向する位置に、前記被めっき面に対して平行に往復運動することで前記処理液を撹拌するパドルを設置してなるめっき用処理装置において、前記パドルの往復運動方向を向く両側面を、前記被めっき体の被めっき面に対して垂直な方向から傾斜させて設置したことを特徴とするめっき用処理装置である。
【0021】
本願の請求項7にかかる発明は、めっき用処理液中に配置した被めっき体の被めっき面に対向する位置に、前記被めっき面に対して平行に往復運動することで前記処理液を撹拌するパドルを設置してなるめっき用処理装置において、前記パドルの横断面形状をL字型又はT字型にしたことを特徴とするめっき用処理装置である。
【0022】
本願の請求項8にかかる発明は、めっき用処理液中に配置した被めっき体の被めっき面に対向する位置に、前記被めっき面に対して平行に往復運動することで前記処理液を撹拌するパドルを設置してなるめっき用処理装置において、前記パドルの横断面形状をH字型にするとともに、平行な両側面の内の一方の側面を前記被めっき体の被めっき面に対向するように設置し、且つこの一方の側面にスリット又は細孔を設けたことを特徴とするめっき用処理装置である。
【0023】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して詳細に説明する。
図1は本発明を用いて構成したディップ方式の電解めっき装置の一例の概略構成図である。この電解めっき装置も、前記図15に示す電解めっき装置と同様に、半導体ウェーハ等の基板(被めっき体)Wを着脱自在に保持する基板ホルダ10と、めっき液12を収容するめっき槽16と、めっき槽16内のめっき液12中において基板ホルダ10で保持した基板Wと対面するように配置されるアノード(陽極電極)14と、アノード14と基板Wの被めっき面(表面)W1に設けた給電層(シード層)との間にめっき電圧を印加してめっき電流を流すめっき電源18と、めっき槽16の側部においてめっき槽16をオーバーフローしためっき液12を収納するオーバーフロー槽22と、このオーバーフロー槽22とめっき槽16間を外部で連結する循環ライン24に循環ポンプ26と恒温ユニット28とフィルタ30とを取り付けてなるめっき液循環機構23と、基板Wの被めっき面W1に対向する位置に設置されるパドル型撹拌機構31とを具備して構成されている。
【0024】
ここでパドル型撹拌機構31は、めっき槽16の上方においてめっき液12の液面に水平且つ基板ホルダ10に保持した基板Wの被めっき面W1に平行に設置されるパドルシャフト32と、基板Wの被めっき面W1に対向してこれに平行に上下方向に向けて設置されその上部が前記パドルシャフト32に取り付けられる一又は複数本の棒状のパドル34と、パドルシャフト32を軸方向(紙面手前奥方向)に向けて往復駆動することでパドル34を基板Wの被めっき面W1に対して平行に往復運動させる図示しないパドル駆動装置(図12のパドル駆動装置146,図14のパドル駆動装置438参照)とを具備して構成されている。なおパドル34が複数本の場合はパドルシャフト32の駆動方向に向けて並列に配置されることとなる。
【0025】
そしてこの実施の形態においては、パドル34の基板W側の辺に上下方向に向かうフィン41を取り付けている。ここで図2(a)は基板Wとパドル34の配置位置関係を示す側面図、図2(b)はその平面図である。また図2(c),(d)はパドル34の動作説明図である。図2(a),(b)に示すようにパドル34は、四角柱状の硬質材からなるパドル本体40の基板W側の辺401に、上下方向に向かう板状のフィン41を取り付けて構成されている。フィン41は所定の流体圧力によって変形して柔軟に撓む(湾曲する)ように、弾性材によって形成されている。
【0026】
以上のように構成された電解めっき装置によって基板Wの被めっき面W1にめっきを行うには、図1に示す状態でまず循環ポンプ26を駆動してめっき槽16内にめっき液12を供給し、めっき槽16の内部を満たした後に、めっき槽16からオーバーフローしてオーバーフロー槽22に流し込み、循環ポンプ26に戻って循環するようにしておく。
【0027】
次にめっき電源18によってアノード14と基板Wの被めっき面W1に設けた給電層との間にめっき電圧を印加し、これによって基板Wの被めっき面W1にめっき膜を形成していく。
【0028】
そしてこのとき同時にパドル型撹拌機構31を駆動すれば、パドルシャフト32を介してパドル34が基板Wの被めっき面W1に対して平行(パドルシャフト32の軸方向)に往復運動し、被めっき面W1近傍部分のめっき液12を撹拌する。このときパドル本体40に取り付けたフィン41は、弾性を有するので、図2(c),(d)に示すように、パドル34の往復運動の際に流体抵抗によってパドル34の進行方向とは逆方向に湾曲し、言い換えればパドル34の往復運動に連動して魚の尾ヒレ運動を行い、このため湾曲したフィン41に沿うめっき液12の流れが生じる。そしてこのフィン41に沿うめっき液12の流れは、めっき液12を基板Wの被めっき面W1近傍にスムーズに向かわせる流れとなり、被めっき面W1近傍のめっき液12をより強く撹拌することとなる。これによって基板Wの被めっき面W1に沿っためっき液12の流れを被めっき面W1の全面でより均等にして(めっき液の流れの方向性をなくして)、基板Wの被めっき面W1の全面に亘ってより均一な膜厚のめっき膜を形成することができる。ここで前記フィン41を構成する弾性体の材質及び形状は、適用する処理液や往復運動速度により適宜定められる。
【0029】
図3(a)は本発明の第二の実施の形態にかかるパドル34−2と基板Wとの配置位置関係を示す側面図、図3(b)はその平面図である。また図3(c),(d)はパドル34−2の動作説明図である。なおこのパドル34−2は例えば前記図1に示す電解めっき装置のパドル34に代えて設置するものであり、パドル34−2の上部は図1に示すパドルシャフト32に取り付けられる。図3(a),(b)に示すようにこの実施の形態にかかるパドル34−2は、略四角柱状の硬質材によって構成されており、パドル34−2の基板W側の辺をその横断面が三角形状に突出する突出辺42としている。そしてパドル34−2は、図3(b)に示すように、パドル34−2の往復運動方向を向く両側面44,44を、基板Wの被めっき面W1に対して垂直な方向から所定角度θ(0°<θ<90°)傾斜させて設置している。
【0030】
そしてめっき開始の際にパドル34−2を駆動して、パドル34−2を基板Wの被めっき面W1に対して平行(パドルシャフト32の軸方向)に往復運動させれば、パドル34−2は基板Wの被めっき面W1に対して傾斜しているので、パドル34−2の往復運動に応じて生じるめっき液12の流れは、図3(c),(d)に示すように、パドル34−2の傾斜形状に沿った流れを形成し、つまりパドル34−2の往復運動方向の成分とこれに垂直な方向の成分とに分散され、この垂直方向の成分によって基板Wに向かう成分と遠ざかる成分が生じて、パドル34−2の往復運動方向のみならずその垂直方向にも流れを形成し、基板Wの被めっき面W1近傍のめっき液12を強く撹拌する。これによって基板Wの被めっき面W1近傍のめっき液12の撹拌を被めっき面W1の全面でより均等にして(めっき液の流れの方向性をなくして)、基板Wの被めっき面W1の全面に亘ってより均一な膜厚のめっき膜を形成することができる。ここで前記パドル34−2の傾斜角度θは、適用する処理液や往復運動速度により適宜定められる。
【0031】
上記実施の形態にかかるパドル34−2は複数本並列に設置しても良い。その場合例えば、図4(a)に示すように二本一組で並列に基板W側に向かって内向きとなるように傾斜させて設置したり、図4(b)に示すように二本一組で並列に基板W側に向かって外向きとなるように傾斜させて設置したり、図5(a)に示すように三本一組で並列に同一方向向きに傾斜させて設置したり、図5(b)に示すように三本一組で並列に順番に逆方向向きに傾斜させて設置したり、図5(c)に示すように三本一組で並列に中央のパドル34−2を垂直で左右のパドル34−2を内向きに傾斜させて設置したり、図5(d)に示すように三本一組で並列に中央のパドル34−2を垂直で左右のパドル34−2を外向きに傾斜させて設置したり、図6(a)に示すように四本一組で並列に同一方向向きに傾斜させて設置したり、図6(b),図6(c)に示すように四本一組で並列に順番に逆方向向きに傾斜させて設置したり、図6(d)に示すように四本一組で並列に中央の二本のパドル34−2を垂直で左右のパドル34−2を内向きに傾斜させて設置したり、図6(e)に示すように四本一組で並列に左右二本ずつのパドル34−2を内向きに傾斜させて設置したり、図7(a)に示すように五本一組で並列に同一方向向きに傾斜させて設置したり、図7(b)に示すように五本一組で並列に中央のパドル34−2を垂直で左右二本ずつのパドル34−2を内向きに傾斜させて設置したり、図7(c)に示すように五本一組で並列に中央のパドル34−2を垂直で左右二本ずつのパドル34−2をそれぞれ内向きと外向きに傾斜させて設置したり、図7(d)に示すように五本一組で並列に中央のパドル34−2を垂直で左右二本ずつのパドル34−2を外向きに傾斜させて設置したり、図7(e)に示すように五本一組で並列に中央のパドル34−2を垂直で左右二本ずつのパドル34−2をそれぞれ外向きと内向きに傾斜させて設置したりする。なおさらに多数本のパドル34を設置しても良いことは言うまでもない。またパドル34の横断面形状は種々の変形が可能であり、例えば図16(b)〜(l)に示すような形状のものでも良い。
【0032】
図8は本発明の第三の実施の形態にかかるパドル34−3と基板Wとの配置位置関係を示す平面図である。なおこのパドル34−3は例えば前記図1に示す電解めっき装置のパドル34に代えて設置するものであり、パドル34−3の上部は図1に示すパドルシャフト32に取り付けられる。図8に示すようにこの実施の形態にかかるパドル34−3は、その横断面形状がL字型の硬質材によって構成されている。
【0033】
そしてめっき開始の際にパドル34−3を駆動して、パドル34−3を基板Wの被めっき面W1に対して平行(パドルシャフト32の軸方向)に往復運動させれば、パドル34−3に当たっためっき液12の流れの一部は、パドル34−3の形状(断面形状)に沿って向きを変えられ基板Wの被めっき面W1方向に向かう流れとなり、この流れによって基板Wの被めっき面W1近傍のめっき液12を強く撹拌することができる。これによって基板Wの被めっき面W1近傍のめっき液12の撹拌を被めっき面W1の全面でより均等にして(めっき液の流れの方向性をなくして)、基板Wの被めっき面W1の全面に亘ってより均一な膜厚のめっき膜を形成することができる。
【0034】
図9(a),(b)は本発明の第四の実施の形態にかかるパドル34−4と基板Wとの配置位置関係を示す平面図である。なおこのパドル34−4は例えば前記図1に示す電解めっき装置のパドル34に代えて設置するものであり、パドル34−4の上部は図1に示すパドルシャフト32に取り付けられる。図9(a),(b)に示すようにこの実施の形態にかかるパドル34−4は、その横断面形状がT字型の硬質材によって構成され、パドル34−4の中央の突辺43を基板Wの被めっき面W1に垂直に対向して設置している。
【0035】
そしてめっき開始の際にパドル34−4を駆動して、パドル34−4を基板Wの被めっき面W1に対して平行(パドルシャフト32の軸方向)に往復運動させれば、パドル34−4に当たっためっき液12の流れの一部は、パドル34−4の形状(断面形状)に沿って向きを変えられ基板Wの被めっき面W1方向に向かう流れとなり、この流れによって基板Wの被めっき面W1近傍のめっき液12を強く撹拌することができる。これによって基板Wの被めっき面W1近傍のめっき液12の撹拌を被めっき面W1の全面でより均等にして(めっき液の流れの方向性をなくして)、基板Wの被めっき面W1の全面に亘ってより均一な膜厚のめっき膜を形成することができる。
【0036】
図10(a)は本発明の第五の実施の形態にかかるパドル34−5と基板Wとの配置位置関係を示す側面図、図10(b),(c)は平面図である。なおこのパドル34−5は例えば前記図1に示す電解めっき装置のパドル34に代えて設置するものであり、パドル34−5の上部は図1に示すパドルシャフト32に取り付けられる。図10(a)〜(c)に示すようにこの実施の形態にかかるパドル34−5は、その横断面形状がH字型の硬質材によって構成され、パドル34−5の被めっき面W1に対向する側の面45にスリット46−1又は細孔(細孔群)46−2を設けている。ここで図11(a),(b)はそれぞれ図10に示すパドル34−5を基板W側から見た側面図である。図11(a)に示すようにパドル34−5の面45に形成されるスリット46−1は、面45の両側に縦方向に向かって直線状に一本ずつ設けられている。また図11(b)に示すようにパドル34−5の面45に形成される細孔群46−2は、面45の両側に縦方向に向かって直線状に一列ずつ設けられている。なおスリット46−1や細孔群46−2の形状、本数、面45への設置位置等に種々の変更が可能であることは言うまでもない。
【0037】
そしてめっき開始の際にパドル34−5を駆動して、パドル34−5を基板Wの被めっき面W1に対して平行(パドルシャフト32の軸方向)に往復運動させれば、パドル34−5に当たっためっき液12の流れの一部は、パドル34−5の形状(断面形状)に沿って向きを変えられスリット46−1若しくは細孔群46−2を通って基板Wの被めっき面W1方向に向かう流れとなり、この流れによって基板Wの被めっき面W1近傍のめっき液12を強く撹拌することができる。これによって基板Wの被めっき面W1近傍のめっき液12の撹拌を被めっき面W1の全面でより均等にして(めっき液の流れの方向性をなくして)、基板Wの被めっき面W1の全面に亘ってより均一な膜厚のめっき膜を形成することができる。
【0038】
以上の各実施の形態において説明したように、パドルの往復運動(平行移動運動)によってその往復運動方向に生じる流れの一部をその方向とは垂直な方向にも分散させ、基板に向かう流れを積極的に生じさせることにより、基板の被めっき面近傍のめっき液を強く撹拌すると同時に、めっき液全体の波立ち・揺動を往復運動方向にだけでなくその垂直方向にも分散させるため、全体的に見てめっき液の波立ち・揺動を低く抑えることができ、めっき液の撹拌効率が上がるためパドルの往復運動速度を低く抑えながらめっき速度を上げることができる。さらにめっき液撹拌時に発生するミストの飛散量を低減することができる。
【0039】
なお上記各実施の形態では本発明を電解めっき装置に適用した場合について説明したが、アノード14を省略することで無電解めっき装置にも適用することができる。
