JP2007182062A - Multilayered anisotropic electroconductive film - Google Patents

Multilayered anisotropic electroconductive film Download PDF

Info

Publication number
JP2007182062A
JP2007182062A JP2006274849A JP2006274849A JP2007182062A JP 2007182062 A JP2007182062 A JP 2007182062A JP 2006274849 A JP2006274849 A JP 2006274849A JP 2006274849 A JP2006274849 A JP 2006274849A JP 2007182062 A JP2007182062 A JP 2007182062A
Authority
JP
Japan
Prior art keywords
adhesive layer
electroconductive
conductive
anisotropic conductive
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006274849A
Other languages
Japanese (ja)
Other versions
JP4513024B2 (en
Inventor
Sang Wook Woo
ウ,サンウ
Hyuk Soo Moon
ムン,ヒュクス
Chul Jong Han
ハン,チョルジョン
Yong Seok Han
ハン,ヨンセ
Jeong Beom Park
パク,ジェンベン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LS Cable and Systems Ltd
Original Assignee
LS Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LS Cable Ltd filed Critical LS Cable Ltd
Publication of JP2007182062A publication Critical patent/JP2007182062A/en
Application granted granted Critical
Publication of JP4513024B2 publication Critical patent/JP4513024B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F5/00Sewerage structures
    • E03F5/02Manhole shafts or other inspection chambers; Snow-filling openings; accessories
    • E03F5/021Connection of sewer pipes to manhole shaft
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayered anisotropic electroconductive film, which exhibits improved connection reliability, when members to be connected having electrodes facing each other are connected. <P>SOLUTION: The multilayered anisotropic electroconductive film includes a non-electroconductive adhesive layer composed of a first insulation adhesive, an electroconductive adhesive layer which is laminated on one side of the non-electroconductive adhesive layer and composed of, as the substrate, a second insulation adhesive having a curing speed faster than that of the first insulation adhesive and contains electroconductive particles dispersed in it and a release film attached to the opposite side of the non-electroconductive adhesive layer contacting with the electroconductive adhesive layer. The damage of the electrodes of the members to be connected due to heat is prevented and the pressurization on the electroconductive particles is improved by using the multilayered anisotropic electroconductive film because of its faster curing speed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、異方性導電フィルム(ACF;Anistropic Conductive Film)に関し、より詳しくは、相互対向する電極を有する被接続部材を接続するために硬化速度の相異なる絶縁層を備えた多層異方性導電フィルムに関する。   The present invention relates to an anisotropic conductive film (ACF), and more particularly, to a multi-layer anisotropy having insulating layers having different curing speeds to connect connected members having electrodes facing each other. The present invention relates to a conductive film.

一般に、異方性導電フィルムは、被接続部材の材質が特殊であるか信号配線のピッチが細密であるため、部材と部材とをはんだ付け(soldering)方式で取り付けられない場合に使う接続材料である。
このような異方性導電フィルムは、代表的にLCDパネル、印刷回路基板(PCB)、ドライバーIC回路などをパッケージングする接続材料として使われる。
一例として、LCDモジュールにはTFT(Thin Film Transistor)パターンを駆動させるために多数のドライバーICが実装される。ドライバーICを実装する方式は大別して、別途の構造物なくLCDパネルのゲート領域及びデータ領域に実装する方式であるCOG(Chip on glass)マウント方式、ドライバーICを搭載したTCP(Tape carrier package)を介してLCDパネルのゲート領域及びデータ領域に間接的にドライバーICを実装する方式であるTAB(Tape Automated Bonding)マウント方式に分けられる。
ところが、ドライバーIC素子側の電極とLCDパネル側の電極とは微小なピッチ間隔で形成されているため、いずれの実装方式を採用しても、はんだ付けなどの手段を使うことが困難である。これゆえに、ドライバーIC側の電極とパネル側の電極とを電気的に接続する工程においては、異方性導電フィルムが主に使われる。
In general, anisotropic conductive film is a connection material used when the material of the connected member is special or the pitch of the signal wiring is fine, so that the member cannot be attached by soldering method. is there.
Such anisotropic conductive films are typically used as connection materials for packaging LCD panels, printed circuit boards (PCBs), driver IC circuits, and the like.
As an example, a large number of driver ICs are mounted on the LCD module in order to drive a TFT (Thin Film Transistor) pattern. The method for mounting the driver IC is roughly divided into a COG (Chip on glass) mounting method for mounting on the gate area and the data area of the LCD panel without a separate structure, and a TCP (Tape carrier package) with the driver IC mounted. In other words, it is divided into a TAB (Tape Automated Bonding) mounting method in which a driver IC is indirectly mounted on the gate region and the data region of the LCD panel.
However, since the electrode on the driver IC element side and the electrode on the LCD panel side are formed at a minute pitch interval, it is difficult to use means such as soldering regardless of which mounting method is employed. Therefore, an anisotropic conductive film is mainly used in the process of electrically connecting the driver IC side electrode and the panel side electrode.