【0040】
次に、前述の図1に示す電解めっき装置を使用してバンプを形成するようにした基板処理装置の平面配置図を図12に示す。この基板処理装置には、半導体ウェーハ等の基板を収納したカセット110を搭載する2台のカセットテーブル112と、基板のオリフラやノッチなどの位置を所定の方向に合わせるアライナ114と、めっき処理後の基板を高速回転させて乾燥させるスピンドライヤ116が同一円周方向に沿って備えられている。更に、この円周の接線方向に沿った位置には、基板ホルダ(図1の基板ホルダ10に相当する)118を載置して基板の該基板ホルダ118との着脱を行う基板着脱部120が設けられ、この中心位置には、これらの間で基板を搬送する搬送用ロボットからなる基板搬送装置122が配置されている。
【0041】
そして、基板着脱部120側から順に、基板ホルダ118の保管及び一時仮置きを行うストッカ124、基板を純水に浸漬させて濡らすことで表面の親水性を良くするプリウェット槽126、基板の表面に形成したシード層表面の電気抵抗の大きい酸化膜を硫酸や塩酸などの薬液でエッチング除去するプリソーク槽128、基板の表面を純水で水洗する第1の水洗槽130a、洗浄後の基板の水切りを行うブロー槽132、第2の水洗槽130b及びめっきユニット(電解めっき装置)134が順に配置されている。このめっきユニット134は、前述の図1に示すオーバーフロー槽22の内部に複数のめっき槽16を収納して構成され、各めっき槽16は、内部に1個の基板を収納してめっきを施すようになっている。なお、この例では、銅めっきについて説明するが、ニッケルやはんだ、更には金めっきにおいても同様であることは勿論である。
【0042】
更に、これらの各機器の側方に位置して、これらの各機器の間で基板ホルダ118を基板Wとともに搬送する基板ホルダ搬送装置(基板搬送装置)140が備えられている。この基板ホルダ搬送装置140は、基板着脱部120とストッカ124との間で基板を搬送する第1のトランスポータ142と、ストッカ124、プリウェット槽126、プリソーク槽128、水洗槽130a,130b、ブロー槽132及びめっきユニット134との間で基板を搬送する第2のトランスポータ144を有している。この例では、第1のトランスポータ142は水洗槽130aまで移動可能で、第2のトランスポータ144との分担(移動)範囲を変えることができるようになっている。なお、第2のトランスポータ144を備えることなく、第1のトランスポータ142のみを備えるようにしてもよい。
また、この基板ホルダ搬送装置140のオーバーフロー槽22を挟んだ反対側には、各めっき槽16の内部に位置してめっき液12を撹拌する掻き混ぜ棒としてのパドル34(図1参照)を駆動するパドル駆動装置146が配置されている。
【0043】
前記基板着脱部120は、レール150に沿って横方向にスライド自在な平板状の載置プレート152を備えており、この載置プレート152に2個の基板ホルダ118を水平状態で並列に載置して、この一方の基板ホルダ118と基板搬送装置122との間で基板の受渡しを行った後、載置プレート152を横方向にスライドさせて、他方の基板ホルダ118と基板搬送装置122との間で基板の受渡しを行うようになっている。
【0044】
このように構成した基板処理装置による一連のバンプめっき処理を説明する。先ず、図13(a)に示すように、表面に給電層としてのシード層500を成膜し、このシード層500の表面に、例えば高さHが20〜120μmのレジスト502を全面に塗付した後、このレジスト502の所定の位置に、例えば直径Dが20〜200μm程度の開口部502aを設けた基板をその表面(被めっき処理面)を上にした状態でカセット110に収容し、このカセット110をカセットテーブル112に搭載する。
【0045】
このカセットテーブル112に搭載したカセット110から、基板搬送装置122で基板を1枚取出し、アライナ114に載せてオリフラやノッチなどの位置を所定の方向に合わせる。このアライナ114で方向を合わせた基板を基板搬送装置122で基板着脱部120まで搬送する。
【0046】
基板着脱部120においては、ストッカ124内に収容されていた基板ホルダ118を基板ホルダ搬送装置140のトランスポータ142の把持機構(図示せず)で2基同時に把持し上昇させた後、基板着脱部120まで搬送し、90°回転させて基板ホルダ118を水平な状態とする。しかる後、2基の基板ホルダ118を下降させ、基板着脱部120の載置プレート152の上に同時に載置する。この時、シリンダ(図示せず)を作動させて基板ホルダ118を開いた状態にしておく。
この状態で、中央側に位置する基板ホルダ118に基板搬送装置122で搬送した基板を挿入し基板ホルダ118を閉じて基板を装着し、次に、載置プレート152を横方向にスライドさせ、同様にして、他方の基板ホルダ118に基板を装着し、しかる後、載置プレート152を元の位置に戻す。
【0047】
次に、基板を装着した基板ホルダ118を基板ホルダ搬送装置140のトランスポータ142の把持機構で2基同時に把持し、上昇させた後、ストッカ124まで搬送し、90°回転させて基板ホルダ118を垂直な状態となし、しかる後、下降させ、これによって、2基の基板ホルダ118をストッカ124に吊下げ保持(仮置き)する。
これらの基板搬送装置122、基板着脱部120及び基板ホルダ搬送装置140のトランスポータ142においては、前記作業を順次繰り返して、ストッカ124内に収容された基板ホルダ118に順次基板を装着し、ストッカ124の所定の位置に順次吊り下げ保持(仮置き)する。
【0048】
一方、基板ホルダ搬送装置140の他方のトランスポータ144にあっては、基板を装着しストッカ124に仮置きした基板ホルダ118をこの把持機構(図示せず)で2基同時に把持し、上昇させた後、プリウェット槽126まで搬送し、しかる後、下降させ、これによって、2基の基板ホルダ118をプリウェット槽126内に入れた、例えば純水に浸漬させて基板の表面を濡らして表面の親水性を良くする。なお、基板の表面を濡らし穴の中の空気を水に置換して親水性をよくできるものであれば、純水に限らないことは勿論である。
【0049】
次に、この基板を装着した基板ホルダ118を、前記と同様にして、プリソーク槽128に搬送し、プリソーク槽128に入れた硫酸や塩酸などの薬液に基板を浸漬させてシード層表面の電気抵抗の大きい酸化膜をエッチングし、清浄な金属面を露出させる。更に、この基板を装着した基板ホルダ118を、前記と同様にして、水洗槽130aに搬送し、この水洗槽130aに入れた純水で基板の表面を水洗する。
【0050】
水洗が終了した基板を装着した基板ホルダ118を、前記と同様にしてめっきユニット134に搬送し、めっき槽16に吊り下げ保持する。基板ホルダ搬送装置140のトランスポータ144は、上記作業を順次繰り返し行って、基板を装着した基板ホルダ118を順次めっきユニット134のめっき槽16に搬送して所定の位置に吊下げ保持する。この時、めっき槽16の内部は、めっき液で満たされているが、基板ホルダ118の吊下げ保持が完了した後にめっき液を満たすようにしてもよい。
【0051】
全ての基板ホルダ118の吊下げ保持が完了した後、アノード14と基板W(図1参照)との間にめっき電圧を印加するとともに、パドル駆動装置146によりパドル34(図1及び図2参照)を基板Wの表面と平行に往復移動させて、基板の表面に均一にめっきを施す。この時、基板ホルダ118はめっき槽16の上部で吊り下げられて固定され、めっき電源からシード層500(図13参照)に給電される。
【0052】
めっきが終了した後、めっき電源の印加、めっき液の供給及びパドル往復運動を停止し、めっき後の基板を装着した基板ホルダ118を基板ホルダ搬送装置140のトランスポータ144の把持機構で2基同時に把持してめっきユニット134のめっき槽16から引き上げて停止させる。
【0053】
そして、前述と同様にして、基板ホルダ118を水洗槽130bまで搬送し、この水洗槽130bに入れた純水に浸漬させて基板の表面を純水洗浄する。しかる後、この基板を装着した基板ホルダ118を、前記と同様にして、ブロー槽132に搬送し、ここで、エアーの吹き付けによって基板ホルダ118に付着した水滴を除去する。しかる後、この基板を装着した基板ホルダ118を、前記と同様にして、ストッカ124の所定の位置に戻して吊下げ保持する。
基板ホルダ搬送装置140のトランスポータ144は、上記作業を順次繰り返し、めっきが終了した基板を装着した基板ホルダ118を順次ストッカ124の所定の位置に戻して吊下げ保持する。
【0054】
一方、基板ホルダ搬送装置140の他方のトランスポータ142にあっては、めっき処理後の基板を装着しストッカ124に戻した基板ホルダ118をこの把持機構で2基同時に把持し、前記と同様にして、基板着脱部120の載置プレート152の上に載置する。
そして、中央側に位置する基板ホルダ118を開き、基板ホルダ118内のめっき処理後の基板を基板搬送装置122で取出して、スピンドライヤ116に運び、リンスの後、このスピンドライヤ116の高速回転によってスピンドライ(水切り)した基板を基板搬送装置122でカセット110に戻す。そして、一方の基板ホルダ118に装着した基板をカセット110に戻した後、或いはこれと並行して、載置プレート152を横方向にスライドさせて、同様にして、他方の基板ホルダ118に装着した基板をリンスしスピンドライしてカセット110に戻す。
【0055】
載置プレート152を元の状態に戻した後、基板を取出した基板ホルダ118を基板ホルダ搬送装置140のトランスポータ142の把持機構で2基同時に把持し、前記と同様にして、これをストッカ124の所定の場所に戻す。しかる後、めっき処理後の基板を装着しストッカ124に戻した基板ホルダ118を基板ホルダ搬送装置140のトランスポータ142の把持機構で2基同時に把持し、前記と同様にして、基板着脱部120の載置プレート152の上に載置して、前記と同様な作業を繰り返す。
【0056】
そして、めっき処理後の基板を装着しストッカ124に戻した基板ホルダ118から全ての基板を取出し、スピンドライしてカセット110に戻して作業を完了する。これにより、図13(b)に示すように、レジスト502に設けた開口部502a内にめっき膜504を成長させた基板Wが得られる。
【0057】
そして、前述のようにしてスピンドライした基板Wを、例えば温度が50〜60℃のアセトン等の溶剤に浸漬させて、図13(c)に示すように、基板W上のレジスト502を剥離除去し、更に図13(d)に示すように、めっき後の外部に露出する不要となったシード層500を除去する。次に、この基板Wに形成しためっき膜504をリフローさせることで、図13(e)に示すように、表面張力で丸くなったバンプ506を形成する。更に、この基板Wを、例えば、100℃以上の温度でアニールし、バンプ506内の残留応力を除去する。
【0058】
図14は、バンプ等を形成するようにした、他の基板処理装置の平面配置図である。図14に示すように、この基板処理装置には、半導体ウェーハ等の基板を収納したカセットを搭載する2台のカセット台410と、基板のオリフラやノッチなどの位置を所定の方向に合わせるアライナ412と、めっき処理後の基板をリンスし高速回転させて乾燥させるリンサドライヤ414が備えられている。そして、2台のカセット台410とアライナ412及びリンサドライヤ414との間に、これらの間で基板の受渡しを行う走行自在な第1搬送ロボット416が配置されている。この第1搬送ロボット416は、例えば真空吸着、又は落とし込みタイプのハンドを備え、基板を水平状態で受渡すようになっている。
【0059】
更に、この例では、合計4台のめっきユニット(電解めっき装置)420が直列に配置されて備えられている。これらの各めっきユニット420は、互いに隣接した位置に配置されためっき槽422(図1のめっき槽16に相当する)及び水洗槽424とを有しており、このめっき槽422及び水洗槽424の上方に、鉛直状態で基板を着脱自在に保持する基板ホルダ426(図1の基板ホルダ10に相当する)が、上下動機構部428を介して上下動自在で、かつ左右動機構部430を介して左右動自在に配置されている。そして、これらのめっきユニット420の前面側に位置して、アライナ412、リンサドライヤ414と各めっきユニット420の基板ホルダ426との間で基板の受渡しを行う走行自在な第2搬送ロボット432が配置されている。この第2搬送ロボット432は、例えばメカチャック方式で基板を保持し、基板を水平状態と鉛直状態の間で90°反転させる反転機構434を有するハンドを備え、アライナ412、リンサドライヤ414との間では、基板を水平状態にして、基板ホルダ426との間では、基板を鉛直状態にして、基板を受渡すようになっている。
【0060】
各めっき槽422の内部には、めっき槽422内の所定の位置に基板ホルダ426で保持した基板を配置した時に、この基板の表面と対面する位置に位置して、アノード436(図1のアノード14に相当する)が配置されている。更に、この基板とアノード436との間に位置して、パドル駆動装置438の駆動に伴って、基板と平行に往復動してめっき液の流れを均一にするパドル440(図1のパドル34に相当する)と、基板の大きさに見合った中央孔を有し基板の周辺部の電位を下げてめっき膜の膜厚を均等化する調整板442が配置されている。
【0061】
次に、このように構成した基板処理装置による一連のめっき処理を、バンプ処理を例にして説明する。先ず、図13(a)に示すように、表面に給電層としてのシード層500を成膜し、このシード層500の表面に、例えば高さHが20〜120μmのレジスト502を全面に塗付した後、このレジスト502の所定の位置に、例えば直径Dが20〜200μm程度の開口部502aを設けた基板Wをその表面(被めっき処理面)を上にした状態でカセットに収容し、このカセットをカセット台410に搭載する。
【0062】
そして、このカセット台410に搭載したカセットから、第1搬送ロボット416で基板Wを1枚取出し、アライナ412に載せてオリフラやノッチなどの位置を所定の方向に合わせる。このアライナ412で方向を合わせた基板Wを第2搬送ロボット432でアライナ412から取出し、反転機構434を介して、基板Wを水平状態から鉛直状態に90°反転させ、この反転させた基板Wを、いずれか1つのめっきユニット420の基板ホルダ426に受渡す。
【0063】
なお、この例にあっては、基板Wの受渡しを、水洗槽424の上方で行う。つまり、上下動機構部428により上昇させ、左右動機構部430により水洗槽424側に位置させておいた基板ホルダ426で、第2搬送ロボット432から基板Wを受取って鉛直状態で保持する。
【0064】