図1を参照すれば、従来技術による異方性導電フィルム30は絶縁性接着剤40に導電粒子50を分散させたものであって、被接続部材10、20の間に介在されて熱圧着される。これにより、図2に示されたように、導電粒子50が対向する電極11、21の間に介在され、該電極11、21が電気的に相互繋がれて隣接する電極の間には絶縁性が保持される。すなわち、異方性導電フィルム30によってx−y平面上には絶縁性が保持され、z軸方向には導電性が保持される。
微細ピッチで形成された電極を備えた被接続部材を接続させるにあたって、接続信頼性を改善させるための一方法として多層構造の異方性導電フィルムが使われる。多層構造の異方性導電フィルムは導電粒子が含有された導電性接着層と絶縁性接着剤層とで構成される。このとき、導電粒子が含有された層が絶縁性接着剤層より高粘度であるか、または、導電粒子が含有された層の溶融点を低める方法が使われる。
しかし、上記の方法は、硬化速度が遅くて被接続対象(例えば、ICチップ)が熱によって損傷されるか、工程時間が延びるとの問題点があった。
このような問題点を改善するために、向上した硬化速度を有した異方性導電フィルムがある。このような異方性導電フィルムの場合、工程時間が短縮される長所はあるが、速い硬化速度のため導電性粒子が被接続対象の微細電極によって十分に押される前に樹脂が硬化し、接続状態が不良であるとの問題点があった。
特開平8−102218号公報
Referring to FIG. 1, an anisotropic conductive film 30 according to the prior art is obtained by dispersing conductive particles 50 in an insulating adhesive 40, and is interposed between members 10 and 20 to be thermocompression bonded. The As a result, as shown in FIG. 2, the conductive particles 50 are interposed between the opposing electrodes 11 and 21, and the electrodes 11 and 21 are electrically connected to each other so as to be insulative between adjacent electrodes. Is retained. That is, the anisotropic conductive film 30 retains insulation on the xy plane and retains conductivity in the z-axis direction.
A multi-layer anisotropic conductive film is used as a method for improving connection reliability when connecting a member to be connected having electrodes formed at a fine pitch. An anisotropic conductive film having a multilayer structure is composed of a conductive adhesive layer containing conductive particles and an insulating adhesive layer. At this time, a method is used in which the layer containing the conductive particles has a higher viscosity than the insulating adhesive layer, or the melting point of the layer containing the conductive particles is lowered.
However, the above-described method has a problem that the curing speed is slow and the connection target (for example, IC chip) is damaged by heat or the process time is extended.
In order to improve such a problem, there is an anisotropic conductive film having an improved curing rate. In the case of such an anisotropic conductive film, there is an advantage that the process time is shortened, but the resin cures before the conductive particles are sufficiently pushed by the microelectrodes to be connected due to the high curing speed, and the connection is made. There was a problem that the state was bad.
JP-A-8-102218

本発明は、上記のような問題点を解決するために創案されたものであり、微細電極を備えた被接続部材の接続において、向上した硬化速度を有することで被接続部材が熱によって損傷されることを防止すると同時に、接続信頼性を向上できる多層異方性導電フィルムを提供することにその目的がある。   The present invention was devised to solve the above-described problems, and in connecting a member to be connected with a fine electrode, the member to be connected is damaged by heat by having an improved curing speed. The object is to provide a multi-layer anisotropic conductive film that can prevent connection and improve connection reliability.

前記の目的を果たすための本発明による多層異方性導電フィルムは、第1絶縁性接着剤よりなる非導電性接着層と、非導電性接着層の一面に積層され、第1絶縁性接着剤に比べて相対的に速い硬化速度を有する第2絶縁性接着剤を基材にして導電粒子が分散した導電性接着層と、導電性接着層と接触する非導電性接着層の反対面に取り付けられた離型フィルムを含む。
望ましくは、前記第1絶縁性接着剤は熱硬化性樹脂(Thermosetting resin)であり、前記第2絶縁性接着剤は熱可塑性樹脂(Thermoplastic resin)である。
In order to achieve the above object, a multilayer anisotropic conductive film according to the present invention includes a non-conductive adhesive layer made of a first insulating adhesive and a first conductive adhesive layer laminated on one surface of the non-conductive adhesive layer. A conductive adhesive layer in which conductive particles are dispersed using a second insulating adhesive having a relatively high curing speed as compared with the above and a non-conductive adhesive layer in contact with the conductive adhesive layer. A release film.
Preferably, the first insulating adhesive is a thermosetting resin, and the second insulating adhesive is a thermoplastic resin.

本発明によれば、硬化速度の異なる樹脂層を用いて多層異方性導電フィルムを備えることで、相対的に硬化速度の遅い樹脂層の硬化が完了する間、被接続部材の電極の間に介在された導電粒子を效果的に十分に押圧できる。
また、相対的に硬化速度の速い樹脂層が含まれ、電極が熱によって損傷されることを防止すると同時に工程時間を短縮できる。
According to the present invention, by providing a multilayer anisotropic conductive film using resin layers having different curing speeds, while curing of a resin layer having a relatively slow curing speed is completed, between the electrodes of the connected member. The intervening conductive particles can be effectively pressed sufficiently.
In addition, a resin layer having a relatively high curing rate is included, so that the electrodes can be prevented from being damaged by heat, and at the same time, the process time can be shortened.

以下、添付された図面を参照して本発明の望ましい実施例を詳しく説明する。これに先立ち、本明細書及び請求範囲に使われた用語や単語は通常的や辞書的な意味に限定して解釈されてはならず、発明者は自らが発明をもっとも最善の方法で説明するために用語の概念を適切に定義できるという原則に則して本発明の技術的な思想に応ずる意味及び概念で解釈されねばならない。したがって、本明細書に記載された実施例及び図面に示された構成は、本発明のもっとも望ましい一実施例に過ぎず、本発明の技術的な思想をすべて代弁するものではないため、本出願の時点においてこれらを代替できる多様な均等物及び変形例があり得ることを理解せねばならない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, the terms and words used in the specification and claims should not be construed to be limited to ordinary or lexicographic meanings, and the inventor will describe the invention in the best possible manner. Therefore, it must be interpreted in the meaning and concept according to the technical idea of the present invention in accordance with the principle that the concept of the term can be appropriately defined. Accordingly, the embodiments described in the present specification and the configurations shown in the drawings are only the most preferred embodiments of the present invention and do not represent all the technical ideas of the present invention. It should be understood that there are various equivalents and variations that can be substituted at this point.

図3は、本発明の望ましい実施例による多層異方性導電フィルムの構成を概略的に示した断面図である。
図3を参照すれば、本発明による多層異方性導電フィルムは、非導電性接着層100、導電性接着層200及び離型フィルム300を含む。
前記非導電性接着層100は、導電性のない第1絶縁性接着剤110よりなって、被接続部材(図示せず)の間を堅固に接着固定させる。また、非導電性接着層100は多層異方性導電フィルムのx−y平面上に絶縁性を保持させる機能を主に担う。
非導電性接着層100は、第1絶縁性接着剤110及びこれを硬化させる硬化剤(図示せず)を含む。ここで、第1絶縁性接着剤110は熱硬化性樹脂であることが望ましい。熱硬化性樹脂は、分子量1000以下の樹脂状物質に熱を加えるか、硬化剤を添加して硬化させたものである。
FIG. 3 is a cross-sectional view schematically illustrating the structure of a multilayer anisotropic conductive film according to a preferred embodiment of the present invention.
Referring to FIG. 3, the multilayer anisotropic conductive film according to the present invention includes a non-conductive adhesive layer 100, a conductive adhesive layer 200, and a release film 300.
The non-conductive adhesive layer 100 is made of a first insulating adhesive 110 having no conductivity, and firmly bonds and fixes between connected members (not shown). The nonconductive adhesive layer 100 mainly has a function of maintaining insulation on the xy plane of the multilayer anisotropic conductive film.
The non-conductive adhesive layer 100 includes a first insulating adhesive 110 and a curing agent (not shown) that cures the first insulating adhesive 110. Here, the first insulating adhesive 110 is preferably a thermosetting resin. The thermosetting resin is obtained by applying heat to a resinous material having a molecular weight of 1000 or less or adding a curing agent to cure.