基板Wを鉛直状態で保持した基板ホルダ426を、左右動機構部430により、めっき槽422側に移動させる。一方、めっき槽422にあっては、この内部にめっき液を満たしておく。この状態で、上下動機構部428を介して、基板Wを保持した基板ホルダ426を下降させて、この基板ホルダ426で保持した基板Wをめっき槽422内のめっき液中に浸漬させ、アノード436と基板Wとの間にめっき電圧を印加するとともに、パドル駆動装置438によりパドル440を基板Wの表面と平行に往復移動させることで、基板Wの表面に均一にめっきを施す。
めっきが終了した後、めっき電圧の印加、めっき液の供給及びパドル往復運動を停止し、めっき後の基板Wを保持した基板ホルダ426を、上下動機構部428を介して上昇させて、めっき槽422から引き上げる。
【0065】
このめっき処理後、基板Wを鉛直状態で保持した基板ホルダ426を、左右動機構部430により、水洗槽424側に移動させる。そして、上下動機構部428を介して、基板Wを保持した基板ホルダ426を水洗槽424の内部まで一旦下降させ、これを引き上げながら噴射ノズル(図示せず)から基板ホルダ426に向けて純水を噴射するか、または水洗槽424の内部に純水を満たしておき、この純水内に基板Wを保持した基板ホルダ426を入れた後、水洗槽424内の純水を急速に引き抜くことで、基板Wや基板ホルダ426に付着しためっき液を純水で洗い流す。なお、両者を組合せてもよいことは勿論である。
【0066】
そして、第2搬送ロボット432は、水洗槽424の上方で、この洗浄後の基板Wを基板ホルダ426から鉛直状態で受取り、この受取った基板Wを鉛直状態から水平状態に90°反転させ、この反転後の基板Wをリンサドライヤ414に搬送して載置する。
このリンサドライヤ414でリンス及び高速回転によるスピンドライ(水切り)を行った基板Wをカセット台410に搭載したカセットに戻して作業を完了する。これにより、図13(b)に示すように、レジスト502に設けた開口部502a内にめっき膜504を成長させた基板Wが得られる。
【0067】
以上本発明の実施の形態を説明したが、本発明は上記実施の形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。なお直接明細書及び図面に記載がない何れの形状や構造や材質であっても、本願発明の作用・効果を奏する以上、本願発明の技術的思想の範囲内である。例えば上記各実施の形態では被めっき体として半導体ウェーハ等の基板を用いたが、基板以外の各種被めっき体に本発明を適用しても良い。また上記実施の形態ではめっき液12に基板Wを浸漬する例について説明したが、本発明は基板Wをめっきの前処理液や後処理液に浸漬して基板Wの被めっき面W1に前処理又は後処理を行う場合等に用いても良く、要はめっき用処理液(めっきの際に用いる各種処理液であって、めっき液、めっき前処理液、めっき後処理液等を含む概念)中に被めっき体の被めっき面を浸漬して処理するめっき用処理装置であれば適用できる。
【0068】
【発明の効果】
以上詳細に説明したように本発明によれば、パドルの往復運動の速度を上げることなく撹拌効率を上げ、処理液の波立ち・飛散を抑えて、処理液による被めっき体の処理速度を速めることができるばかりか、処理液撹拌時に発生するミストの飛散量を低減することができる。
【図面の簡単な説明】
【図1】図1は本発明を用いて構成したディップ方式の電解めっき装置の一例の概略構成図である。
【図2】図2(a)は基板Wとパドル34の配置位置関係を示す側面図、図2(b)はその平面図、図2(c),(d)はパドル34の動作説明図である。
【図3】図3(a)は本発明の第二の実施の形態にかかるパドル34−2と基板Wとの配置位置関係を示す側面図、図3(b)はその平面図、図3(c),(d)はパドル34−2の動作説明図である。
【図4】図4(a),(b)は複数のパドル34−2の設置例を示す図である。
【図5】図5(a),(b),(c),(d)は複数のパドル34−2の設置例を示す図である。
【図6】図6(a),(b),(c),(d),(e)は複数のパドル34−2の設置例を示す図である。
【図7】図7(a),(b),(c),(d),(e)は複数のパドル34−2の設置例を示す図である。
【図8】本発明の第三の実施の形態にかかるパドル34−3と基板Wとの配置位置関係及び動作を示す平面図である。
【図9】図9(a),(b)は本発明の第四の実施の形態にかかるパドル34−4と基板Wとの配置位置関係及び動作を示す平面図である。
【図10】図10(a)は本発明の第五の実施の形態にかかるパドル34−5と基板Wとの配置位置関係を示す側面図、図10(b),(c)は平面図である。
【図11】図11(a),(b)はそれぞれ図10に示すパドル34−5を基板W側から見た側面図である。
【図12】図1に示す電解めっき装置を使用した基板処理装置の平面配置図である。
【図13】基板処理装置による一連のバンプめっき処理の説明図である。
【図14】電解めっき装置を備えた他の基板処理装置の平面配置図である。
【図15】ディップ方式を採用した従来の電解めっき装置の一例の概略構成図である。
【図16】図16(a)は基板Wとパドル34の設置位置関係を示す側面図、図16(b)乃至(l)は各種パドル34の横断面図である。
【図17】従来のパドル34による撹拌状態を示す図である。
【符号の説明】
W 基板(被めっき体)
W1 被めっき面
10,118,426 基板ホルダ
12 めっき液(めっき用処理液)
14,436 アノード
16,422 めっき槽
18 めっき電源
22 オーバーフロー槽
23 めっき液循環機構
24 循環ライン
26 循環ポンプ
28 恒温ユニット
30 フィルタ
31 パドル型撹拌機構
32 パドルシャフト
34,440 パドル
40 パドル本体
41 フィン
34−2 パドル
42 突出辺
44 両側面
34−3 パドル
34−4 パドル
43 突辺
34−5 パドル
45 面
46−1 スリット
46−2 細孔(細孔群)
146,438 パドル駆動装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for stirring a plating processing solution and a plating processing apparatus used for forming, for example, bumps (protruding electrodes) that are electrically connected to package electrodes and the like on the surface of a semiconductor substrate. It is.
[0002]
[Prior art]
For example, in TAB (Tape Automated Bonding) and flip chip, gold, copper, solder, or nickel is formed on the surface of the semiconductor chip on which the wiring is formed, and a protruding connection in which these are laminated in multiple layers An electrode (bump) is formed and electrically connected to a package electrode or a TAB electrode through the bump. There are various bump forming methods such as electroplating, vapor deposition, printing, and ball bump. However, miniaturization is possible as the number of I / Os in the semiconductor chip increases and the pitch decreases. Many electrolytic plating methods with relatively stable performance are being used.
[0003]
Here, the electrolytic plating method includes a jet type or cup type in which a surface to be plated of a substrate such as a semiconductor wafer is placed face down, and the plating solution is sprayed from below to perform plating, and in a plating tank. The dip type is roughly classified into a dip type in which the substrate is set up vertically and a plating solution is poured from the bottom of the plating tank to cause overflow. The electrolytic plating method using the dip method has the advantages of good bubble removal that adversely affects the quality of plating and a small footprint. It is considered suitable for bump plating that requires a long time.
[0004]
FIG. 15 is a schematic configuration diagram of an example of a conventional electrolytic plating apparatus employing a so-called dip method. This electrolytic plating apparatus is held by a substrate holder 10 in a substrate holder 10 that detachably holds a substrate W such as a semiconductor wafer, a plating tank 16 that contains a plating solution 12, and a plating solution 12 in the plating vessel 16. Plating is performed by applying a plating voltage between the anode (anode electrode) 14 disposed so as to face the substrate W, and the power supply layer (seed layer) provided on the plating surface (front surface) of the anode 14 and the substrate W. And a plating power source 18 through which a current flows. On the side of the plating tank 16, an overflow tank 22 for storing the plating solution 12 overflowing from the plating tank 16 is provided. The overflow tank 22 and the plating tank 16 are connected by a circulation line 24, and a circulation pump 26, a constant temperature unit 28, and a filter 30 are attached to the circulation line 24. The plating solution 12 supplied into the plating tank 16 as the circulation pump 26 is driven fills the inside of the plating tank 16, overflows from the plating tank 16, flows into the overflow tank 22, and returns to the circulation pump 26. Circulated.
[0005]
In this plating apparatus, a plating voltage is applied between the anode 14 and the power supply layer provided on the surface to be plated of the substrate W by the plating power source 18 in a state where the plating solution 12 is circulated by the circulation pump 26. A plating film is formed on the surface of the substrate W to be plated.
[0006]
By the way, in the plating apparatus adopting the conventional dip method, as described above, the plating solution 12 is supplied from the lower part of the plating tank 16 and flows upward in the plating tank 16. Since it overflows and circulates, it is quite difficult to uniformly flow the plating solution 12 along the surface to be plated of the substrate W over the entire surface to be plated during the plating process.