例えば、熱硬化性樹脂としては、高分子量エポキシ樹脂または液状エポキシ樹脂を採用できる。エポキシ樹脂(Epoxy resin)は耐熱性、電気絶縁性にすぐれ、これと混合する硬化剤によって物性が大きく変わる。具体的に、エポキシ樹脂は接着性を生かして電気電子部品の接着剤として多く用いられる。しかし、本発明はこのような材質に限定されるものではなく、本発明の目的内で多様な変形例が採用できる。例えば、フェノール樹脂、尿素樹脂、メラミン樹脂(Melamin resin)などが使用できる。
前記第1絶縁性接着剤110よりなる非導電性接着層100の厚さは10ないし30μmが望ましい。
前記導電性接着層200は、第2絶縁性接着剤210と、これを硬化させる硬化剤(図示せず)及び前記第2絶縁性接着剤210に分散した導電粒子220とを含む。このとき、第2絶縁性接着剤200は前記第1絶縁性接着剤100に比べて相対的に速い硬化速度を有する。
前記第2絶縁性接着剤200は、x−y平面上で隣接する導電粒子220を相互離隔させる作用をする。したがって、微細な配線を有する基板において隣接する導電粒子220が相互接触してx−y平面上の導通が生じることを防止する。ここで、第2絶縁性接着剤210は熱可塑性樹脂、例えば、アクリル樹脂であることが望ましい。しかし、本発明はこのような材質に限定されるものではなく、本発明の目的内で多様な変形例が採用できる。例えば、ポリエチレン、ポリプロピレン、塩化ビニル樹脂、ポリスチレンまたはこれらが混合されたポリマー樹脂などが使用できる。
熱可塑性樹脂は、加熱すれば軟化されて可塑性を呈するため多様な形状に成形が可能である。したがって、被接続部材の接触工程時、導電粒子が電極の間に介在され押圧されるのに望ましい。本実施例においては、第2絶縁性接着剤210としてアクリル樹脂を使う。アクリル樹脂は熱可塑性樹脂の一種類として、熱硬化性樹脂であるエポキシ樹脂に比べて硬化速度が速い。すなわち、エポキシ樹脂よりなった前記非導電性接着層100より、アクリル樹脂よりなった前記導電性接着層200が早く硬化される。よって、被接続部材の圧着工程時加えられる熱が、硬化速度の遅い非導電性接着層100から硬化速度の速い導電性接着層200へ伝達され、導電性接着層200内に導電粒子220が十分に押圧された後、非導電性接着層100の硬化が完了する。
前記導電粒子220は、第2絶縁性接着剤210、すなわち、アクリル樹脂内に分散して、被接続部材の電極を電気的に連結する。このために、導電粒子220は金、銀、銅、鉄、ニッケルまたはこれらの化合物の中から選択されたいずれか1つ以上の金属からなる。微細ピッチの電極を接触させるため、導電粒子220の直径は1ないし15μmが望ましい。しかし、本発明はこのような数値に限定されるものではなく、被接続部材の特性によって多様に変更できる。
前記第2絶縁性接着剤210よりなる導電性接着層200の厚さは、5ないし25μmであることが望ましい。
前記離型フィルム300は、前記導電性接着層200と接触する前記非導電性接着層100の反対面に取り付けられる。離型フィルム300は、異方性導電フィルムが接続部材として使われる前の保管状態を安定的に保持するためのフィルムである。一般に、離型処理されたPETフィルムを使う。
一方、本発明のさらに具体的な実験例を説明することで本発明をさらに詳細に説明する。しかし、本発明は下記の実験例に限定されるものではなく、特許請求の範囲内で多様な形態の実施例が具現できる。
For example, a high molecular weight epoxy resin or a liquid epoxy resin can be adopted as the thermosetting resin. Epoxy resin is excellent in heat resistance and electrical insulation, and its physical properties vary greatly depending on the curing agent mixed therewith. Specifically, epoxy resins are often used as adhesives for electrical and electronic parts by making use of adhesiveness. However, the present invention is not limited to such materials, and various modifications can be employed within the scope of the present invention. For example, phenol resin, urea resin, melamine resin, etc. can be used.
The thickness of the non-conductive adhesive layer 100 made of the first insulating adhesive 110 is preferably 10 to 30 μm.
The conductive adhesive layer 200 includes a second insulating adhesive 210, a curing agent (not shown) that cures the second insulating adhesive 210, and conductive particles 220 dispersed in the second insulating adhesive 210. At this time, the second insulating adhesive 200 has a relatively fast curing rate as compared with the first insulating adhesive 100.
The second insulating adhesive 200 acts to separate the adjacent conductive particles 220 on the xy plane. Therefore, the conductive particles 220 adjacent to each other on the substrate having fine wiring are prevented from contacting each other and conducting on the xy plane is prevented. Here, the second insulating adhesive 210 is preferably a thermoplastic resin, for example, an acrylic resin. However, the present invention is not limited to such materials, and various modifications can be employed within the scope of the present invention. For example, polyethylene, polypropylene, vinyl chloride resin, polystyrene, or a polymer resin in which these are mixed can be used.
Thermoplastic resins can be molded into various shapes because they are softened when heated and exhibit plasticity. Therefore, it is desirable that the conductive particles are interposed and pressed between the electrodes during the contact process of the connected member. In this embodiment, an acrylic resin is used as the second insulating adhesive 210. An acrylic resin is a kind of thermoplastic resin, and has a faster curing speed than an epoxy resin that is a thermosetting resin. That is, the conductive adhesive layer 200 made of acrylic resin is hardened more quickly than the nonconductive adhesive layer 100 made of epoxy resin. Therefore, heat applied during the crimping process of the connected member is transmitted from the non-conductive adhesive layer 100 having a low curing speed to the conductive adhesive layer 200 having a high curing speed, and the conductive particles 220 are sufficiently contained in the conductive adhesive layer 200. After being pressed, the curing of the nonconductive adhesive layer 100 is completed.
The conductive particles 220 are dispersed in the second insulating adhesive 210, that is, acrylic resin, to electrically connect the electrodes of the connected members. For this, the conductive particles 220 are made of one or more metals selected from gold, silver, copper, iron, nickel, or a compound thereof. The diameter of the conductive particles 220 is preferably 1 to 15 μm in order to contact the fine pitch electrodes. However, the present invention is not limited to such numerical values, and can be variously changed according to the characteristics of the connected member.
The thickness of the conductive adhesive layer 200 made of the second insulating adhesive 210 is preferably 5 to 25 μm.
The release film 300 is attached to the opposite surface of the non-conductive adhesive layer 100 that contacts the conductive adhesive layer 200. The release film 300 is a film for stably holding the storage state before the anisotropic conductive film is used as the connection member. Generally, a PET film that has been subjected to a release treatment is used.
On the other hand, the present invention will be described in more detail by explaining more specific experimental examples of the present invention. However, the present invention is not limited to the following experimental examples, and various embodiments can be implemented within the scope of the claims.