[0007]
In order to solve this problem, in a plating apparatus, in particular, a plating apparatus using electrolytic plating as described above, a paddle type stirring mechanism 31 is installed at a position between the substrate holder 10 and the anode 14 in the plating tank 16. Yes. The paddle type stirring mechanism 31 has a paddle shaft 32 disposed above the plating tank 16, parallel to the surface of the plating solution 12 and parallel to the surface to be plated of the substrate W held on the substrate holder 10. A plurality of (or one) paddles (stirring rods) 34 are attached so as to be directed substantially vertically downward.
[0008]
Here, FIG. 16A is a side view showing the installation position relationship between the substrate W and the paddle 34, and FIGS. 16B to 16L are cross-sectional views of various paddles 34 (AA in FIG. 16A). It is a cross section, and the upward direction of the drawing faces the substrate W side). As shown in FIGS. 5B to 5L, the paddle 34 has a cross-sectional shape that is round, elliptical, polygonal, or a combination thereof. During the plating process, the paddle 34 is reciprocated in parallel (in the axial direction of the paddle shaft 32) with respect to the surface W1 of the substrate W via the paddle shaft 32, whereby the plating solution 12 in the plating tank 16 is moved. Stirring and making the flow of the plating solution 12 along the surface to be plated W1 of the substrate W more uniform over the entire surface of the surface to be plated W1 (removing the direction of the flow of the plating solution 12), A plating film having a more uniform film thickness is formed over the entire surface of W1.
[0009]
In addition to the method using the paddle 34, in the plating apparatus shown in FIG. 15, by devising the position of the plating solution jet outlet on the bottom surface of the plating tank 16, the plating solution 12 jetted from the jet outlet itself is used. The plating solution 12 in the plating tank 16 is agitated so that the flow of the plating solution 12 along the surface to be plated W1 of the substrate W is made more uniform over the entire surface to be plated W1 (the flow direction of the plating solution 12 is eliminated). In addition, a method of forming a plating film having a more uniform film thickness over the entire surface to be plated W1 of the substrate W has also been adopted.
[0010]
On the other hand, in the above plating apparatus, in order to increase the deposition rate of the plating film on the substrate W, the plating solution 12 in the plating tank 16 needs to be vigorously stirred. It was necessary to increase the liquid jet velocity.
[0011]
However, when the reciprocating speed of the paddle 34 is increased, the plating solution 12 in the plating tank 16 is greatly waved, and the mist of the plating solution 12 is violently scattered to contaminate and corrode other machinery and equipment around the plating apparatus. There is a problem that the mist is mixed in the other plating tank 16 installed and contaminates the plating solution or chemical in the other plating tank 16. In addition, there is a limit to increase the reciprocating speed of the paddle by the hydrodynamic resonance point determined by the tank shape called sloshing. Further, the purpose of stirring is to greatly stir the plating solution 12 in the vicinity of the surface to be plated W1 of the substrate W. However, in the conventional paddle shape, the paddle 34 is reciprocated parallel to the substrate W as shown in FIG. In this case, the liquid in the moving space of the paddle 34 is removed / moved in a substantially reciprocating direction, and the surrounding plating solution 12 is entrained in the removed / moved space. In this state, a leakage flow and a wake vortex are generated so that a part of the substrate W hits the substrate W. Originally, in order to stir the plating solution in the vicinity of the substrate W, it is required that the plating solution 12 flows at a high flow velocity on the surface of the substrate W or the plating solution 12 strikes the surface of the substrate W strongly. In 34, the degree of stirring in the vicinity of the substrate W is generally not large although the plating solution 12 greatly swings in the reciprocating direction of the paddle 34, and it is difficult to sufficiently perform stirring.
[0012]
On the other hand, in the case where the plating solution 12 in the plating tank 16 is vigorously stirred by the jet of the plating solution 12 itself, it is necessary to increase the size of the circulation pump 26 or cause uneven stirring in the depth direction of the plating tank 16. It was easy to remove the problem easily.
[0013]
[Patent Document 1]
JP-A-5-331679
[0014]
[Problems to be solved by the invention]
The present invention has been made in view of the above points, and its purpose is to effectively agitate the plating solution and the chemical solution without increasing the reciprocating speed of the paddle, and to prevent the plating solution and the chemical solution from ripples and splashes. An object of the present invention is to provide a plating treatment liquid stirring method and a plating treatment apparatus capable of suppressing the treatment speed and increasing the treatment speed.
[0015]
[Means for Solving the Problems]
In the invention according to claim 1 of the present application, the treatment is performed by reciprocating a paddle disposed at a position facing the surface to be plated of the object to be plated disposed in the plating treatment solution in parallel with the surface to be plated. In the stirring method of the plating processing liquid for stirring the liquid, the flow of the processing liquid along the curved fin is curved in the vicinity of the surface to be plated by bending the fin made of an elastic body attached to the paddle when the paddle is reciprocated. This is a method of stirring the plating solution, characterized in that the flow is directed toward the surface.
That is, since the fin has elasticity, it is bent in the direction opposite to the traveling direction of the paddle due to fluid resistance during the reciprocating motion of the paddle. In other words, the fin performs a fin movement of the fish in conjunction with the reciprocating movement of the paddle. Therefore, the flow of the plating solution along the curved fin is a flow that smoothly directs the plating solution to the vicinity of the surface to be plated of the substrate, and the plating solution in the vicinity of the surface to be plated is strongly stirred. As a result, the flow of the plating solution along the surface to be plated of the substrate is made more uniform over the entire surface of the surface to be plated to eliminate the direction of the flow of the plating solution, and the film thickness is more uniform over the entire surface of the substrate to be plated. The plating film can be formed.
[0016]
In the invention according to claim 2 of the present application, the treatment is performed by reciprocating a paddle disposed at a position facing the surface to be plated of the object to be plated disposed in the plating treatment solution in parallel with the surface to be plated. In the stirring method of the plating processing liquid for stirring the liquid, the flow of the processing liquid generated when the paddle is reciprocated by inclining both side surfaces facing the reciprocating direction of the paddle from a direction perpendicular to the surface to be plated. Is dispersed in the reciprocating motion direction of the paddle and in a direction perpendicular thereto, and the treatment liquid in the vicinity of the surface to be plated is agitated by the flow of the dispersed treatment liquid.
That is, since the paddle is inclined with respect to the surface to be plated, the flow of the plating solution generated in accordance with the reciprocating motion of the paddle forms a flow along the inclined shape of the paddle, that is, the component in the reciprocating motion direction of the paddle. And the component in the direction perpendicular to this, the component in the vertical direction causes the component toward the substrate and the component away from the substrate, forming a flow not only in the reciprocating direction of the paddle but also in the vertical direction, Agitate the plating solution near the surface to be plated. As a result, the agitation of the plating solution in the vicinity of the surface to be plated of the substrate is made more uniform over the entire surface of the surface to be plated to eliminate the direction of the flow of the plating solution, and a more uniform film thickness can be obtained over the entire surface of the substrate to be plated. A plating film can be formed.
[0017]
In the invention according to claim 3 of the present application, the treatment is performed by reciprocating a paddle disposed at a position facing the surface to be plated of the object to be plated disposed in the plating treatment solution in parallel with the surface to be plated. In the stirring method of the plating processing liquid for stirring the liquid, the cross-sectional shape of the paddle is L-shaped or T-shaped so that a part of the flow of the processing liquid when the paddle is reciprocated It is the stirring method of the process liquid for plating characterized by making it the flow which goes to a to-be-plated surface along a cross-sectional shape.
That is, a part of the flow of the plating solution that hits the paddle is changed along the shape of the paddle and flows toward the surface of the substrate to be plated, and this flow strongly agitates the plating solution near the surface of the substrate to be plated. can do. As a result, the agitation of the plating solution in the vicinity of the surface to be plated of the substrate is made more uniform over the entire surface of the surface to be plated to eliminate the direction of the flow of the plating solution, and a more uniform film thickness can be obtained over the entire surface of the substrate to be plated. A plating film can be formed.
[0018]
In the invention according to claim 4 of the present application, the treatment is performed by reciprocating a paddle disposed in a position facing the surface to be plated of the object to be plated disposed in the plating treatment solution in parallel with the surface to be plated. In the method of stirring the plating processing solution for stirring the solution, the paddle has a H-shaped cross-sectional shape, and a slit or pore is provided on the surface of the paddle facing the surface to be plated, and the paddle is reciprocated. A method of stirring a processing solution for plating, characterized in that a part of the flow of the processing solution flows along the cross-sectional shape of the paddle and moves toward the surface to be plated through the slits or pores when moved.
That is, a part of the flow of the plating solution that hits the paddle is changed in direction along the shape of the paddle and flows toward the surface to be plated through the slits or pores (pore groups). The plating solution in the vicinity of the surface to be plated of the substrate can be vigorously stirred. As a result, the agitation of the plating solution in the vicinity of the surface to be plated of the substrate is made more uniform over the entire surface of the surface to be plated to eliminate the direction of the flow of the plating solution, and a more uniform film thickness can be obtained over the entire surface of the substrate to be plated. A plating film can be formed.
[0019]
The invention according to claim 5 of the present application stirs the processing liquid by reciprocating in parallel with the surface to be plated at a position facing the surface to be plated of the object to be plated disposed in the plating processing liquid. In the plating processing apparatus in which the paddle is installed, the flow of the processing liquid along the curved surface is curved with the reciprocating motion of the paddle, and the flow toward the vicinity of the surface to be plated of the object to be plated is changed. A plating processing apparatus, wherein a fin made of an elastic body is attached.
[0020]
The invention according to claim 6 of the present application stirs the processing solution by reciprocating in parallel with the surface to be plated at a position facing the surface to be plated of the object to be plated disposed in the processing solution for plating. In the plating processing apparatus in which the paddle to be installed is installed, both side surfaces facing the reciprocating motion direction of the paddle are installed by being inclined from a direction perpendicular to the surface to be plated of the object to be plated. It is a processing apparatus for plating.
[0021]
The invention according to claim 7 of the present application stirs the treatment liquid by reciprocating in parallel with the surface to be plated at a position facing the surface to be plated of the object to be plated disposed in the treatment liquid for plating. In the plating processing apparatus in which the paddle is installed, the paddle processing apparatus is characterized in that the cross-sectional shape of the paddle is L-shaped or T-shaped.
[0022]
The invention according to claim 8 of the present application stirs the treatment liquid by reciprocating in parallel with the surface to be plated, at a position facing the surface to be plated of the object to be plated disposed in the treatment liquid for plating. In the plating processing apparatus in which the paddle is installed, the cross-sectional shape of the paddle is H-shaped, and one of the parallel side surfaces faces the surface to be plated of the object to be plated. The plating processing apparatus is characterized in that a slit or a pore is provided on one of the side surfaces.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram of an example of a dip type electroplating apparatus constructed using the present invention. Similarly to the electrolytic plating apparatus shown in FIG. 15, this electrolytic plating apparatus also has a substrate holder 10 that detachably holds a substrate (substrate to be plated) W such as a semiconductor wafer, and a plating tank 16 that contains a plating solution 12. The anode (anode electrode) 14 is disposed in the plating solution 12 in the plating tank 16 so as to face the substrate W held by the substrate holder 10, and the anode 14 and the plating surface (surface) W 1 of the substrate W are provided. A plating power source 18 for applying a plating voltage between the power feeding layer (seed layer) and flowing a plating current; an overflow tank 22 for storing the plating solution 12 overflowing the plating tank 16 at the side of the plating tank 16; A circulation pump 26, a constant temperature unit 28, and a filter 30 are attached to a circulation line 24 that connects the overflow tank 22 and the plating tank 16 to the outside. And Rumekki liquid circulation mechanism 23, and is configured by including a paddle stirring mechanism 31 which is installed in a position facing the surface to be plated W1 of the substrate W.
[0024]
Here, the paddle type stirring mechanism 31 includes a paddle shaft 32 installed above the plating tank 16 and parallel to the surface W1 of the substrate W held on the substrate holder 10 and parallel to the surface of the plating solution 12, and the substrate W. One or a plurality of rod-shaped paddles 34 that are installed in the vertical direction parallel to and parallel to the surface W1 to be plated and attached to the paddle shaft 32, and the paddle shaft 32 in the axial direction (front of the page). A paddle drive device (not shown) (paddle drive device 146 in FIG. 12, paddle drive device 438 in FIG. 14) that reciprocates the paddle 34 in parallel with the surface W 1 of the substrate W by reciprocating toward the back direction. For example). If there are a plurality of paddles 34, they are arranged in parallel in the drive direction of the paddle shaft 32.