[実施例]
図4に示されたように、エポキシ樹脂とイミダゾール誘導体エポキシ化合物とでなった潜在性硬化剤よりなった非導電性接着層100を12μmの厚さに作製し、アクリル樹脂210とペロキサイド硬化剤とを基材にして導電粒子220が分散した導電性接着層200を13μmの厚さに作製した。そして、非導電性接着層100及び導電性接着層200をゴムロールを用いて圧延し、2つの層が積層された多層異方性導電フィルム1を作製した。その後、前記多層異方性導電フィルム1を被接続部材400、500の間に介在させ、180℃で3MPaの圧力を加えて7秒間圧着した。
[Example]
As shown in FIG. 4, a non-conductive adhesive layer 100 made of a latent curing agent made of an epoxy resin and an imidazole derivative epoxy compound was made to a thickness of 12 μm, and an acrylic resin 210, a peroxide curing agent, The conductive adhesive layer 200 in which the conductive particles 220 are dispersed with the substrate as a base material was formed to a thickness of 13 μm. And the non-conductive adhesive layer 100 and the conductive adhesive layer 200 were rolled using the rubber roll, and the multilayer anisotropic conductive film 1 by which two layers were laminated | stacked was produced. Thereafter, the multilayer anisotropic conductive film 1 was interposed between the members to be connected 400 and 500, and a pressure of 3 MPa was applied at 180 ° C. for 7 seconds.

[比較例]
図5に示されたように、ラジカル硬化樹脂610を基材にして導電粒子620が分散した単層異方性導電フィルム2を25μmの厚さに作製した。そして、単層異方性導電フィルム2を被接続部材400、500の間に介在させ、180℃で3MPaの圧力を加えて7秒間圧着した。
前記実験例によって製造されたそれぞれのサンプルに対し、導電性粒子の押圧状態及び接続信頼性を測定した。
1.導電性粒子の押圧状態
被接続部材400、500の間に多層または単層異方性導電フィルム1、2を介在させて圧着したサンプルを300ないし1000倍の光学顕微鏡を用いて各バンプに残留する導電粒子220、620の押圧特性を肉眼観察した。
2.接続信頼性
多層または単層異方性導電フィルム1、2で接着された被接続部材400、500の電極410、510間接続抵抗をマルチメータ(multimeter)を用いて測定した。このとき、接続抵抗が1Ω以下であれば、「接続状態良好」、それ以上であれば「接続状態不良」と判断した。
[Comparative example]
As shown in FIG. 5, a single-layer anisotropic conductive film 2 in which conductive particles 620 were dispersed using a radical curable resin 610 as a base material was formed to a thickness of 25 μm. And the single layer anisotropic conductive film 2 was interposed between the to-be-connected members 400 and 500, the pressure of 3 MPa was applied at 180 degreeC, and it crimped | bonded for 7 seconds.
The pressed state of the conductive particles and the connection reliability were measured for each sample manufactured according to the experimental example.
1. Pressed state of conductive particles A sample, which is pressure-bonded with multilayer or single-layer anisotropic conductive films 1 and 2 interposed between the connected members 400 and 500, remains on each bump using an optical microscope of 300 to 1000 times. The pressing characteristics of the conductive particles 220 and 620 were visually observed.
2. Connection reliability The connection resistance between the electrodes 410 and 510 of the members to be connected 400 and 500 bonded by the multilayer or single-layer anisotropic conductive films 1 and 2 was measured using a multimeter. At this time, if the connection resistance was 1Ω or less, it was determined that “the connection state was good”, and if it was more than that, “the connection state was bad”.

下記の表1は前記実験例によって観察された導電性粒子の押圧状態及び被接続部材の電極間接続抵抗についての判定結果である。   Table 1 below shows the determination results of the pressed state of the conductive particles and the interelectrode connection resistance of the connected member observed in the experimental example.