[0025]
In this embodiment, fins 41 extending in the vertical direction are attached to the side of the paddle 34 on the substrate W side. 2A is a side view showing the positional relationship between the substrate W and the paddle 34, and FIG. 2B is a plan view thereof. 2C and 2D are explanatory diagrams of the operation of the paddle 34. FIG. As shown in FIGS. 2A and 2B, the paddle 34 is configured by attaching plate-like fins 41 extending in the vertical direction to the side 401 on the substrate W side of the paddle main body 40 made of a quadrangular columnar hard material. ing. The fin 41 is formed of an elastic material so as to be deformed and flexibly bent (curved) by a predetermined fluid pressure.
[0026]
In order to perform plating on the surface to be plated W1 of the substrate W by the electrolytic plating apparatus configured as described above, the circulating pump 26 is first driven in the state shown in FIG. After filling the inside of the plating tank 16, it overflows from the plating tank 16, flows into the overflow tank 22, and returns to the circulation pump 26 for circulation.
[0027]
Next, a plating voltage is applied between the anode 14 and the power supply layer provided on the surface W1 to be plated of the substrate W by the plating power source 18, thereby forming a plating film on the surface W1 to be plated of the substrate W.
[0028]
At this time, if the paddle type stirring mechanism 31 is driven at the same time, the paddle 34 reciprocates in parallel (in the axial direction of the paddle shaft 32) with respect to the surface W1 of the substrate W via the paddle shaft 32. The plating solution 12 in the vicinity of W1 is stirred. At this time, the fins 41 attached to the paddle main body 40 have elasticity, and therefore, as shown in FIGS. In other words, the fish tail fin movement is performed in conjunction with the reciprocating movement of the paddle 34, so that the plating solution 12 flows along the curved fin 41. The flow of the plating solution 12 along the fins 41 is a flow that smoothly directs the plating solution 12 to the vicinity of the surface to be plated W1 of the substrate W, and stirs the plating solution 12 near the surface to be plated W1 more strongly. . As a result, the flow of the plating solution 12 along the surface to be plated W1 of the substrate W is made more uniform over the entire surface of the surface to be plated W1 (the direction of the flow of the plating solution is eliminated). A plating film having a more uniform film thickness can be formed over the entire surface. Here, the material and shape of the elastic body constituting the fin 41 are appropriately determined depending on the treatment liquid to be applied and the reciprocating speed.
[0029]
FIG. 3A is a side view showing the positional relationship between the paddle 34-2 and the substrate W according to the second embodiment of the present invention, and FIG. 3B is a plan view thereof. FIGS. 3C and 3D are diagrams for explaining the operation of the paddle 34-2. The paddle 34-2 is installed instead of the paddle 34 of the electrolytic plating apparatus shown in FIG. 1, for example, and the upper part of the paddle 34-2 is attached to the paddle shaft 32 shown in FIG. As shown in FIGS. 3A and 3B, the paddle 34-2 according to this embodiment is made of a substantially quadrangular prism-shaped hard material, and crosses the side of the paddle 34-2 on the substrate W side. The surface is a protruding side 42 protruding in a triangular shape. As shown in FIG. 3B, the paddle 34-2 has both side surfaces 44, 44 facing the reciprocating direction of the paddle 34-2 at a predetermined angle from the direction perpendicular to the surface W1 of the substrate W. It is installed with an inclination of θ (0 ° <θ <90 °).
[0030]
When the paddle 34-2 is driven at the start of plating, and the paddle 34-2 is reciprocated in parallel with the surface W1 of the substrate W (in the axial direction of the paddle shaft 32), the paddle 34-2 is obtained. Is inclined with respect to the surface to be plated W1 of the substrate W, the flow of the plating solution 12 generated in accordance with the reciprocating motion of the paddle 34-2 is shown in FIGS. 3 (c) and 3 (d). 3-2 is formed into a flow along the inclined shape of 34-2, that is, the paddle 34-2 is dispersed into a component in the reciprocating direction and a component in a direction perpendicular thereto, and the component toward the substrate W by the component in the vertical direction A component that moves away is generated, and a flow is formed not only in the reciprocating direction of the paddle 34-2 but also in the vertical direction thereof, and the plating solution 12 in the vicinity of the surface W1 of the substrate W is vigorously stirred. As a result, stirring of the plating solution 12 in the vicinity of the surface to be plated W1 of the substrate W is made more uniform over the entire surface of the surface to be plated W1 (the direction of the flow of the plating solution is eliminated), and the entire surface of the surface to be plated W1 of the substrate W is obtained. A plating film having a more uniform film thickness can be formed over the entire area. Here, the inclination angle θ of the paddle 34-2 is appropriately determined depending on the processing liquid to be applied and the reciprocating speed.
[0031]
A plurality of paddles 34-2 according to the above embodiment may be installed in parallel. In that case, for example, as shown in FIG. 4 (a), two pairs are installed in parallel so as to be inclined inward toward the substrate W side, or as shown in FIG. 4 (b). In one set, it is installed in an inclined manner so that it faces outward toward the substrate W side, or in a set of three, it is installed in an inclined direction in the same direction in parallel as shown in FIG. 5 (a). As shown in FIG. 5 (b), a set of three pieces are installed in parallel and inclined in the reverse direction in turn, or as shown in FIG. 5 (c), a central paddle 34 is arranged in parallel with a set of three pieces. -2 is installed vertically and the left and right paddles 34-2 are inclined inward, or the center paddle 34-2 is arranged vertically in parallel as shown in FIG. 34-2 is installed to be inclined outward, or installed in a set of four in parallel in the same direction as shown in FIG. 6 (a). 6 (b) and 6 (c), a set of four can be installed in parallel and inclined in the reverse direction in order, or a set of four as shown in FIG. 6 (d). Two center paddles 34-2 are installed in parallel with the left and right paddles 34-2 tilted inward, or two pairs of left and right pads in parallel as shown in FIG. 6 (e). Each paddle 34-2 is installed to be inclined inward, or as shown in FIG. 7 (a), a set of five are installed to be inclined in the same direction in parallel, as shown in FIG. 7 (b). As shown in FIG. 7 (c), the center paddle 34-2 is vertically arranged in parallel, and the left and right two paddles 34-2 are inclined inward as shown in FIG. In one set, the central paddle 34-2 is installed in a vertical manner with two left and right paddles 34-2 being inclined inward and outward, respectively, as shown in FIG. As shown in Fig. 7 (e), a central paddle 34-2 is installed in parallel with a set of five so that the left and right two paddles 34-2 are inclined outward. In one set, the central paddle 34-2 is vertically installed and the two left and right paddles 34-2 are inclined inward and outward, respectively. Needless to say, a larger number of paddles 34 may be provided. The cross-sectional shape of the paddle 34 can be variously modified. For example, the paddle 34 may have a shape as shown in FIGS.
[0032]
FIG. 8 is a plan view showing the positional relationship between the paddle 34-3 and the substrate W according to the third embodiment of the present invention. The paddle 34-3 is installed instead of the paddle 34 of the electrolytic plating apparatus shown in FIG. 1, for example, and the upper part of the paddle 34-3 is attached to the paddle shaft 32 shown in FIG. As shown in FIG. 8, the paddle 34-3 according to this embodiment is formed of a hard material having an L-shaped cross section.
[0033]
When the paddle 34-3 is driven at the start of plating and the paddle 34-3 is reciprocated parallel to the surface W1 of the substrate W (in the axial direction of the paddle shaft 32), the paddle 34-3 is moved. A part of the flow of the plating solution 12 that hits the substrate is changed in the shape (cross-sectional shape) of the paddle 34-3 and is directed toward the surface to be plated W1 of the substrate W. The plating solution 12 in the vicinity of the plating surface W1 can be vigorously stirred. As a result, stirring of the plating solution 12 in the vicinity of the surface to be plated W1 of the substrate W is made more uniform over the entire surface of the surface to be plated W1 (the direction of the flow of the plating solution is eliminated), and the entire surface of the surface to be plated W1 of the substrate W is obtained. A plating film having a more uniform film thickness can be formed over the entire area.
[0034]
FIGS. 9A and 9B are plan views showing the positional relationship between the paddle 34-4 and the substrate W according to the fourth embodiment of the present invention. The paddle 34-4 is installed in place of the paddle 34 of the electrolytic plating apparatus shown in FIG. 1, for example, and the upper portion of the paddle 34-4 is attached to the paddle shaft 32 shown in FIG. As shown in FIGS. 9A and 9B, the paddle 34-4 according to this embodiment is formed of a hard material having a T-shaped cross section, and the projection 43 at the center of the paddle 34-4. Is placed perpendicularly to the surface to be plated W1 of the substrate W.
[0035]
Then, when the paddle 34-4 is driven at the start of plating and the paddle 34-4 is reciprocated parallel to the surface W1 of the substrate W (in the axial direction of the paddle shaft 32), the paddle 34-4 is moved. A part of the flow of the plating solution 12 that hits the plate is changed in the direction along the shape (cross-sectional shape) of the paddle 34-4 and is directed toward the surface to be plated W1 of the substrate W. The plating solution 12 in the vicinity of the plating surface W1 can be vigorously stirred. As a result, stirring of the plating solution 12 in the vicinity of the surface to be plated W1 of the substrate W is made more uniform over the entire surface of the surface to be plated W1 (the direction of the flow of the plating solution is eliminated), and the entire surface of the surface to be plated W1 of the substrate W is obtained. A plating film having a more uniform film thickness can be formed over the entire area.
[0036]
FIG. 10A is a side view showing the positional relationship between the paddle 34-5 and the substrate W according to the fifth embodiment of the present invention, and FIGS. 10B and 10C are plan views. The paddle 34-5 is installed instead of the paddle 34 of the electrolytic plating apparatus shown in FIG. 1, for example, and the upper part of the paddle 34-5 is attached to the paddle shaft 32 shown in FIG. As shown in FIGS. 10A to 10C, the paddle 34-5 according to this embodiment is formed of a hard material having an H-shaped cross section, and is formed on the surface to be plated W1 of the paddle 34-5. A slit 46-1 or a pore (pore group) 46-2 is provided on the surface 45 on the opposite side. Here, FIGS. 11A and 11B are side views of the paddle 34-5 shown in FIG. As shown in FIG. 11A, the slits 46-1 formed on the surface 45 of the paddle 34-5 are provided on the both sides of the surface 45 one by one in a straight line in the vertical direction. As shown in FIG. 11B, the pore groups 46-2 formed in the surface 45 of the paddle 34-5 are provided in a line in a straight line on both sides of the surface 45 in the vertical direction. Needless to say, various changes can be made to the shape and number of the slits 46-1 and the pore groups 46-2, the positions of the slits 46-1 and the holes 45, etc.
[0037]
When the paddle 34-5 is driven at the start of plating and the paddle 34-5 is reciprocated parallel to the surface W1 of the substrate W (in the axial direction of the paddle shaft 32), the paddle 34-5 is moved. A part of the flow of the plating solution 12 that hits the substrate is changed in direction along the shape (cross-sectional shape) of the paddle 34-5 and passes through the slit 46-1 or the pore group 46-2 to be plated. The flow is directed in the W1 direction, and the plating solution 12 in the vicinity of the plating surface W1 of the substrate W can be vigorously stirred by this flow. As a result, stirring of the plating solution 12 in the vicinity of the surface to be plated W1 of the substrate W is made more uniform over the entire surface of the surface to be plated W1 (the direction of the flow of the plating solution is eliminated), and the entire surface of the surface to be plated W1 of the substrate W is obtained. A plating film having a more uniform film thickness can be formed over the entire area.
[0038]
As described in the above embodiments, a part of the flow generated in the reciprocating motion direction by the reciprocating motion (parallel motion) of the paddle is also dispersed in the direction perpendicular to the direction, and the flow toward the substrate is By vigorously generating it, the plating solution in the vicinity of the surface to be plated is strongly agitated, and at the same time, the entire plating solution is dispersed not only in the reciprocating direction but also in its vertical direction. As a result, the undulation and oscillation of the plating solution can be kept low, and the stirring efficiency of the plating solution can be increased, so that the plating speed can be increased while keeping the reciprocating speed of the paddle low. Furthermore, the amount of mist scattered when the plating solution is stirred can be reduced.