Figure 2007182062
Figure 2007182062

表1を参照すれば、実施例の場合、硬化速度の異なる2種類の樹脂よりなる層を用いることで、熱圧着時、硬化速度が相対的に遅い樹脂層から硬化速度が相対的に速い樹脂層へ熱が伝達され、硬化速度が遅い樹脂層の硬化が完了する以前に被接続部材の電極の間に介在された導電粒子が十分に押圧された(図4のc参照)。これによって電極間接続抵抗も小さかった。
一方、比較例の場合、硬化速度の速い樹脂層だけが形成された場合、被接続部材の電極の間に介在された導電粒子が加圧される前に、樹脂層の硬化がすでに完了して電極と導電粒子間に間隙が生じ(図5のc参照)、これにより接続抵抗が大きかった。
したがって、硬化速度の速い樹脂層だけよりなった異方性導電フィルムより硬化速度の相異なる樹脂層よりなった多層異方性導電フィルムが、導電粒子の押圧状態を改善させるのに效果的であることが分かる。
以上のように、本発明は限定された実施例及び図面によって説明されたが、本発明は、これによって限定されず、当業者によって本発明の技術的思想及び特許請求の範囲の均等範囲内で多様な修正及び変形が可能であることは言うまでもない。
Referring to Table 1, in the case of the example, by using a layer made of two types of resins having different curing rates, a resin having a relatively fast curing rate from a resin layer having a relatively slow curing rate during thermocompression bonding. Heat was transferred to the layer, and the conductive particles interposed between the electrodes of the connected member were sufficiently pressed before the curing of the resin layer having a slow curing rate was completed (see c in FIG. 4). As a result, the interelectrode connection resistance was also small.
On the other hand, in the case of the comparative example, when only the resin layer having a high curing speed is formed, the curing of the resin layer is already completed before the conductive particles interposed between the electrodes of the connected member are pressed. A gap was generated between the electrode and the conductive particles (see c in FIG. 5), and thereby the connection resistance was large.
Therefore, a multilayer anisotropic conductive film made of a resin layer having a different curing rate is more effective in improving the pressing state of the conductive particles than an anisotropic conductive film made only of a resin layer having a high curing rate. I understand that.
As described above, the present invention has been described with reference to the limited embodiments and drawings. However, the present invention is not limited thereto, and those skilled in the art can within the technical scope of the present invention and the scope of claims. It goes without saying that various modifications and variations are possible.

本明細書に添付される次の図面は、本発明の望ましい実施例を例示するものであり、発明の詳細な説明とともに本発明の技術的な思想をさらに理解させる役割をするため、本発明は図面に記載された事項だけに限定されて解釈されてはならない。
一般の異方性導電フィルムが被接続部材の間に介在された様子を示した断面図である。 一般の異方性導電フィルムを用いて被接続部材を接続させる様子を示した断面図である。 本発明の望ましい実施例に係る多層異方性導電フィルムを示した断面図である。 本発明の実施例に係る多層異方性導電フィルムを用いて被接続部材を接続させる様子を示した断面図である。 従来技術に係る単層異方性導電フィルムを用いて被接続部材を接続させる様子を示した断面図である。
The following drawings attached to the specification illustrate preferred embodiments of the present invention, and together with the detailed description, serve to further understand the technical idea of the present invention. It should not be construed as being limited to the matters described in the drawings.
It is sectional drawing which showed a mode that the general anisotropic conductive film was interposed between to-be-connected members. It is sectional drawing which showed a mode that a to-be-connected member was connected using a general anisotropic conductive film. 1 is a cross-sectional view illustrating a multilayer anisotropic conductive film according to a preferred embodiment of the present invention. It is sectional drawing which showed a mode that a to-be-connected member was connected using the multilayer anisotropic conductive film which concerns on the Example of this invention. It is sectional drawing which showed a mode that a to-be-connected member was connected using the single layer anisotropic conductive film which concerns on a prior art.

符号の説明Explanation of symbols

100 非導電性接着層
110 第1絶縁性接着剤
200 導電性接着層
210 第2絶縁性接着剤
220 導電粒子
300 離型フィルム
DESCRIPTION OF SYMBOLS 100 Nonelectroconductive adhesive layer 110 1st insulating adhesive 200 Conductive adhesive layer 210 2nd insulating adhesive 220 Conductive particle 300 Release film

Claims (4)

第1絶縁性接着剤よりなる非導電性接着層と、
前記非導電性接着層の一面に積層され、前記第1絶縁性接着剤に比べて相対的に速い硬化速度を有する第2絶縁性接着剤を基材にして導電粒子が分散した導電性接着層と、
前記導電性接着層と接触する前記非導電性接着層の反対面に取り付けられた離型フィルムと、を含む多層異方性導電フィルム。
A non-conductive adhesive layer made of a first insulating adhesive;
A conductive adhesive layer in which conductive particles are dispersed using a second insulating adhesive as a base material, which is laminated on one surface of the nonconductive adhesive layer and has a relatively fast curing rate compared to the first insulating adhesive. When,
A multilayer anisotropic conductive film comprising: a release film attached to an opposite surface of the non-conductive adhesive layer in contact with the conductive adhesive layer.
前記第1絶縁性接着剤は、熱硬化性樹脂であることを特徴とする請求項1に記載の多層異方性導電フィルム。   The multilayer anisotropic conductive film according to claim 1, wherein the first insulating adhesive is a thermosetting resin. 前記第2絶縁性接着剤は、熱可塑性樹脂であることを特徴とする請求項1に記載の多層異方性導電フィルム。   The multilayer anisotropic conductive film according to claim 1, wherein the second insulating adhesive is a thermoplastic resin. 前記導電性粒子は、金、銀、鉄、銅、ニッケル及びこれらの混合物からなる群より選択されたいずれか1つであることを特徴とする請求項1ないし請求項3のいずれか1項に記載の多層異方性導電フィルム。   The conductive particles according to any one of claims 1 to 3, wherein the conductive particles are any one selected from the group consisting of gold, silver, iron, copper, nickel, and a mixture thereof. The multilayer anisotropic conductive film as described.
JP2006274849A 2006-01-04 2006-10-06 Multilayer anisotropic conductive film Expired - Fee Related JP4513024B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060001021A KR100713333B1 (en) 2006-01-04 2006-01-04 Multi-layered anisotropic conductive film