[0039]
In each of the above embodiments, the case where the present invention is applied to an electroplating apparatus has been described. However, the present invention can be applied to an electroless plating apparatus by omitting the anode 14.
[0040]
Next, FIG. 12 shows a plan layout of a substrate processing apparatus in which bumps are formed using the electrolytic plating apparatus shown in FIG. The substrate processing apparatus includes two cassette tables 112 on which a cassette 110 containing a substrate such as a semiconductor wafer is mounted, an aligner 114 that aligns the orientation flats and notches of the substrate in a predetermined direction, and a post-plating process. A spin dryer 116 for rotating the substrate at a high speed to dry the substrate is provided along the same circumferential direction. Further, at a position along the tangential direction of the circumference, there is a substrate attaching / detaching portion 120 for placing a substrate holder (corresponding to the substrate holder 10 in FIG. 1) 118 and attaching / detaching the substrate to / from the substrate holder 118. At this central position, a substrate transfer device 122 composed of a transfer robot for transferring a substrate between them is arranged.
[0041]
Then, in order from the substrate attaching / detaching portion 120 side, a stocker 124 for storing and temporarily placing the substrate holder 118, a pre-wet bath 126 for improving the hydrophilicity of the surface by immersing the substrate in pure water, and the surface of the substrate A pre-soak bath 128 for etching and removing the oxide film having a large electrical resistance on the surface of the seed layer formed with a chemical solution such as sulfuric acid or hydrochloric acid, a first water washing bath 130a for washing the surface of the substrate with pure water, and draining the substrate after washing A blow tank 132, a second water washing tank 130b, and a plating unit (electrolytic plating apparatus) 134 are arranged in this order. The plating unit 134 is configured to accommodate a plurality of plating tanks 16 in the overflow tank 22 shown in FIG. 1 described above, and each plating tank 16 accommodates one substrate for plating. It has become. In this example, copper plating will be described, but it goes without saying that the same applies to nickel, solder, and gold plating.
[0042]
Further, a substrate holder transport device (substrate transport device) 140 that transports the substrate holder 118 together with the substrate W between these devices is provided on the side of each device. The substrate holder transport device 140 includes a first transporter 142 that transports a substrate between the substrate attaching / detaching unit 120 and the stocker 124, a stocker 124, a pre-wet tank 126, a pre-soak tank 128, washing tanks 130a and 130b, a blower. A second transporter 144 that transports the substrate between the tank 132 and the plating unit 134 is provided. In this example, the first transporter 142 can be moved to the washing tank 130a, and the sharing (moving) range with the second transporter 144 can be changed. Note that only the first transporter 142 may be provided without providing the second transporter 144.
Further, on the opposite side of the substrate holder conveying device 140 across the overflow tank 22, a paddle 34 (see FIG. 1) serving as a stirring rod located inside each plating tank 16 and stirring the plating solution 12 is driven. A paddle driving device 146 is disposed.
[0043]
The substrate attaching / detaching unit 120 includes a flat plate-like mounting plate 152 that is slidable in the horizontal direction along the rail 150, and two substrate holders 118 are horizontally mounted on the mounting plate 152 in parallel. Then, after the substrate is transferred between the one substrate holder 118 and the substrate transfer device 122, the mounting plate 152 is slid in the horizontal direction, and the other substrate holder 118 and the substrate transfer device 122 are The board is delivered between them.
[0044]
A series of bump plating processes by the substrate processing apparatus configured as described above will be described. First, as shown in FIG. 13A, a seed layer 500 as a power feeding layer is formed on the surface, and a resist 502 having a height H of 20 to 120 μm, for example, is applied to the entire surface of the seed layer 500. After that, a substrate provided with an opening 502a having a diameter D of about 20 to 200 μm at a predetermined position of the resist 502 is accommodated in the cassette 110 with its surface (surface to be plated) facing up, The cassette 110 is mounted on the cassette table 112.
[0045]
One substrate is taken out from the cassette 110 mounted on the cassette table 112 by the substrate transfer device 122 and placed on the aligner 114 so that the positions of the orientation flat and the notch are aligned in a predetermined direction. The substrate whose direction is adjusted by the aligner 114 is transferred to the substrate attaching / detaching unit 120 by the substrate transfer device 122.
[0046]
In the substrate attaching / detaching unit 120, two substrate holders 118 accommodated in the stocker 124 are simultaneously held and lifted by the holding mechanism (not shown) of the transporter 142 of the substrate holder transport device 140, and then the substrate attaching / detaching unit The substrate holder 118 is conveyed to 120 and rotated by 90 ° to make the substrate holder 118 horizontal. Thereafter, the two substrate holders 118 are lowered and placed on the placement plate 152 of the substrate attaching / detaching unit 120 at the same time. At this time, a cylinder (not shown) is operated to keep the substrate holder 118 open.
In this state, the substrate transported by the substrate transport device 122 is inserted into the substrate holder 118 located on the center side, the substrate holder 118 is closed and the substrate is mounted, and then the mounting plate 152 is slid in the horizontal direction. Then, the substrate is mounted on the other substrate holder 118, and then the mounting plate 152 is returned to the original position.
[0047]
Next, the two substrate holders 118 on which the substrate is mounted are gripped simultaneously by the gripping mechanism of the transporter 142 of the substrate holder transport device 140, lifted, transported to the stocker 124, rotated 90 °, and the substrate holder 118 is rotated. The vertical state is reached and then lowered, whereby the two substrate holders 118 are suspended and held (temporarily placed) on the stocker 124.
In the substrate transfer device 122, the substrate attachment / detachment unit 120, and the transporter 142 of the substrate holder transfer device 140, the above operations are sequentially repeated, and the substrates are sequentially mounted on the substrate holder 118 accommodated in the stocker 124. Are sequentially suspended and held at a predetermined position.
[0048]
On the other hand, in the other transporter 144 of the substrate holder transport device 140, two substrate holders 118, which are mounted with a substrate and temporarily placed on the stocker 124, are simultaneously gripped and lifted by this gripping mechanism (not shown). Thereafter, the substrate is transported to the pre-wet bath 126 and then lowered, whereby the two substrate holders 118 are placed in the pre-wet bath 126, for example, immersed in pure water to wet the surface of the substrate. Improve hydrophilicity. Needless to say, it is not limited to pure water as long as it can wet the surface of the substrate and replace the air in the holes with water to improve the hydrophilicity.
[0049]
Next, the substrate holder 118 on which the substrate is mounted is transferred to the pre-soak tank 128 in the same manner as described above, and the substrate is immersed in a chemical solution such as sulfuric acid or hydrochloric acid in the pre-soak tank 128, so that the electrical resistance of the seed layer surface is increased. The large oxide film is etched to expose a clean metal surface. Further, the substrate holder 118 on which the substrate is mounted is transferred to the washing tank 130a in the same manner as described above, and the surface of the substrate is washed with pure water put in the washing tank 130a.
[0050]
The substrate holder 118 on which the substrate that has been washed is mounted is transported to the plating unit 134 in the same manner as described above, and is suspended and held in the plating tank 16. The transporter 144 of the substrate holder transport device 140 sequentially repeats the above operations to sequentially transport the substrate holder 118 with the substrate mounted thereon to the plating tank 16 of the plating unit 134 and suspend and hold it at a predetermined position. At this time, the inside of the plating tank 16 is filled with the plating solution. However, the plating solution may be filled after the suspension of the substrate holder 118 is completed.
[0051]
After all the substrate holders 118 have been suspended and held, a plating voltage is applied between the anode 14 and the substrate W (see FIG. 1), and the paddle drive unit 146 uses the paddle 34 (see FIGS. 1 and 2). Is reciprocated in parallel with the surface of the substrate W to uniformly plate the surface of the substrate. At this time, the substrate holder 118 is suspended and fixed above the plating tank 16, and power is supplied from the plating power source to the seed layer 500 (see FIG. 13).
[0052]
After the plating is finished, the application of the plating power supply, the supply of the plating solution and the reciprocating motion of the paddle are stopped, and two substrate holders 118 mounted with the substrate after plating are simultaneously held by the gripping mechanism of the transporter 144 of the substrate holder transport device 140. It is gripped and pulled up from the plating tank 16 of the plating unit 134 and stopped.
[0053]
Then, in the same manner as described above, the substrate holder 118 is transported to the rinsing tank 130b and immersed in pure water in the rinsing tank 130b to clean the surface of the substrate with pure water. Thereafter, the substrate holder 118 mounted with the substrate is transported to the blow tank 132 in the same manner as described above, and here, water droplets attached to the substrate holder 118 are removed by blowing air. Thereafter, the substrate holder 118 mounted with the substrate is returned to a predetermined position of the stocker 124 and held in a suspended manner in the same manner as described above.
The transporter 144 of the substrate holder transport device 140 sequentially repeats the above operations, and sequentially returns the substrate holder 118 mounted with the plated substrate to a predetermined position of the stocker 124 to hold it.
[0054]
On the other hand, in the other transporter 142 of the substrate holder transport device 140, two substrate holders 118, to which the substrate after plating processing is mounted and returned to the stocker 124, are simultaneously gripped by this gripping mechanism, and the same as described above. Then, the substrate is mounted on the mounting plate 152 of the substrate attaching / detaching unit 120.
Then, the substrate holder 118 located on the center side is opened, and the substrate after plating processing in the substrate holder 118 is taken out by the substrate transfer device 122 and carried to the spin dryer 116. After rinsing, the spin dryer 116 is rotated at a high speed. The substrate that has been spin-dried (drained) is returned to the cassette 110 by the substrate transfer device 122. Then, after the substrate mounted on one of the substrate holders 118 is returned to the cassette 110, or in parallel with this, the mounting plate 152 is slid in the horizontal direction and mounted on the other substrate holder 118 in the same manner. The substrate is rinsed, spin-dried, and returned to the cassette 110.
[0055]
After returning the mounting plate 152 to the original state, two substrate holders 118 that have taken out the substrate are simultaneously gripped by the gripping mechanism of the transporter 142 of the substrate holder transport device 140, and this is stored in the stocker 124 in the same manner as described above. Return to the designated place. Thereafter, two substrate holders 118 that have been subjected to the plating treatment and are returned to the stocker 124 are simultaneously held by the holding mechanism of the transporter 142 of the substrate holder transfer device 140, and in the same manner as described above, After placing on the placing plate 152, the same operation as described above is repeated.
[0056]
Then, all the substrates are taken out from the substrate holder 118 mounted with the plated substrates and returned to the stocker 124, spin-dried and returned to the cassette 110 to complete the operation. As a result, as shown in FIG. 13B, a substrate W on which a plating film 504 is grown in the opening 502a provided in the resist 502 is obtained.
[0057]
Then, the substrate W spin-dried as described above is immersed in a solvent such as acetone having a temperature of 50 to 60 ° C., for example, and the resist 502 on the substrate W is peeled and removed as shown in FIG. Further, as shown in FIG. 13D, the unnecessary seed layer 500 exposed to the outside after plating is removed. Next, by reflowing the plating film 504 formed on the substrate W, bumps 506 that are rounded by surface tension are formed as shown in FIG. Further, the substrate W is annealed at, for example, a temperature of 100 ° C. or higher to remove the residual stress in the bumps 506.
[0058]
FIG. 14 is a plan layout view of another substrate processing apparatus in which bumps and the like are formed. As shown in FIG. 14, this substrate processing apparatus includes two cassette bases 410 on which a cassette containing a substrate such as a semiconductor wafer is mounted, and an aligner 412 that aligns the orientation flats, notches, etc. of the substrates in a predetermined direction. And a rinser dryer 414 for rinsing the substrate after plating and rotating it at high speed to dry it. Between the two cassette bases 410 and the aligner 412 and the rinser dryer 414, a travelable first transfer robot 416 that transfers a substrate between them is disposed. The first transfer robot 416 includes a vacuum suction or drop-type hand, for example, and delivers the substrate in a horizontal state.
[0059]
Furthermore, in this example, a total of four plating units (electrolytic plating apparatuses) 420 are arranged and provided in series. Each of these plating units 420 includes a plating tank 422 (corresponding to the plating tank 16 in FIG. 1) and a water washing tank 424 arranged at positions adjacent to each other. A substrate holder 426 (corresponding to the substrate holder 10 in FIG. 1) that holds the substrate detachably in the vertical state is movable up and down through the vertical movement mechanism unit 428 and through the left and right movement mechanism unit 430. And can be moved left and right. In addition, a second transportable robot 432 is disposed on the front side of these plating units 420 to transfer the substrate between the aligner 412 and the rinser dryer 414 and the substrate holder 426 of each plating unit 420. Yes. The second transfer robot 432 includes a hand having a reversing mechanism 434 that holds the substrate by, for example, a mechanical chuck method and reverses the substrate by 90 ° between a horizontal state and a vertical state. The substrate is transferred to the substrate holder 426 in a vertical state with the substrate placed in a horizontal state.