Publications (2)

Publication Number Publication Date
JP2007182062A true JP2007182062A (en) 2007-07-19
JP4513024B2 JP4513024B2 (en) 2010-07-28

Family

ID=38251262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006274849A Expired - Fee Related JP4513024B2 (en) 2006-01-04 2006-10-06 Multilayer anisotropic conductive film

Country Status (4)

Country Link
JP (1) JP4513024B2 (en)
KR (1) KR100713333B1 (en)
CN (1) CN100507683C (en)
TW (1) TW200727438A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037389A (en) * 2008-08-01 2010-02-18 Sumitomo Electric Ind Ltd Adhesive and electrode-connecting method using the same
JP2010166097A (en) * 2010-04-28 2010-07-29 Sony Chemical & Information Device Corp Connection method and connection structure obtained by using connection apparatus and the connection method
WO2010143507A1 (en) * 2009-06-10 2010-12-16 ソニーケミカル&インフォメーションデバイス株式会社 Insulating resin film, bonded body using insulating resin film, and method for manufacturing bonded body
JP2011049175A (en) * 2010-10-28 2011-03-10 Sony Chemical & Information Device Corp Connection method and connection structure for electronic component
JP2011171307A (en) * 2011-04-06 2011-09-01 Sony Chemical & Information Device Corp Anisotropic conductive film, method of manufacturing junction, and the junction
JP2018119103A (en) * 2017-01-27 2018-08-02 日立化成株式会社 Adhesive composition, film-like adhesive, connection structure and method for producing the same
WO2023095917A1 (en) * 2021-11-29 2023-06-01 株式会社レゾナック Wiring-forming member, wiring layer forming method using wiring-forming member, and wiring-formed member
CN116612912A (en) * 2018-01-31 2023-08-18 三国电子有限会社 Connection structure

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009037964A1 (en) * 2007-09-20 2009-03-26 Sony Chemical & Information Device Corporation Anisotropic conductive film and its production method, and bonded body employing anisotropic conductive film
CN101877335B (en) * 2009-04-30 2012-07-25 玮锋科技股份有限公司 Gradient type anisotropic conductive film and manufacturing method thereof
KR101351617B1 (en) 2010-12-23 2014-01-15 제일모직주식회사 Anisotropic conductive film
CN102650763B (en) * 2011-08-26 2015-01-07 北京京东方光电科技有限公司 Liquid crystal display and manufacturing method thereof and monitor
KR101479658B1 (en) 2011-11-18 2015-01-06 제일모직 주식회사 Anisotropic conductive film with easy pre-bonding process
KR102541899B1 (en) * 2014-02-04 2023-06-14 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film and method for producing same
KR102024608B1 (en) * 2017-01-11 2019-09-24 엘지전자 주식회사 Sensor
CN109799660A (en) * 2019-03-20 2019-05-24 武汉华星光电技术有限公司 Liquid crystal display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195179A (en) * 1985-02-25 1986-08-29 Matsushita Electric Ind Co Ltd Anisotropically conductive adhesive sheet
JPS63310581A (en) * 1987-06-12 1988-12-19 Canon Inc Film body for electric connection
JPH03107888A (en) * 1989-09-21 1991-05-08 Sharp Corp Connecting structure for circuit board
JPH06103819A (en) * 1992-09-21 1994-04-15 Hitachi Chem Co Ltd Anisotropic conductive adhesive film
JPH09312176A (en) * 1996-05-23 1997-12-02 Hitachi Chem Co Ltd Connecting member, and structure and method for connecting electrodes using this connecting member

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04366630A (en) * 1991-06-13 1992-12-18 Sharp Corp Anisotropic conductive adhesive tape
JPH06139824A (en) * 1992-10-27 1994-05-20 Oki Electric Ind Co Ltd Anisotropic conducting film
KR19990048959A (en) * 1997-12-11 1999-07-05 김영환 Liquid crystal panel
JP3995942B2 (en) * 2002-01-29 2007-10-24 旭化成株式会社 Method for producing conductive adhesive sheet having anisotropy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195179A (en) * 1985-02-25 1986-08-29 Matsushita Electric Ind Co Ltd Anisotropically conductive adhesive sheet
JPS63310581A (en) * 1987-06-12 1988-12-19 Canon Inc Film body for electric connection
JPH03107888A (en) * 1989-09-21 1991-05-08 Sharp Corp Connecting structure for circuit board
JPH06103819A (en) * 1992-09-21 1994-04-15 Hitachi Chem Co Ltd Anisotropic conductive adhesive film
JPH09312176A (en) * 1996-05-23 1997-12-02 Hitachi Chem Co Ltd Connecting member, and structure and method for connecting electrodes using this connecting member