[0060]
In each plating tank 422, when the substrate held by the substrate holder 426 is disposed at a predetermined position in the plating tank 422, the anode 436 (the anode of FIG. 1) is positioned so as to face the surface of the substrate. 14). In addition, the paddle 440 is positioned between the substrate and the anode 436 and reciprocates in parallel with the substrate as the paddle driving device 438 is driven to make the plating solution flow uniform (in the paddle 34 of FIG. 1). An adjustment plate 442 having a central hole corresponding to the size of the substrate and lowering the potential of the peripheral portion of the substrate to equalize the thickness of the plating film.
[0061]
Next, a series of plating processes performed by the substrate processing apparatus configured as described above will be described with bump processing as an example. First, as shown in FIG. 13A, a seed layer 500 as a power feeding layer is formed on the surface, and a resist 502 having a height H of 20 to 120 μm, for example, is applied to the entire surface of the seed layer 500. After that, a substrate W provided with an opening 502a having a diameter D of about 20 to 200 μm, for example, at a predetermined position of the resist 502 is accommodated in a cassette with its surface (surface to be plated) facing up, The cassette is mounted on the cassette base 410.
[0062]
Then, one substrate W is taken out from the cassette mounted on the cassette table 410 by the first transfer robot 416 and placed on the aligner 412 so that the positions of the orientation flat and the notch are aligned in a predetermined direction. The substrate W whose direction is aligned by the aligner 412 is taken out from the aligner 412 by the second transfer robot 432, and the substrate W is inverted 90 degrees from the horizontal state to the vertical state via the reversing mechanism 434. , And delivered to the substrate holder 426 of any one of the plating units 420.
[0063]
In this example, the delivery of the substrate W is performed above the washing tank 424. That is, the substrate holder 426 that has been raised by the vertical movement mechanism unit 428 and positioned on the washing tank 424 side by the horizontal movement mechanism unit 430 receives the substrate W from the second transfer robot 432 and holds it in a vertical state.
[0064]
The substrate holder 426 holding the substrate W in a vertical state is moved to the plating tank 422 side by the left-right movement mechanism 430. On the other hand, the plating bath 422 is filled with a plating solution. In this state, the substrate holder 426 holding the substrate W is lowered via the vertical movement mechanism unit 428, and the substrate W held by the substrate holder 426 is immersed in the plating solution in the plating tank 422, and the anode 436 In addition, a plating voltage is applied between the substrate W and the paddle drive device 438 causes the paddle 440 to reciprocate in parallel with the surface of the substrate W, thereby uniformly plating the surface of the substrate W.
After the plating is finished, the application of the plating voltage, the supply of the plating solution and the reciprocating motion of the paddle are stopped, and the substrate holder 426 holding the substrate W after the plating is raised through the vertical movement mechanism unit 428, and the plating tank Pull up from 422.
[0065]
After this plating process, the substrate holder 426 holding the substrate W in a vertical state is moved to the washing tank 424 side by the left-right movement mechanism 430. Then, the substrate holder 426 holding the substrate W is once lowered to the inside of the water washing tank 424 via the vertical movement mechanism unit 428, and pure water is directed from the spray nozzle (not shown) toward the substrate holder 426 while pulling up the substrate holder 426. Or after filling the inside of the water washing tank 424 with pure water and placing the substrate holder 426 holding the substrate W in the pure water, the pure water in the water washing tank 424 is rapidly drawn out. Then, the plating solution adhering to the substrate W or the substrate holder 426 is washed away with pure water. Of course, both may be combined.
[0066]
Then, the second transfer robot 432 receives the cleaned substrate W from the substrate holder 426 in the vertical state above the washing tank 424, and reverses the received substrate W from the vertical state to the horizontal state by 90 °. The inverted substrate W is transferred to the rinser dryer 414 and placed.
The substrate W that has been rinsed and spin-dried (drained) by high-speed rotation by the rinser dryer 414 is returned to the cassette mounted on the cassette table 410 to complete the operation. As a result, as shown in FIG. 13B, a substrate W on which a plating film 504 is grown in the opening 502a provided in the resist 502 is obtained.
[0067]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims and the technical idea described in the specification and drawings. Deformation is possible. Note that any shape, structure, or material not directly described in the specification and drawings is within the scope of the technical idea of the present invention as long as the effects and advantages of the present invention are exhibited. For example, in each of the above embodiments, a substrate such as a semiconductor wafer is used as the object to be plated, but the present invention may be applied to various objects to be plated other than the substrate. Moreover, although the example which immerses the board | substrate W in the plating solution 12 was demonstrated in the said embodiment, this invention immerses the board | substrate W in the pre-processing liquid and post-processing liquid of plating, and pre-processes to the to-be-plated surface W1 of the board | substrate W. Alternatively, it may be used for post-treatments, etc., in summary, in plating treatment liquids (concepts including various treatment liquids used in plating, including plating liquid, pre-plating liquid, post-plating liquid, etc.) Any treatment apparatus for plating that immerses and treats the surface of the object to be plated can be applied.
[0068]
【The invention's effect】
As described above in detail, according to the present invention, the stirring efficiency is increased without increasing the reciprocating speed of the paddle, and the processing speed of the object to be plated with the processing liquid is increased by suppressing the swell and scattering of the processing liquid. In addition, it is possible to reduce the amount of mist generated when the treatment liquid is stirred.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an example of a dip-type electrolytic plating apparatus constructed using the present invention.
2A is a side view showing the positional relationship between the substrate W and the paddle 34, FIG. 2B is a plan view thereof, and FIGS. 2C and 2D are explanatory views of the operation of the paddle 34. FIG. It is.
3A is a side view showing the positional relationship between the paddle 34-2 and the substrate W according to the second embodiment of the present invention, FIG. 3B is a plan view thereof, and FIG. (C), (d) is operation | movement explanatory drawing of the paddle 34-2.
FIGS. 4A and 4B are diagrams showing an installation example of a plurality of paddles 34-2.
FIGS. 5A, 5B, 5C, and 5D are diagrams showing examples of installation of a plurality of paddles 34-2.
FIGS. 6A, 6B, 6C, 6D, and 6E are diagrams showing an installation example of a plurality of paddles 34-2.
7 (a), (b), (c), (d), and (e) are diagrams showing an installation example of a plurality of paddles 34-2.
FIG. 8 is a plan view showing the positional relationship and operation between a paddle 34-3 and a substrate W according to a third embodiment of the present invention.
FIGS. 9A and 9B are plan views showing the positional relationship and operation between the paddle 34-4 and the substrate W according to the fourth embodiment of the present invention.
FIG. 10A is a side view showing the positional relationship between the paddle 34-5 and the substrate W according to the fifth embodiment of the present invention, and FIGS. 10B and 10C are plan views. It is.
11 (a) and 11 (b) are side views of the paddle 34-5 shown in FIG. 10 as viewed from the substrate W side.
12 is a plan layout view of a substrate processing apparatus using the electrolytic plating apparatus shown in FIG.
FIG. 13 is an explanatory diagram of a series of bump plating processes by the substrate processing apparatus.
FIG. 14 is a plan layout view of another substrate processing apparatus including an electrolytic plating apparatus.
FIG. 15 is a schematic configuration diagram of an example of a conventional electrolytic plating apparatus employing a dip method.
FIG. 16A is a side view showing the installation position relationship between the substrate W and the paddle 34, and FIGS. 16B to 16L are cross-sectional views of various paddles 34. FIG.
17 is a view showing a state of stirring by a conventional paddle 34. FIG.
[Explanation of symbols]
W substrate (to be plated)
W1 surface to be plated
10, 118, 426 Substrate holder
12 Plating solution (Plating solution)
14,436 Anode
16,422 plating tank
18 Plating power supply
22 Overflow tank
23 Plating solution circulation mechanism
24 Circulation line
26 Circulation pump
28 Constant temperature unit
30 filters
31 Paddle type stirring mechanism
32 paddle shaft
34,440 paddles
40 paddle body
41 fins
34-2 Paddle
42 Protruding side
44 Both sides
34-3 Paddle
34-4 paddle
43 Projection
34-5 paddle
45 faces
46-1 slit
46-2 Pore (pore group)
146,438 paddle drive

Claims (8)

めっき用処理液中に配置した被めっき体の被めっき面に対向する位置に設置したパドルを前記被めっき面に対して平行に往復運動することで前記処理液を撹拌するめっき用処理液の撹拌方法において、
前記パドルに取り付けた弾性体からなるフィンを、パドルの往復運動の際に湾曲させることで湾曲したフィンに沿う処理液の流れを被めっき面近傍に向かう流れにすることを特徴とするめっき用処理液の撹拌方法。
Stirring of the treatment liquid for plating agitates the treatment liquid by reciprocating a paddle disposed in a position facing the surface of the object to be plated disposed in the plating treatment liquid in parallel with the surface of the plating. In the method
A plating process, characterized in that a fin made of an elastic body attached to the paddle is bent during the reciprocating motion of the paddle so that the flow of the treatment liquid along the curved fin is directed toward the surface to be plated. Liquid stirring method.
めっき用処理液中に配置した被めっき体の被めっき面に対向する位置に設置したパドルを前記被めっき面に対して平行に往復運動することで前記処理液を撹拌するめっき用処理液の撹拌方法において、
前記パドルの往復運動方向を向く両側面を、被めっき面に対して垂直な方向から傾斜させ、パドルを往復運動した際に生じる処理液の流れをパドルの往復運動方向とこれに垂直な方向とに分散させ、分散した処理液の流れによって被めっき面近傍の処理液を撹拌することを特徴とするめっき用処理液の撹拌方法。
Stirring of the treatment liquid for plating agitates the treatment liquid by reciprocating a paddle disposed in a position facing the surface of the object to be plated disposed in the plating treatment liquid in parallel with the surface of the plating. In the method
Both sides facing the reciprocating direction of the paddle are inclined from the direction perpendicular to the surface to be plated, and the flow of the processing liquid generated when the paddle is reciprocated is defined as the reciprocating direction of the paddle and the direction perpendicular thereto. And stirring the treatment liquid in the vicinity of the surface to be plated by the flow of the dispersed treatment liquid.
めっき用処理液中に配置した被めっき体の被めっき面に対向する位置に設置したパドルを前記被めっき面に対して平行に往復運動することで前記処理液を撹拌するめっき用処理液の撹拌方法において、
前記パドルの横断面形状をL字型又はT字型とすることで、パドルを往復運動した際に処理液の流れの一部を前記パドルの断面形状に沿って被めっき面に向かう流れにすることを特徴とするめっき用処理液の撹拌方法。
Stirring of the treatment liquid for plating agitates the treatment liquid by reciprocating a paddle disposed in a position facing the surface of the object to be plated disposed in the plating treatment liquid in parallel with the surface of the plating. In the method
By making the cross-sectional shape of the paddle L-shaped or T-shaped, when the paddle is reciprocated, a part of the flow of the processing liquid is made to flow toward the surface to be plated along the cross-sectional shape of the paddle. A stirring method for a plating treatment solution.
めっき用処理液中に配置した被めっき体の被めっき面に対向する位置に設置したパドルを前記被めっき面に対して平行に往復運動することで前記処理液を撹拌するめっき用処理液の撹拌方法において、
前記パドルの横断面形状をH字型とし、且つパドルの被めっき面に対向する側の面にスリット又は細孔を設けておき、パドルを往復運動した際に処理液の流れの一部を前記パドルの断面形状に沿い且つ前記スリット又は細孔を通して被めっき面に向かう流れにすることを特徴とするめっき用処理液の撹拌方法。
Stirring of the treatment liquid for plating agitates the treatment liquid by reciprocating a paddle disposed in a position facing the surface of the object to be plated disposed in the plating treatment liquid in parallel with the surface of the plating. In the method
The cross-sectional shape of the paddle is H-shaped, and a slit or a fine hole is provided on the surface of the paddle facing the surface to be plated, and a part of the flow of the processing liquid is transferred when the paddle is reciprocated. A method for agitating a plating treatment solution, characterized by causing the flow to follow a cross-sectional shape of a paddle and toward the surface to be plated through the slit or pore.
めっき用処理液中に配置した被めっき体の被めっき面に対向する位置に、前記被めっき面に対して平行に往復運動することで前記処理液を撹拌するパドルを設置してなるめっき用処理装置において、
前記パドルに、パドルの往復運動に伴って湾曲してその湾曲面に沿う処理液の流れを前記被めっき体の被めっき面近傍に向かう流れにする弾性体からなるフィンを取り付けたことを特徴とするめっき用処理装置。
A plating process comprising a paddle for stirring the processing liquid by reciprocating in parallel with the surface to be plated at a position facing the surface to be plated of the object to be plated disposed in the plating processing liquid. In the device
The paddle is provided with a fin made of an elastic body that is bent in accordance with the reciprocating motion of the paddle and changes the flow of the treatment liquid along the curved surface toward the surface to be plated of the body to be plated. Plating processing equipment.
めっき用処理液中に配置した被めっき体の被めっき面に対向する位置に、前記被めっき面に対して平行に往復運動することで前記処理液を撹拌するパドルを設置してなるめっき用処理装置において、
前記パドルの往復運動方向を向く両側面を、前記被めっき体の被めっき面に対して垂直な方向から傾斜させて設置したことを特徴とするめっき用処理装置。
A plating process comprising a paddle for stirring the processing liquid by reciprocating in parallel with the surface to be plated at a position facing the surface to be plated of the object to be plated disposed in the plating processing liquid. In the device
A plating processing apparatus, wherein both side surfaces of the paddle facing the reciprocating direction are inclined from a direction perpendicular to the surface of the object to be plated.
めっき用処理液中に配置した被めっき体の被めっき面に対向する位置に、前記被めっき面に対して平行に往復運動することで前記処理液を撹拌するパドルを設置してなるめっき用処理装置において、
前記パドルの横断面形状をL字型又はT字型にしたことを特徴とするめっき用処理装置。
A plating process comprising a paddle for stirring the processing liquid by reciprocating in parallel with the surface to be plated at a position facing the surface to be plated of the object to be plated disposed in the plating processing liquid. In the device
A processing apparatus for plating, wherein a cross-sectional shape of the paddle is L-shaped or T-shaped.
めっき用処理液中に配置した被めっき体の被めっき面に対向する位置に、前記被めっき面に対して平行に往復運動することで前記処理液を撹拌するパドルを設置してなるめっき用処理装置において、
前記パドルの横断面形状をH字型にするとともに、平行な両側面の内の一方の側面を前記被めっき体の被めっき面に対向するように設置し、且つこの一方の側面にスリット又は細孔を設けたことを特徴とするめっき用処理装置。
A plating process comprising a paddle for stirring the processing liquid by reciprocating in parallel with the surface to be plated at a position facing the surface to be plated of the object to be plated disposed in the plating processing liquid. In the device
The cross-sectional shape of the paddle is H-shaped, and one side surface of the parallel side surfaces is disposed so as to face the surface to be plated of the object to be plated, and a slit or thin line is formed on the one side surface. A plating processing apparatus, wherein holes are provided.
JP2003171177A 2003-06-16 2003-06-16 Method for stirring plating treatment liquid and plating treatment apparatus Expired - Lifetime JP4365143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003171177A JP4365143B2 (en) 2003-06-16 2003-06-16 Method for stirring plating treatment liquid and plating treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003171177A JP4365143B2 (en) 2003-06-16 2003-06-16 Method for stirring plating treatment liquid and plating treatment apparatus

Publications (2)

Publication Number Publication Date
JP2005008911A true JP2005008911A (en) 2005-01-13
JP4365143B2 JP4365143B2 (en) 2009-11-18

Family

ID=34095755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003171177A Expired - Lifetime JP4365143B2 (en) 2003-06-16 2003-06-16 Method for stirring plating treatment liquid and plating treatment apparatus

Country Status (1)

Country Link
JP (1) JP4365143B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270320A (en) * 2006-03-31 2007-10-18 Ebara Corp Polarization curve measurement method and electrolytic treatment apparatus
JP2009517543A (en) * 2005-11-23 2009-04-30 セミトゥール・インコーポレイテッド Apparatus and method for vibrating liquids during wet chemical processing of microstructured workpieces
JP2010010557A (en) * 2008-06-30 2010-01-14 Ebara Corp Method of forming conductive material structure
JP2010070832A (en) * 2008-09-22 2010-04-02 Tokyo Electron Ltd Cap metal forming method
JP2010529293A (en) * 2007-06-06 2010-08-26 アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Apparatus and method for wet chemical treatment of a product and method for mounting a flow member in the apparatus
JP2013168679A (en) * 2013-05-27 2013-08-29 Ebara Corp Conductive material structure formation method
US20130334051A1 (en) * 2012-06-18 2013-12-19 Headway Technologies, Inc. Novel Plating Method
JP2014080674A (en) * 2012-09-27 2014-05-08 Tdk Corp Anisotropic plating method and thin film coil
US8784636B2 (en) 2007-12-04 2014-07-22 Ebara Corporation Plating apparatus and plating method
CN108396364A (en) * 2017-02-06 2018-08-14 株式会社荏原制作所 Blade, the plater and coating method for having the blade
CN109652851A (en) * 2017-10-12 2019-04-19 株式会社荏原制作所 Plater and coating method
CN110359080A (en) * 2018-04-10 2019-10-22 上村工业株式会社 Surface processing device, surface treatment method and blade
CN112626601A (en) * 2019-10-07 2021-04-09 上村工业株式会社 Surface treatment device, surface treatment method, and blade
CN113279043A (en) * 2020-02-20 2021-08-20 株式会社荏原制作所 Stirrer, processing device provided with stirrer, and method for manufacturing stirrer
JPWO2022059554A1 (en) * 2020-09-16 2022-03-24
KR20230060383A (en) * 2021-10-27 2023-05-04 주식회사 에스이에이 Plating apparatus including paddle having protrudent peak edge
CN117233188A (en) * 2023-11-08 2023-12-15 包头市威丰稀土电磁材料股份有限公司 Preparation method of silicon steel EBSD large-size spliced sample

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009517543A (en) * 2005-11-23 2009-04-30 セミトゥール・インコーポレイテッド Apparatus and method for vibrating liquids during wet chemical processing of microstructured workpieces
JP2007270320A (en) * 2006-03-31 2007-10-18 Ebara Corp Polarization curve measurement method and electrolytic treatment apparatus
TWI482667B (en) * 2007-06-06 2015-05-01 Atotech Deutschland Gmbh Apparatus and method for the wet chemical treatment of a product and method for installing a flow member into the apparatus
JP2010529293A (en) * 2007-06-06 2010-08-26 アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Apparatus and method for wet chemical treatment of a product and method for mounting a flow member in the apparatus
JP2013174016A (en) * 2007-06-06 2013-09-05 Atotech Deutschland Gmbh Apparatus and method for wet chemical treatment of plate-like product and method for mounting flow rate member in the apparatus
KR101526022B1 (en) * 2007-06-06 2015-06-04 아토테크더치랜드게엠베하 Apparatus and method for the wet chemical treatment of a product and method for installing a flow member into the apparatus
US8784636B2 (en) 2007-12-04 2014-07-22 Ebara Corporation Plating apparatus and plating method
JP2010010557A (en) * 2008-06-30 2010-01-14 Ebara Corp Method of forming conductive material structure
JP4593662B2 (en) * 2008-09-22 2010-12-08 東京エレクトロン株式会社 Cap metal forming method
JP2010070832A (en) * 2008-09-22 2010-04-02 Tokyo Electron Ltd Cap metal forming method
US8920616B2 (en) * 2012-06-18 2014-12-30 Headway Technologies, Inc. Paddle for electroplating for selectively depositing greater thickness
US20130334051A1 (en) * 2012-06-18 2013-12-19 Headway Technologies, Inc. Novel Plating Method
JP2014080674A (en) * 2012-09-27 2014-05-08 Tdk Corp Anisotropic plating method and thin film coil
JP2013168679A (en) * 2013-05-27 2013-08-29 Ebara Corp Conductive material structure formation method
US10946351B2 (en) 2017-02-06 2021-03-16 Ebara Corporation Paddle, plating apparatus equipped with the paddle, and plating method
CN108396364A (en) * 2017-02-06 2018-08-14 株式会社荏原制作所 Blade, the plater and coating method for having the blade
JP2018127649A (en) * 2017-02-06 2018-08-16 株式会社荏原製作所 A paddle, a plating apparatus with the paddle and plating method
KR20180091730A (en) 2017-02-06 2018-08-16 가부시키가이샤 에바라 세이사꾸쇼 Paddle, plating apparatus equipped with the paddle, and plating method
US11717796B2 (en) 2017-02-06 2023-08-08 Ebara Corporation Paddle, plating apparatus equipped with the paddle, and plating method
KR20190041400A (en) * 2017-10-12 2019-04-22 가부시키가이샤 에바라 세이사꾸쇼 Plating apparatus and plating method
TWI772529B (en) * 2017-10-12 2022-08-01 日商荏原製作所股份有限公司 Plating apparatus and plating method
JP2019073742A (en) * 2017-10-12 2019-05-16 株式会社荏原製作所 Plating apparatus and plating method
CN109652851A (en) * 2017-10-12 2019-04-19 株式会社荏原制作所 Plater and coating method
KR102512401B1 (en) * 2017-10-12 2023-03-22 가부시키가이샤 에바라 세이사꾸쇼 Plating apparatus and plating method
US11098413B2 (en) 2017-10-12 2021-08-24 Ebara Corporation Plating apparatus and plating method
CN109652851B (en) * 2017-10-12 2022-03-25 株式会社荏原制作所 Plating apparatus and plating method
CN110359080A (en) * 2018-04-10 2019-10-22 上村工业株式会社 Surface processing device, surface treatment method and blade
CN110359080B (en) * 2018-04-10 2023-10-24 上村工业株式会社 Surface treatment device, surface treatment method and blade
CN112626601A (en) * 2019-10-07 2021-04-09 上村工业株式会社 Surface treatment device, surface treatment method, and blade
CN113279043A (en) * 2020-02-20 2021-08-20 株式会社荏原制作所 Stirrer, processing device provided with stirrer, and method for manufacturing stirrer
WO2022059554A1 (en) * 2020-09-16 2022-03-24 株式会社アルメックステクノロジーズ Surface treatment device
JPWO2022059554A1 (en) * 2020-09-16 2022-03-24
JP7236783B2 (en) 2020-09-16 2023-03-10 株式会社アルメックステクノロジーズ Surface treatment equipment
KR20230060383A (en) * 2021-10-27 2023-05-04 주식회사 에스이에이 Plating apparatus including paddle having protrudent peak edge
KR102558375B1 (en) 2021-10-27 2023-07-21 주식회사 에스이에이 Plating apparatus including paddle having protrudent peak edge
CN117233188A (en) * 2023-11-08 2023-12-15 包头市威丰稀土电磁材料股份有限公司 Preparation method of silicon steel EBSD large-size spliced sample
CN117233188B (en) * 2023-11-08 2024-01-30 包头市威丰稀土电磁材料股份有限公司 Preparation method of silicon steel EBSD large-size spliced sample

Also Published As

Publication number Publication date
JP4365143B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
JP4365143B2 (en) Method for stirring plating treatment liquid and plating treatment apparatus
JP4805141B2 (en) Electroplating equipment
JP3827627B2 (en) Plating apparatus and plating method
JP4434948B2 (en) Plating apparatus and plating method
US11447885B2 (en) Plating method and plating apparatus
US20060081478A1 (en) Plating apparatus and plating method
US20090139870A1 (en) Plating apparatus and plating method
JP5281831B2 (en) Method for forming conductive material structure
JP4624738B2 (en) Plating equipment
JP4136830B2 (en) Plating equipment
TWI451006B (en) Method for forming conductive structure, and plating apparatus and plating method
CN100436643C (en) Plating apparatus
JP5749302B2 (en) Plating method
JP2019085613A (en) Pretreatment apparatus, plating apparatus therewith, and pretreatment method
JP5232844B2 (en) Plating equipment
JP2004300462A (en) Plating method and plating apparatus
JP5385669B2 (en) Plating method and plating apparatus
JP2008308709A (en) Method and apparatus for manufacturing semiconductor device
JP2006117966A (en) Plating apparatus and plating method
US11846035B2 (en) Plating apparatus and plating method
JP2004162129A (en) Plating apparatus and plating method
JP4553632B2 (en) Substrate plating method and substrate plating apparatus
JP7097523B1 (en) How to store the board holder, plating equipment
JP2013168679A (en) Conductive material structure formation method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090420

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090710

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4365143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term