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037389A (en) * 2008-08-01 2010-02-18 Sumitomo Electric Ind Ltd Adhesive and electrode-connecting method using the same
WO2010143507A1 (en) * 2009-06-10 2010-12-16 ソニーケミカル&インフォメーションデバイス株式会社 Insulating resin film, bonded body using insulating resin film, and method for manufacturing bonded body
JP2011018879A (en) * 2009-06-10 2011-01-27 Sony Chemical & Information Device Corp Insulating resin film, bonded body using the insulating resin film, and method for manufacturing the bonded body
US9426896B2 (en) 2009-06-10 2016-08-23 Dexerials Corporation Insulating resin film, bonded structure using insulating resin film, and production method of bonded structure
JP2010166097A (en) * 2010-04-28 2010-07-29 Sony Chemical & Information Device Corp Connection method and connection structure obtained by using connection apparatus and the connection method
WO2012057227A1 (en) * 2010-10-28 2012-05-03 ソニーケミカル&インフォメーションデバイス株式会社 Method for connecting electronic part and connecting structure
JP2011049175A (en) * 2010-10-28 2011-03-10 Sony Chemical & Information Device Corp Connection method and connection structure for electronic component
JP2011171307A (en) * 2011-04-06 2011-09-01 Sony Chemical & Information Device Corp Anisotropic conductive film, method of manufacturing junction, and the junction
WO2012137754A1 (en) * 2011-04-06 2012-10-11 ソニーケミカル&インフォメーションデバイス株式会社 Anisotropic conductive film, method for producing connected body, and connected body
JP2018119103A (en) * 2017-01-27 2018-08-02 日立化成株式会社 Adhesive composition, film-like adhesive, connection structure and method for producing the same
JP7013649B2 (en) 2017-01-27 2022-02-01 昭和電工マテリアルズ株式会社 Adhesive composition, film-like adhesive, connection structure and its manufacturing method
CN116612912A (en) * 2018-01-31 2023-08-18 三国电子有限会社 Connection structure
WO2023095917A1 (en) * 2021-11-29 2023-06-01 株式会社レゾナック Wiring-forming member, wiring layer forming method using wiring-forming member, and wiring-formed member

Also Published As

Publication number Publication date
TW200727438A (en) 2007-07-16
KR100713333B1 (en) 2007-05-04
CN1996132A (en) 2007-07-11
JP4513024B2 (en) 2010-07-28
CN100507683C (en) 2009-07-01

Similar Documents

Publication Publication Date Title
JP4513024B2 (en) Multilayer anisotropic conductive film
CN105358642B (en) Manufacturing method, the manufacturing method of electric conductivity adhesive film, connector of electric conductivity adhesive film
JP4987880B2 (en) Circuit board connection structure using anisotropic conductive film, adhesion method, and adhesion state evaluation method using the same
CN106415937B (en) Connector and method for manufacturing connector
CN105917529B (en) Connection body, method for manufacturing connection body, connection method, and anisotropic conductive adhesive
JP2011192651A (en) Anisotropic conductive film, connection method, and connection structure
WO2013129437A1 (en) Method for manufacturing connection element, and anisotropic electroconductive adhesive
CN111512502A (en) Connection structure and method for manufacturing same
JP2010232184A (en) Anisotropic conductive film, and method of manufacturing the same
JP2010067360A (en) Anisotropic conductive film and its use method
KR20100010694A (en) Triple layered anistropic conductive film and manufacturing method thereof
JP2009105276A (en) Semiconductor chip mounting method and semiconductor mounting wiring board
JP2006032335A (en) Anisotropic conductive adhesion film
KR102573777B1 (en) Adhesive composition and manufacturing method of connected body
KR101973823B1 (en) Anisotropic conductive connection material, film laminate, connection method, and connection structure
JP4175347B2 (en) Method for producing anisotropic conductive adhesive film
KR101157599B1 (en) Conductive particle for anisotropic conductive film and anisotropic conductive film including the conductive particle
JP2009111326A (en) Mounting method of circuit member
KR100735211B1 (en) Anisotropic conductive film with conductive ball of highly reliable electric connection
JP2006339163A (en) Connection method of electrode
JP5082296B2 (en) Adhesive with wiring and circuit connection structure
KR20070079219A (en) Anisotropic conductive film with different conductive ball density, manufacturing method thereof, connecting structure of pcb using anisotropic conductive film and manufacturing method thereof
KR100683307B1 (en) Anisotropic conductive film that has differential thickness
KR100766181B1 (en) Multi-layered anisotropic conductive film
JP6370562B2 (en) CONNECTION MANUFACTURING METHOD, FLEXIBLE BOARD CONNECTION METHOD, CONNECTION BODY AND FLEXIBLE SUBSTRATE

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091102

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091202

TRDD Decision of grant or rejection written
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100326

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees